Chapter 5:

MULTI-ATTRIBUTE PORTFOLIO SELECTION

"The wind and waves are always on the
side of the ablest navigators."

5.1

INTRODUCTION

The ‘Multi-Attribute Approach to Portfolio Selection’ consists of two
stages:

(1) the formulation of a multi-attribute representation of securities;
(ii) the selection of an optimal portfolio.

The multi-attribute representation of securities distinguishes between
two categories of attributes. The direct return related attributes
comprise (explicit) expected return and risk measures. The risk measures
come from a multi-factor representation of security returns. The key
assumption in the multi-factor representation is that the returns of the
securities 1in the opportunity set are influenced or generated by a
series of economic forces or ‘factors’. As the variability of returns is
linked to the variability in various (identifiable economic) wvariables,
investment risk becomes a multi-dimensional concept. In the context of
this risk concept, the investor is assumed to have some idea of the
securities’ sensitivities for factor movements, which serve as risk
measures. In addition to these explicit risk/return attributes, we leave
room for other attributes that may be incorporated at the investor’s
discretion. These other attributes may be considered of general
relevance in practice, but may also be relevant because of
1diosyncrasies in the investor’s personal decision context. These other
attributes may in fact be proxies for (components of) expected return or
risk. As a whole, this stage comprises a detailed security analysis.

The multi-attribute representation of securities thus assumes that an
investor can demarcate a set of security attributes that he considers
relevant. For the investor, a financial security then represents a
basket of, say, k attributes and can fully be characterized by a k-tuple
with scores or values that the attributes take on. In this view, when
buying a security, an investor is actually buying an exposure to various
attributes. Likewise, when composing a portfolio, an investor is :
actually composing an exposure to the various attributes.

1) Edward Gibbon, 1787, History of the Decline and Fall of the Roman
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The selection of a portfolio 1s the copestone of the investment
decision process. The issue of multi-attribute portfolio selection is to
balance the attributes of the individual securities on the portfolio
level. That is, given the security attributes and the investor’s profile
(personal context), the attributes of his portfolio must be fashioned in
a way that suits his particular circumstances and preferences best.

As the attributes are evaluated in a portfolio context, the first
issue in portfolio analysis, then, is aggregating the security attribute
scores to the portfolio level. Given the non-linear nature of some
attributes, this is not at all a trivial step. This is discussed in
section 5.2.

The second issue 1is to confront the multi-attribute
representation of securities with the preference structure of the
investor. The problem we face is to construct a portfolio which best
meets a given investor’s preferences and desires. Because of the weak
behavioral assumptions we make and the great flexibility we allow on the
field of investor preferences, the choice of an adequate optimization
approach is of paramount importance. This is the subject of section 5.3.

A distinguishing feature of the multi-attribute approach to portfolio
selection is that it depends on the investor’s specific decision
context, as summarized by his goals, tastes and preferences, and
restrictions. For this reason, we can only provide general areas of
potential applications. This 1s done in section 5.4. These applications
range from mere portfolio analysis to the actual selection of an optimal
portfolio, of which we provide an illustrative example, and from

defensive strategies to aggressive strategies.
Section 5.5 summarizes and concludes the chapter.

5.2 AGGREGATING SECURITY ATTRIBUTES TO THE PORTFOLIO LEVEL

A portfolio is simply an aggregate of the individual securities. Given
the scores of any security i1 on any attribute j, summarized in the set
{a;;};,5, a portfolio p will be evaluated according to the scores on its
attributes {apj}j . Portfolio scores on attributes are obtained from
aggregating security scores on these attributes, according to their
investment fractions. Aggregating attribute scores to the portfolio
level can cause problems, however, when it is not precisely known how
the scores must be aggregated or when there is no simple linear
relationship between security scores and portfolio scores. In other
words: do portfolio characteristics equal the weighted average of
security characteristics? In general terms, the answer is negative, of
course, since the interrelationships between the securities constitute
the prime motivation for composing portfolios. Considering, more
specifically, the scores {aij}i,j on the selected attributes and the
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portfolio weights {xi}iep, we ask whether

(5.1) a

i

pj Ziep Xiaij‘ j — l, » -t;k

Only for linear attributes, the attribute score of a portfolio equals
the weighted average of the securities’ attribute scores. So, in order
to keep the portfolio selection problem tractable, we restrict ourselves
to linear attributes. Actually, most of the potential attributes
considered so far are linear.

