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Organ-specific or endocrine autoimmune diseases 

Autoimmune diseases are diseases in which the immune system reacts against its own 

organs and organ systems. Classically, autoimmune diseases are divided into organ-specific 

and systemic autoimmune diseases. The majority of the organ-specific autoimmune diseases 

are restricted to endocrine tissues, such as the islets of Langerhans in the pancreas, the thyroid, 

the adrenal cortex, the parietal cells in the stomach and the steroid producing cells in the 

gonads.  

Type 1 diabetes mellitus (DM1) is the outcome of an immune response directed to and 

progressively destroying the insulin producing islet cells. When less than about 70% of the initial 

β cell mass is left and the circulating insulin level is severely reduced, the clinical symptoms of 

hyperglycemia (polyuria, polydipsia, fatigue, weight loss, ketosis/ ketonuria) will develop. 

Important autoantigens are Glutamic Acid Decarboxylase 65 (GAD65), tyrosine phosphatase like 

protein (or insulinoma antigen-2 =IA2) and insulin (1-3). A T helper (Th) 1 reaction specific for 

these autoantigens that activates macrophages is an important mechanism for killing of the β 

cells. 

When the immune response is directed to the thyroid gland, two major clinical syndromes 

of autoimmune thyroid diseases (AITD) can be distinguished: Hashimoto’s autoimmune 

thyroiditis and Graves’ disease. Hashimoto’s autoimmune thyroiditis is a catabolic disorder and 

is characterised by autoimmune destruction of the thyroid finally leading to clinically overt 

hypothyroidism. Important autoantigens are thyroid peroxidase (TPO) and thyroglobulin (Tg). As 

in DM1, a Th1 reaction specific for these antigens and activating macrophages is an important 

mechanism for the thyrocyte destruction. Graves’ disease is an anabolic disorder and is 

characterised by stimulation of the thyrocytes via antibodies directed to the TSH receptor and 

mimicking TSH in its function. This leads to thyrocyte growth and excessive hormone production, 

resulting in a diffuse goiter and hyperthyroidism, both hallmarks of Graves’ disease (18).  

Autoimmunity against the gastric proton pump H+/ K+-ATPase on gastric parietal cells 

results in autoimmune gastritis (AIG), hypo-/ achlorhydria, hypergastrinemia and iron deficiency 

anemia. When the intrinsic factor secretion is in addition hampered due to intrinsic factor 

antibodies pernicious anemia usually develops (4;19).  

 

Clustering of organ specific endocrine autoimmune diseases 

It is known that DM1, autoimmune thyroid disease (AITD) and autoimmune gastritis (AIG) 

often occur together forming the so-called autoimmune polyglandular syndrome (APS) type 3 

(5). Chapter 2 represents a review on the association of type 1 diabetes mellitus, autoimmune 

thyroid disease and autoimmune gastritis and this chapter also includes data obtained from a 

study of our research group on a series of 397 Dutch DM1 children with a mean age of 9.0 ± sd 

3.8 years (range from 0.8-17 years). We studied these diabetic children for TPO-Ab, gastric 
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parietal cell antibodies, serum TSH and serum T4 levels and more importantly, we additionally 

investigated thyrogastric autoimmunity and thyroid dysfunction in 260 of their siblings (125 girls 

and 135 boys, mean age of 11.5 ± sd 5.9 years) and in 423 of their parents (219 mothers and 

204 fathers, mean age of 39.5 ± sd 5.8 years).  

This review concludes that thyroid autoimmunity is evident in up to one third and gastric 

autoimmunity in up to a quarter of patients with DM1. Also relatives of DM1 patients, particularly 

mothers, have higher frequencies of these autoimmune conditions. Also, gastric autoimmunity is 

present in one third of AITD patients and islet autoimmunity in one out ten. 

 
Animal models of organ-specific endocrine autoimmune diseases 

For the various endocrine autoimmune diseases there exist excellent animal models. 

These animal models often represent APS, since frequently more than one endocrine organ is 

affected. Chapter 3 reviews the usefulness of these animal models for studying the 

pathogenesis of type 1 diabetes mellitus, autoimmune thyroid disease and autoimmune gastritis. 

These models are particularly useful to study the pathogenesis of the very early phases of the 

autoimmune reaction, since such studies are practically not possible in patients. The animal 

models represent disease models that develop spontaneously in specifically inbred models, 

such as obese strain (OS) chicken, the bio breeding diabetes prone (BB-DP) rat and the non 

obese diabetic (NOD) mouse, or that are artificially induced, such as neonatal thymectomised, 

experimental allergic models induced by immunizing with auto-antigens in adjuvantia, transgenic 

models, etc.  

We conclude that animal models of endocrine organ-specific autoimmune disease still 

hold immense promise for the discovery of pathways, genes and environmental factors that 

determine the development of endocrine organ-specific autoimmune diseases. These models 

are helpful to uncover disease-associated pathways, which are complicated to define in man. 

However, careful interpretation of the causes of the human diseases and the involvement of 

various genes and environmental factors is required considering the different etiologies in the 

different animal models. 

Dendritic cells and T cells are aberrant in the very early phases of the autoimmune 

reaction in these animal models.  

 

What are dendritic cells? 

Dendritic cells (DC) are the most potent antigen presenting cells (APC) of the immune 

system and are critically involved in the initiation of primary immune responses, the generation 

of T cell dependent autoantibody formation, graft rejection and autoimmune diseases (6). DC are 

present in the interstitium of all tissues (except the brain) and DC in the tissues migrate via the 

lymph to the T cell areas of the draining lymph nodes. DC in lymphatic tissues are characterised 
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by a strong expression of MHC class II molecules and other essential costimulatory molecules 

(CD80, CD86, CD40, etc) essential to initiate a proliferation response of naïve T cells.  

DC form an enormously heterogeneous group of APC with different lineage backgrounds 

(so-called lymphoid versus myeloid lineage), precursors and various stages of differentiation and 

maturation (figure 1). The “lymphoid” DC originate from pre T cells in the thymus and 

predominantly populate the thymic cortico-medullary junction where the cells are instrumental in 

the deletion of erroneously created autoreactive T cells. The “myeloid” DC originate from a 

special CD34+ precursor in the peripheral blood (giving rise to epidermal S100+ Langerhans 

cells) or from CD14+ circulating monocytes. The monocyte-derived DC are closely linked to 

other classes of APC, such as the veiled macrophages and often other types of accessory 

macrophages (figure 1). 

 

Mature and immature dendritic cells. Molecular interactions with T cells.  

The presently generally held paradigm (7) in Immunology is that DC present in the 

interstitium of non-lymphatic tissues are in an immature state, suitable for their sentinel function. 

The immature cells express various molecules for the uptake of foreign and damaged material 

(mannose receptors, Toll like receptors), and have a high endocytotic capability enabling to 

capture and process antigens. 

 

 
Fig. 1. A scheme of origin and maturation of dendritic cells  
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These immature DC have a limited potency to stimulate T cells. In response to a local 

inflammatory stimulus (the so-called danger signal), such as endotoxin (LPS), TNFα and 

bacteria, interstitial DC undergo maturation. The matured DC have lost their antigen-capturing 

capacity, but have acquired a strong potency to stimulate the proliferation of naïve antigen-

specific T cells, by directing the antigen-loaden MHC molecules to the cell membrane and 

upregulating their costimulatory molecules. Thus, mature, inflammatory DC are the initiators of 

effector immune responses.  

The expression of MHC class II and costimulatory molecules is critically involved in the T 

cell stimulation by such mature DC. MHC class II binding to the TCR is the first signal between 

the cells (signal 1). Additional costimulatory signals are however required (signal 2) for cross 

activation (Fig. 2). CD80 / CD86 binds to CD28 and in a later activation phase to CTLA-4. CTLA-

4 is exclusively expressed on activated CD4+ and CD8+ T cells. It binds to CD80 / CD86 with a 

much higher affinity than CD28, down regulates T cell function and mediates apoptosis (11). The 

third signal in the DC-T cell cross activation is stimulation via cytokines. IL-12 stimulates in 

particular a Th1 skewed differentiation of the T cells, while IL-10 stimulates a Th2 skewing. The 

skewing signal is probably also in part dependent of the costimulatory signal, since it has been 

shown that a higher co-stimulation is needed for Th2 than for Th1 skewing (12;13). 

 

 
Fig. 2. A simplified scheme of a DC-T cell cross-talking during antigen presentation. The HLA class II present the Ag 
to the TCR at low avidity. Additional binding of CD54 (ICAM-1) to CD11/CD18 (LFA-1) facilitate full ligation of the 
HLA-TCR complex. The T cell is now activated and upregulates costimulatory molecules (e.g. CD28, which bind to 
CD80 and CD86 on DC. CD80 and CD86 both bind to CTLA-4 and CD28 with a different affinity. The third signal 
includes the production and secretion of cytokines. 
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DC and T cell tolerance 

The last years the idea has gained acceptance that DC are also prime inducers of 

tolerance (8). With regard to central tolerance, there are strong indications that thymic DC 

express autoantigens and can therefore act as the prime deletors of auto reactive T cells created 

in the thymus (20). However this deletion process is far from complete: low, but sufficient auto 

reactive T cells escape to the periphery. Peripheral tolerance mechanisms should keep these 

circulating autoreactive T cells under control. 

When interstitial, immature DC are not triggered by “danger” signals and stay under 

“steady state” conditions, there is nevertheless a continuous travel of such immature DC 

(carrying auto-antigens) to the draining lymph nodes ((9), figure 3). Such DC lack sufficient co 

stimulatory molecules and are able to induce anergy in circulating autoreactive T cells (8). 

Whether these DC are capable of inducing deletion of autoreactive T cells is presently a matter 

of debate and research (10). On the other hand when mature DC in the lymph node give strong 

signals not to naïve autoreactive T cells, but to T cells that have recently expanded in multiple 

proliferation rounds, the latter T cells stop to proliferate and go into apoptosis (the so-called 

Activation Induced T cell Death, AITCD, figure 4). Hence there are various ways in which DC are 

indispensable for tolerance induction and ending autoreactive T cell reactions. 

 

 
Fig. 3. DC precursors, such as the monocyte, continuously migrate through the epithelium via the tissues to the 
draining lymph nodes. Various molecules, such as adhesion molecules (integrins), interleukins and chemokines are 
instrumental in this traffic. In a non-danger (“steady state”) environment DC stay immature and induce after migration 
T cell anergy in the draining lymph node. However when DC encounter danger signals in the tissues, e.g. microbial 
agents or necrotic cells, they maturate and are able to induce proliferation and activation of naïve T cells in the 
draining lymph node.  
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Dendritic cells in type 1 diabetes and autoimmune thyroid disease 

Since DC defects are important in the animal models of endocrine autoimmune disease 

(see Chapter 3) and since DC are amongst the first cells that are activated in the pancreas and 

thyroid (14-17) of BB-DP rats and NOD mice, we decided to study monocytes and monocyte 

derived DC in patients with DM1 and AITD. Data on such cells in human endocrine autoimmune 

diseases are relatively scarce.  

An important purpose of the studies described in this thesis was to gain insight to the role 

of these APC in the immunopathogenesis of DM1 and AITD. In chapter 4, 5 and 6 we 

investigated the accessory function of monocytes and monocyte derived DC in DM1, AITD and 

the relatives of DM1 patients. Specifically, we studied the differentiation of DC from monocytes, 

the adhesion molecule expression and cytokine production of monocytes and DC and the T cell 

stimulatory capacity of the obtained DC. We conclude from these chapters that monocytes and 

DC of DM1 patients have a low expression of CD54, low IL-10 production, are defective in the 

differentiation with reduced T cell stimulatory capacity. The first-degree relatives of DM1 patients 

however, showed (some opposite) features: normal expression of CD54, high IL-10 production, 

enhanced differentiation and enhanced stimulatory capacity of T cell proliferation. No such 

aberrancies were detected in AITD patients. Since we found virtually normal monocyte and DC 

function in AITD, we review in chapter 7 the role of DC in the pathogenesis of AITD.  

 

 
Fig. 4. A scheme of the costimulatory signals in the induction of activation and in the silencing of effector T cells. 
Mature DC with a high expression of the costimulatory molecules CD80 and CD86 stimulate proliferation of naïve T 
cells via triggering of CD28 on the T cells. After such activation the T cells respond by an up-regulation of CTLA-4, 
which is a molecule able to down-regulate the functions of T cells. In addition, after various rounds of proliferation T 
cells become vulnerable to apoptosis. The same costimulatory signals given by the mature DC now induce a silencing 
of the activated T cells or induce apoptosis (AITCD) in these T cells. 
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Summary 
 

Type 1 diabetes mellitus (DM1), autoimmune thyroid disease (AITD) and autoimmune 

gastritis (AIG) often occur together forming the so-called autoimmune polyendocrine syndrome 

(APS) type 3. Thyroid autoimmunity is evident in up to one third and gastric autoimmunity in up 

to a quarter of patients with DM1. Also relatives of DM1 patients, particularly mothers, have 

higher frequencies of these autoimmune conditions. Also, gastric autoimmunity is present in one 

third of AITD patients and islet autoimmunity in one out ten.  

Screening DM1 patients and their relatives (particularly females) for thyroid autoimmunity 

is recommended. If positive, excess iodine should be avoided and thyroxine treatment 

considered. Whether autoimmune thyroiditis and autoimmune gastritis patients should be 

screened for islet Ab is not clarified. 
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Introduction 
 

There are two main categories of autoimmune diseases: "organ-specific" and "systemic" 

autoimmune diseases. The immune attack in the organ-specific autoimmune diseases is 

confined to one organ or organ system, while in the systemic autoimmune diseases the damage 

is throughout the body and often the consequence of immune complex formation and deposition. 

In the majority of organ-specific autoimmune diseases, target tissues are endocrine, hence this 

category of autoimmune diseases is also often referred to as “endocrine autoimmune diseases”. 

Important target tissues are the islets of Langerhans, the thyroid, gastric parietal cells and 

steroid producing cells in the adrenal and ovary.  

Autoimmune endocrine gland insufficiencies regularly associate with other endocrine 

autoimmune and non-autoimmune diseases in patients and in their families. The associations 

between the various autoimmune diseases were noted not to appear at random but in particular 

combinations. Consequently, in 1980 Neufeld and Blizzard (1) organized and classified these 

clinical clusters in four main types defined as polyglandular autoimmune diseases, also termed 

autoimmune polyendocrine syndromes (APS).  

The most frequent co-occurrence between endocrine autoimmune diseases is that 

between DM1, AITD and AIG. This syndrome is sometimes referred to as “APS type 3”. In the 

original classification of Neufeld and Blizzard (1) APS type 3 was defined as the association 

between one of the clinical entities of the AITD (Hashimoto’s thyroiditis (HT), idiopathic 

myxedema, symptomless autoimmune thyroiditis, Graves’ disease (GD), endocrine 

ophthalmopathy) and one or more of other autoimmune diseases, i.e. DM1 (type 3a), atrophic 

gastritis/pernicious anemia (type 3b) or vitiligo, alopecia, myasthenia gravis (type 3c). Whereas 

the diagnosis APS type 1 and 2 requires the presence of autoimmune Addison’s disease, in APS 

type 3 this disease (and hypoparathyroidism) needs to be absent (Table I). APS type 3 is a 

polygenic trait, whereas APS type 1 is a autosomal recessive monogenetic disease, which is 

associated with mutations in the autoimmune regulator (AIRE) gene. This gene regulates 

autoimmunity by promoting ectopic expression of peripheral tissue restricted antigens in the 

thymus and thereby plays an important role in tolerance induction for self antigens (81). 

Different and multiple clinical combinations were found in APS type 3 and it has become 

evident that the classification of APS type 3 may be more complicated than initially reported. 

New classification criteria for APS type 3 have recently been proposed (2;3). This review firstly 

aims at reviewing the literature regarding the co-occurrence of thyroid autoimmunity, 

autoimmune insulitis (type 1 diabetes mellitus, DM1) and autoimmune gastritis (APS types 3a 

and 3b), which form the most frequent combinations. It secondly focuses on what is presently 

known on the (putative) pathogenic mechanisms behind the more than co-incidental co-
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occurrence of these endocrine autoimmune diseases. On the basis of these mechanisms 

recommendations for diagnostic and preventive measures are proposed.  

AITD is more frequent in DM1 patients as compared to the frequency reported in non-

selected control populations. The co-occurrence of AITD in DM1 patients is characterized by a 

persistence of islet reactive antibody (Ab) (4;5). 

The reported frequency of thyroid peroxidase antibody (TPO-Ab) positivity in DM1 varies widely 

(from 6 to 40%) and is given in Table II. This variation is in part due to the various (generations 

of) thyroid antibody assays used in the last 50 years and their respective cut-off levels, but it is 

probably also due to differences in ethnicity, age and gender of the patients. 

In DM1 patients positivity for TPO-Ab is strongly associated with sub-clinical 

hypothyroidism and the majority of studies report a close correlation between the presence of 

TPO-Ab and an increased serum thyroid stimulating hormone (sTSH) level as a sign of sub-

clinical hypothyroidism (6-8). However, there is also a report that denies this association (9). 

Sub-clinical hypothyroidism is present in 1.4-10% of DM1 patients. Sub-clinical hyperthyroidism 

is present in 0-6% of DM1 patients (table II.). 

With regard to the development of an actual clinically overt thyroid dysfunction several 

studies exist in DM1 patients. Diabetic patients who are positive for thyroid Ab and have a sub-

clinical thyroid dysfunction are more prone to develop clinically overt thyroid disease (10-12). 

Two follow up studies of TPO-Ab positive DM1 patients showed high percentages of thyroid 

failure in such patients: MacLaren et al reported that 38% of TPO-Ab positive DM1 children and 

young adolescents developed overt hypothyroidism and 7% hyperthyroidism within 5 years (12). 

The other study described that half of the patients with TPO-Ab developed thyroid dysfunction in 

a median period of 3.5 years and that this development was associated with the highest TPO-Ab 

titers (13).  

 

 
Table I. The autoimmune polyglandular syndromes (APS) type 1, 2, 3a and 3b (modified from Muir et al 1999 and 
Betterle et al 2002). 
 
APS type 1 APS type 2 APS type 3a APS type 3b 

autoimmune 
Addison’s disease 
with 

autoimmune thyroid disease (Hashimoto’s disease) 
with 

type 1 diabetes  chronic atrophic gastritis  
or 
pernicious anemia 

At least two of the 
following: 
 
autoimmune Addison’
disease 
 
hypoparathyroidism 
 
candidiasis 

autoimmune thyroid 
disease 
and/ or 
type 1 diabetes exclusion of autoimmune Addison’s disease, 

hypoparathyroidism and candidiasis 
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The prevalence of overt thyroid dysfunction in DM1 patients ranges from 2.6% in young 

DM1 patients to 8% in adult patients (4;9;14-21), hypo- and hyperthyroidism in these patients have 

generally been reported to occur at the same rate, i.e. in 0.5-4% of DM1 patients 

(4;14;15;17;19;20;22;23). One study reported an excessively high prevalence of GD in 9.3% of 

DM1 patients (24). 

We recently studied a series of 397 children with ages ranging from 0.8-17 years with DM1 

and observed 6% TPO-Ab positivity, 10% sub-clinical and 0.7% overt hypothyroidism (Table II). 

Hyperthyroidism was not detected in our study. 

 

The prevalence and incidence of AITD latent autoimmune diabetes of the adults  

In a special subgroup of diabetes, the Latent Autoimmune Diabetes of the Adults (or 

LADA), an increased frequency of other organ specific autoimmune diseases has been found. 

LADA represents a slow progressive form of autoimmune diabetes and is a complex and 

heterogeneous disorder with different phenotypes. Since the presence of Glutamic Acid 

Decarboxylase 65 (GAD)-Abs is an important characteristic, LADA is considered to be an 

intermediate form between DM1 and DM2. Compared to diabetic patients without GAD-Abs, 

patients with these Abs exhibit a lower body mass index, higher insulin requirement, lower basal 

C-peptide and less metabolic complications (25-28). Moreover, the insulin requirement and the 

presence of other autoimmune diseases (especially AITD) is related to the presence, epitope 

specificity and titer of GAD-Abs, and also the co-occurrence of GAD-Abs with ICA and/ or 

tyrosine phosphatase like protein antibodies (IA2-Abs). LADA patients have been reported to 

have an higher frequency of thyroid autoimmunity. Twenty-five to 40% of GAD-Abs and/ or ICA 

positive patients showed TPO-Abs as compared to 5-18% in GAD-Abs and/ or ICA negative 

patients (25;27;28). 

 

The prevalence and incidence of DM1 in established cases of AITD  

Reports on the prevalence and incidence of islet autoimmunity and DM1 in established 

cases of AITD are scarce. This is probably due to the fact that AITD mostly starts in women at 

ages over 25 years, while DM1 starts more frequently at younger age in boys and girls alike. 

