Multi-Attribute Portfolio Selection:

A Conceptual Framework

Winfried G. Hallerbach
MULTI-ATTRIBUTE PORTFOLIO SELECTION:
A CONCEPTUAL FRAMEWORK

(Multi-Attribute Portefeuilleselectie:
Een Conceptueel Raamwerk)

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR
AAN DE ERASMUS UNIVERSITEIT ROTTERDAM
OP GEZAG VAN DE RECTOR MAGNIFICUS
PROF. DR. P.W.C. AKKERMANS M.A.
EN VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES

DE OPENBARE VERDEDIGING ZAL PLAATSVINDEN OP
VRIJDAG 11 NOVEMBER 1994 OM 13.30 UUR

DOOR

WINFRIED GEORGE PETER MARIE HALLERBACH

GEBoren TE BEEN (L)
PROMOTIECOMMISSIE

PROMOTOR: Prof. Dr J. Spronk

OVERIGE LEDEN: Prof. Dr C.G. Koedijk
 Prof. Dr A.C.F. Vorst
 Prof. Dr C.G. de Vries
"The trouble with modern education is you never know how ignorant people are. With anyone over fifty you can be fairly confident what's been taught and what's been left out. But these young people have such an intelligent, knowledgeable surface, and then the crust suddenly breaks and you look down into depths of confusion you didn't know existed."

PREFACE

At a conference, quite some time ago, a man suddenly started scribbling down notes. He was observed by Albert Einstein, who asked him what he was doing. The scribbler replied: "I always carry a note pad so that I can write down any good ideas that pop up in my mind". Whereupon Einstein soberly remarked, "I had only one or two good ideas in my whole life".

I feel a lot like that man at the conference. At the Department of Finance, I too did a lot of scribbling. More importantly, I learned that consolidating collected notes was not quite equivalent to writing a dissertation. I was as much hindered by my German roots (from which I obviously could not escape) as by the restricted space of my study, which looked like an exploded confetti factory. I hereby thank many vintages of student assistants (who copied most of the cited papers for me, and many, many more) to make this possible.

I’m deeply indebted to my supervisor Jaap Spronk and I thank him for his encouragement, support, guidance, never ceasing trust and – of course – for his notorious and contagious good moods. I look forward to our cooperation in the future.

I thank my colleagues at the Department of Finance (and my roommate Nico van der Sar in particular) for providing a stimulating research ambiance. Especially, I wish to thank my companion in distress Marc Goedhart. When time ran out and Occam’s razor was sharpened, our conversations made me realize that there exists at least one exception to ‘a trouble shared is a trouble doubled’.

Finally, I wish to thank my mother (who shows to be a real stayer) for never-ending support, and Jaap Jan for his long-long-time understanding and consideration. Words would be inadequate, but a promise for a long-long vacation is certainly in place.

Financial support from the ‘Stichting Organisatie van Effectenhandelaren te Rotterdam’ and the ‘Stichting Fonds voor de Geld- en Effectenhandel’ is gratefully acknowledged.

Winfried Hallerbach
Rotterdam, 6 October 1994
CONTENTS

Chapter 1: INTRODUCTION
1.1 The investment decision problem 1
 1.1.1 Portfolio theory 1
 1.1.2 Context 2
 1.1.3 Deriving decision criteria 5
1.2 The representation of investment alternatives 11
 1.2.1 The mean-variance framework 11
 1.2.2 Some alternative approaches 16
1.3 The investment decision: a closer look 19
1.4 Refining the representation of investment alternatives 22
 1.4.1 Direct return related attributes 22
 1.4.2 Indirect return related attributes 24
1.5 Of market pricing and Procrustes 33
1.6 Risk management in an efficient market 39
1.7 Goal and outline of the study 43