When some attributes prove to be non-linear, in the sense that
eqg. (5.1) is not satisfied, there are two possibilities. In the one case,
the portfolio attribute score can still be obtained from the securities’
attribute scores, but now in a non-linear (quadratic, e.g.) fashion.
From the perspective of portfolio selection, this problem can be solved
either by trying to find some linearizing transformation of the
attribute scores, Oor by employing non-linear optimization techniques.
The degree of complexity of the relationship between portfolio and
securlty atributes scores then determines the feésibility of the latter
non-linear approach. As an extension of the linear approach, to be
presented 1n section 5.3, we let this issue rest here. In the other
case, the portfolio attribute score simply is no longer a direct
function of the securities’ attribute scores, however complex this
function may be. We provide an example of this case right below.

In the light of the above problem, we discuss in this section the
linearity of wvarious classes of attributes.

Direct return related attributes

Starting with the direct return related attributes, the expected return
1s a linear attribute, provided that percentage returns are used (cf.
Appendix 4.B to chapter four).

Factor sensitivities are also linear attributes, provided that
they are estimated as ordinary least squares coefficients. Note,
however, that factor sensitivities can actually lose their linearity
property when the estimators are adjusted for violations of the
assumption underlying the classical regression model.2?) One example is a
correction for residual autocorrelation, for example according to the
Cochrane-Orcutt or Prais-Winsten procedure (cf. Maddala [1977, p.278])).
According to this procedure, we have the following transformations on
the security returns and the changes in the k factors: :

2) Note that we here do not refer to the ’‘linearity’ of an estimator in
the common statistical interpretation that it is linear in the
observations. We here refer to the linearity of the sensitivities in
the sense that the sensitivity of a linearly weighted average of
returns equals the linearly weighted average of the sensitivities.
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where rho, is the first order serial correlation coefficient of

security i’s factor model residual. For simplicity, but without loss of
generality of the conclusions, we limit ourselves to the univariate case
(§j=1) . The adjusted estimator of the return sensitivities for the factor
changes is simply the ordinary least squares estimator on the basis of
the transformed variables:

(5.2) b’, = Cov(x;, - rho,-xr:..,, 8 - rho;-8.,,) / Var(d, - rho;-5,_,)

Considering a portfolio p, characterized by the investment weights
(%;}ieps its return is given by r, = ¥; x;r;. and its adjusted
sensitivity to the factor is:

(5.3) b’', = Covl(r,, - rho,-r,..,, 8 - rho,-d.,) / Var(d, - rho,-d,.,)
Linear aggregation of the adjusted factor sensitivities of the
individual securities, instead, gives:

(5.4) b"; = )2; x;b’;

Cov (;-it‘. —rhoi "Lit-1 f-g.t; --I‘hOi '-Qt.-l )

= 2y Xy
Var (_Q_t ""rhoi '_Qt_l )

f
#bp

The reason for the inequality is that the securities’ first order
residual serial correlation coefficilents rho, show up in both the
numerator and the denominator of b’ .3

Following the same line of reasoning, the same argument applies
to some situations where ordinary least squares estimators are adjusted
for the presence of residual heteroskedasticity. The argument holds a
fortiori for intrinsic non-linear estimators (non-linear in the sense

that they are no linear function of the observations), like robust
estimators such as the least absolute deviation estimator.¥

» Aside from this, we have }; x;-rho; = rho,. Expanding (5.4) reveals
that these problems are not removed by assuming that factor changes
are uncorrelated over time and that there exist only contemporaneous
relationships between the returns and the factor changes.

1) The least absolute deviation estimator minimizes the mean absolute
deviation of the residuals. The analogy of this case with the
heteroskedasticity correction case can easlly be seen by considering
the simple iterative weilighted least squares procedure for obtaining
least absolute deviation estimators (cf. Maddala [1977, p.311]).
Discomforting i1n this respect is also Lord’s Paradox (cf. Hildebrand
[1984] ) : under certailn conditions, the mean absolute deviation
measure of dispersion does not increase when an additional
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Speaking in general terms, although adjusted factor sensitivities
may be more appropriate estimators for future (’'true’) factor
sensitivities both on the securities’ level and on the portfolio level,
the weighted average of the adjusted sensitivities will very likely be
different from the adjusted sensitivity of the weighted average (the
portfolio) . In fact, it is unclear what a weighted average of adjusted
sensitivities does represent. This renders the use of adjusted factor
sensitivities in a portfolio context dubious, to say the least. The
problems that arise in aggregating adjusted response coefficients seems
to be overlooked altogether in the context of market model betas.3’