Nevertheless there are a few reports that show a higher frequency of islet related Ab in AITD 

patients, i.e. a prevalence of 6-8% has been reported for islet cell antibodies (ICA) and GAD-Abs 

in Japanese patients with GD or HT (29;30). Another study described that 2% of patients with 

AITD and without co-occurrent DM1 have GAD-Abs and/ or IA2-Abs, and this number increases 

to 87% in patients with AITD and co-occurrent DM1 (31). Insulin auto-antibodies (IA-Abs) have 

been found in about 4% in AITD patients.  
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Although these frequencies are relatively low, they are still many times higher than in 

healthy control populations. IA-Abs have even been reported in up to 44% in GD patients 

(29;43;44). However, the assays used were later shown less reliable, thus a new assay is in 

place to validate these findings (45). 

With regard to the development of overt DM1, Bosi et al showed that patients with AITD 

and ICA positivity developed DM1 in 16% of cases within 12 years. The progression to DM1 was 

dependent on the ICA titer/ persistency, the co-existence of IA-Abs and a family history of DM1 

(46;47). With regard to the presence of overt DM1 in AITD patients, this has only been studied 

by a Japanese group. The authors reported that 7% of AITD patients with ICA have an overt 

DM1 (30). 

 

The characteristics of co-occurrent DM1 and AITD 

Patients with co-occurrent DM1 and AITD are characterized by higher levels of ICA, 

IA2-Ab and/ or GAD-Ab and an increased persistent islet autoreactivity (5; 14, 30). Interestingly 

GAD-Ab and TPO-Ab have been reported to closely correlate in such patients (5;6;29;37;42). To 

explain the close correlation between GAD-Ab and TPO-Ab (and hence the coexistence of DM1 

and AITD), it has been proposed that the autoimmune reaction towards GAD in the islets cross-

reacts with GAD in the thyroid, where this neuro-enzyme is indeed present. However above 

described correlation between GAD-Ab and TPO-Ab does not occur in Chinese DM1 patients. 

This might however be due to the fact that a lower percentage of Chinese DM1 patients are 

positive for GAD-Ab (32;35). Furthermore, (non) diabetic ICA positive individuals with an 

endocrine autoimmunity have higher GAD-Ab levels than without an endocrine autoimmunity. 

Apparently, the GAD-Ab levels are enhanced in coexistent endocrine autoimmunity (48). 

A few studies showed that patients with DM1 and co-occurrent AITD are older at the 

age of DM1 onset compared to DM1 patients without AITD (12;30), although a negative finding 

in this respect has also been described (19). The effect of the presence of a thyroid dysfunction 

on the clinical presentation of diabetes has only been investigated to a limited extent and data 

are somewhat conflicting. A few studies were unable to find differences in the clinical 

presentation and the complications of diabetes between TPO-Ab negative and positive patients 

or between DM1 in isolation or co-occurring with AITD (4;13;24). In pregnant diabetic patients, 

the presence of TPO-Ab was related to a poorer glucose control (23). Even when pregnant 

diabetic women with thyroid dysfunction were suppleted with thyroxine, the glucose control was 

still poorer compared to pregnant diabetic women without thyroid autoimmunity. Nevertheless, 

treatment of diabetic patients for their thyroid dysfunction leads to decreased cholesterol levels 

and a better glycemic control (17).  

 

The prevalence of AITD in relatives of DM1 patients 
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TPO-Ab are also more frequent in relatives of DM1 patients as compared to non-selected 

control populations and Table II gives the frequencies reported in the literature (ranging from 0-

20%).  

In our own study on children with DM1 and their relatives (see Table II) we investigated 

thyroid dysfunction in sibs and parents of the DM1 children separately. Siblings have a slightly 

increased TPO-Ab frequency of 5.4% compared to 4.2% in collected healthy sex and age 

matched controls (n.s.), whereas parents have a doubled frequency of TPO-Abs compared to 

controls (19% in parents vs 9% in controls, p=0.00001). In general, we found that siblings and 

parents have a somewhat higher frequency of sub-clinical hypothyroidism as compared to 

matched controls (9.2% vs 5.3%, n.s. and 8% vs 5.7%, p=0.08 respectively). Significant 

differences appeared when we took the gender of the parents into consideration: we especially 

found mothers of the DM1 children to have sub-clinical thyroid dysfunction compared to sex 

matched controls (12.3% vs 7%, p=0.04). We also evaluated TPO-Ab positive and TPO-Ab 

negative parents and sibs separately. In TPO-Ab positive sibs the mean sTSH was not raised as 

compared to TPO-Ab negative sibs. However, we found a significantly higher mean sTSH level 

in TPO-Ab positive parents as compared to TPO-Ab negative parents (6 vs 1.7 IU/ml, 

p=0.0007), indicating a higher risk for developing thyroid dysfunction in TPO-Ab positive parents. 

For a diagnosis on an individual basis the presence or absence of sub-clinical hypothyroidism 

(i.e. an individually raised sTSH) is of greater importance. Regarding this parameter we found a 

higher frequency of sub-clinical hypothyroidism in TPO-Ab positive parents as compared to 

TPO-Ab negative parents (35% vs 1.7%, p=0.00001). Again, such difference could not be found 

in sibs (7.1% in TPO-Ab positive sibs vs 9.3% in TPO-Ab negative sibs). It must be noted that 

De Block et al (2001) were unable to find such higher prevalence of sub-clinical thyroid disease 

in their TPO-Ab positive relatives, but these investigators did not study parents and sibs 

separately and the frequency of TPO-Ab positive subjects was small in comparison to our study 

(15).  

With regard to the frequency of overt thyroid dysfunction, this frequency is definitely 

higher in relatives of DM1 patients than in non-selected controls, although it is lower as compared 

to the frequencies reported in the DM1 patients themselves. Figures range from 2 to 3 % (14;15). 

Relatives are in particular at high risk of developing AITD when the diabetic proband has AITD 

(7;16;24;41;49;50) and the relatives of such patients show a higher frequency of thyroid Ab (7). In 

this group again the parents are more prone to have the disease.  

In our study on the relatives of DM1 children we were able to confirm the close 

correlation between GAD-Ab and TPO-Ab as has been reported for DM1 patients: In parents 

GAD-Ab status was positively correlated to TPO-Ab positivity (p=0.006) and the TPO-Ab level 

(p=0.05). 
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The prevalence of DM1 in relatives of AITD patients 

To our knowledge studies on the presence of GAD-Ab and other diabetes related Ab 

have not been performed in relatives of AITD patients. Also the prevalence of type 1 diabetes in 

relatives of AITD patients is unknown. 

 

Determinants for a co-occurrence of AITD and DM1 in patients and their relatives 

There is a plethora of literature showing that the frequency and titre of the TPO-Ab in 

DM1 patients and their relatives are – apart from the assay used (see before) - determined by 

age, gender, genetic background and racial factors (4;6;8;16;19). Older individuals and females 

predispose to thyroid Ab positivity and thyroid dysfunction and Afro-Americans have lower 

frequencies of TPO-Ab than Caucasian Americans (12;41). There are however also some 

negative reports in this respect. Lindberg did not observe an age dependency, but his population 

existed of only young patients lacking adult individuals. Other studies were unable to find a 

female preponderance probably due to young age of the subjects or the small numbers of 

individuals tested (9;21;33). 

 

Genetic association of co-occurrent AITD and type 1 DM in patients and their relatives 

It is without doubt that HLA-DR3 and DR4 are clear susceptibility genes for DM1 and 

other organ specific AID, including AITD. Especially DR3 has been associated with DM1 and 

AITD separately. The presence of GAD-Abs, which is one of the most important characteristics 

of LADA, has been associated with DR3/ DR4 (28) or DR3 (25) and DR4 (28;51) separately in 

LADA patients.  

Conflicting data exist however on the HLA susceptibility genes for DM1 with a co-

occurrent AITD, i.e. APS type 3a. The majority of studies are unable to find any association with 

specific HLA susceptibility genes for such co-occurrence (6;12;24;52;53). However, some 

authors did find DR4 or DQ8 as risk haplotypes for APS type 3a compared to DM1 alone (54), 

while others reported on DR3 or DQ2 as risk haplotypes not only in the patients, but also in their 

relatives (8;36).  

In our study we observed in the DM1 children an association between the presence of 

TPO-Ab (APS type 3a) and DR5 positivity (chi square test p=0.02), while DM1 in general was 

strongly associated with DR3 and DR4. In the (non-diabetic) parents TPO-Ab associated with 

DR4 positivity (p=0.02). An association of thyroid microsomal antibodies and HLA-DR5 has been 

reported in diabetic families before, however the non-diabetic control population also showed 

this association (55). Thus, this latter study supports an HLA-DR5 association with AITD rather 

than with APS3a. In addition, this association was found to be limited to males (55). 

Only a few studies investigated genetic association other than the HLA in patients with 

AITD with coexisting DM1. CTLA-4 polymorphisms have been studied in such patients, since 
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evidence exists that these polymorphisms are associated with both AITD and DM1 (56-58). In a 

Japanese study, the G variant of CTLA-4 gene was associated with an onset of diabetes at 

young age (<30 years of age) in DM1 patients with coexistent AITD (50). Also in a Caucasian 

study, a more pronounced association was found for patients with the co-occurrency of AITD 

and DM1 as compared to patients with these diseases separately. However the differences 

between these groups was not significant and the role of CTLA-4 a co-occurrence of AITD and 

DM1 is probably weak (59). For further in depth references on CTLA-4 the reader is referred to a 

review by Kristiansen and colleagues (60). 

 

 

APS type 3b (or Thyrogastric syndrome), the Association of AITD with Autoimmune 
Gastritis (AIG)  

 

Patients and relatives 

The association between AITD and autoimmune atrophic gastritis, often referred as 

thyrogastric disease, has been recognized as early as the 1960s (80). This combination has 

later been defined as APS type 3b (1).  

Autoimmune gastritis (AIG) is characterized by a diffuse inflammation of the gastric 

body, the presence of Gastric Parietal Cell Antibodies (GPAb) and increased gastrin level in 

serum (61). GPAb are antibodies directed against gastric H+/K+ adenosine triphosphatase 

(ATPase) and have been associated, particularly in the presence of Intrinsic Factor Antibodies 

(IF-Ab), with pernicious anemia (PA) (62;63). PA is the consequence of atrophic gastritis and its 

subsequent deficiency of vitamin B12. Patients with PA are not only characterized by a high 

prevalence of GPAb (75-100%) and IF-Ab (60-100%), but also by thyroid Ab, i.e. 30-50% (64-66; 

80). About 25% of PA patients has an overt AITD (66). 

Vice versa, GPAb and PA have been found in high prevalence in patients with AITD 

(13-27% and 12-26% respectively) (64;67;80). Evidence for the association between 

autoimmune thyroiditis and the clinical sequelae of autoimmune gastritis has for example been 

given in the study performed by Centanni et al (67), who found in one third of their TPO-Ab 

positive patients an elevated serum gastrin level and a histologically confirmed atrophic body 

gastritis. Of these latter patients the majority had PA (82%). GPAb were less reliable for the 

diagnosis atrophic body gastritis as compared to the gastrin levels.  

One of the possible explanations for the co-existence of AITD and AIG has been 

suggested to be an immunological cross-reaction of the two major auto-antigens in these 

diseases: a homologous 11 residue peptide was found in TPO and gastric H+/K+ ATPase (68). 

Elevated serum gastrin levels have also been found to occur more frequently in Graves’ disease 

and some studies even found the gastrin levels to be correlated to the serum T3 levels (69-71).  
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In relatives of patients with PA or AITD, the prevalence of GPAb and/ or thyroid Ab has 

been demonstrated to be higher than in the general population. Up to 50% of the first degree 

relatives of PA patients have thyroid Ab, which is three times higher than in the general 

population (80). Also prevalences of 20% have been reported for latent or overt PA in relatives 

of patients with PA, whereas the prevalence in the general population is less than 0.2% (64).  

 

Genetic association of AITD and AIG/ PA  

It is thought that the HLA genes are not the major loci responsible for AIG and PA (3). 

Reported HLA associations are weak (64, 80), such as a weak association with HLA-A3 and -

A7. Some stronger associations were however reported for the DR antigens DR2/DR4 and 

DR4/DR5 (72). There are conflicting data on an increased prevalence of DR3/DR4 in APS 3b 

(53;72). 

 

 

Extended APS type 3a, the Association of DM1 and AIG  
 

Patients and relatives 

All studies agree that DM1 patients have a high prevalence (5-34%) of GPAb 

(6;12;14;34;40;73;74). The presence of GPAb in DM1 patients is correlated with the presence of 

atrophic gastritis with increased serum gastrin levels and an increased prevalence of pernicious 

anemia (73;75). Moreover, a strong association between GAD-Ab and GPAb has been reported 

in DM1 patients. The same study also found a weak association between TPO-Ab and GPAb 

(76).  

The evidence in literature on a higher prevalence of GPAb in relatives of DM1 patients as 

compared to the prevalence in the general population is weak. Three studies found increased, 

although not significant, frequencies of GPAb in relatives as compared to non-selected controls 

(14;34;36). This was only the case for the parents of the patients, not for the siblings, and indeed 

when the frequencies of the Ab between parents and siblings were compared, parents were 

more likely to be positive for GPAb (15). In our earlier mentioned study we could not find any 

increased prevalence of GPAb in DM1 relatives and our observation is supported by another 

study (40). As is known for thyroid Ab, the occurrence of GPAb in DM1 patients and relatives is 

age dependent. Higher frequencies of GPAb were found with increasing age in patients as well 

as in relatives and controls (12;15;40;76). 

In addition, the frequency of GPAb also increased with advancing age of onset (76). One 

study did not find an age dependency of GPAb, but this study was performed in DM1 children 

only (with a mean age of 12 years) (75). 
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Table III. Gastric autoimmunity in DM1, AITD and their relatives  
 
 Gastric parietal cell-Ab Pernicious anemia 

DM1 patients 

children/adolescents 

adults 

 

5-34% (19;36;74) 

5-28% (14;15;39;40;64;77) 

 

0.5-0.6% (8;19) 

0.8-5.6% (12;14;17;40) 

FDR of DM1 patients  

siblings 

parents 

2-25% (14;15;34;36;40) 

0-14% (15;34;36) 

4-28% (15;34;36) 

1-1.1% (14;40) 

AITD patients  13-27% (64;67) 12-26% (64;67) 

FDR of AITD patients  ? ? 

Controls 0-17% (14;34;36;40;64;65;74;77) , * 0-0.7% (39;40) 

 
DM1= type 1 diabetes mellitus; FDR= first degree relatives; AITD= autoimmune thyroid disease. 
 *= unpublished data of our study. 

 

 

With regard to gender, in the recent study of our group on DM1 children we found the 

frequency of GPAb in female patients significantly higher than in their male counterparts (15.9% 

vs. 1.6%, p=0.01). This was in agreement with other studies (12;75). However, there was no 

female preponderance of GPAb in the sibs or in their parents.  

 

HLA associations 

The positivity for GPAb in DM1 patients has been associated with DR5, but not with the 

“diabetic genes” DR3 or DR4. Such associations could not be established in DM1 relatives (15). 

In our study we were unable to find any associations of GPAb with any of the susceptible 

haplotypes, but it must be noted that the frequency of GPAb was in fact too low to give valid data 

in this respect. 

 

 

Recommendations for screening 

 
Since the HLA typing studies have not yet given conclusive results and since reported 

relative risks are low, there is in our view no place for the determination of these genetic risk 

factors in patients with DM1 or AITD in isolation to predict the development of APS type 3. But 

with regard to the determination of a panel of relevant autoantibodies the story is different. Many 

authors recommend screening for thyroid autoimmunity in DM1 patients shortly after diagnosis 

and in particular in patients with a positive family history of AITD (11;13;18;21). Indeed it is also 

our view that DM1 patients and their relatives should be tested for TPO-Ab and sTSH. 
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Table IV. Frequencies of Islet Antibodies and DM1 in AITD patients 
 
 ICA GADA IA2-Ab DM1 

 
AITD patients 
 
HT 
GD 

 

7.6% (30) 

 

7.9% (30) 

2.4-7.4% (30;78) 

 

3.8-6.6% (29;31) 

 

7.9% (29) 

6.1-13% (29;78) 

 

3.8% (29) 

 

3.9-10% (29;43;44) 

3.8-44% (29;43;44) 

 

6.6% (29) 

 

4.4% (78) 

4.4% (31) 

 
controls 

 

0.7% (30) 

 

0.9-1.1% (29;31) 

 

0-3% (29;44) 

 

0.5% (78) 

AITD= autoimmune thyroid disease; HT= Hashimoto’s thyroiditis; GD= Graves´disease; ICA= islet cell antibody; 
GADA= glutamate decarboxylase antibody; IA2-Ab= tyrosine phophatase like protein-antibody; DM1= type 1 diabetes 
mellitus. 

 

 

As described in this review, especially female DM1 patients and patients with high titres 

of TPO-Ab have an increased risk to develop AITD.  

If the patient or its relative is TPO-Ab positive (without any further signs of a low thyroid 

reserve) a yearly follow up of the thyroid function is recommended. Treatment of this condition 

might be considered if the patient or its relative is a female with a child-wish, not only because 

this condition constitutes a higher risk for spontaneous abortion, but also because a TPO-Ab 

positive women is at high risk to develop post-partum thyroiditis after child delivery (24). Let 

alone that there are also reports that TPO-Ab positive pregnant women with a low thyroid 

reserve might give birth to offspring with a lower IQ (24). Furthermore one should be careful with 

dietary iodine (e.g. kelp tablets) and iodine-containing desinfectants or drugs (e.g. amiodarone) 

in such TPO-Ab positive individuals, since an exposition to high iodine is able to induce the 

development of hypothyroidism in these susceptible individuals.  

If the patient or its relative is positive for TPO-Ab and has in addition subclinical 

hypothyroidism (a raised sTSH), replacement treatment should be initiated particularly in older 

individuals, since this condition is not without risks for the development of cardiovascular disease 

(79).  

With regard to screening autoimmune thyroiditis patients, the determination of GPAb is 

useful, since there is a high prevalence of gastric autoimmunity in these patients and since the 

risk for the development of PA is increased in such individuals. Also DM1 patients should be 

tested for GPAb. If GPAb are present, a yearly follow-up for the development of PA (serum 

gastrin levels) should be carried out.  

Whether autoimmune thyroiditis and autoimmune gastritis patients should be screened 

for islet Ab, is still not clarified. In AITD patients, a higher prevalence of these Ab has been 

described and the risk of the development of DM1 is indeed increased. A suggested strategy is 
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the combined islet Ab determination, especially the combination of GADA and IA2-Ab (31). 

However, this has to be investigated in a large prospective study, before a reliable advise for 

screening can be given. For this moment, the approach is a regular testing for urine/ blood 

glucose levels in these individuals.  
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Abstract 
 
Organ-specific or endocrine autoimmune diseases are complex, polygenic afflictions the 

penetrance of which is heavily dependent on various environmental influences. Important target 

tissues are the thyroid, the islets of Langerhans, gastric parietal cells and steroid producing cells in 

the adrenal and ovary. The etiology of these diseases remains to be clarified. The pathogenesis is 

strongly associated with autoimmune phenomena. None of current treatment approaches provide 

a cure but represents replacement therapy.  

An important objective in the treatment of endocrine organ-specific autoimmune diseases 

is the detection of individuals at risk for the development of such diseases and the development of 

interventions to prevent an outbreak of the diseases. This requires an exquisite knowledge of the 

early etio-pathogenic stages of these diseases. This review  concentrates on the usefulness of 

animal models for the understanding of precisely these very early stages. 

It must be emphasized that studying animal models cannot answer all the problems 

presented by endocrine organ-specific autoimmune diseases as seen in the clinic. It must be 

expected –considering the different etiologies in the different animal models (see below)- that 

the causes of the diseases in the human and the involvement of various genes and 

environmental factors may also vary. Yet in the study of particularly the pre-autoimmune phases 

of the diseases there is hardly an alternative than to study the animal models. Only limited series 

of experiments can be carried out in human subjects at risk to develop such diseases. Moreover 

a general semblance (blueprint) of the etio-pathogenesis found in the animal models can lead 

the way for human studies.  

Efforts to understand the pathophysiology of the early stages of endocrine organ-specific 

autoimmune diseases have mainly involved animal models that “spontaneously” develop such 

diseases. Of these the Bio-breeding Diabetes-Prone (BB-DP) rat and the Non-obese Diabetes 

(NOD) mouse are the most well studied, yet many studies have also been carried out in the Obese 

Strain (OS)-chicken. Apart from these spontaneous models there are animal models that are 

induced by environmental perturbations (viruses, toxic substances), by thymectomy procedures or 

by genetic manipulations, e.g. the RIP-LCMV model and the BDC2.5 TCR mouse model.  

A general blueprint has emerged from the studies into the early stages of the pathogenesis 

of endocrine organ-specific autoimmune diseases in these animal models: animals at risk to 

develop endocrine organ-specific autoimmune diseases show various pre-autoimmune 

aberrancies in their target glands, T cells, macrophages (MФ) and dendritic cells (DC). The 

presumably aberrant target cells, T cells, DC and MФ need to interact abnormally before 

autoimmune disease can fully develop. In this abnormal interaction additional aberrancies in other 

regulatory systems may play a role in a further exacerbation of the self-directed immune response, 

such as defects in the HPA axis system. The various aberrancies are partly genetically determined 
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by a variety of separate genes, particularly MHC-related genes, but they may also be 

environmentally induced (e.g. via viruses, high iodine diet, and other experimental manipulations).  