Chapter 2: THE MARKET MODEL, INDEX MODELS AND FACTOR MODELS 49
2.1 Introduction 49
2.2 The Market Model (MM)
 2.2.1 Definition 50
 2.2.2 The market model as a theoretical concept 52
 2.2.3 The market model as an empirical concept 63
2.3 The Single Index Model (SIM) and the Single Factor Model (SFM) 73
 2.3.1 Definition 74
 2.3.2 The SIM and SFM as theoretical concepts 78
 2.3.3 The SIM and SFM as empirical concepts 81
2.4 Multi-Index Models (MIM) and Multi-Factor Models (MFM) 85
 2.4.1 Definition 85
 2.4.2 The MIM and MFM as theoretical concepts 86
2.5 MIMs and MFM as empirical concepts
 2.5.1 MIMs as empirical concepts 95
 2.5.2 MFM as empirical concepts 100
2.6 Summary and conclusions 104

Chapter 3: FACTOR MODELS AS STATISTICAL AND ECONOMIC CONCEPTS 107
3.1 Introduction 107
3.2 Conditioning security prices/returns on state variables 112
 3.2.1 A general multi-factor representation 113
 3.2.2 Linear and approximately linear multi-factor representations 115
3.2.3 Conditioning and least squares
3.2.4 Taylor series approximation versus least squares approximation
3.3 Factor models as simplifying distribution assumptions
3.3.1 Distributions of securities and portfolios
3.3.2 Conditioning and the reduction of complexity
3.3.3 (Multi-) factor models and multi-moment portfolio analysis
3.4 Sensitivity coefficients (beta & betas) as risk measures
3.4.1 The portfolio approach
3.4.2 The conditioning approach
3.4.3 Resume
3.5 Present value models as a basis for deriving factor models
3.5.1 Present value models for financial securities
3.5.2 From present value model to factor model: bonds
3.5.3 From present value model to factor model: stocks
3.5.4 The empirical validity of present value models
3.6 Summary and conclusions

APPENDIX 3.A: A multi-factor model in continuous time
APPENDIX 3.B: Taylor series approximation versus least squares approximation
APPENDIX 3.C: A simple flexible growth model
APPENDIX 3.D: Modelling non-linearities with first order elasticities

Chapter 4: SOME EMPIRICAL RESULTS FOR THE DUTCH STOCK MARKET
4.1 Introduction
4.2 The stock market data
4.2.1 Stocks and indices
4.2.2 Choosing a return definition
4.3 The relationship between common stock returns and interest rates
4.3.1 Introduction and summary
4.3.2 Estimating 'equity duration': some empirical studies
4.3.3 The interest rate series
4.3.4 The interest rate sensitivities
4.3.5 Non-linearities: equity convexity
4.3.6 Confronting theoretical and empirical durations
4.4 Towards a multi-factor model
4.5 Summary and conclusions

APPENDIX 4.A: The stock market data
APPENDIX 4.B: Return definitions and biases
APPENDIX 4.C: A correction for spurious serial correlation from averaging
NOTATION

Although the meaning of symbols is explained in the text, we here provide some general remarks on notation.

Underscores denote random variables, for example x_i.

Boldface types denote matrices (upper case, for example Σ) and (column) vectors (lower case, \mathbf{x}). In this context, a prime (') denotes the transpose.

The braces \{\} indicate a set, like $\{x_i\}_{i=1}^n$, mostly abbreviated as $\{x_i\}_i$ or simply as $\{x_i\}$.

The square brackets [] indicate the elements of a (column) vector (like $\mathbf{x} = [x_1, \ldots, x_n]$) or a matrix (like $\mathbf{E} = [e_{ij}]_{i=1}^n$ or $[e_{ij}]_{i,j=1}^n$).

The summation operator \sum_i is abbreviated as $\sum_{i=1}^n$ or simply as \sum_i.

Where it is clear from the context, a function $\Phi(\mathbf{A}, \ldots, \mathbf{A})$ with arguments $\{A_i\}_i$ is simply denoted as $\Phi(\cdot)$. Derivatives are then indicated by primes or parenthesized superscripts, for example $f'(\cdot)$, $f''(\cdot)$, $f^{(n)}(\cdot)$ and so on.

The expectations, variance and covariance operators are denoted by $E(\cdot)$, $\text{Var}(\cdot)$ and $\text{Cov}(\cdot, \cdot)$, respectively.

Quotation marks (" ") denote literal citation whereas inverted commas (' ') are used as ordinary quotation marks in our own text.

LHS and RHS is used to indicate the left-hand side and right-hand side of an equation.

Boldface plain text, finally, indicates our emphasis.