Indirect return related attributes

‘Price ratios’ form an important class of indirect return related
attributes. In price ratios, some quantity is related to the current
price of a security. One example is the expected dividend yield that
relates dividends, expected to be received over some horizon, to current
stock price. In essence, the expected dividend yield 18 part of the
expected total return and should therefore be classified as a direct
return related attribute. Separate information about a portfolio’s
dividends can be important to an investor for several reasons, so 1t
makes sense to distinguish between the two components of expected total
return. The dividend yield indicates the fraction of the return expected
to be received in cash. Aside from (but related to) this liquidity
aspect, dividend income 1s taxed in a different way from capital income.
Furthermore, there are indications that dividend yields are related to

independent source of random variation is added.

) Blume’s [1971] adjustment for the beta’s regression tendencies is
linear, but Blume’s (1975, p.790] theoretical correction for the
‘order bias’ (i.e. measurement error bias) 1is intrinsically non-
linear. Blume’s (1975, p.791l] statement that "[i]t might be noted
that these adjusted portfolio betas [as the average of adjusted
security betas] could alternatively be obtained by adjusting the
unadjusted portfolio betas directly" is only correct because he
implements the procedure by estimating the variance in (true and
estimated) individual betas in cross-section and by restricting these
variances to be the same for any security.

Non-linearity 1s also implied by various robust estimation
techniques, like the beforementioned least absolute deviation
estimation (Sharpe [1971la]) or other methods (Chan & Lakonishok
[1992], e.g.), as well as by some of the techniques that correct for
the intervalling and thin trading effect biases on beta (like Cohen,
Hawawini, Maier, Schwartz & Whitcomb’s [1983] asymptotic beta
estimator) . _

Sharpe [(1971a, p.B-12,fn.10] only mentions the aggregation
issue in a footnote; neither of the other studies mention the non-
linearity of the estimators in a portfolio context. An implication of
this a@s that portfolio risk, when measured by beta or betas, can be
monitored, but cannot be designed or revised on the basis of
individual security estimates.



future expected returns.® Considering the variety of these aspects, we
decide to categorize dividend yield as an indirect return related
attribute. Like total expected return, the (percentage) expected
dividend yield is an intrinsically linear attribute.

Ratios like the price/earnings ratio, the cash flow to price ratio and
the book to price ratio, in contrast, look like non-linear expressions.
Even if they would be linear and could be aggregated to the portfolio
level, one could take the wview that the resulting average figure would
not make sense since only the individual variables tell us something
about the corresponding individual firm. However, 1t does make sense to
incorporate these attributes when it is believed that they are 1in some
indirect way related to (future) return. The question then i1s in what
form to express the price ratios. In the ‘anomaly studies’ as cited in
chapter one, section 1.4, the (ratio) attributes are moulded in a form
that is believed to yield an adequate cross-sectional relationship with
expected (average) returns.’)’ For portfolio analysis, however, we are
looking for a form which enables simple aggregation of the individual
figures. The problem, then, is how to aggregate them to the portfolio
level.

Let us first consider the price/earnings ratio P/E. For some portfolio
p, the ’'standard’ way is to compute the portfolio price/earnings ratio
(P/E)P as the weighted average of the securities’ P/E’s. This can be
contrasted with the way in which the price/earnings ratio of a wvalue
weighted stock market index is commonly computed, 1.e. the market
capitalization of the incorporated stocks divided by the aggregated
(expected) earnings. The latter method seems to be justified, but
appears at the same time to imply some non-linear transformation of the
individual P/E-ratios. We will show below that this intuition is
correct, but can easily be overcome.

Define n; as the number of securities i incorporated in portfolio
p. Denoting the price of security i by P;, the portfolio’s price P is:

As before, x; is the (relative) portfolio weight of security i in
portfolio p:

¢§) Cf. chapter one, section 1.4.