Recently, evidence has been gathered for pre-autoimmune aberrancies similar to the 

animal models in the DC/ MФ compartment and the HPA-axis in humans at risk to develop 

endocrine organ-specific autoimmune diseases. However analogous pre-autoimmune 

abnormalities in human target glands or in T cell function have not yet been found with certainty. 

We believe that animal models of endocrine organ-specific autoimmune disease still hold 

immense promise for the discovery of pathways, genes and environmental factors that determine 

the development of endocrine organ-specific autoimmune diseases. Animals affected by such 

diseases provide an unique opportunity to uncover disease-associated pathways, which are too 

complicated to define in man. 

 
 

Introduction 

 

One of the important functions of the immune system is the discrimination between "self" 

and "nonself", or perhaps better between “danger” and “non-danger”. Currently, such 

discrimination is thought to be made through a series of complicated and multi-step interactions 

between various cells and components of the immune system. Immune cells sometimes 

erroneously establish an immune reaction towards “self” during conditions of apparent “non-

danger”. If such immune reactions are so aberrantly and vigorously self-directed, they may inflict 

pathological damage on tissues. So-called "autoimmune diseases" are the consequence. 

Autoimmune diseases can be divided into two main categories: "organ-specific" and 

"systemic" autoimmune diseases. In the organ-specific autoimmune diseases, the immune attack 

is confined to one organ or organ system, while in the systemic autoimmune diseases the damage 

is widespread and often the consequence of immune complex destruction. In the majority of 

organ-specific autoimmune diseases, target tissues are of endocrine character, hence this 

category of autoimmune diseases is also often referred to as “endocrine autoimmune diseases”. 

Important target tissues are the thyroid, the islets of Langerhans, gastric parietal cells and steroid 

producing cells in the adrenal and ovary. 

There are ethical and technical restrictions to studying the etiology and the pathogenesis of 

autoimmune diseases in man. Reliance on animal models is in part a recognition of the primacy of 

patient safety - primum non nocere - first do no harm (1). In man the endocrine organ-specific 

autoimmune diseases often have sub- or non-clinical pro-dromal phases, which are difficult to 

study since signs and symptoms are virtually absent. In animal models these studies can be done. 

Unlike humans, animals with endocrine organ-specific autoimmune diseases can be bred to study 
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and manipulate inheritance. They can be biopsied and autopsied. Their genome can be altered. 

Therapies to prevent or reverse the disease can readily be tested.  

Over the past 50 years a plethora of animal models of various endocrine/ organ-specific 

autoimmune diseases have been developed (table I). These animal models have greatly 

contributed to the knowledge concerning the etiology and the pathogenesis of endocrine organ-

specific autoimmune diseases and their possible prevention and treatment. A word of caution is, 

however, necessary when trying to extrapolate data obtained in these animal models to the human 

situation. The animal models clearly show a caricature of the more complex human disorder. The 

animal disease is often studied in specifically inbred animals to generate homogenous and 

extreme forms of the autoimmune diseases. In this way the disease will not only differ from the 

human disorder but also between various animal models. Hence, general conclusions drawn from 

studies in one of the animal models should always be verified in other animal models and in 

patients. Recent studies have culminated in the awareness that endocrine organ-specific 

autoimmune diseases must be regarded as polygenic diseases, in which the penetrance of a 

combination of genes is strongly influenced by environmental factors (Fig. 1). Firstly, multiple 

genes determine part of the aberrant immune response towards self. The most important genes 

are those in the MHC region (21,72,103). However other genes are also involved, including those 

with a role in the regulation of the immune response in general, e.g. the CTLA-4 gene (60), genes 

determining aberrancies in the target gland eliciting the abnormal self response (16,118), genes 

playing a role in the sensitivity of the target gland to the autoimmune attack (115) and genes 

controlling T cell development and differentiation (44, 74). However, genetic polymorphisms or 

mutations are clearly not always explaining the etiology. Mono-zygotic twin studies, for example, 

have shown a concordance rate ranging from an 80% for thyroid auto antibody positivity (13), via a 

30-40% for type 1 diabetes (30) to a meagre 20% for Graves' disease (12). This demonstrates the 

important role of environmental eliciting factors in the development of these diseases. 

An important objective in the area of endocrine organ-specific autoimmune diseases is the 

detection of individuals at risk for the development of such diseases and their early treatment to 

prevent disease. This requires an exquisite knowledge of the early stages in the etio-pathogenesis 

of these diseases. This review will concentrate on the usefulness of the animal models for the 

study of very early stages of disease. Here the animals that develop a “spontaneous” disease are 

of main importance. For the role of the various immune cells and immune mechanisms in the late 

effector phases of the autoimmune reactions and the importance of the animal models in this 

respect the reader is referred to excellent recent reviews (7,21,116,117). 
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Some frequently used animal models of endocrine organ-specific animal models 
 

Efforts to understand the pathophysiology of endocrine organ-specific autoimmune 

diseases have involved animal models of the diseases that develop “spontaneously”, or are 

induced by either environmental perturbations, or by genetic manipulations (transgenics and 

knockouts) (Table I).  

 

Spontaneous animal models 

Of the spontaneous animal models the Bio-Breeding Diabetes-Prone (BB-DP) rat and the 

Non Obese Diabetes (NOD) mouse are the most well studied. 

 

The BB-DP rat. The BB-DP rat is primarily a model for autoimmune diabetes (40). In fact, 

this animal model is a model for autoimmune polyglandular syndrome (APS) type 3a. The 

spontaneous diabetic BB rat was discovered in a commercial breeding colony in Canada in the 

1970’s. Inbred diabetes-prone BB (BB-DP) rats develop spontaneously a T cell dependent, 

ketosis-prone diabetes, that is clinically very similar to type 1 diabetes in humans. The animals 

were subjected to inbreeding of different lines with variable frequency of diabetes. During the 

course of this work it was discovered that the rats had profound T cell lymphopenia. The 

lymphopenia is a recessive trait and the animals are lymphopenic from birth due to a mutation in 

one of the Immune associated nucleotide (Ian) genes on rat chromosome 4 (74). The diabetes 

develops in most DP lines at around the age of 8-12 weeks. Histologically infiltrative insulitis 

develops for each islet rapidly (in a few days), but each islet is not affected at the same time. 

Insulitis is not characterized by a large peri-insular accumulation of lymphoid cells, as in the NOD 

mouse (see below). Females and males are equally affected.  

There also exist sublines of the BB-DP rats, that are not lymphopenic and do not develop 

diabetes. These lines are referred to as Diabetes Resistant or BB-DR. The peripheral lymphopenia 

of the BB-DP rat is primarily due to a lack of RT6+ T cells. RT6 is a marker for regulatory T cells. 

Transfers of RT6+ T cells from BB-DR rats to BB-DP rats prevent disease (39). Although diabetes-

resistant BB-DR rats are sufficient in RT6+ T cells, they are still prone to diabetes: infection with 

Kilham Rat Virus (KRV) is a known inducer of autoimmune diabetes in these rats (26). The virus 

does not infect islet cells, but the macrophages of the animal and perturbs the immune system of 

the BB-DR rats resulting in changes in the balance from T helper (h) 2 to Th1 mechanisms (25). 

Also treatment with poly I:C induces diabetes in these rats. A standardized approach is to treat the 

BB-DR rats with monoclonal anti-RT6 antibodies and poly I:C, a treatment that effectively 

accelerates the onset of insulitis and diabetes. Reciprocal cross-intercross breeding to establish a 

congenic BB-DR rat with lymphopenia showed that the Ian5 gene mutation only was sufficient to 

induce spontaneous diabetes in all rats provided that the rats were kept specific pathogen free (6). 
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Fig. 1. A cartoon illustrating that the combined effect of several genes and environmental factors must act together to 
bring about a disturbed mutual interaction between various subtypes of immune cells and of these cells with target 
cells to elicit an endocrine organ-specific autoimmune disease. 
 

 

BB-DP rats also suffer from a form of focal lymphocytic infiltrations that under normal 

conditions do not lead to hypothyroidism (99). 

Yet thyroid failure becomes apparent after hemi-thyroidectomy of the animals. Aggravation 

of focal infiltrations can also be observed when the animals are fed a high iodine diet (3,77). The 

thyroiditis is genetically linked to the MHC class II RT1u rather than to the Ian5 gene mutation (80). 

 

The NOD mouse. (4) The NOD mouse is predominantly studied for its diabetes and sialo-

adenitis. The animal is also deaf. The NOD mouse has been extensively reported on since the 

1980’s. NOD mice develop on an early age (from 5 weeks of age onwards) an initially non-

destructive peri-insular infiltration of dendritic cells, accessory MФ, T cells and B cells that persists 

for several weeks before it develops into a destructive form of insulitis (from 12 weeks of age 

onwards). Mild diabetes follows. Animals can survive without insulin administration and keto-

acidosis seldom occurs, unlike the BB-DP rat and humans. Typically female mice are more 

severely affected. 

There are many genetic loci (over 15) on different chromosomes that associate with 

diabetes and/ or insulitis and/ or sialo-adenitis in the NOD mouse. The most important diabetic loci 
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(idd1 loci) are linked to the MHC complex; NOD mice express an unique I-A locus, i.e. I-A g7 

(histidine as residue number 56 and serine as residue 57, homologous to “diabetogenic” HLA-DQ 

ß non-aspartic acid 57 containing alleles in the human), but lack expression of I-Ea (homologous 

to DR α in humans) (21,72). Idd1 is not related to sialo-adenitis development, here Idd5 and Idd3 

are thought to play a prime role, but data are inconsistent (8,10). 

In the majority of the NOD strains there only occasionally is an association of diabetes with 

thyroid infiltrations (unlike in the BB-rat). In general the incidence of thyroiditis is very low in the 

NOD mouse, but it varies from colony to colony (69). Certain dietary iodine regimens, however, 

have a triggering effect on thyroiditis development. In humans with a pre-existing iodine-deficient 

goiter, a single administration of a high dose of iodide is known to result in some individuals in an 

attack of autoimmune thyroiditis. In normal mice such identical high dose of iodide has a necrotic 

effect on hyperplastic iodine-deficient glands, but such dietary manipulation does not lead to 

thyroid autoimmunity. In contrast in NOD mice it does lead to autoimmune thyroiditis following the 

initial phase of thyrocyte necrosis (69). This shows the importance of a local factor (high antigen 

release, necrosis) in combination with a dysregulated immune system (NOD mouse background) 

in the development of at least this endocrine organ-specific autoimmune disease (69,89). Like the 

BB rat, this model is in fact also a model for APS type 3a. 

There exists a subline of NOD mice, which has under normal dietary conditions a 

prevalence of around 5% of thyroiditis, but when kept on a continuously high iodine diet 

“spontaneously” develops autoimmune thyroiditis in virtually all animals (84). This subline is 

characterized by an alternative MHC haplotype, viz. the I-Ak allele in stead of the I-Ag7 on the 

NOD background, and the mice are called NOD-H-2h4 mice.  

 

Obese Strain (OS) chicken. One of the oldest models of endocrine organ-specific 

autoimmune disease is the Obese Strain (OS) chicken, which suffers from lymphocytic thyroiditis 

with a rapid onset of hypothyroidism (33). For the last 40 years chicken of the OS strain have been 

used to study the disease, which resembles severe Hashimoto’s disease of humans in many 

clinical, histopathological, serological and endocrinological aspects. Mononuclear cell infiltration of 

the thyroid gland commences in the second week after hatching and leads to an almost complete 

destruction of the thyroid architecture by 1-2 months of age. OS chicken do not develop insulitis. 

Limitations of the model are the scarcity of immunological reagents for chicken and the absence of 

avian-cloned thyroid-specific genes.  

The first genetic theory of endocrine organ-specific autoimmunity as a polygenic trait was 

proposed by Cole (1966) and based on breeding studies with this bird (107). The three-locus 

model of immune response MHC and non-MHC genes and genes coding for a hypothetical 

primary thyroid defect emerged from genetic analysis of OS families and from F2 crosses between 

OS and CS chicken. Crossing experiments with another CB inbred line unrelated to OS revealed 
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the existence of about 5 genes regulating the full development of the disease. Approximately three 

genes encode the susceptibility of the target organ to the attack by the immune system (one of 

them recessive) and the remaining one or two genes encode the hyperreactivity of the immune 

system (115). 

Iodine levels in food are an important environmental factor in the development of the 

thyroiditis in the OS chicken, and the severity of the disease can be manipulated by iodine (100). 

Application of anti-oxidants delay the onset of the disease, illustrating the importance of oxidative 

reactions in the toxicity of iodine (100).  

The role of the stress system in the development of the disease in the chicken is illustrated 

by an altered immuno-endocrine communication via the HPA-axis in this strain of birds (114). The 

OS chicken show a hypo-responsiveness to glucocorticoids and in particular to inhibitory factors 

released by this stress hormone in immune cells (114). Moreover low levels of the central opioid 

peptide ß-endorphin have been shown in the hypothalamus of the OS chicken before onset of the 

disease, i.e. already at the embryonic stage. A further decrease in this brain peptide was observed 

in correspondence with the first signs of thyroid mononuclear infiltration (90). Similar HPA-axis 

regulating disturbances have been shown in another animal model of organ-specific autoimmune 

disease, i.e. the Lewis rat that is sensitive to experimental allergic encephalomyelitis (EAE) elicited 

by immunizations with myelin antigens (22). 

 

Experimentally-induced animal models 

Excessive exposure to autoantigen. Classical models for the induction of organ-specific 

autoimmune disease are models that make use of immunizations with autoantigen in an 

adjuvant, e.g. injections of thyroglobulin (Tg), H+/K+ ATPase (1), or myelin basic protein (MBP) 

(47) in Freunds’ complete adjuvans (FCA) leading to experimental allergic thyroiditis (EAT), 

experimental allergic gastritis (EAG) or EAE respectively. It is of interest that similar 

immunizations with glutamic acid decarboxylase (GAD65) or insulin, the two major antigens in 

type 1 diabetes have failed to induce insulitis and diabetes. In general diseases are transient in 

these models, depending on the animal used for sensitization. Obviously these models can not 

be used to study the very early phases of “spontaneous” autoantigen presentation in “wild type-

occurring” endocrine organ-specific autoimmune diseases (the focus of this review). The models 

have however been proven useful in the study of effector mechanisms playing a role in the 

autoimmune diseases as well as some preventive and therapeutic interventions. 

A recent promising development in this area of experimental allergic diseases is the 

sensitization of mice with TSH-receptor (TSH-R) peptides, recombinant TSH-R preparations or 

with cDNA for the full-length human TSH-R cloned in an eukaryotic expression vector (genetic 

immunization) to create an animal model for Graves’ disease (68). In these experiments it 

appeared easy to induce TSH-R antibodies (Abs) in all mice strains used with all the mentioned 
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regimens. However the majority of the regimens were without any effect on the histology or 

function of the thyroid in most of the cases: Whereas H-2b and H-2k animals did not develop 

thyroiditis or thyroid function abnormalities, H-2d (Balb/C) mice did and some of these mice had 

hypo-thyroxinemia. Also NOD mice (H-2g7) developed thyroiditis and TSH-R Abs, and 

particularly in the NOD mouse model the thyroiditis was destructive and of Th1 character leading 

to clear hypothyroidism. 

Hyper-thyroxinemia and orbital pathology (both clinical hallmarks of Graves’ disease) 

were more difficult to induce using the above described protocols. However two protocols 

showed some success: 

1. immunizations of H-2k (AKR/N) mice intraperitoneally with MHC Class I identical 

fibroblasts double transfected with the TSH-R and MHC Class II led in 20% of cases to 

hyperthyroxinemia and 

2. immunizations of out bred Balb/C mice with TSH-R cDNA vectors led in 10% of cases to 

hyperthyroxinemia and TSH-R Abs that were able to stimulate c-AMP in cultured 

fibroblasts, the so-called Thyroid Stimulating Antibodies (TSAbs). 

Even more interesting is the observation that transferring T cells from the latter mice to naïve 

mice (after an in vitro restimulation of the T cells with a recombinant TSH-R preparation) led to a 

Th1 thyroiditis with no signs of eye muscle infiltration when NOD mice were used. It led to a Th2 

type thyroiditis with mild signs of eye muscle infiltration when Balb/C mice were used. Clearly 

these models are promising and need further exploration.  

 

Thymectomy models. The most well-known and studied model is that induced by 

thymectomy of Balb/C mice at day 3 (101). This procedure results in a variety of organ-specific 

autoimmune diseases, including thyroiditis, gastritis, and oophoritis, but not insulitis. Hence this 

model is a model for APS type 3b. The inflammations are characterized by the presence of T cell 

infiltrates in the affected organs and the development of organ-specific antibodies in the serum. 

There is a strict temporal relationship between the development of the autoimmune syndrome 

and the day of thymectomy, which has to occur between the second and the fifth day after birth 

(91). Treatment of neonatal Balb/C mice with immuno-suppressive or cytostatic drugs such as 

cyclosporine and cyclophosphamide has similar effects.  

Classically the model has been used to study oöphoritis. The histopathological events of 

the oöphoritis in the thymectomized mice occur in an orderly manner. Initially the oöphoritis is 

evident as a patchy or diffuse infiltration of lymphocytes; later, developing follicles are clearly 

affected and monocytes, macrophages, neutrophils, and plasma cells are found between and 

within ovarian follicles. The onset of puberty markedly potentiates the oöphoritis, indicating that a 

local factor (probably a change in antigen profile due to the gonadotropin stimulation) is 

important in the development of the autoimmune disease (46). 
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The model has also recently been used to study human autoimmune gastritis (1). The 

features of the mouse autoimmune gastritis are remarkably similar to the human disease and 

include autoantibodies and T cell reactivity to H/K ATP-ase, a mononuclear cell infiltrate in the 

gastric mucosa with loss of parietal and zymogenic cells from the gastric mucosa, a-chlorhydria 

and increased serum gastrin levels. Also megaloblastic anemia develops in the mouse model. 

With regard to the genetics of this model certain strains of mice are susceptible, such as 

the BALB/c and A/J mice, whereas other strains (C57bl/6J, DBA/2 mice) are resistant. Since 

susceptibility and resistance are not associated with the MHC haplotype (H2) of the mice, these 

antigen-presenting molecules are apparently of minor importance in this model. Using the 

susceptible and resistant mice strains and backcrosses of these strains in combination with a 

microsatellite approach, a locus has been found on chromosome 16, controlling the abrogation 

of the tolerance to ovarian autoantigens due to neonatal thymectomy day 3 (113). This so-called 

Aod1 locus was associated with the presence of oöphoritis in the mice. Interestingly, the 

markers on chromosome 16 failed to exhibit a significant linkage to the concomitant ovarian 

atrophy in this mouse oöphoritis model. Rather, this atrophy exhibited an association with 

markers on mouse chromosome 3. Two regions on the distal arm of chromosome 4 (Gasa1 and 

Gasa2) might be involved in the gastric autoimmunity of the mice (1). 

The recent interest in CD4+CD25+ T cells as a specific subpopulation of thymus-derived 

regulatory T cells has a historical association with the day 3 mouse thymectomy model (97,105). 

Day 3 neonatal thymectomy-induced autoimmune disease is due to a lack of CD4+CD25+ T cell 

migration into the periphery, since these regulatory cells typically migrate out of the thymus in 

this early period and since injection of purified CD4+CD25+ T cells into neonatally thymectomized 

mice prevents the development of autoimmunity. CD4+CD25+ T cells develop in the thymus via a 

distinct pathway of thymic selection requiring the expression of endogenous TCR α chains on 

the cells for selection since CD4+CD25+ T cells are absent in TCR transgenic mice on a RAG-

deficient background. A feature of CD4+CD25+ T cells is that the cells themselves are “anergic” 

to mitogenic stimuli, but are in addition capable to suppress the proliferation of CD4+CD25- T 

cells when cultured together. Such suppression can be abrogated by the addition of interleukin 

(IL)-2 or stimulation with anti-CD28 antibodies. The mechanisms of suppression by CD4+CD25+ 

T cells are not clarified yet, but are presently subject of intensive research (20,73). 

 

Chemically-induced models. Iodine is an important exogenous inducing and modulating 

factor of thyroid autoimmunity. In general, iodine deficiency attenuates, while iodine excess 

accelerates autoimmune thyroiditis in autoimmune prone individuals (89). In non-autoimmune 

prone individuals, the effects of iodine are, however, different. Here iodine-deficiency 

precipitates a mild (physiological) form of thyroid autoimmune reactivity, while iodine excess 

stimulates thyroid development (89). Iodine probably exerts these effects via inducing alterations 
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in the metabolism of thyrocytes and even via toxic thyrocyte necrosis. Iodine also has direct 

effects on the development and function of various immune cells (T cells, B cells, macrophages 

and dendritic cells) and the antigenicity of thyroglobulin (17,100). 