7). Fama & French [1992, p.444] use the logs of leverage and book/price
variables "because preliminary tests 1ndicated that logs are a good
functional form for capturing leverage effects 1n average returns.
Using logs also leads to a simple interpretation of the relation
between the roles of leverage and book-to-market equity [i.e.
book/price ratio] in average returns." Using log ratios in portfolio
analysis, however, implies aggregating individual ratios in geometric
form to portfolio ratios.
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(5.6) X: ==

By analogy to eqg.(5.5), we have for the (expected) earnings per share 1,
E;, and the (expected) earnings on the portfolio level, E_:

Solving (5.6) for n, and plugging this into (5.7) yilelds:

P i
(5 8) 1l = Zl 1'11 —— Zi xi . ——
P, P, E_

Hence,
-1

This suggests that price/earnings ratios (P/E). should be aggregated in
harmonic form into a portfolio price/earnings ratio (P/E),.%

We have thus shown that price/earnings ratios should be converted
into to earnings/price ratios before they can serve as attributes in a
portfolio context.? This also removes some other undesirable property
of the price/earnings ratio: when (projected) earnings approach to zero,
the P/E-ratio approaches (plus or minus) infinity, yielding an awkward
asymptote at zero.

So it is more natural to consider the reciprocal of P/E and scale
earnings by current price. The attribute E/P is then expressed in the
same form as expected total return E{AP+D}/P. By the same argument, it
follows that cash flow to price ratios and book to price ratlios are
already expressed in the right form and can serve as linear attributes
in a portfolio context. There are several forms in which a financial
leverage variable can be expressed.?) By analogy to the former cases,
we suggest using the ratio of either asset or debt value to market
equity value.

8) When not all securities have the same price/earnings ratio and when
the portfolio weights are positive, the harmonic mean of the P/E’s
will be lower than the arithmetic mean ), x,-P,/E,.

%) Note, however, that now the weights of the prices and earnings depend
on the composition of the particular portfolio, and not on the market
capitalization of the corresponding stocks.

10) Bhandari [1988, p.509), for example, uses the ratio of book value of
debt to market wvalue of equity as the leverage variable. Fama &
French [1992, p.441] use the (log of the) ratio book value of assets

to market value of equity as one leverage variable.
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Another possibility to incorporate information that 1s enclosed in
attributes like earnings/price ratios, book/price ratios, cash-
flow/price ratios and size, is to form mimicking portfolios for these
attributes. By regressing security returns on the returns on these
mimicking portfolios, sensitivity coefficients are obtained. Then the
securities’ return sensitivities to these portfolios are used as a
substitute for their scores on the initial attributes.

The form in which attributes in a pricing context are i1ncorporated in
cross-section regressions, is motivated by their hypothesized linear
relationship with average returns. In a time series context, the
relationship between returns and factors can be non-linear, for example
because of a discounting effect. This raises the question how non-linear
multi-factor models for securities may be aggregated to a portfolio
model. There is no simple answer to this gquestion, but one practical
solution is to aggregate the securities’ sensitivities 1in a linear way
whereafter non-linearity can be restored in an approximate way by using
the portfolio sensitivity in a non-linear formulation as suggested in
Appendix 3.D to chapter three. Another route is to distinguish between
sensitivities for factor increases and decreases and to aggregate these
partial sensitivities separately in a linear way. (Note that ordinary
least squares partial sensitivities are linear.)

5.3 CHOOSING AN OPTIMAL PORTFOLIO

We assume that the outputs of the security analysis (for example as
described in chapter one, section 1.4, and chapter four), are expressed
1n an adequate form so that they can be aggregated to a portfolio level
and serve as i1nputs for the portfolio analysis. The evaluation of
feasible portfolios and the selection of an optimal portfolio entail the
combination of investor preferences and portfolio attribute exposures.
Section 5.3.1 discusses tastes and preferences about securities,
expressed 1n scores on attributes. Section 5.3.2 discusses standard
approaches that are employed in the portfolio selection decision.
Finally, we present an alternative approach that does justice to the
flexibility allowed in the security analysis and preference analysis.

11) This procedure is suggested by Fama & French [1993, pp.4-5], who use
mimicking portfolios for size and book/price. See chapter one,
section 1.4.
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5.3.1 Choosing between attribute exposures

A multi-attribute representation of securities entails a detailed
Security analysis. Preference information is used to demarcate the set
of k attributes that an investor considers important. AS a result, each

That 1s, for any security i, the set of its relevant characteristics can
be adequately summarized by the k-tuple:

{ @43 v B4z 4 eee 4 By, .., By ) i €N
where a;; is the value that the attribute j takes for security i. In
other words: it is security i’s score on that attribute as a measure for
1ts exposure to the attribute. Considering the discussion in section
5.2, 1t 1s important to express security attributes in a form that can
(linearly) be aggregated to the portfolio level.??’ Some or all of these
attributes may be sensitivities to factor surprises, as set out in
chapter four.3)

In the foregoing, we implicitly and silently made the step from
securitles to their representation in terms of attribute scores. In a
(E,02) ~expected utility context, portfolios can be fully characterized
by mean and variance because the expected utility preference functional
18 a function of only mean and variance. Aside from appropriate
distribution assumptions, this can be achieved by assuming a single
dimensional utility function, quadratic in return. For a multi-attribute
approach to portfolio selection, we must clearly escape from a uni-
dimensional return context. We can justify a multi-attribute.
representation by referring to consumer theory, where ’‘characteristics
models’ have been developed for describing consumer behavior. In this
respect we especially note Lancaster [1966, p.133], whose contribution
is "breaking away from the traditional approach that goods are the
direct objects of utility and, instead, supposing that it 1is the
properties or characteristics of the goods from which utility 1is

12) As put forward in chapter 3, section 3.4.1, all security attributes
are linear when evaluated in an optimal portfolio. For example, when
extending the (E,c2)-approach to multi-moment analysis, the relevant
security attributes are their marginal contributions to the portfolio
moments, and these are linear (see section 3.3.3). This, of course,
is only local linearity, because changing the portfolio weights
switches the portfolio status from optimal to non-optimal, destroying
linearity. - - - =

13) Care must be taken when considering multi-moment attributes in
conjunction with factor sensitivities. As factor sensitivities
specify a conditional return distribution, only moments of the
residual return component (like residual variance, skewness &C.)
should be regarded. S “ SR



derived."'¥) These implied characteristics models opened the way for a
theory of multi-attribute choice. Transposed to the investment decision,
we can assume that investors buy securities for the attributes they
offer and that different securities are essentially different packages
of attributes. This implies that investors choose between security
attribute exposures instead of between the uni-dimensional securitles Or
their returns. Hence, an investor'’s preference functional 1s directly
specified in the multi-dimensional terms of relevant security
attributes.1%) For an investor, a financial security then represents a
basket of, say, k attributes and can fully be characterized by a k-tuple
with scores or values that the attributes take on. In an investor’s
view, when buying a security, he is actually buying an exposure to
various attributes. Likewise, when composing a portfolio, he is actually
composing an appropriate exposure to the various attributes. Hence, we
can specify a mapping of the securities in the space spanned by the
attributes:

(5.10) security i - { @, + @i 4 e+ o, @44 4 ee- o Q4 | , 1 €N

Not surprisingly, by considering multiple attributes, the portfolio
selection problem becomes multi-dimensional. As an investor will show
different preferences and tastes for different attributes, the
investment decision becomes a multi-criteria decision process. This 1s
depicted in Figure 5.1. After performing the security analysis, the
investment decision can be shaped by confronting the investor’s
preferences (expressed in attributes) with the securities’ exposures to
the attributes. In other words, the problem becomes how to construct a
portfolio that is tailored to an investor’s needs and preferences. This
is further elaborated in the next sections.

5.3.2 Standard approaches

Given the perceived attributes of the securities, we can assume that an
investor strives to attain various goals or criteria, related to a
number of perceived attributes. The problem the investor faces 1s to
construct a portfolio which best meets his preferences and desires. The

14) For a discussion and review of characteristics models, we refer to
Ratchford [1975] and Deaton & Muellbauer [1980, pp.250-253].

15) Consumer theory considers decision making under certainty. Hence,
characteristics models specify utility functions in terms of
attributes. Because we are dealing with situations of uncertainty or
risk, we express the expected utility function, or more general: the
preference functional, in terms of multiple attributes. It must then
be assumed that some subset of attributes captures the risk aspects,
so that attitudes towards risk can be reflected in the preference
functional. A preference functional specified in attributes is
sometimes termed a ’‘Lancaster-type of utility function’.
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Figure 5.1: The multi-criteria decision process: confronting investor
preferences with attributes scores; k attributes and N
securities in the opportunity set.

investor: securities:
attribute PREFERENCES attribute SCORES
(~) (0) (+) 1 2 N

evaluate trade offs form portfolio
within restrictions within restrictions

decision process now involves searching for the portfolio that 1is
considered most desirable over all the attribute dimensions.