A number of other chemicals, especially alloxan and streptozotocin, have been used to 

produce diabetes. These chemicals interfere at high dose with the metabolism of β cells, 

sometimes leading to necrosis. On the other hand (multiple) low doses of these chemicals 

induce an autoimmune form of diabetes in genetically susceptible animals dissimilar from the 

form occurring in the spontaneous models of autoimmune insulitis (21). The low-dose 

streptozotocin treatment needs however to be carefully titrated dependent on the strain of mice 

that are used.  Several studies either with CD3 antibodies or using T cell knock out mice have 

indicated that the ß cell killing and sustained diabetes is T cell mediated.  

 

Virus-induced models. Viruses have already been suggested for more than 70 years as 

implicating factors in the development of type 1 diabetes and forms of thyroiditis. To date more 

than 5 different viruses, e.g. Coxsackie B virus, rubella virus and mumps virus, have been 

reported to be associated with the development of type 1 diabetes in humans (53). An 

involvement of foamy viruses has been discussed in the etiology of de Quervain thyroiditis and 

Graves’ disease (75).  

In animal models of endocrine organ-specific autoimmune diseases there is clear 

evidence for an involvement of viruses. Viruses can act on a specific genetic background in 

preventing the disease, e.g. LCMV in NOD mice. In contrast viruses can also act as an eliciting 

factor on other genetic backgrounds, and mechanisms to induce disease differ from virus to 

virus and from animal species to animal species. The best known are virus models of 

(autoimmune) insulitis, i.e. insulitis due to Encephalomyocarditis (EMC)-D virus and Kilham Rat 

Virus (KRV) in mice and rats respectively (53). Coxsackievirus B4 has also recently been used 

in mice to induce insulitis (36). Viruses have also been described to be able to elicit autoimmune 

thyroiditis, i.e. when Balb/C mice are infected with reovirus type 1 (not with type 3) the mice 

develop thyroiditis and serum antibodies to thyroglobulin and second colloid antigen (78). 

Regarding the mechanisms playing a role in the animal models several separate 

mechanisms have been discovered. Firstly, viruses can directly infect and destroy the endocrine 

target cells; secondly, viruses can infect cells of the immune system and perturb the delicate 

balances preserving tolerance to the endocrine cells; and thirdly, combinations of the two are 

possible (53). 

When genetically susceptible mice (i.e. SJL/J mice) are infected with a high titre of EMC-

D virus β cells are destroyed largely due to the replication of the virus in the β cells. When 

DBA/2 mice are infected with a low dose of EMC-D virus the virus infects not only the β cells, but 

also the macrophages that are attracted by the inflamed islets. Macrophage-derived 
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inflammatory factors, such as IL-1β, TNFα and iNOS thereafter play thereafter a critical part in 

the destruction of the β cells, since interference with these products ameliorates disease. 

When BB-DR rats are infected with KRV the existing tolerance for islet antigens in this 

model (due to the presence of regulatory RT6+ T cells) is broken and autoimmune diabetes 

develops. The virus does not infect the β cells but rather the lymphocytes and macrophages to 

cause a possible depletion of regulatory T cells necessary for prevention of insulitis and 

diabetes. However a clear picture on the mechanism in this latter model does not yet exist, 

although a shift in Th2 to Th1 balance is implicated in the breaking of tolerance in these rats. 

Clearly further studies are needed to clarify the complex ways in which viruses are able 

to induce endocrine organ-specific autoimmune diseases. 

 

Transgenic and knock-out animal models 

The spectacular progress made in transgenic and knock-out technology has provided 

powerful new tools for the investigation of the fundamental aspects of endocrine organ-specific 

autoimmune diseases. There has been great interest in creating transgenic and knock-out 

models especially in the field of NOD mouse diabetes and autoimmune gastritis. It must be 

noted however that the transgenic and knock-out models are often quite artificial, far away from 

the etio-pathogenesis of wild-type endocrine organ-specific diseases, and thus only suitable to 

study some aspects of these diseases. In short the following models can be distinguished: 

1. Transgenic normal or autoimmune-prone mice expressing adhesion molecules, cytokines, 

costimulatory molecules or receptors for these immune molecules on and in their glandular 

cells, for instance because the genes encoding these molecules are expressed under the 

influence of a promotor important in the function of the cells, e.g. the insulin-promotor for 

expression in β cells. It has been found that mice expressing MHC class II or TNFα on their 

β cells develop forms of inflammatory diabetes, but so do mice expressing IL-10 in their β 

cells (116). Apart from these diabetic mouse models mice expressing GM-CSF in their 

gastric parietal cells have been constructed and these mice develop a form of autoimmune 

gastritis (1).  

2. Transgenic mice expressing a viral protein, e.g. the NP protein of LCMV in specifically their 

β cells, the so-called RIP-LCMV mice (110). Infection of these mice with LCMV leads to a 

form of autoimmune diabetes, because virus-cytotoxic T cells generated in the viral 

infection also vigorously attack the β cells. Subsequent epitope spreading causes an 

immune reaction to insulin and GAD, leading to a more typical form of autoimmune 

diabetes. 

3. Transgenic mice expressing a diabetogenic T cell receptor (TCR) on subpopulations of 

their T cells, e.g. the BDC2.5 TCR Tg mice expressing the TCR of the diabetogenic T cell 

clone BDC2.5 on their CD4+ T cells (57). Interestingly when these diabetogenic TCRs are 
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expressed on a largely non-diabetogenic background (NOD mice not yet fully inbred in the 

process) insulitis and diabetes do occur, however when expressed on an full NOD-

background large peri-insular lymphoid accumulations can be seen, but these “infiltrates” 

do not progress to diabetes  (87). This has been explained by the co-occurrence of 

diabetes-protective genes in the full NOD mouse background. 

 

 

Studies into the very early stages of the pathogenesis of endocrine organ-specific 
autoimmune diseases in animal models reveal a general “blueprint”.  

 

The studies in virtually all of the above described animal models have shown that the 

pathogenesis of an autoimmune failure of a gland is generally a multistep process, requiring 

several genetic and environmental abnormalities (or variants) to converge before full-blown 

disease develops. Hence, endocrine organ-specific autoimmune diseases are the outcome of an 

unfortunate combination of various genetic traits and environmental circumstances that by them 

selves do not need to be harmful, and may even be advantageous.  

Studies of the initial etio-pathogenic phases of endocrine organ-specific autoimmune 

diseases is difficult in man, there is - apart from the limited study on still unaffected family 

members- obviously only one reasonable alternative, i.e. the study of the very early phases of the 

diseases in the spontaneous animal models. Interestingly two major early aberrancies can be 

detected in these models (fig 2):  

1. An early local aberrancy in the gland resulting in an early local accumulation of 

macrophages (Mφ) and dendritic cells (DCs) before there is any noteworthy local 

lymphocytic infiltration. 

2. An early systemic aberrancy in the immune system apparently leading to an easy breakdown 

of tolerance. 

These two types of aberrancies need to act together to start the autoimmune process. 

 

Role of Mφ and MHC class II-positive DC 

Increased numbers of Mφ and MHC class II-positive DC have not only been found in the 

very early stages of the endocrine organ-specific autoimmune diseases in all the spontaneous 

animal models (BB-DP rat, NOD mouse and OS chicken) (35,42), but also in the thymectomy 

mouse model (1), the virus- and chemically-induced models (76,119), and the RIP-LCMV mouse 

model (110). Also in the human Mφ and MHC class II-positive DC are present inside and outside 

lymphocytic accumulations in the glands of patients with Graves' disease, Hashimoto goiter (56), 
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autoimmune insulitis (51) and sialo-adenitis (106), be it that only later stages of the diseases have 

been studied. 

DC are antigen-presenting cells (APC) par excellence, and essential for stimulation of 

naive T cells (35,98). Mφ have various functions, ranging from the production of factors for wound 

healing and remodelling of bone (63), via the phagocytosis and degradation of unwanted material 

to the regulation of immune responses.  

The (local) presence of Mφ and DC has been shown to be indispensable for the 

development of endocrine organ-specific autoimmune diseases, since prevention of their 

accumulation in the pancreas of NOD mice (49,62), in the pancreas of BB-DP rats (43) or the brain 

of Lewis rats (47) results in a prevention of insulitis/diabetes and EAE development. Also splenic 

lymphocytes from macrophage-depleted NOD mice fail to transfer diabetes to recipients (119).  

The destiny of the majority of Mφ and DC accumulated in tissues is to enter the lymphatics 

(35,98) and to travel to the draining lymph nodes while transporting antigens to these nodes and – 

under steady state, i.e. non-inflammatory, conditions - inducing tolerance induction. In the 

spontaneous animal models, however, a sensitization reaction is induced in the local draining 

lymph nodes after the early accumulation of the Mφ and MHC class II-positive DC in the glands 

(55,111). This apparently occurs in the absence of any obvious “inflammatory condition” of the 

gland. An expansion of autoreactive CD8+ and CD4+ T cells takes place in the reacting draining 

lymph nodes as well as the production of auto-antibodies of IgG class. Later, however, such 

immune reactivity is taken over by a lymphoid tissue that locally develops in the glands 

themselves, e.g. a local thyroid lymphoid tissue in the thyroid gland of the BB-DP rat (55,111) and 

the earlier mentioned peri-insular lymphoid tissue in the NOD mouse (87). These tissues are often 

erroneously called “focal thyroiditis” and “peri-insulitis” respectively, since they are not destructive 

inflammations, but have a high degree of histological architecture, with clearly distinguishable T-

cell areas, B-cell follicles and germinal centres, and areas and cords of plasma cells in the 

periphery of the lymphoid tissue. The plasma cells in this tissue produce specific antibodies, such 

as anti-thyroglobulin (anti-Tg) antibodies in the BB-rat thyroid (55,111). Such local lymphoid tissue 

can also be found in human glands affected by autoimmune disease and are also there generally 

non-destructive and show a peaceful coexistence with adjacent endocrine/exocrine cells (55). In 

fact, the adjacent endocrine/exocrine cells often show signs of metabolic and proliferative 

stimulation. In the early peri-insular lymphoid tissue of the spontaneous NOD mouse model, the 

BDC2.5 TCR Tg mice and the RIP-LCMV mouse a predominance of Th2 type cytokines has been 

shown, again underlining the anabolic nature of this locally developed lymphoid tissue (87,117). 
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Role of B cells  

 Not only Mφ and DC are essential in the early phases of the development of endocrine 

organ-specific autoimmune diseases, but it has also been argued that B cells and CD8+ T cells 

need to be present in the first weeks of life for diabetes to develop. T cells from B cell-deficient 

NOD mice could not be sensitised to GAD and these mice did not develop diabetes (93). Also B 

cell-deficient H2h4 mice do not develop thyroiditis (9). Since this inability was not due to the 

absence of antibodies and could also not be restored by the transfer of B cells later in live it has 

been suggested that B cells might - next to DC and Mφ - function as early APC in the development 

of endocrine organ-specific autoimmune diseases in the NOD mouse. However there are also 

reports showing that B cell-deficient mice do develop in an early stage autoreactive T cells, but 

that these T cells are not pathogenic (23). Moreover B cells are not required in the initial stages of 

the autoimmune process in the BB-DP rat, and there is a recent report of a child with a severe B 

cell deficiency that developed type1 diabetes (71). Hence a B cell requirement for diabetes 

development is certainly not a general rule and probably restricted to the NOD mouse model only, 

be it also in this model in a relative fashion. It is presently thought that in the NOD mouse B cells 

might be required for an expansion of the early autoreactive T cell response (Fig 2).  

 

Role of CD8+ T cells  

There is also evidence that CD8+ T cells are required early in the process of the NOD islet 

autoimmune response. When NOD mice are depleted of CD8+ T cells during discrete age 

windows from about 2 to 5 weeks after birth insulitis development is severely hampered (112). 

Also NOD mice carrying a null mutation at the β2-microglobulin locus and thereby lacking MHC 

class I molecules and CD8+ T cells are insulitis and diabetes resistant (94). Transfer studies 

indicate that CD4+ T cells from these protected mice, although they were isolated after 

repopulation of the CD8 compartment, were not capable of transferring disease (24). This 

indicates that at least in the NOD mouse model CD4+ T cells need CD8+ T cells for an early 

activation. A further series of experiments have made it plausible that early in the process CD8+ T 

cells are probably needed to initiate β cell necrosis in the NOD islets, where after sufficient 

antigens become available to perpetuate the autoimmune response (Fig 2). It is also important to 

note that such requirement for CD8+ T cells has not firmly been established for BB-DP rats, though 

there are indications that also in this model CD8+ T cells are required in an early window in the 

disease (41). 
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A. 

B. 
 

Fig. 2. A scheme on the immuno-pathological events that take place during the development of endocrine organ-
specific autoimmune diseases. 
(A) In a first afferent phase APC – predominantly monocyte derived - accumulate in the gland. The APC influx can be 
induced by a-specific inflammatory stimuli, e.g. a necrosis of target cells by toxins or viruses. The accumulated APC 
take up relevant auto-antigens and leave the tissue to travel to the draining lymph nodes. In the draining lymph nodes 
the APC seek contact with T cells and B cells. Apparently, an aberrant immune response results. Instead of 
reinforcing tolerance the APC generate an autoimmune reaction. The text of this chapter lists the various 
abnormalities found in animal models underlying this aberrant regulation of the autoimmune response. Generated 
cytotoxic T cells attack the glandular target cells and more antigens are released. B cells produce auto-antibodies, 
which are in the majority of endocrine organ-specific autoimmune diseases just markers of the process (except in 
Graves’ disease) 
(B) In later phases the autoimmune reaction is perpetuated and expanded. The generated autoreactive T cells and B 
cells gain access to the target glands and often form focal accumulations. Such focal accumulations are mostly 
harmless for the target cells. When a switch takes place of the APC to Th1 stimulating cells (DC1) a switch to a more 
aggressive type of inflammation is induced. In such inflammations IFN-γ activates scavenger macrophages to kill off 
the target cells. (APC = antigen presenting cell, E = endocrine cell, B = B cell, DC = dendritic cell, Mac = macrophage, 
Th1 = T helper 1 cell, abs = antibodies, NO = nitric oxide. 
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Pre-autoimmune aberrancies in the target glands and the pre-autoimmune attraction of 

DC and Mφφφφ into the target glands.  

 

Attraction signals for the DC and MФ may -in the first place- be simply of environmental 

origin and inflammatory in nature. Early aspecific necrosis of glandular cells caused by toxins, e.g. 

iodine in the thyroid (5,65) and streptozotocin in the islets (21); bacterial infections, e.g. 

Helicobacter pylori in the stomach (1) and viral infections (e.g. EMC-D virus in the islets) with the 

concomitant release of self antigens and pro-inflammatory and chemotactic factors for DC and Mφ 

have all been described as eliciting factors for endocrine organ-specific autoimmunity.  

Secondly, DC and MФ may initially accumulate in target glands not to exert a function in 

inflammation and the removal of cell debris, but to regulate the growth and function of the 

glandular tissue. It is important to note that DC and MФ are normal constituents of the thyroid, 

the islets and other glandular structures, and that the cells have been proven to regulate the 

growth and function of glandular cells in vitro (2,45,95) predominantly via IL-1 and IL-6 signals. 

The recognition that such cells constitute a recruitable cellular force that, on the one hand, is 

capable of regulating tissue homeostasis, but on the other hand is also capable of initiating 

immune responses, has implications for our understanding of the induction phase of endocrine 

organ-specific autoimmune diseases. Minor inborn errors in metabolism and minor aberrancies 

in the structure, growth and function of tissues may therefore necessitate an influx of DC and 

MФ to regulate tissue homeostasis. This 'non-infectious” influx may, however, be a first step on 

the way to endocrine organ-specific autoimmunity. There is an argument for such a view: Very 

early (and even fetal) abnormalities in the proliferative capability and hormone production of 

thyrocytes, salivary gland cells and islet cells have been reported in the OS chicken, the BB-DP 

rat and the NOD mouse.  

Already in 1983 a decreased in vitro growth rate of fetal OS chicken thyrocytes has been 

described (5,14,100,115). It has been suggested that this intrinsic, abnormal low proliferative 

rate of OS chicken thyrocytes in the pre-autoimmune state reflected an inborn derangement of 

function-that is, a defect in the handling of iodine, i.e. fewer iodine atoms were found to be built 

into the chickens’ Tg. Other pre-autoimmune thyroid abnormalities found in the OS chicken 

include TSH-independent hyperfunction, such as a high oxidative metabolism, a high iodine 

uptake and an incomplete suppression of this uptake (100). These signs of hypermetabolism 

were suggested to be mechanisms compensating for the iodine-handling defect and also explain 

the sensitivity of this birds’ thyroid for the toxic effects of high dose iodine diets (100).  

Similar pre-autoimmune aberrancies have been described for the BB-DP rat thyroid. 

Again the in vitro proliferative rate of thyrocytes was significantly lower than that of a control rat 

strain, while the output of thyroid hormones and of IL-6 was higher in the pre-autoimmune stage 

(96). 
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In the NOD mouse histomorphological analyses of neonatal (1 day postpartum) 

submandibular glands, the primary target for autoimmune sialo-adenitis, revealed a delayed 

morphological differentiation during organogenesis when compared to control C57BL/6 mice. 

Acinar cell proliferation was reduced, while the expression of apoptotic molecules was increased 

(16). During the following pre-weaning, but pre-autoimmune period matrix metalloproteinases 

(MMPs) were aberrantly expressed and the composition of the saliva altered (118). In congenic 

NOD strains not developing sialoadenitis, i.e. lacking Idd3 and Idd5, there were no such pre-

autoimmune target abnormalities (10). 

Pancreas aberrancies do also already exist at birth in the NOD mouse. NOD female 

neonates have, compared to C57BL/6 neonates, more hyperactive β cells, assessed by in situ 

preproinsulin II expression (81). This β-cell hyperactivity disappears within the first week of age 

and is accompanied, in NOD (and NODscid) neonates, by high percentages of small glucagon+-

immunoreactive (immature) islets. These data are suggestive of islet neogenesis in the very 

young NOD mouse in relationship with neonatal β-cell hyperactivity. At the time of these early 

postnatal aberrancies MФ and DC are present in the pancreas around or close to the developing 

islet and ductal structures (19). Densities of DC are higher in NOD and NODscid mice as 

compared to controls. High numbers of BM8+ scavenger MФ are normally observed at birth in 

mouse pancreases and such cells are mainly seen at sites of islet neogenesis and 

predominantly at the duct-islet interface. After birth, such scavenger MФ disappear 

progressively, but this is not the case in NOD and NODscid mice. After the first few weeks of 

pancreas development NOD mice show further morphologic aberrancies in islet development: 

enlarged, irregular islets characterize the NOD mouse pancreas up till the age of around 12 

weeks, when particularly these large mega-islets become the targets of the autoimmune attack 

(86).  

Suffice to say, that there is ample evidence for aberrancies in the morphogenesis and 

function of the target glands prior to the development of the specific autoimmune reaction in the 

OS chicken, the BB-DP rat and the NOD mice. These early phases of aberrant growth and 

function of the gland coincide with an aberrant influx and accumulation of MФ and DC. 

Considering the broad function of these cells, it is plausible that the cells primarily play a role in 

correcting the aberrancies in the development of these glands. Conversely it is possible that the 

DC and MФ induce the early glandular abnormalities. 

 

 

Pre-autoimmune aberrancies in the immune system 
 

The pre-autoimmune influx and glandular accumulation of MФ and DC and their 

trafficking to the draining lymph nodes are as such not sufficient for a development of pathological 
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endocrine organ-specific autoimmunity (35). A local or systemic aberrancy in the functioning of 

immune cells themselves is an additional prerequisite to initiate the inappropriate, excessive and 

destructive immune response towards self antigens, characteristic of the endocrine organ-specific 

autoimmune diseases. 

The exact mechanisms for maintaining tolerance in non-autoimmune-prone individuals are 

far from clear. There exist various mechanisms to avoid self reactivity, including mechanisms of 

central tolerance induction, such as the deletion of autoreactive T cells in the thymus, and 

mechanisms of peripheral tolerance induction, such as anergy induction (e.g. via the presentation 

of antigens in the context of MHC-class II molecules, but in the absence of co stimulatory 

molecules), the action of regulatory T cells, and Activation-Induced T Cell Death/ apoptosis 

(AITCD). The above listed animal models are practically all characterized by one or more defects 

in either one or more of these tolerance mechanisms.  

Many of the models show a defect in regulatory T cells. Particularly the mouse 

thymectomy model is known for its specific lack of CD4+CD25+ T regulator cells (1). The BB-DP 

rat, however, also lacks a particular subpopulation of T cells, the so-called RT6+ T cells, which 

clearly form a regulator (suppressor) population in the rat (39). Thymic abnormalities are also 

evident in the BB-DP rat, suggesting deviations at the level of central tolerance in this animal as 

well (38,41). The OS strain of chickens also has defects in its regulatory T cell system (115). The 

NOD mouse has defects in T cell apoptosis, leading to a decreased ability of the cells to 

undergo AITCD, a major mechanism in both central and peripheral tolerance induction (82). 