More concrete, the investor will strive for a specific
constellation of portfolio attribute exposures. For a given portfolio,
its exposure to a certain attribute can be calculated as a weighted
average of the attribute exposures of the individual securities
contained in this portfolio. The fractions invested in each of these
securities can thus be treated as instrumental variables. Therefore, the
attribute exposures can be seen as goal variables which are linear 1in
the portfolio holdings. Often, the investor will try to either minimize
or maximize each of these goal variables. Alternatively, the investor
may strive to attain a target level or desired score on some
attribute(s). Depending on the investor’s insights and preferences, the
relative importance of each of these goals may vary. Generally, the goal
variables will be interrelated. This implies that no portfolio can be
found for which each of the goal wvariables reaches its optimal value or
for which all criteria are met. AsS a consequence, the investor has to
evaluate the trade-offs between the wvarious goal variables. -



This section discusses various approaches that are suggested to cope
with a multi-attribute investment decision. As the number of attributes
is assumed to be much less than the number of securities in the
opportunity set, the dimensionality of an initial choice problem in
rerms of securities is greatly reduced. The evaluation and
representation of the trade-offs between the attributes, however, 1s now
the main problem.

There are several routes leading to the selection of a portfolio,
depending on the amount of information available on the i1nvestor’s
preference structure. On the one extreme, we have a minimal amount of
preference information, allowing only ranking on an attribute or a
lexicographic ordering over several attributes, for example. Note 1in
this respect, that the investor himself indicates what attributes he
considers important (see chapter one, section 1.3). This implies that in
any case some preferences towards the selected attributes do exist, but
they need not necessarlly be expressed in some more or less detailed
form. At the other extreme, a fully specified preference functional can
be obtained. In that case, we can simply formulate an optimization
problem and use techniques like linear programming, non-linear
optimization or goal programming for solving it. The more preference
information is available and the better this information 1is captured 1in
an adequate formulation of the optimization problem, the stronger
gquarantee we have for an optimal solution to the portfolio decision.
Conversely, when preference information is incorporated into the problem
formulation in an incomplete or inadequate way, the optimality of the
implied ’'optimized’ decision must seriously be doubted.

Below, we discuss these routes to portfolio selection in more

detail.

Ranking methods

The most simple approach entails a simple ranking of the securities
according to their attribute exposures. In Salomon Brothers’ multi-
attribute model (Sorensen, Mezrich & Thum [1989]), for example, ranking
is used in order to screen an opportunity set for stock suggestions. In
this way, the investment opportunity set is reduced, but no guidelines
are provided for portfolio composition. Goldman, Sachs & Co.’s (Jones
11987]) use of the multi-attribute model also aggravates to ranking the
stocks according to their scores, for each attribute separately. Here
also, no guidelines are provided for portfolio composition. We can
imagine the possibility of using intersections of the sorts on the
various attributes and forming top and bottom quantile portfolios, but
we doubt whether such a procedure would be satisfying.1®

16) Martel, Khoury & Bergeron [1988] present a multi-criteria procedure
for portfolio comparisons based on outranking relationships on
various attributes. However, in this case it is assumed that the
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Ranking involves only a very indirect and incomplete use of the
multli-attribute information. More importantly, the trade-offs between
the various attributes cannot be evaluated.

Multi-attribute utility theory

A more sophisticated possibility is to extend the traditional utility
framework to a multi-dimensional context by casting a utility function
in terms of multiple portfolio attributes:

(5.11) U(;‘_p) —-> U(apl,.,.,apk)

One could then, for example, extend the optimization procedure proposed
by Sharpe [1987] to a more general context and replace the Z(E,, 02))
preference functional by some other ’‘Lancaster [1966]-type’ of function
Z(ag; .
preference functional, however, is enormous and is not likely to be

...,8,) . The complexity of specifying a multi-attribute

overcome in practice.

In multi-attribute utility theory, this complexity i1s somewhat
reduced by assuming (strong) separability of the preferences. When this
assumption is satisfied, a series of uni-dimensional (i.e. single
attribute) utility functions U,(a,y) can be assessed, whereafter these
component functions are combined (in a linear, multiplicative or other
fashion), using information about attribute trade-offs:

(5.12) Ul(a cesdge) > QMU (ag;) .. T (ag) ]

pl1’ °

In this way, the exposures are evaluated attribute by attribute and then
combined to obtain an overall measure of desirability. Still, this
places a heavy information burden on the investor. The problem here 1s
to ex ante specify the uni-dimensional preferences for each of the
attributes as well as the overall preference functional that
incorporates the evaluation of a combination of attribute exposures and
their trade-offs.?)

portfolios to be compared already do exist.