Moreover, NOD mice are characterized by an abnormal thymic architecture (28,88). Taken 

together there are subtle T cell abnormalities that need to be fully characterized to understand 

these spontaneous organ-specific autoimmune diseases.  

Interestingly the spontaneous animal models also show aberrancies in the development 

of MФ and DC from bone-marrow precursors. Studies in the BB-DP rat and NOD mouse model 

have established that in both the NOD mouse as well as the and BB-DP rat aberrancies exist in 

the maturation process of myeloid cells from their precursors (35). There is a shift in balance 

between MФ and DC development from precursors in favour of the first, leading to an enhanced 

maturation of scavenger macrophages in the animals (Nikolic, to be published). The 

macrophages show in addition an enhanced migration and an enhanced production of pro-

inflammatory factors (64, Nikolic, to be published). This hyper-reactivity of scavenger 

macrophages likely contributes to the enhanced cytotoxic potential of the cells for target 

glandular cells in endocrine organ-specific autoimmunity. At the same time there is a maturation 

defect in the DC compartment of the animals. This defect leads to a low expression of MHC 

class II and CD80 and CD86 molecules on the generated DC of these animals resulting in a low 

capacity of the APC to stimulate T cells particularly via the MHC class II-TCR and CD80-CD28 

route (29,31,32,37, Groen, to be published). Precisely such triggering via the latter route is 
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essential to prevent the development of diabetes in the BB-DP rat and NOD mouse model (41, 

Groen, to be published): in vivo treatment of BB-DP rats with stimulatory anti-CD28 monoclonal 

Abs completely prevents the development of both insulitis and diabetes, whereas treatment with 

a blocking anti-CD80 monoclonal Abs accelerates diabetes development. Knocking out CD28-

CD80 interaction in the NOD mouse model has also proven to result in an acceleration of the 

disease (92). Another piece of evidence that fully active and mature DC are required for optimal 

tolerance induction in the BB-DP rat is the observation that the immature DC of the BB-DP rat 

can not sufficiently expand the RT6+ T cell population, which represents the “suppressor” cell 

population in the rat system (32). 

In sum, the aberrant development of MФ and DC in BB-DP rats and NOD mice may 

contribute to the poor tolerogenic capability of the animals and the heightened aggressiveness to 

glandular cells. 

 

 

What do we learn from the animal models for endocrine organ-specific autoimmune 
diseases in the clinic. 

It must be emphasized again that studying animal models cannot answer all the 

problems presented by endocrine organ-specific autoimmune diseases when seen in the clinic. 

It must be expected -considering the various etiologies in the different animal models- that the 

causes of the diseases in the human and the involvement of various genes and environmental 

factors may differ from patient to patient. Yet in the study of particularly the pre-autoimmune 

phases of the diseases (the focus of this chapter) there is hardly an alternative than to study the 

animal models. Only limited series of experiments can be carried out in individuals at risk to 

develop such diseases. Moreover the etio-pathogenesis found in the animal models may provide 

novel information of mechanisms that are relevant to human studies.  

In summary, we believe that the animal models of endocrine organ-specific autoimmune 

disease still hold immense promise for the discovery of pathways, genes and environmental 

factors that determine the development of overt endocrine organ-specific autoimmune diseases. 

The BB rat is a good example of the success of this approach since the recent positional cloning 

of the lymphopenia gene, Ian5 identified a novel family of genes of importance to T cell 

development. If the findings of the animal models are verified in patients such studies will 

eventually lead to a better understanding of the human diseases. Until then therapies that show 

effect in the animal models should only cautiously be applied to humans, since knowledge is still 

imperfect and errors can easily be made.  
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Abstract 
 
Dendritic cells (DC), antigen presenting cells par excellence, play a pivotal role in the regulation 

of the islet autoimmune response in the animal models of type 1 diabetes mellitus (DM1). 

Interestingly the function of DC and their development from precursors have been shown 

defective in the animal models of DM1 as well as in patients. In this study we confirm that the 

generation of DC from DM1 monocytes results in populations of DC that are relatively immature. 

We also found that the expression of the adhesion molecules was considerably decreased on 

such DC.  

Adhesion molecules play a role in the differentiation and maturation of leucocytes, including that 

of DC. We therefore went on to investigate the expression of these molecules on monocytes of 

DM1 patients. DM1 patients have a significant lower number of monocytes expressing CD54 

(ICAM-1). Moreover, triggering of CD54 on monocytes and DC using an anti-CD54 monoclonal 

antibody enhanced the differentiation and maturation of the cells to fully mature DC. 

We conclude that the low expression of CD54 on DM1 monocytes and immature DC likely plays 

a role – at least in part - in their defect to mature into fully potent APC.  
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Introduction 

 

Type 1 diabetes mellitus (DM1) is a chronic T cell mediated autoimmune disease in 

which the ß cells of the islets of Langerhans are destroyed. Antigen presenting cells (APC), such 

as dendritic cells (DC) are amongst the first leukocytes accumulating around the islets of the two 

most important animal models of spontaneously developing DM1, i.e. the Non Obese Diabetic 

(NOD) mouse and the Biobreeding Diabetes Prone (BB-DP) rat (1;2). Since DC are the most 

potent APC of the immune system and indispensable for the initiation of primary immune 

responses and the generation of T cell dependent antibody formation (3), it is now generally 

accepted that DC are critically involved in the regulation of the islet auto-immune response in 

these animal models.  

DC form a heterogeneous group of APC with different lineage backgrounds (lymphoid 

versus myeloid), with different (local) precursors and with various stages of differentiation and 

maturation. In the last decade the idea has gained acceptance that DC are not only cells capable 

of initiating immune responses, but are also inducers of tolerance (4-8). Abnormalities in the 

differentiation and maturation of DC from their precursors have been documented in DM1 

patients, the NOD mouse and the BB-DP rat, and it is presently thought that such defect might 

be causal to the state of defective tolerance in DM1.  

With regard to patients it proved difficult to generate veiled accessory macrophages (9) 

and DC (10) from circulating blood monocyte precursors. The generated veiled accessory 

macrophages and DC showed a lower expression of (co-) stimulating molecules and had a lower 

potency to stimulate T cell proliferation. 

With regard to the NOD mouse, a mixture of splenic DC and macrophages were poor in 

accessory function (11). In accord with the abnormalities of the DC isolated from the lymph node 

and spleen of this animal were findings on an abnormal differentiation and maturation of DC from 

NOD bone marrow precursors, particularly when DC were generated in the presence of GM-CSF 

alone (12-18). Under such circumstances NOD bone marrow precursors yield lower numbers of 

differentiated DC, yet show various signs of pro-inflammation, viz. an enhanced expression of 

NF-κB (19) and a higher production of interleukin-12 (20). There exist however also reports for 

DM1 patients and NOD mice that doubt the above mentioned defects in the differentiation of DC 

from their precursors (21-23). 

With regard to the BB-DP rat we previously showed that lymph node and spleen DC are 

less well differentiated and have an abnormal (“immature”) phenotype (24), i.e. the cells show a 

relatively low expression of MHC class II and of costimulatory molecules. These DC also showed 

a diminished capability to stimulate T cell proliferation, particularly of the RT6+CD8+ suppressor T 

cell population of the rat. We also found that a defective DC-DC interaction in so-called 

homotypic cell clusters played an important role in the poor differentiation and maturation state 
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of DC in this animal. Aggregation of DC in homotypic clusters normally occurs in the lymph, 

when the cells are in transit as veiled cells from the peripheral tissues to the draining lymph 

node. Cluster formation is dependent on the interaction between various adhesion molecules on 

these cells. After induction of an enhanced cluster formation (via the stimulation of cell-cell 

adhesion) normal rat DC have a higher expression of CD80 and CD86 and increase their T cell 

stimulating capabilities (25). DC of the BB-DP rat formed fewer and smaller clusters and the DC-

DC clustering resulted in only a modest maturation of the cells (25). Also in DM1 patients veiled 

accessory macrophages generated from blood monocytes formed fewer and smaller clusters (9). 

Yet studies on the expression of adhesion molecules on DM1 monocytes and the role of such 

adhesion molecules in the differentiation and maturation of DC from precursors are lacking. 

Here we report on the expression of various adhesion molecules on monocytes of 

patients with recent onset DM1, of DM2 patients (as hyperglycaemic /metabolic-disturbed 

controls), and of healthy controls. We tested monocytes of patients with a recent onset 

autoimmune (AI) thyroiditis as well (as controls for autoimmunity). We found that a low 

intercellular adhesion molecule-1 (ICAM-1 or CD54) expression on circulating monocytes was 

specific for DM1. We also observed that stimulation of the CD54 molecules on the surface of 

monocytes and DC using a stimulating CD54 antibody, stimulated the homotypic cluster 

formation of the cells and their differentiation and maturation. Because of the positive role of 

CD54 molecule in the maturation of monocyte-derived (mo-) DC and the specific lower 

expression of CD54 on monocytes of DM1 patients, we consider it not surprising that we could 

confirm previous findings of others that the generation of DC was hampered from monocytes in 

DM1 (10), but was normal in DM2 and AI thyroiditis.  

 
 

Research design and methods  
 

Subjects 

Heparinized blood (60mls) was obtained via venapuncture from the following groups of 

individuals: Recently diagnosed DM1 patients (n=39), who visited the outpatient clinics of three 

major hospitals in the Netherlands. The patients were included according to the WHO criteria. 

The mean age was 13.7 ± 6.5 years, ranging from 6.5 to 33.2 years. The mean of HbA1c was 

8.8 ± 2.5%. DM2 patients (n=15), who visited the outpatient clinic of the Department of Internal 

Medicine, Erasmus MC, Rotterdam, The Netherlands. The mean age was 55 ± 13.3 years, 

ranging from 36.4 to 83.3 years. The mean of HbA1c was 8 ± 1.4%. Recently diagnosed AI 

thyroiditis patients (n=28), who visited the outpatient clinic of the Department of Internal 

Medicine, Medical Centre Rijnmond Zuid, Rotterdam, the Netherlands. The mean age was 42.7 

± 12.6 years, ranging from 30.9 to 71.2 years. All patients had high levels of thyroid peroxidase 
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antibodies (TPO-Abs > 400IU/ml). Healthy controls with an absent family history of autoimmune 

diseases consisted of laboratory personnel and students. The controls were divided for some 

comparisons into two groups to obtain age-matched controls for the two diabetic groups (young 

group, n=41, mean age 28 ± 6.6 years, ranging from 19.4 to 42.5 years; older group, n=15, 

mean age 50.1 ± 9.5 years, ranging from 30 to 60.5 years). 

Informed consent was obtained from all participants. The research protocol has been 

approved by the Medical Ethical Committee of the Erasmus MC, Rotterdam, the Netherlands. 

For the DC cultures with anti-CD54 antibody stimulation we used monocytes isolated from 

buffycoats purchased from the Sanquin Blood bank, Rotterdam, the Netherlands. 

Serum 

Serum samples were collected and stored at -800C until the analysis for soluble (s) 

ICAM-1 using two commercially available ELISA methods (Bio-source ELISA KH5401 and Bio-

source KH5412 high sensitive, Camarillo, CA, USA). 

Monocyte isolation and generation of DC 

Ficoll (Pharmacia, Uppsala, Sweden; density 1.077g/ml) and Percoll (Pharmacia; density 

1.063g/ml) density gradient centrifugation were used to isolate monocytes from heparinized 

blood and buffy-coats (Sanquin Blood bank, Rotterdam, the Netherlands). The monocytes were 

cultured at a concentration of 0.5x106 cells/ml on 24-well culture plates under plastic-adherent 

conditions in RPMI 1640 with 25mM HEPES and L-glutamine (BioWhittaker Europe, Verviers, 

Belgium) (hereafter referred to as RPMI+) containing ultraglutamine (UG) (2mM, BioWhittaker), 

penicillin/streptomycin (P/S) (100U/ml penicillin, 100µg/ml streptomycin, BioWhittaker) and 10% 

heat inactivated FCS (FCSi) (BioWhittaker) in the presence of GM-CSF 400U/106 cells/ ml and 

IL-4 500U/106 cells/ ml (both Pepro Tech EC, London, England). The cells were incubated at 

370C, 5% CO2
 and 95% humidity. On day three, half the culture fluid was refreshed with GM-

CSF 200U/106 cells/ ml, IL-4 250U/106 cells/ ml. After six days DC were collected by 

resuspending and washing the wells thoroughly with cold phosphate buffered saline (PBS) pH 

7,4 (BioWhittaker), with 0,1% bovine serum albumin (BSA) (Bayer, Kankakee, IL, USA) and 

3mM ethylene diamine tetraacetic acid, pH 8 (Sigma-Aldrich, Steinheim, Switzerland). T cell 

isolation was performed by washing the pellet in the Percoll gradient twice with PBS/ 0,1%BSA 

and incubating the cells with 20µl/107 cells anti-CD3 microbeads (Miltenyi Biotec, Bergisch 

Gladbach, Germany) for 20 minutes on ice. A magnetic cell sorting system (auto MACS sorter, 

Miltenyi Biotec) was used for the selection of CD3 positive T cells. 

Phenotype of monocytes and DC 

The following monoclonal antibodies (mAbs) were used for flowcytometry: anti-IgG1 FITC 

(1:10, Becton Dickinson (BD), San Jose, CA, USA), anti-IgG1 PE (1:10, BD), anti-CD14 FITC 

(1:250, Beckman Coulter, Hialeah, FL, USA), DC-SIGN PE (1:10, R&D systems, Minneapolis, 

MN, USA), anti-HLA-DR PE (1:200, BD), anti-CD80 PE (10µl/105 cells, BD), anti-CD86 FITC 
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(10µl/105 cells, Pharmingen, San Diego, USA), anti-CD40 FITC (10µl/105 cells, Serotec, Oxford, 

England), anti-CD1a PE (1:100, Beckman Coulter), anti-CD18 FITC (1:10, BD), anti-CD11b PE 

(1:50, BD), anti-CD29 FITC (1:160, Beckman Coulter), anti-CD54 PE (1:4, BD), anti-CD49a 

FITC (VLA-1), anti-CD49b FITC (VLA-2), anti-CD49d (VLA-4) (10µl/105 cells, Serotec), anti-

CD49e FITC (VLA-5) (10µl/105 cells, Immunotech, Marseille, France), anti-CD3 FITC (1:20, BD), 

anti-CD19 PE (1:25, BD) and 7AAD (1:250, Molecular probes, Eugene, Oregon, USA). Whole 

blood (50µl) was incubated in polypropylene tubes (BD) with mAbs for 15 minutes and washed 

with PBS/ 0,1% BSA. Red blood cells were lysed with lysing solution (BD) and washed twice 

with PBS/ 0,1% BSA. DC were incubated in polypropylene tubes with mAbs for 15 minutes, then 

washed twice. The cells were measured immediately following cell staining using a FACScan 

flowcytometer and analysed using CellQuestPro (BD, Mountain View, CA, USA). Routinely 

10,000 events were collected. Debris and dead cells were gated out on basis of their light scatter 

properties. The gated DC population consist no CD3+ and CD14+ cells. The background 

staining was determined by staining of cells with IgG1-FITC and IgG1-PE alone and subtracted 

from the values. Data were expressed as mean ± SD of percentage of positive cells and mean ± 

sd of mean fluorescence intensity (MFI).  

Mixed Leucocyte Reaction (MLR)  

For the MLR, DC were irradiated with 20Gy and placed in flat-bottom 96-wells-plates 

(Nunc, Roskilde, Denmark) in RPMI+ medium containing UG, P/S and A+-serum. We added 

100µl of the concentration of 3x105, 1.5x105, 0.75x105 and 0.37x105 cells/ml of DC and an equal 

volume of T-cells at concentration of 1.5x106 cells/ml to the wells resulting in a total volume of 

200µl per well. As positive control these T-cells were stimulated with phytohemagglutamin (PHA) 

(Sigma). Proliferation was determined after 18 hours of 0.5µCi/ well 3H-thymidine addition on day 

5. Cells were harvested on filter papers and radioactivity was counted in a liquid scintillation 

analyzer (LKB Beta plate, Wallac, Turun, Finland). The values are the mean of triplicates. 

Stimulation with CD54  

To investigate the role of CD54 triggering in the actual differentiation of DC from buffy-

coat monocytes a mouse anti-human (anti-) CD54 mAb (1:50 and 1:100, Pelicluster, CLB, 

Amsterdam, The Netherlands) or recombinant human (rh-)CD54 (30ng/ml and 300ng/ml, R&D) 

was added throughout the entire 6 days culture period in the presence of GM-CSF and IL-4. To 

study the role of CD54 triggering in a further maturation of the DC, DC were harvested after 6 

days of culture and re-suspended in the presence of anti-CD54 mAb, rh-CD54 or anti-CD18 mAb 

(1:100, Serotec) for 24 hours. Pooled normal mouse serum (1:500, C57BL/6 mice, C3H/FEJ and 

BALB/C) was used as a negative control. The effect of the various treatments was assessed by 

investigating the expression of DC-SIGN, HLA-DR and of the co-stimulatory molecules CD80, 

CD86 and CD40 on the various treated DC populations. For assessment of the homotypic 

cluster formation, we harvested and resuspended DC of two healthy donors in flat-bottom 96-
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wells plates (Nunc) at concentrations of 0.5 x105 and 1x105 cells/ 200µl/ well. These DC were 

allowed to aggregate in presence or absence of anti-CD54 mAb for 20 hours in the incubator. 

Formed clusters were counted with an inverted microscope, and values were expressed as 

numbers of clusters per 5 microscopic fields (250x magnification). A cluster was defined as an 

aggregate of four or more cells. 

Statistical analysis 

Statistical analysis was performed using Spss 11.0. Paired Student’s T-test was used to 

detect differences between data of untreated and CD54 treated DC experiments. For the other 

experiments the Mann Whitney U-test was used. P–values lower than 0.05 were considered 

significant. 

 

 

Results 
 

DC derived from monocytes of DM1 patients show a less differentiated phenotype. 

The yields of DC, measured as the percentage of generated viable cells of the original 

number of monocytes put into GM-CSF/ IL-4 culture, were comparable for DM1 patients, DM2 

patients, AI thyroiditis patients and healthy controls (data not shown).  

 

 

 
Fig. 1. Phenotype of immature DC derived from patients with DM1, DM2 and AI thyroiditis and control subjects. The 
phenotypes (DC markers and costimulatory molecules) of DC from patients (thick lines) are shown in histograms. The 
thin lines represent DC from control subjects and the dashed lines are DC stained with isotype control Abs. DC of 
DM1 patients have lower expression of DC-SIGN, CD80, CD86, CD40 and CD1a. DC of DM2 and AI thyroiditis 
patients are comparable to controls.  
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Fig. 2. Proliferation of T cells measured by 3H-thymidine incorporation and expressed as counts per minute (cpm) are 
shown. Autologous T cells or pooled T cells from three different allogeneic donors were used for the autologous and 
allogeneic MLR respectively. DC of DM1 patients (grey triangles) have a lower autologous T cell stimulatory capacity 
compared to DC of controls (white circles), but have a normal capacity to stimulate allogeneic T cells. T cells of DM1 
patients have significantly lower proliferation to PHA stimulus compared to T cells of controls. Data are shown as 
means and standard errors of cpm for triplicate samples per individual (* p=0.03).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the similar yields, the percentages of DC positive for the following markers were 

significantly lower in DM1 patients: DC-SIGN (mean 28% ± SD 19%, vs. 54% ± 24% for young 

healthy controls, p=0.04), CD80 (5% ± 6% vs. 12% ± 10%, p=0.02), CD86 (22% ± 12% vs. 32% 

± 13%, p=0.04), CD40 (30% ± 18% vs. 50% ± 21%, p=0.004) and CD1a (9% ± 11% vs. 27% ± 

18%, p=0.003). 

The percentages of HLA-DR+ DC were also lower for DM1 patients, yet not statistically 

significant (42% ± 19% vs. 53% ± 18%, p=0.14). With regard to the expression level, the mean 

fluorescence intensities (MFI) of the DC markers were significantly lower in DM1: DC-SIGN 

(1382 ± 1322 vs. 3613 ± 1998 in young healthy controls, p=0.02), CD86 (363 ± 276 vs. 534 

±319, p=0.05), CD40 (446 ± 448 vs. 916 ± 806, p=0.02) and CD1a (232 ± 318 vs. 406 ± 332, 

p=0.04). The percentages and expression levels of the afore-mentioned markers on the DC of 

DM2 patients and AI thyroiditis patients were comparable to those of the appropriate matched 

healthy controls (Fig. 1).  

With regard to DC function, the T cell stimulatory capacity in autologous MLR of the 

phenotypically abnormal DM1 DC was significantly lower. For the DC:T cell ratio 1:10 and 1:20 

DM1 patients showed a significantly lower incorporation of 3H-thymidine (Fig. 2). When the T 

cells of the DM1 patients were stimulated with the mitogen PHA in the absence of DC, they also 

showed a lower proliferation as compared to healthy control T cells (8568 ± 7508 vs. 22099 ± 

13550, p=0.03) (Fig. 2). When allogeneic T cells were stimulated with DC of DM1 patients the 

proliferation was normal (Fig. 2). The T cell stimulatory defect in autologous MLR is thus most 
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likely due to an intrinsically low proliferative capability of the diabetic T cells, and not to a low 

stimulatory capability of DM1-DC.  

 

The expression of various integrins on monocyte-derived DC of DM1 patients is lower 

The integrin profiles on the mo-DC were also studied in the various groups of patients 

and individuals. We found lower percentages and expression levels of several adhesion 

molecules on the DC of DM1 patients (n=17) as compared to those of the appropriate healthy 

controls (n=17). These patients had significantly lower percentages of DC positive for the 

integrins CD54 (25% ± 16% vs. 4% ± 18% in controls, p=0.001), CD18 (20% ± 15% vs. 40% ± 

19%, p=0.002), CD11b (30% ± 17% vs. 51% ± 19%, p=0.003), CD49d (5% ± 5% vs. 10% ± 8%, 

p=0.02) and CD49e (20% ± 15% vs. 40% ± 21%, p=0.004). Also the MFI of these integrins was 

lower for DM1 DC: CD54 (609 ± 487 vs. 941 ± 435, p=0.02), CD18 (177 ± 136 vs. 351 ± 229, 

p=0.02), CD11b (853 ± 869, p=0.02), CD49d (52 ± 30 vs. 87 ± 51, p=0.02) and CD49e (177 ± 

128 vs. 363 ± 250, p=0.03) (Fig. 3). The expression level was not significantly different in DM1 

DC for the integrins CD29 (Fig. 3, p=0.12), CD49a and CD49b (data not shown).  

The integrin profiles of DC of DM2 patients (n=13) and AI thyroiditis patients (n=12) were 

not different from those of healthy control DC (Fig. 3).  

 

The percentage of CD14+ monocytes expressing CD54 is lower in  DM1 patients 

To investigate whether the integrin expression on the actual precursors of the DC, i.e. the 

CD14+ monocytes, was already aberrant in patients with DM1, we analysed the various adhesion 

molecules on these cells, using whole blood samples. Significantly lower percentages of CD14+ 

monocytes of DM1 patients (n=24) were positive for CD54 (75% ± 19% in DM1 patients vs. 82% 

± 14% for the appropriate healthy controls, n=41, p=0.03) and for CD49e (76% ± 21% vs. 87% ± 

12%, p=0.003). Furthermore, we observed a tendency for a lower percentage of monocytes 

expressing CD49d in DM1 (77% ± 18% vs. 84% ± 10%, p=0.06). With regard to the expression 

level, the MFI of CD11b was significantly increased in DM1 monocytes as compared to healthy 

control monocytes (426 ± 308 vs. 257 ± 247, p=0.001). The MFI of CD18 was also increased in 

DM1 patients, however did not reach statistically significance (119 ± 58 vs. 102 ± 51, p=0.17) 

(Fig. 4). Other investigated integrins i.e. CD29 (Fig. 4), CD49a and CD49b (data not shown),  

 

Increased soluble ICAM-1 (=CD54) level in serum  

Since we found that CD54 expression was quite specifically disturbed on monocytes of 

DM1 patients, we wanted to confirm previous observations, that the level of sICAM-1 was higher 

in the serum of DM1 patients (26-30). We therefore investigated sICAM-1 levels in their serum 

(n=39). We indeed detected significantly increased sICAM-1 levels in our DM1 patients, i.e. 62 ± 

21 ng/ml vs. 40 ± 15 ng/ml in young healthy controls, n=40, p=1x10-6) (table 1). However DM2 
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patients (n=15) also showed higher sICAM-1 serum levels as compared to their appropriate 

controls (n=20), be it that the actual values were much higher in both patients and controls due 

to the usage of a more sensitive assay (457 ± 103 ng/ml vs. 286 ± 101ng/ml, p= 3x10-5). AI 

thyroiditis patients (n=28) also had slightly increased sICAM-1 levels (353 ± 208 ng/ml vs. 286 ± 

101 ng/ml, p=0.02).  

There was no correlation between the sICAM-1 level and the HbA1c level in DM1 

patients, neither was there a correlation between the sICAM-1 levels and the TPO Abs levels 

and positivity in AI thyroiditis patients (data not shown). 

 

Triggering of the CD54 molecule on monocytes using a stimulating anti-CD54 monoclonal Ab 

stimulates the generation and differentiation of DC.  

To investigate the influence of integrin triggering on the differentiation of DC from 

monocytes, we added a stimulating anti-CD54 monoclonal Ab (mAb) to the DC cultures. As a 

possible other trigger we used rh-CD54 (see raised levels of sICAM-1 in the sera of patients) 

and another commercially available stimulating anti-integrin Ab, i.e. an anti-CD18 mAb. 

Addition of anti-CD54 mAb (1:50) during the six days culture period of monocytes in GM-

CSF and IL-4 resulted in an increase in the percentage CD86 positive DC (non-treated 34% ± 

6% vs. Ab-treated 59% ± 14%, p=0.03, n=4 experiments), the MFI of CD86 rose from non-

treated 696 ± 207 to Ab-treated 1380 ± 352 (p=0.03).  

 

 
Fig. 3. Expression of adhesion molecules on immature DC of DM1, DM2, AI thyroiditis patients (thick lines) and 
control subjects (thin lines). Histograms of adhesion molecules on DC of are shown. The dashed lines isotype 
controls. Decreased expression of CD54, CD18, CD11b, and CD49e are visible in DM1 patients compared to controls, 
but not in DM2 or AI thyroiditis patients. 
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The anti CD54 mAb addition had no effect on the expression of DC-SIGN, HLA-DR, CD80, and 

CD40 on the generated DC (Fig. 5, upper panel). 

When mo-derived “immature” (i) DC were exposed to the stimulating anti-CD54 mAb for 

24 hours the clearest effects were seen. We cultured iDC at two cell concentrations (0.5 x105 

and 1x105 cells/ 200µl/ well) for 20 hrs and found that the presence of the mAb increased the 

numbers of clusters compared to the untreated condition, for 1:100 this was significant for both 

cell concentrations (0.5 x105 p=0.02 and 1x105 p=0.006), and for 1:50 it was significant for 1x105 

cells/ 200µl/ well, p=0.02). 

Thus, treatment of DC with anti-CD54 mAb enhanced homotypic cluster formation (Fig. 

6). Compared to the untreated conditions, treatment with anti-CD54 mAb in addition increased 

the expression of HLA-DR significantly on the DC (from MFI of 628 ± 347 to 1244 ± 450, 

p=0.003, n=9). Anti-CD54 also increased the percentages of CD86 positive DC (from 40% ± 16 

to 59% ± 14, p=0.03) and the MFI of CD86 expression (from 438 ± 348 to 832 ± 472, p=0.01) 

(see Fig. 5, middle panel). DC-SIGN, CD80 and CD40 expression were not influenced by the 

anti-CD54 treatment.  

With regard to rh-CD54 (30ng/ml and 300ng/ml) and the anti-CD18 mAb treatments, 

these exposures had no effects on the generation of DC from monocytes or their further 

maturation and normal expression levels of DC-SIGN, HLA-DR, CD80, CD86, CD40 (Fig. 5, 

lower panel) and CD54 were found. 

 

 

 
Table I. sICAM-1 levels in serum 

subjects numbers sICAM-1 levels (mean ± s.d.)
 

p-value (vs. controls) 
 

Controls 

DM1 patients 

n=40 

n=39 

40 ± 15 

62 ± 21 

 

p <0.0001 

 

Controls 

DM2 patients 

AI thyroiditis patients 

n=20 

n=15 

n=28 

286 ± 101 

457 ± 103 

353 ± 208 

 

p <0.0001 

p=0.02 

 
Soluble ICAM-1 levels in sera of DM1 patients, DM2 patients, AI thyroiditis patients and control subjects. In DM1 and 
DM2 patients, sICAM-1 levels are significantly higher compared to healthy controls. But also the sICAM-1 levels in AI 
thyroiditis patients are slightly increased. Data represent mean ± standard deviations of sICAM-1 levels and their 
respective p-values. Note that the mean sICAM-1 levels of DM1 patients and their controls are much lower than the 
other mean values. This is due to usage of a high sensitive ELISA in the latter. 
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Discussion 

 
Adhesion molecules can be divided into four sub-families: the selectins, the cadherins, 

the members of the immunoglobulin superfamily (including ICAM) and the integrins (31). Our 

study shows for the first time that a low expression level of an adhesion molecule, i.e. ICAM-1 

(CD54) is specific for monocytes of DM1 patients; it did not occur on monocytes of DM2 and AI 

thyroiditis patients. Interestingly, a lowered expression of CD54 on monocytes was also found in 

another organ-specific autoimmune disease, viz. multiple sclerosis. 

The cerebrospinal fluid of patients with relapsing multiple sclerosis contains lower numbers of 

CD54+ monocytes and this abnormality was correlated to disease activity (32). 

The here also reported low expression of CD49e and high expression of CD11b and 

CD18 on monocytes of DM1 patients was also seen on monocytes of DM2 patients. Hence 

these aberrant expressions were most likely due to the mild hyperglycaemic state present in 

both our DM1 and DM2 patients. Indeed Kim and colleagues showed that chronic high glucose 

increased the adhesion of monocytes to endothelium, which could be inhibited by antibodies 

against the ß2 integrin (=CD18) (33). Furthermore CD11b expression on monocytes has been 

reported to increase rapidly after acute glucose challenge in DM2 patients, as well as in healthy 

control subjects (34).  

Triggering of adhesion molecules, i.e. triggering of integrins via an adhesion to extra 

cellular matrix (ECM) components, stimulates the development of DC from their precursors and 

their ultimate function (35;36). Human blood monocytes undergo differentiation to DC upon 

migration through an ECM rich environment, such as matrices containing FN, laminin or collagen 

(37).  

 
Fig. 4. Expression of adhesion molecules on monocytes of DM1, DM2, AI thyroiditis patients (thick lines) and control 
subjects (thin lines). Representative histograms for expression of various adhesion molecules on blood monocytes are 
depicted. The dashed lines are the isotype controls. Monocytes of DM1 patients have lower percentages and 
expression levels of CD54. In monocytes of both DM1 and DM2 patients, the expression of CD11b and CD18 are 
increased compared to controls. No differences were observed between AI thyroiditis patients and their controls.  

IDDM

NIDDM

thyroiditis

100 101 102 103 104
CD18 Fitc

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD18 FITC

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD18 FITC

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

CD29             CD54            CD11b          CD18

IDDM

NIDDM

thyroiditis

100 101 102 103 104
CD18 Fitc

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD18 FITC

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD18 FITC

100 101 102 103 104
CD11b PE

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

100 101 102 103 104
CD54 PE

100 101 102 103 104
CD29 FITC

CD29             CD54            CD11b          CD18

DM1 
 
 
 
 
DM2 



Chapter 4  

73 

To study a possible role of CD54 in the differentiation and maturation of DC from 

monocytes we triggered this adhesion molecule on monocytes and DC with an anti-CD54 mAb 

during their generation from healthy control monocytes. We here demonstrate that this triggering 

resulted in an enhanced homotypic cluster formation and an enhanced differentiation and 

maturation of DC from their precursors. Our data are hence suggestive that the lower expression 

of CD54 on DM1 monocytes might be causally related to the previously described and here 

confirmed aberration in the generation and maturation of DC from monocytes in DM1.  

Our study is also novel in that it shows that the aberrantly developed mo-DC of DM1 

patients also have a considerable lower expression of various adhesion molecules as compared 

to DC of DM2 patients and of healthy controls. CD11b, CD18, CD54, CD49d and CD49e were 

expressed on a lower level on DM1 DC, while CD49a and CD49b were normally expressed. It is 

known that DC activated by inflammatory stimuli (IL-1, TNFα, IFNγ and infectious agents) 

increase their surface expression of CD54 and CD49d (31;32;38). Our data of a low integrin 

expression on DC are in accord with a lower grade of maturation of the cells.  

There are many previous studies that have shown that adhesion molecules are intricately 

involved in the inflammatory response in DM1 and that intervention via such molecules does 

influence disease development and progression. The early infiltrated DC in the insulitis of the 

NOD mouse are ICAM-1 and VCAM-1 positive (39;40) and a treatment with adhesion molecule 

blocking monoclonal antibodies (including anti-CD54mAb) prevents insulitis and diabetes 

development in this animal model (40-42). This is generally explained by the interference of the 

Abs in the adherence of leukocytes to the insular endothelium. Our data make it however 

possible that the Abs may additionally act via an effect on differentiation and maturation of DC.  

Of interest are also the observations that CD54 polymorphisms may be involved in the 

pathogenesis of autoimmune diseases (43-45) and further studies on the CD54 expression on 

monocytes in DM1 individuals with the various distinct polymorphisms is indicated. So far, no 

associations were found between DM1 and ICAM-1 K469E polymorphism in Finnish and Danish 

study groups, however, a Japanese group found an association in adult onset DM1 patients (46-

48). 

Recombinant CD54, especially the CD54-Ig fusion product, has a protective effect on 

diabetes development in the NOD mouse, possibly via an induction of anti-CD54 antibody 

production and/ or a suppression of interferon-γ production by T cells (49;50). Moreover, rh-

CD54 can interfere with antigen specific T cell proliferation in vitro, most likely via inhibition of T 

cell-APC interaction (28). It is well known that sICAM-1 is more abundantly produced in DM1 

patients and we confirmed this observation by showing a higher level of sICAM-1 in the serum of 

DM1 patients as compared to healthy controls.  
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Fig. 5. Effects of anti-CD54 mAb and rh-CD54 on generation and differentiation of DC. Histograms for DC markers 
and costimulatory molecules are shown for DC treated with normal mouse serum (as a control, thin lines) and with 
anti-CD54 mAbs or rh-CD54 (as indicated, thick lines). The staining with isotype control Abs are represented in 
dashed lines. Addition of anti-CD54 mAbs during the DC development increases the CD86 expression (upper panel). 
Treatment of iDC with anti-CD54 affected the differentiation of DC: the expression of HLA-DR and CD86 were both 
upregulated (middle panel). Rh-CD54 has no effect on the phenotype when present during the DC development or 
after DC were generated (lower panel). Representative histograms are shown out of nine donors.  

 

 

Moreover sICAM-1 levels were also raised in DM2 and AI thyroiditis patients, who do not 

show the aberrancies in DC development from monocytes.  

With regard to the AI thyroiditis patients we could not find abnormalities in the expression 

of the here studied adhesion molecules on their monocytes and DC, nor did we find 

abnormalities in the generation of mo-DC. In a previous study we did find that monocytes of AI 

thyroiditis patients had a lower capability to arrange their cytoskeleton when stimulated with a 

chemo-attractant and were less capable in forming veiled accessory macrophages, particularly 

when FN-adhered monocytes were used (51). Apparently monocytes and monocyte-derived 

APC of DM1 patients show a wider spectrum of aberrancies as compared to monocytes and 

monocyte-derived APC of AI thyroiditis patients. 

In conclusion, the here reported data on 1) a low expression of CD54 on DM1 monocytes 

and DC, 2) a role of CD54 in DC development and maturation and 3) an abnormal DC 

development in DM1 patients point to an important role of CD54 in specifically the DC 

aberrancies in the pathogenesis of DM1, the more since the abnormalities were not found in 

patients with DM2 and AI thyroiditis.  
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Fig. 6. The effect of anti-CD54 mAb on DC cluster formation. Number of clusters formed by DC of healthy donors 
(n=2) at cell concentrations of 0.5x105 (white bars) and 1x105 (dashed bars) for 20hrs in absence or presence (1:100, 
1:50 and 1:10 dilutions) of anti-CD54 mAb. For both cell concentrations, the 1:100 dilution of anti-CD54 Ab 
significantly increased the numbers of DC clusters (0.5x105: p=0.02 and 1x105: p=0.006). For 1:50 dilution, the 
numbers were also increased, but significantly for the condition of 1x105 cells/well (p=0.02). 
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Abstract 
 

Type 1 diabetes mellitus (DM1) is considered a T helper (Th) 1 mediated auto-immune 

disease. Monocytes and monocyte-derived dendritic cells (DC) are important regulators of the 

Th1/ Th2 balance via the production of interleukin (IL)-10 and IL-12. 

The aim of the study was to investigate whether monocytes and monocyte-derived DC 

have an aberrant IL-10/ IL-12 production profile in DM1. Therefore, monocytes and monocyte-

derived DC of 22 recent onset DM1 patients, 14 type 2 diabetic (DM2) diabetic patients, 21 

auto-immune (AI) thyroiditis patients and 34 healthy controls were stimulated for optimal IL-10 

production with Staphylococcus Aureus Cowan 1 strain (SAC). For optimal IL-12 production 

cells were stimulated with SAC plus interferon (IFN)-γ. 

Firstly, we showed that monocytes of DM1 patients produced lower quantities of IL-10 

as compared to monocytes of the various controls. The IL-12 production by type 1 diabetic 

monocytes was normal. Secondly, the generation of DC from monocytes was hampered in 

DM1 patients and these DC were poor producers of the Th1 type cytokine IL-12 (and also of 

IL-10). Autologous T cells stimulated by such DC were poor proliferators and producers of both 

Th1 type cytokines (IFN-γ) and Th2 type cytokines (IL-13 and IL-10). DM2 and AI thyroiditis 

patients did not show these aberrant DC functions. 

In conclusion, our data showed a complex set point of antigen-presenting cells in DM1: 

While monocytes show a reduced production of IL-10 (a pro-inflammatory/ Th1 promoting 

sign), monocyte-derived DC show a reduced production of IL-12 (an anti-inflammatory/ Th2 

promoting sign). 
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Introduction 
 

Type 1 diabetes mellitus (DM1) is an organ specific auto-immune disease that results 

from a Th1 mediated destruction of the β cells in the pancreatic islets. Monocytes, dendritic 

cells (DC) and macrophages are the first cells accumulating in and around the pancreatic islets 

of Langerhans in animal models of the disease, such as the BB-DP rat and the NOD mouse 

(1,2). The T cell stimulatory function of these cells has been shown to be aberrant in these 

animal models (3-8) and in patients (9,10). Hence monocytes, macrophages and DC are 

presumed to wrongly orchestrate the T cell responses in the pancreas and pancreatic draining 

lymph nodes in DM1 ultimately resulting in the detrimental Th1 auto-immune response towards 

β cells. An abnormal production of regulatory type cytokines by monocytes and DC could 

clearly contribute to the wrong cross talk between these cells, macrophages and T cells in 

DM1. Monocytes and DC are important sources of Interleukin (IL)-10 and IL-12 (11,12). IL-10 

is an important immune suppressive cytokine (13). IL-12 is a potent inducer of IFN-γ production 

by T cells and thus favours the development of a Th1 reaction (14,15). IL-12 is predominantly 

produced by DC during the final maturation steps of the cell (14). 

We studied the IL-10 and IL-12 production by monocytes and monocyte-derived DC of 

DM1 patients and compared outcomes of the production profiles to those of healthy controls 

and type 2 diabetic (DM2) patients (as metabolic controls). We also studied the IL-10 and IL-12 

production by monocytes and monocyte-derived DC of patients with another organ-specific 

auto-immune disease, i.e. auto-immune hypothyroidism (as autoimmune disease controls). 

We observed that monocytes of DM1 patients had a reduced capability to produce IL-

10 as compared to the capability of monocytes of healthy controls and DM2 patients. The IL-12 

production capability of “DM1” monocytes was normal. 

We also observed that DC derived from DM1 monocytes were poor producers of IL-12, which 

is in agreement with previous and here confirmed reports on a hampered differentiation and 

maturation of DC from DM1 monocytes. Monocyte-derived DC were also hardly capable of 

producing IL-10. Autologous T cells stimulated by the aberrantly differentiated DM1 DC 

proliferated poorly and were poor producers of both Th1 type (IFN-γ) as well as Th2 type 

cytokines (IL-13 and IL-10). However, DM1 DC were good stimulators of allogeniec T cells, 

indicating that DM1 T cells have intrinsically low proliferation capability. 

 

Subjects and Methods 
 
Patients and controls 

Heparinized blood (60ml) was drawn from the following groups of individuals: 
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1. Recently diagnosed DM1 patients (n=22), who visited the outpatient clinics of different 

hospitals in the Netherlands. The patients were included according to the WHO criteria. 

The mean age was 16.3 ± 10.6 years, ranging from 4.4 – 39.8 years. The mean of HbA1c 

was 9.2 ± 2.3%. 

2. DM2 patients (n=13), who visited the outpatient clinic of Department of Internal Medicine, 

Erasmus MC, Rotterdam, The Netherlands. The mean age was 56.6 ± 13.4 years, ranging 

from 36.4 to 83.3 years. The mean of HbA1c was 7.8 ± 1.4 %. 

3. Recently diagnosed patients (n=21) with autoimmune (AI) thyroiditis, who visited the 

outpatient clinic of Department of Internal Medicine, Medical Center Rijnmond Zuid, 

Rotterdam, the Netherlands. The mean age was 49 ± 15.8 years, ranging from 17 to 74.1 

years. All patients had high levels of thyroid peroxidase autoantibodies (> 400IU/ml). 