17)  When specifying utility functions in terms of attributes, it is
silently assumed that no risk (i.e. probability distribution) is
attached to the attribute scores. When instead the attribute scores
are random variables, the expected utility function must be
considered for evaluating the decision alternatives. In contrast to
the univariate utility functions that appeared in chapter one, the
concept of risk aversion is less well-defined for multivariate
utility functions (cf. Richard [1975]). In this regard, one could
assume that some subset of attributes captures the risk aspects and
that the attribute scores themselves are deterministic wvariables (cf.
footnote 15 above). For the case in which the attribute scores are
random variables, Roberts & Durban [1988] present a multi-attribute
(footnote continued on next page)
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In the seminal multi-attribute specification of Smith [1974], he
uses a intuitive methodology that could be termed an additive multi-
attribute utility approach. On the basis of the securities’ (asset

classes’) exposures to the attributes, he lets the lnvestor assign

‘suitability measures’ to each attribute score; this can be interpreted
as the transformation aj-at%(aj) for each attribute 3. Next, he lets
the investor specify weights that indicate the relative 1mportance of
the various attributes; this can be interpreted as specifying the weight
coefficients in the function Q(-) in eqg.(5.12), that islassumed to be
linear. The weighted average suitability measures for the various
investment alternatives are then considered as an overall index of
suitability. Properly normalized, the latter indices are finally used as

investment fractions.

Linear programming and multiple-goal programming

For conditional-normative uses, a multi-attribute utility theoretic
approach will prove to be too sophisticated because of 1its information
requirements. Another route is then to cast the multi-dimensional
preference functional in the form of a (linear) programming model. One
can imagine to maximize the portfolio’s exposure to one attribute
(expected return, e.g.) subject to restrictions on the other attribute
scores. Or, as in Sorensen & Thum’s [1992] portfolio optimizer, toO
maximize expected portfolio return while equating 1ts factor
sensitivities with those of a reference index (see sectilion 5.4.3).

The problem with these specifications 1s that they are intrinsically
uni-dimensional: only one attribute is optimized, while the other
attributes only serve as constraints. One could then try to extend the
linear programming formulation to a multi-dimensional context by
incorporating various attributes in a weighted fashion in the objective
function. A recent example is Arthur & Ghandforoush [1987]. They follow
Smith [1974] —although they do not refer to him— in allowing for wvarious
attributes (both gquantitative and qualitative in nature) and in
assigning normalized ’factor measures’ to attribute exposures and
normalized ’'factor weights’ to attributes. Their weighted average is a
'security performance measure’, and this is maximized (under
constraints) on the portfolio level in a linear programming problem.

A linear programming formulation like this can only be employed
when the trade-offs between the attributes can properly be specified.
This 1s especially relevant in the case where the investor’s goals with
respect to the attribute exposures may be conflicting.

In formulating priorities and targets with respect to attributes and
attribute exposures, goal programming offers more flexibility. The

utility model under risk. For (conditional-) normative uses, however,
this approach is far too complex and unworkable.
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applicability of multiple goal programming to the portfolio problem was
recognized in an early stage. In the (E,0?)-context, we have Lee [1972,
pp.227-239], Lee & Lerro [1973], Kumar, Philipatos & Ezell [1978], Lee &
Chesser [1980], Spronk [1981] and, more recently, O’'Leary & O’Leary
[1987] . Aside from expected return and risk, some indirect return
related atributes (notably dividend yield) are specified, but a truly
multi-attribute representation is not pursued. In all studies but the
last1®), risk is accounted for by Sharpe’s [1967] linear approximation
of portfolio return variance on the basis of the single index model, or
simply by a target for a market index model beta. Of course, the number
of attributes could easily be extended towards multi-dimensional risk
measures and various additional indirect return related attributes.
Multiple goal programming indeed has some attractive properties.
It shows a close correspondence with decision making in practice, the
goals are formulated as aspiration levels and there 1s always a solution
for a well-defined problem (with a non-empty feasible region), even 1if
some goals are conflicting. An important drawback of multiple goal
programming, still, is its need for fairly detailed a priori information

on the decision-maker’s preferences.