4. Healthy controls (n=34) with an absent family history of autoimmune diseases, consisted of 

laboratory personnel and students. The mean age was 34.8 ± 12.7 years, ranging from 

19.4 to 60.5 years. 

Informed consent was obtained from all participants. The protocol has been approved by the 

Medical Ethical Committee of the Erasmus MC, Rotterdam, The Netherlands. 

Monocyte isolation, generation of dendritic cells and the phenotype of DCs 

The used methods for monocyte isolation, generation of dendritic cells and phenotyping 

of DC have extensively been described in Chapter 4 (Subjects and Methods). 

Cytokine production by monocytes 

Monocytes were suspended at a density of 0,5x106 cells/ml in RPMI+ containing UG, 

P/S and 10% iFCS and cultured on 24-wells plate (Nunc) or on human plasma fibronectin (FN, 

20µg/ml, CLB, Amsterdam, The Netherlands) coated plate for 1hr at 370C in a 5%CO2-95% 

atmosphere. Thereafter, the FN nonadhered cells were removed by washing two times with 

ice-cold PBS enriched by 3mM ethylene diamine tetraacetic acid (EDTA), pH 8 (Sigma-Aldrich, 

Steinheim, Switzerland). The nonadhered cells were counted. The untreated (non-FN) and FN 

adhered monocytes were cultured with staphylococcus aureus cowan 1 strain (SAC; 1:5000, 

Calbiochem, La Jolla, CA, USA) and the supernatants were collected after 24 hours for 

determination of the production of IL-10. 

For the IL-12 production monocytes were cultured on 24 wells plate (Nunc) with SAC 

(1:5000) plus IFN-γ (1000 IU/ml, Biomedical Primate Research Centre, Rijswijk, the 

Netherlands) for 24 hours. 

The quantity of IL-10 and IL-12 productions was measured by using an ELISA as 

indicated by the manufacturer (IL-10 ELISA Pelikine, CLB, Amsterdam, the Netherlands; IL-12 

Eli-pair, Diaclone, Besançon, France). 

Cytokine production by DC 
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DC were placed in 24-wells plates (Nunc) at a concentration of 0.5x106 cells/ml and 

cultured for 24 hours in RPMI+ and Serum Free medium supplement (Pepro Tech). For the IL-

10 and IL-12 production the same culture conditions and ELISA’s were used as for the 

production by monocytes. 

Mixed Leucocyte Reaction (MLR).  
See for detailed description of the used methods for the mixed leukocyte reaction: 

Chapter 4 (Subjects and Methods). 

T cell skewing 

Lymphocytes were isolated after the Percoll gradient as described above. After 

collecting the interphase, the rest was washed twice with PBS/ 0.1%BSA and the pellet was 

resuspended in RPMI+ medium and counted. The cells were incubated with 20µl/107 cells anti-

CD3 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) for 20 minutes on ice. A 

magnetic cell sorting system (auto MACS sorter, Miltenyi Biotec) was used for the selection of 

CD3 positive T cells. The cells were refrozen until the autologous DC were generated. 

Autologous DC were cocultured with T cells at a ratio 1:10 for 2 days in flat-bottom 96-wells 

plate (Nunc). Thereafter the T cells were separated using the auto MACS sorter (Miltenyi 

Biotec) and additional stimulated in Yssel’s medium/2.5% iFCS with 2ng/ml phorbol-12-

myristate-13-acetate (PMA, Sigma-Aldrich, Zwijndrecht, The Netherlands) and 1µg/ml 4-

bromo-calcium-ionophore (Sigma-Aldrich) at a cell concentration of 1x106/ml for 24 hours. The 

supernatants were collected and frozen at –20oC until determination of cytokine production. 

The levels of IL-10, IL-13 and IFN-γ in culture supernatants were determined by ELISA (all 

Pelikine) according to manufacturer’s instructions. 

Statistical analysis 

Statistical analysis was performed using SPSS version 11.0 for Windows. For 

differences between the groups the Mann Whitney U-test was used. Paired student’s t test was 

used for comparison of values within the group for non-FN and FN adhered conditions. The 

values are given in mean ± standard deviation. P–values lower than 0.05 were considered 

significant. 

 
 
Results 
 

IL-10 and IL-12 production by monocytes 

As reported in the literature (16) monocytes of healthy controls up regulate their IL-10 

production after fibronectin (FN) adherence. Table 1 shows that we confirmed this effect: we 

found that the IL-10 production rose from 6168 ± 5872 pg/ml to 8547 ± 7031 pg/ml when we 

compared plastic (non-FN) adhered to FN-adhered monocytes of our healthy controls (means 
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of three separate series of experiments, n=32, p=0.04, it must be noted that there was a 

considerable inter-assay variation between the three series of experiments, we explain these 

considerable inter-assay variations as due to the use of different badges of culture additives, 

e.g. FCS). We therefore decided to concentrate on the data of FN-adhered monocytes and on 

comparison of data within each series of experiments. 

Figure 1a gives the data of the optimal IL-10 production by FN-adhered monocytes of 

DM1 patients, DM2 patients and AI hypothyroid patients and their respective healthy controls in 

the various series of experiments carried out. FN-adhered monocytes of DM1 patients clearly 

produced lower quantities of IL-10 as compared to such monocytes of healthy controls (series 

1) and values of 3679 ± 4467 pg/ml (n=12 patients) vs 8313 ± 4961 pg/ml (n=11 controls, 

p=0.02) were found respectively (figure 1a). Also when non-FN adhered monocytes were used 

this difference could be found, yet not statistically significant (n.s.): 3173 ± 3090 pg/ml for 

DM1s (n=13) vs 6693 ± 4221 pg/ml for healthy controls (n=11, p=0.06). 

In the second series of experiments monocytes of DM2 patients were used to study 

possible influences of minor abnormalities in metabolic, i.e. glucose homeostasis, on the IL-10 

production due to insufficient insulin control; the DM2 patients had as our DM1 patients raised 

HbA1c levels (see patients and methods). 

We were unable to find any statistically significant difference in IL-10 production 

between the FN-adhered monocytes of DM2 patients and those of the healthy controls (Figure 

1a) and values of 9457 ± 4914 pg/ml (DM2) vs. 13359 ± 8667 pg/ml (healthy controls) (n.s) 

were found. Also under non-FN adhered conditions significant differences could not be 

detected: DM2 patients, n=12, 8679 ± 5506 pg/ml vs. healthy controls, n=10, 11272 ± 7084 

pg/ml (n.s.). 

In a third series of experiments FN-adhered monocytes of AI hypothyroid patients also 

produced equal quantities of IL-10 as compared to their respective controls (Fig 1a) and values 

of 4370 ± 3593 pg/ml (AI hypothyroid patients, n=12) vs. 5153 ± 5545 pg/ml (healthy controls, 

n=12) (n.s.) were found. 

 

 
Table 1. IL-10 production (mean ± s.d.) by monocytes of healthy controls  

 Numbers  

 

IL-10 (pg/ml) 

non-FN  

IL-10 (pg/ml)  

FN 

p-value # 

non-FN vs FN 

Series 1 n=11 6693 ± 4221 8313 ± 4961 p=0.04 

Series 2 n=9 11272 ± 7084 13359 ± 8667 n.s. 

Series 3 n=12 2627 ± 3375 5153 ± 5545 p=0.02 

All Series n=32 6168 ± 5873 8547 ± 7031 p=0.04  

 
FN= fibronectin; # paired student’s t test  
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Fig.1 a) IL-10 production by monocytes.  
Fibronectin (FN)-adhered monocytes were stimulated with Staphylococcus Aureus Strain Cowan (SAC) for 24 hours 
for optimal IL-10 production. The IL-10 production of FN-adhered monocytes of healthy controls (n=32), DM1 
patients (n=12), DM2 patients (n=12) and autoimmune thyroid patients (AITD, n=13) in three separate series of 
experiments are shown in box plots with median and quartiles. The difference between DM1 patients and healthy 
controls was significant (p=0.02, Mann Whitney U test). 

 

 
Fig.1 b) IL-12 production by monocytes.  
Monocytes were stimulated with SAC plus IFN-γ for 24 hours for optimal IL-12 production. The IL-12 production of 
the monocytes of healthy controls (n=32), DM1 patients (DM1, n=12), DM2 patients (n=12) and autoimmune thyroid 
patients (AITD, n=13) in three separate series of experiments are shown in box plots with median and quartiles. 
There was no difference in the IL-12 production between patient groups and healthy controls. 
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Also under non-FN adhered conditions statistically significant differences could not be 

detected: 1517 ± 1600 pg/ml for non-FN adhered monocytes of AI hypothyroid patients (n=21) 

vs. 2475 ± 3161 pg/ml for healthy controls (n=14) (n.s.). 

Figure 1b shows the IL-12 production by the monocytes of the various patient groups 

tested. Firstly, there was no difference in the IL-12 production between the IL-12 production of 

non-FN adhered monocytes and FN adhered monocytes (data not shown). Figure 1b therefore 

represents the values of non-FN-adhered monocytes: The IL-12 production by such monocytes 

of DM1 patients was not significantly different from that of healthy controls and values of 522 ± 

927 vs 329 ± 291 pg/ml were found respectively. Also for the other patient groups (the DM2 

and the AI thyroiditis patients) the IL-12 production was comparable to that of the controls 

(figure 1b). 

 

Phenotype and IL-10 and IL-12 production of monocyte-derived DC 

DC were generated from monocytes via standard protocols (culture in the presence of 

GM-CSF/ IL-4 for 6 days). The yields of DC, measured as the percentage of generated viable 

cells of the number of original monocytes, were comparable for DM1 patients, DM2 patients, AI 

thyroiditis patients and healthy controls (data not shown).  

Prototypic immature monocyte-derived DC were generated in the case of our healthy 

controls with up-regulated DC specific markers as DC-SIGN and CD1a and up-regulated MHC 

class II and costimulatory molecules (Fig. 2).  

The production of IL-10 by the monocyte-derived DC of the healthy controls was 

considerable lower than that of their original monocytes(compare Fig. 1a with Fig. 3a). This has 

been reported previously (17). The production of IL-12 by the monocyte-derived DC of our 

healthy controls and their original monocytes was comparable. 

With regard to the characteristics of the monocyte-derived DC of the DM1 we firstly 

confirmed observations of others (10) and showed a hampered and aberrant differentiation of 

DC from monocytes in DM1. Significantly lower percentages of monocyte-derived DC of 17 

DM1 patients were positive for the DC-specific markers DC-SIGN (28 ± 19% vs 54 ± 24% for 

healthy controls, p=0.04) and CD1a (9 ± 11% vs 27 ± 18%, p=0.003). Also the costimulatory 

molecules CD80 (5 ± 6% vs 12 ± 10%, p=0.02), CD86 (22 ± 12% vs 32 ± 13%, p=0.04) and 

CD40 (30 ± 18% vs. 50 ± 21%, p=0.004) came to expression on fewer DC generated from 

monocytes. The percentages of DC positive for HLA-DR were also lower, yet not statistically 

significant (42 ± 19% vs 53 ± 18%, p=0.14). The hampered generation of DC was also 

reflected by lower mean fluorescence intensities (MFI) of these molecules on the monocyte-

derived DC: MFI’s were significantly lower in DM1 DC in the case of DC-SIGN (1382 ± 1322 vs 

3613 ± 1998 in healthy controls, p=0.02), CD1a (232 ± 318 vs 406 ± 332, p=0.04), CD86 (363 
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± 276 vs 534 ± 319, p=0.05) and CD40 (446 ± 448 vs 916 ± 806, p=0.02). Representative 

histograms are shown in Figure 2. 

The monocyte-derived DC of DM2 patients and AI thyroiditis patients were comparable 

in marker expression to those of the healthy controls (Fig. 2). 

With regard to the T cell accessory function of the monocyte-derived DC of the DM1 

patients, the T cell stimulatory capacity in autologous MLR of the phenotypically abnormal DM1 

DC was significantly lower. For a DC: T cell ratio 1:10 and 1:20 DM1 T cells showed a 

significantly lower incorporation of 3H-thymidine (Fig. 4). It must be noted, however, that when 

the T cells of the DM1 patients were stimulated with the mitogen PHA in the absence of DC, 

they also showed a lower proliferation as compared to healthy control T cells (Fig. 4, 8568 ± 

7508 vs. 22099 ± 13550, p=0.03). Using allogeneic T cells stimulated by DC of DM1 patients, T 

cells showed a normal proliferative capacity (Fig. 4). Hence the defective stimulation of 

autologous T cells by DM1 DC is most likely due to an intrinsically low proliferation capability of 

the T cells, and not to a low stimulatory capability of DM1-DC. 

With regard to the IL-10 production of the DM1 monocyte-derived DC: the production of 

this cytokine was extremely low and almost negligable: 5 ± 14 pg/ml/ 0.5x106 DC in DM1 

patients, n=9, vs. 22 ± 49 pg/ml in healthy controls, n=14, series 1. This difference between 

healthy controls and DM1 patients was however not statistically significant (p=0.08) (Fig. 3a). 

The quantity of IL-12 produced by the monocyte-derived DC of DM1 patients was 

statistically significantly lower than that of the healthy control DC: 14 ± 25 pg/ml in patients, 

n=8, vs. 285 ± 381 pg/ml in series 1, n=9 (p=0.04) (Fig. 3b). 

The monocyte-derived DC of DM2 and AI thyroiditis patients produced equal quantities of IL-10 

and IL-12 as those of the healthy controls (Fig. 3). 

 

T cell skewing capacity of monocyte-derived DC of DM1 patients 

Because of the abnormal IL-10 and IL-12 production of type 1 diabetic monocyte-

derived DC we studied their T cell skewing capacities and co-cultured monocyte-derived DC of 

DM1 patients with autologous T cells for 2 days. Thereafter we stimulated T cells purified from 

such co-cultures with PMA and calcium ionophore for an additional 24 hours to maximize the 

intrinsic cytokine production acquired by the interaction with the DC. In accord with the low IL-

12 production capability of the DM1 DC we found that the IFN-γ production of the T cells was 

lower as compared to that of the T cells stimulated by healthy control DC, i.e. values of 5730 ± 

2681 pg/ml vs 9796 ± 8240 pg/ml were found respectively, but differences did not reach 

statistical significance (Fig. 5).  

With regard to Th2-type cytokines produced by the DC-stimulated T cells: the IL-10 

production of the DM1 DC-stimulated T cells was lower as compared to that of the T cells 

stimulated by healthy control DC (12 ± 8 pg/ml, n=5, vs 40 ± 40 pg/ml, n=7 respectively, 
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p=0.10, Fig.5). The IL-13 production was also slightly decreased: 23 ± 10 pg/ml vs. 32 ± 19 

pg/ml (Fig.5), but again not statistically significant. 

 
 
Discussion 
 

Our data show that the IL-10 production capability of DM1 monocytes is diminished as 

compared to that of monocytes of DM2 patients and of healthy controls. Whether the 

polymorphisms reported for the IL-10 gene and linked to a proneness for auto-immunity (18-

20) are linked to this diminished monocyte IL-10 production capability needs further study. 

In a previous study on cytokine production by DM1 leukocytes a diminished production of IL-10 

has been observed as well (21). However, the IL-10 production was measured in this study for 

unselected and PHA-stimulated peripheral blood mononuclear cells. Hence data were 

interpreted as due to a low production of IL-10 by DM1 T cells. Our data show that IL-10 

production defects are not only detectable at the level of the T cells, but also at the level of the 

circulating monocyte pool. 

 

 
Fig. 2: Phenotype of monocyte-derived DC. Representative examples of the phenotypes (DC specific markers and 
costimulatory molecules) of monocyte-derived DC of a patient with DM1, a patient with DM2 and an AI thyroiditis 
patient. The phenotypes are shown as histograms of the fluorescence intensities of the markers. Dashed lines 
represent DC stained with an isotype control Ab (negative staining), thick lines represent patient DC stained with the 
specific Ab, thin lines represent DC from a healthy control subject (matched for age) stained with the same specific 
Ab. Note that the DC of the DM1 patient has a lower expression of DC-SIGN, CD80, CD86, CD40 and CD1a. DC of 
DM2 patients and AI thyroiditis patients are comparable to those of healthy controls. 
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One of the major effects of IL-10 is the suppression of the production of pro-

inflammatory and T helper (Th)1 related cytokines from lymphocytes and monocytes/ 

macrophages: IL-10 suppresses the production of interferon (IFN)-γ and IL-2 from Th1 cells 

and it also suppresses the production of IL-1, IL-6, TNF-α and G(M)-CSF from monocytes and 

macrophages (11,22-24). 

The “pro-inflammatory” functions of antigen presenting cells (APC) are inhibited by IL-

10 as well: the cytokine freezes the DC in their immature form by downregulating the 

expression of costimulatory molecules (25,26). IL-10 also inhibits the production of IL-12 by DC 

(25,26). 

Our finding of a lower production of IL-10 by monocytes of DM1 patients is thus in 

agreement with the previously reported increased production rates of pro-inflammatory factors 

and cytokines (PGE2, TNF-α, IL-1β and IL-6) by monocytes and macrophages of DM1 

patients, the increased expression of the inducible enzyme cyclo-oxygenase-2 by such cells 

and the higher levels of pro-inflammatory and Th1 type cytokines in the serum of DM1 patients 

(27-30). Collectively, these data and our data on a low IL-10 production by monocytes argue 

for of a shift in the cytokine balance in DM1s to a pro-inflammatory set point. 

However our other findings reported here on the diminished IL-12 production by DM1 

monocyte-derived DC show that such a view might be too simplistic. A complex role for the 

pro-inflammatory type cytokine IL-12 has been found before in the pathogenesis of DM1. 

Although IL-12 administered in vivo accelerates diabetes in NOD mice by inducing a massive 

infiltration of lymphocytes in the islets of Langerhans (31), neutralization of IL-12 by a 

monoclonal antibody in vivo has more complex effects in this diabetic animal model. When 

administered from 5 to 30 weeks of age, NOD mice exhibit a suppression of both insulitis and 

diabetes. In contrast, when injected into 2-week-old female NOD mice for 6 consecutive days, 

all mice showed a diminished IL-2 production, yet an enhancement of insulitis and diabetes. 

This suggests that depletion of endogenous IL-12 at a young age weakens tolerance induction 

in the NOD mouse model and that a sufficient IL12 production at young age is necessary to 

prevent or delay diabetes development (32). Although the low IL-12 production capability of 

DM1 monocyte-derived DC is thus in contradiction to a general shift towards pro-inflammatory / 

Th1 type mechanisms in DM1, it is in agreement with the previously described and here-

confirmed findings on a hampered differentiation of DC from DM1 monocytes (9,10). Also in 

this series of experiments DC derived from DM1 monocytes showed an immature phenotype 

with a reduced expression of the DC specific markers DC-SIGN and CD1a and of the 

costimulatory molecules CD80, CD86 and CD40. The aberrant immature characteristics in the 

marker expression and cytokine production of the DM1 DC had their consequences for T cell 

stimulation and skewing. This report shows that autologous T cells stimulated by these DC had 
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a lower ability to proliferate and to produce both Th1 type cytokines (i.e. IFN-γ) as well as Th2 

type cytokines (i.e. IL-10 and IL-13). 

How is such an aberrant differentiation, a low IL-12 production and a poor T cell 

stimulation of DM1 monocyte-derived DC related to an enhanced β-cell auto-sensitization? 

Comparisons to the animal models of spontaneously developing autoimmune diabetes might 

be helpful to answer this question. Interestingly almost similar DC differentiation aberrancies 

exist in the NOD mouse and the BB-DP rat (4,6,33,34). In these animal models the poorly 

differentiated DC affect tolerance induction via a poor expansion of suppressor RT6+CD8+ T 

cells (BB-DP rat) or via a poor induction of Activation Induced T Death (AITCD) (NOD mouse). 

Also the above-cited (32) short-term treatment with the anti-IL-12 antibody in the young NOD 

mouse inhibiting IL-2 production was taken as an indication that the expansion and apoptosis 

of pathogenic T-cells was affected, resulting in the acceleration of autoimmune diabetes. It is 

tempting to speculate that similar mechanisms occur in DM1 patients. Perhaps the very low IL-

10 production by the DM1 monocytes might play an additional role. A high levels of IL-10 in the 

context of APC has been reported to induce anergic and regulatory T cells (35,36). 

Have our findings consequences for the treatment of DM1? On the basis of the here reported 

data a correction of the defective IL-10 production by monocytes might be envisaged. 

Administered in vivo IL-10 has clear immune suppressive effects. Systemic IL-10 

administration inhibits the production of TNF-α and IL-1 and the expression of HLA-DR by 

monocytes and it shifts the Th1/ Th2 response in favour of the latter (13,37,38). In mouse 

models of DM1 and collagen induced rheumatoid arthritis systemic IL-10 administration 

prevents the progression of disease (37-39). In addition, treatment with viral IL-10 vectors have 

been shown to prevent disease in the NOD mouse model successfully (40,41). In humans, 

clinical trials with recombinant human IL-10 improve symptoms of rheumatoid arthritis, Crohn’s 

disease and psoriasis (23,42-44). 