Summarizing, an investor will try to find a balance (depending on his
insights and preferences with respect to the feasible portfolios)
between the portfolio’s exposures to the attributes. The degree of
sophistication of an optimization procedure to be applied to this
decision, as measured in terms of preference information requirements,
must be matched both with the investor’s ability to explicitize and
provide this information, and with the possibility to incorporate this
information in an adequate way in the optimization problem formulation.
In the case in which an investor can provide a fully specified
preference functional, the optimization is more or less straightforward.
However, it is more realistic to consider the situation where
this condition is not satisfied and, hence, an investor’s portfolio
selection problem cannot be solved by standard techniques as linear (or
quadratic) programming and multiple goal programming. Although multiple
attributes could be specified, a truly multi-attribute approach to
portfolio selection would not live up to its promise. Because of the
weak assumptions and flexibility allowed on the the field of investor
preferences, a more flexible methodology is called for, that even in the
most general context allows for an effective and efficient scan of
feasible, non-dominated portfolios. This leads us to an interactive

approach.

18) Tn their formulation of a goal for risk, O’Leary & O'Leary [(1987,
p.192] assume a return volatility measure that is additive and simply
opt for the returns’ standard deviations. As standard deviations are
not additive, this is incorrect. Furthermore, since the correlation
structure is ignored, a fundamental aspect of the portfolio probler
is.missedfﬂyf;ﬁ | L - | | | o T . o




5.3.3 An alternmative approach

In contrast with the methods described above, interactive methods
neither require an explicit representation or specification of the
decision-maker’s preference function nor an explicit quantitative
representation of the trade-offs among conflicting goals. By its nature,
an interactive procedure progresses by seeking this information from the
investor, removing the need for explicitizing the preference structure.
For the investment probdem as sketched in this study, we propose
Interactive Multiple Goal Programming (henceforth IMGP), as developed by
Spronk ([1981].

In broad lines, IMGP works as follows. Given a set of
(investment) alternatives and a set of goal variables (attribute
exposures), IMGP starts formulating minimum-requlrements for each of the
goal variables, leaving a set of alternatives meeting the requirements.
(For the ease of exposition, we assume that all goal variables are to be
maximized.) This vector of minimum goal wvalues is presented to the
investor, together with a set of indicators of the potential
improvements of these minimum goal values, within the set of feasible
portfolios. In the first i1teration, very low minimum goal values are
chosen (viewed by the investor as absolute minimum conditions or even
worse) 1in order to be sure that no potentially acceptable portfolios are
excluded. Next, the investor has to indicate whether or not the
portfolios meeting the minimum requlrements are satisfactory. If so, he
can choose one o0f these portfolios. If not, he has to indicate which of
the minimum goal values should be increased. The constraint on the wvalue
of the corresponding goal wvariable is then reformulated.

On basis of the resulting new vector of minimum goals values, a
new set of indicators of the potential improvements of these wvalues is
calculated and presented to the investor. The investor has to indicate
whether the shift in the indicated minimum goal value is outweighed by
the shifts in the potentially attainable values of the other goal
variables. If so, the investor has the opportunity to revise his earlier
wishes with respect to the changed minimum goal value. If not, the
change of the minimum goal value is accepted and the investor can
continue to raise any of the other or even the same minimum goal wvalue.
Of course, by successively raising the minimum goal values from
lteration to iteration, the set of feasible portfolios is gradually
reduced by keeping only the portfolios that meet the higher standards.
Each i1teration produces indicators showing the ‘price’ of the higher

standard, so the investor can evaluate the trade-offs between the goals
(attributes) .

The i1nvestor has several options. He can continue until the remaining
set of feasible portfolios becomes very small. Another possibility is to
select a suitable portfolio from the set of portfolios satisfying the
minimum requirements. In this respect, IMGP produces at each iteration a
set of non-dominated portfolios. Finally, a set of feasible portfolios
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satisfying the minimum conditions on the goal values can be subjected to
a second analysis by the investor. In his decision context, the investor
may wish (or need) some elbow-room, thus requiring more than just one
portfolio. The procedure then offers adequate flexibility to incorporate
other, hard to quantify, criteria into the decision making process.

Summarizing, IMGP incorporates all the advantages of
‘traditional’ goal programming, while circumventing the unnecessary
burden of obtaining a '‘complete’ picture of the investor’s preference
pattern. In our opinion, this approach offers the desired degree of
flexibility to be fruitfully applied to the multi-attribute portfolio
selection problemn.

By tuning the attribute exposures, a specific portfolio profile can be
obtained that matches the investor’s profile. The last two stages of the
portfolio selection process —portfolio analysis and portfolio selection—
are no longer treated separately but are integrated. The interactive
method th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>