However our here reported data and the above-cited ones of others (32) show that the 

timing of an IL-10 treatment is probably of importance: if IL-12 is important in the very early 

phases of the disease to eradicate pathogenic T cells, an IL-10 treatment should not be given 

too early to counteract the early beneficial effects of IL-12 (perhaps even an immune 

stimulation is indicated in these stages). It must also be noted that the adverse side effects of 

systemic IL-10 treatment are considerable (23). The approach to transfect monocytes 

transiently with viral IL-10 genes (45) might be viewed as a comprehensive late approach in 

the disease to restore the here-described IL-10 production defect of DM1 monocytes. 

In a previous study (46) we found that monocytes of AI thyroiditis patients had a lower 

capability to arrange their cytoskeleton when stimulated with a chemo-attractant, this lower 

capability can also be found in DM1 (9). 
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Fig. 3: a) IL-10 production by monocyte-derived DC.  
DC (6 days of culture with GM-CSF and IL-4) were collected, resuspended and stimulated with SAC for 24 hours. 
The IL-10 production of DC of healthy controls (n=14, n=9) and n=11 for the three respective separate series of 
experiments, of DM1 patients (n=9), DM2 patients (n=11) and AITD patients (n=11) was determined. Box plots with 
median and quartiles are shown. Note the lower IL-10 production of DC as compared to monocytes (Fig. 1a). The 
difference between DM1 patients and healthy controls was not yet significant (p=0.08, Mann Whitney U test). 
 
A. 

 
Fig. 3 b) IL-12 production by monocyte-derived DC.  
The IL-12 production (SAC plus IFN-γ stimulated for 24 hours) by DC of the same groups as mentioned in figure 3a. 
DC of DM1 patients produced significant reduced quantities of IL-12 (p=0.04). 
 
B. 

 

 

In addition monocytes of thyroid autoimmune and DM1 patients share a diminished 

capability to differentiate into veiled accessory macrophages, particularly when fibronectin-

adhered monocytes were used (9,46). However in this study we show that monocytes of AI 
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thyroiditis patients did not show the same defect in IL-10 production as the DM1 monocytes. 

They also had a normal generation of DC from their monocytes. Apparently monocytes and 

monocyte-derived APC of DM1 patients show a wider spectrum of aberrancies as compared to 

monocytes and monocyte-derived APC of AI thyroiditis patients. 

In conclusion, we observed that monocytes of DM1 patients had a lower capability to 

produce IL-10 as compared to monocytes of healthy controls and DM2 patients. The IL-12 

production by DM1 monocytes was normal. We confirmed that the generation of DC from 

monocytes was hampered in DM1 patients and such monocyte-derived DC hardly produced IL-

10 and were poor producers of IL-12. This resulted in an aberrant T cell stimulating capacity of 

the cells, T cells stimulated by such DC were poor proliferators and poor producers of both Th1 

cytokines (IFN- γ) and Th2 cytokines (IL-13 and IL-10). 
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Fig. 4. T cell accessory function of DC of DM1 patients (grey triangles) and DC of healthy controls (white circles). 
Autologous T cells (left picture) or pooled T cells from three different allogeneic donors (right picture) were used. T 
cells stimulated by various concentrations of DC, measured by 3H-thymidine incorporation and expressed as counts 
per minute (cpm)(vertical axis). The value of each individual is the mean of an experiment in triplicate. Data are 
shown as means and standard errors of experiments.  
Note that DC of DM1 patients induce a lower autologous T cell stimulation as compared to the DC of healthy 
controls. However the T cells of DM1 patients also have a significantly lower proliferation to PHA (the positive 
control stimulus) compared to the proliferation of healthy control T cells. * represents p=0.03. DM1 DC are as good 
as control DC in stimulating proliferation of allogeneic T cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. T cell skewing capacity of monocyte-derived DC. The IL-10, IL-13 and IFN-γ production by T cells after they 
have been in MLR with autologous DC (1:10) for 2 days, isolated and stimulated with PMA and calcium ionophore 
for an additional 24 hours. The IL-10, IL-13 and IFN-γ production are given in pg/ml of healthy control DC and T cells 
(n=7) and those of DM1 patients (n=5). Box plots with median and quartiles are shown. Differences do not reach 
statistical significance. 
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Summary 
 

Dendritic cells (DC) are the initiators of naïve T cell responses and involved in the 

initiation of the islet autoimmune response in type 1 diabetes (DM1). DC are capable of 

skewing T cell responses (Th1 or Th2) and to induce T cell tolerance. There exists a 

hampered differentiation of DC from monocytes in DM1. The precursor monocytes also show 

various aberrancies. 

Our aim was to study monocyte and DC abnormalities in first-degree relatives (FDR) of 

DM1 patients. We studied the expression of HLA-DR, CD1a, CD80, CD86, CD40, and CD54 

on monocyte-derived DC of 13 FDR. One of the FDR was islet cell antibody positive. In 

addition we studied the T cell stimulatory capacity and the interleukin (IL)-10 and IL-12 

production of monocytes and DC. Serum levels of soluble (s) ICAM-1 were studied as well. 

Outcomes were compared to those of 39 recent-onset DM1 patients and 24 healthy controls. 

Like DM1 patients the FDR had increased serum levels of sICAM-1, yet the FDR did 

not show the lower monocyte CD54 expression, the lower monocyte IL-10 production, the 

hampered DC development from monocytes and the lower DC function found in recent-onset 

DM1 patients. On the contrary, DC development from monocytes was stimulated in the FDR 

while their monocytes and monocyte-derived DC showed an increased IL-10 production. 

In conclusion, low risk FDR of DM1 patients show various aberrancies of monocytes and 

monocyte-derived DC, which are mirror images of those found in recent-onset DM1 patients. 
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Introduction 
 

Soluble intercellular adhesion molecule (sICAM)-1 levels are increased in the serum of 

DM1 patients (1-3) and these high levels of sICAM-1 are assumed to be due to an increased 

shedding of this adhesion molecule from activated endothelium (4). Indeed adhesion molecule 

expression is increased on endothelial cells of islet blood vessels in DM1 (5-7). Such higher 

expression plays a role in the diapedesis of leukocytes from the blood stream into the islets.  

An interaction of these infiltrated leukocytes with connective tissue and adhesion 

molecule positive islet epithelial cells subsequently leads to an accumulation and activation of 

the infiltrated leukocytes. With regard to the integrin expression on leukocytes we recently 

showed a reduced expression of the adhesion molecule CD54 (=ICAM-1) specifically on 

monocytes and monocyte-derived dendritic cells of DM1 patients. Signalling via CD54 is 

necessary for a full differentiation and maturation of DC. We therefore speculated that the 

reduced expression of CD54 on monocytes and DC is causal -at least in part- to the earlier 

found hampered differentiation and maturation of DC from monocytes in DM1. In the animal 

models the hampered differentiation and maturation of DC from precursors is already present 

in the pre-diabetic phase prior to the islet auto-antibody production and the insulitis, indicating 

that this disturbance is rather a cause than a consequence of the autoimmune process. 

The reduced expression of CD54 on monocytes and monocyte-derived DC and the 

reduced ability of monocytes to differentiate into DC are not the only abnormalities of the 

monocyte-DC compartment in DM1. There are various reports on a raised production of IL-1, 

TNF-α and other pro-inflammatory cytokines and factors by monocytes of DM1 patients (8-

10). We recently extended these findings on an abnormal cytokine production of diabetic 

monocytes and showed that monocytes of patients produced lower quantities of the immune-

suppressive cytokine IL-10. 

Since abnormalities in the monocyte-DC system can already be detected in the animal 

models of type 1 diabetes in the pre-diabetic phase, we asked ourselves the question whether 

first degree relatives (FDR) of DM1 patients already show such abnormalities. We therefore 

evaluated the serum sICAM-1 level, the DC development from monocyte-precursors, the T cell 

stimulatory capacity of the DC, the IL-10 and the IL-12 production of monocytes and 

monocyte-derived DC and the CD54 expression on these cells in 13 FDRs and 24 healthy 

controls. We compared outcomes with findings in 39 recently-diagnosed cases of type 1 

diabetes.  
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Subjects and Methods 

 

Subjects 

Family members of DM1 patients were asked to participate in the study at the time of 

diagnosis of the DM1 proband. Informed consent was obtained from all participants and the 

protocol has been approved by the Medical Ethical Committee of the Erasmus MC, 

Rotterdam, The Netherlands. We collected 13 first degree relatives, with no clinical signs of 

disease. Their mean age was 29.2 years, standard deviation (s.d.) 16.6 years (range from 5.3 

to 49 years). Data were compared to those of 39 recently diagnosed DM1 patients including 

the index cases, these data have been published separately elsewhere. The patients had a 

mean age of 28 years, s.d. 6.6 years (range from 19.4 to 42.5). All patients were treated with 

insulin. The mean of their glycosylated haemoglobin level was 9.2% ± 2.3% (s.d.). We also 

included two groups of healthy controls: a control group for the FDR (a total of n=24) with a 

mean age of 36.1 ± s.d. 12.1 years, (range from 21.7 to 60.5) and a control group for the DM1 

patients with a mean age of 13.7 ± s.d. 6.5 years (range 6.5 to 33.2). Venous heparinized and 

non-heparinized blood was obtained from patients, FDR and healthy controls. 

Serum 

Serum samples were collected and stored at -800C until the analysis for soluble (s) 

ICAM-1. For this determination two separate commercially available ELISA methods were 

used. For the patients and their controls we had used the Bio-source ELISA KH5401; for the 

FDR and their controls we used a newer, more sensitive assay: the Bio-source KH5412 high 

sensitive, (BIO-source, Camarillo, CA, USA). 

In the serum of the FDR we also determined the presence of islet cell antibodies (ICA). 

These antibodies were detected with a standard indirect immunofluorescence method using 

blood group O human pancreas. 

Monocyte isolation and generation of dendritic cells 

The Ficoll (Pharmacia, Uppsala, Sweden; density 1.077 g/ml) and Percoll (Pharmacia; 

density 1.063 g/ml) density gradient centrifugation were used to isolate monocytes from 

heparinized blood. The monocytes were cultured at a concentration of 0.5x106 cells/ml on 24-

wells culture plates (Nunc, Rosklide, Denmark) for six days under plastic-adherent conditions 

in RPMI 1640 with 25mM HEPES and L-glutamine (BioWhittaker Europe, Verviers, Belgium) 

(hereafter referred to as RPMI+) containing ultraglutamine (UG) (2mM, BioWhittaker), 

penicillin/ streptomycin (P/S) (100U/ml penicillin, 100µg/ml streptomycin, BioWhittaker) and 

10% inactivated FCS (iFCS) (BioWhittaker) in the presence of GM-CSF 400U/106 cells and IL-

4 500U/106cells (both Pepro Tech EC, London, England). The cells were incubated at 370C 

and 5% CO2. On day three, half of culture fluid was refreshed with GM-CSF 400U/106cells, IL-

4 500U/106cells. After six days DC were collected by resuspending and washing the wells 
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thoroughly with cold phosphate buffered saline (PBS) pH 7,4 (BioWhittaker), with 0,1% bovine 

serum albumin (BSA) (Bayer, Kankakee, IL, USA) and 3mM ethylene diamine tetraacetic acid 

(EDTA), pH 8 (Sigma-Aldrich, Steinheim, Switzerland). The cells were counted with 0.1% 

trypan blue (Sigma Chemical co, St Louis, USA) to assess cell viability. 

Phenotype of monocytes and DC 

The following monoclonal antibodies (mAbs) were used for flowcytometry: anti-IgG1 

Fluorescein isothiocyanate (FITC, 1:10, Becton Dickinson (BD), San Jose, CA, USA), anti-

IgG1 Phycoerythrin (PE, 1:10, BD), anti-CD14 FITC (1:250, Beckman Coulter, Hialeah, FL, 

USA), DC-SIGN PE (1:10, R&D systems, Minneapolis, MN, USA), anti-HLA-DR PE (1:200, 

BD), anti-CD80 PE (10µl/105 cells, BD), anti-CD86 FITC (10µl/105 cells, Pharmingen, San 

Diego, USA), anti-CD1a PE (1:100, Beckman Coulter), anti-CD40 FITC (10µl/105 cells, 

Serotec, Oxford, England), anti-CD54 PE (1:4, BD), anti-CD3 FITC (1:20, BD), anti-CD19 PE 

(1:25, BD) and 7AAD (1:250, Molecular probes, Eugene, Oregon, USA). For monocytes 

quadruple staining was performed (anti-CD14 allophycocyanin (APC), 1:25 BD) and gated on 

7AAD negative and CD14 positive population. Cell suspensions were incubated in 

polypropylene tubes with mAbs for 15 minutes, then washed twice with PBS/ 0,1% BSA. The 

cells were measured immediately following cell staining using a FACScan flowcytometer and 

analyzed using CellQuestPro (BD, Mountain View, CA, USA). Routinely 10,000 events were 

collected. Debris and dead cells were gated out on basis of their light scatter properties. In 

addition, we stained the cells with trypan blue and 7AAD. The gated population consist no 

CD3+ and CD14+ cells. Data were expressed as mean ± s.d. of percentage of positive cells 

and mean ± s.d. of mean fluorescence intensity (MFI). The values of IgG isotype controls were 

subtracted. 

Mixed Leucocyte Reaction (MLR).  

Lymphocytes were isolated after the Percoll gradient as described above. After 

collecting the interphase, the rest was washed twice with PBS/ 0.1% BSA and the pellet was 

resuspended in RPMI+ medium and counted. The cells were incubated with 20µl/107 cells anti-

CD3 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany) for 20 minutes on ice. A 

magnetic cell sorting system (auto MACS sorter, Miltenyi Biotec) was used for the selection of 

CD3 positive T cells. The cells were refrozen until the autologous DC were generated. DC 

were irradiated with 20Gy and placed in flat-bottom 96-wells-plates (Nunc, Roskilde, Denmark) 

in RPMI+ medium containing UG, P/S and A+-serum. We added 100µl of the concentration of 

3x105, 1.5x105, 0.75x105 cells/ml of DC and an equal volume of autologous T-cells at 

concentration of 15x105 cells/ml to the wells resulting in a total volume of 200µl per well. As 

positive control these T-cells were stimulated with phytohemagglutamin (PHA) (Sigma). 

Proliferation was determined after 18 hours of 0.5µCi/ well 3H-thymidine addition on day 5. 
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Cells were harvested on filter papers and radioactivity was counted in a liquid scintillation 

analyzer (LKB Beta plate, Wallac, Turku, Finland). The values are the mean of triplicates. 

Cell culture for cytokine production 

Monocytes were suspended at a density of 0,5x106 cells/ml in RPMI+ containing UG, 

P/S and 10% iFCS and cultured on 24-wells plate (Nunc) or on human plasma fibronectin (FN, 

20µg/ml, CLB, Amsterdam, The Netherlands) coated plate for 1hr at 370C in a 5%CO2-95% 

atmosphere. Thereafter, the FN nonadhered cells were removed by washing two times with 

ice-cold PBS enriched by 3mM ethylene diamine tetraacetic acid (EDTA), pH 8 (Sigma-

Aldrich, Steinheim, Switzerland). The nonadhered cells were counted. The untreated (non-FN) 

and FN adhered monocytes were cultured with staphylococcus aureus cowan 1 strain (SAC; 

1:5000, Calbiochem, La Jolla, CA, USA) and the supernatants were collected after 24 hours 

for determination of the production of IL-10. For the IL-12 production monocytes were cultured 

on 24 wells plate (Nunc) with SAC (1:5000) plus IFNγ (1000 IU/ml, Biomedical Primate 

Research Centre, Rijswijk, the Netherlands) for 24 hours. DC were placed in 24-wells plates 

(Nunc) at a concentration of 0.5x106 cells/ml and cultured for 24 hours in RPMI+ and Serum 

Free medium supplement (Pepro Tech). For the IL-10 and IL-12 production the same culture 

conditions were used as for the production by monocytes. 

Cytokine determination 

The quantities of IL-10 and IL-12 productions by monocytes and DC were measured by 

using an ELISA as indicated by the manufacturer (IL-10 ELISA Pelikine, CLB, Amsterdam, the 

Netherlands; IL-12 Eli-pair, Diaclone, Besançon, France). 

Statistics 

Statistical analysis was carried out using SPSS version 11.0 for Windows. For 

differences between the groups the Mann Whitney U-test was used. Paired student’s t test 

was used for comparison of values within the group for non-FN and FN adhered conditions. 

The values are given in mean ± standard deviation. P–values lower than 0.05 were considered 

significant. 

 
 
Results 
 

Soluble ICAM-1 levels in serum and monocyte expression of adhesion molecules  

Figure 1a shows that the sICAM-1 levels in serum were significantly increased in 11 ICA 

negative FDR tested (mean 389 ± s.d. 132 ng/ml) as compared to the levels in 20 healthy 

controls (286 ± 101 ng/ml, p=0.01). Also the ICA positive relative had an increased serum 

sICAM-1 level (444 ng/ml). 
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In a separate and previous series of experiments (using another ELISA for sICAM-1) 

recently-diagnosed DM1 patients also had significantly increased levels of sICAM-1 in their 

serum as compared to the levels found in healthy controls (62 ± 21 ng/ml in 40 patients vs. 40 

± 15 ng/ml in 39 controls, p<0.0001) (Fig. 1b). 

We previously showed a reduced CD54 expression in DM1 patients (Lam-Tse et al., 

submitted). In this series of experiments on FDR we double stained peripheral blood 

mononuclear cells for CD14 and several adhesion molecules to investigate whether the 

expression of such monocytes was abnormal in monocytes of FDR.  As shown in table 1 and 

fig. 2, we did neither find differences in expression levels of CD54, nor in those of CD29, 

CD11b and CD18 between monocytes of 8 tested FDR and 8 of age-matched healthy 

controls. 

 

Differentiation of DC from monocytes  

Figure 3 shows that the generation of DC from monocytes of 12 tested ICA negative 

FDR resulted in cells with a higher expression of (co)-stimulatory molecules as compared to 

the DC differentiated from monocytes of healthy controls: The monocyte-derived DC of the 

ICA negative FDR had a significantly higher expression of CD86 as compared to 12 healthy 

control DC (mean fluorescent intensity (MFI) of 250 ± 60 (s.d.) in FDR vs. 170 ± 72 in healthy 

controls, p=0.007).  
 
 
Fig. 1. Serum levels of sICAM-1 (ng/ml) are shown for (a) 11 ICA negative FDR and 20 healthy controls and (b) 39 
DM1 patients and 24 healthy controls. FDR and DM1 have an increased serum sICAM-1 compared to their controls 
(p=0.01 and p<0.0001, resp.). Box plots with median and quartiles are shown. The difference in the mean between 
(a) and (b) is due to the use of two different assays (see methods).  
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Table 1. Adhesion molecule expression on CD14+ monocytes (mean ± s.d.) 

 CD29 CD54 CD11b  CD18 

% of cells positive     

Healthy controls  96 ± 3 88 ± 11 98 ± 1 97 ± 2 

FDR 97 ± 1 81 ±23 98 ± 1 98 ± 1 

MFI of the cells     

Healthy controls  180 ±25 145 ± 42 2319 ± 615 498 ± 100 

FDR  202 ± 45 121 ± 54 2428 ± 224 513 ± 99 

n=8 each group, all values not significantly different 
FDR= first degree relatives, MFI= mean fluorescence intensity 
 

 
Fig. 2. Representative histograms of adhesion molecule expression on CD14+ monocytes are shown of 8 FDR and 
8 healthy controls. FDR is represented in thick lines, healthy controls in thin lines and the isotype in dashed lines. 
The expression of the adhesion molecules CD29, CD54, CD11b and CD18 on monocytes are comparable between 
FDR and controls.  

 

 

Moreover, the expression of HLA-DR on the DC of the ICA negative FDR was increased 

too, yet not statistically significantly (753 ± 270 in FDR vs. 600 ± 214 in controls, p=0.16). The 

CD54 expression was similar to that of DC generated from healthy control monocytes (Fig. 3). 

The data in the ICA negative FDR contrast to our findings in recently-diagnosed DM1 

patients. Monocyte-derived DC of 17 tested recently-diagnosed DM1 patients had a 

significantly lower expression (MFI) of the costimulatory molecule CD86 (363 ± 276 vs. 534 

±319, n=17, p=0.05) and of the adhesion molecule CD54 (609 ± 487 vs. 941 ± 435, p=0.02). 

In general DC maturation from monocytes was hampered in DM1 patients and a lower 

expression of the DC specific marker CD1a (232 ± 318 vs. 406 ± 332, p=0.04) was found too 

(Fig. 3). These abnormal expressions were specific for type 1 diabetes and were not found in 

DM2 patients (data not shown). 

The one single FDR positive for ICA had monocyte-derived DC with a lower CD86 

expression, yet a higher HLA-DR and normal CD54 expression. 
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Fig. 3. Mean fluorescence intensities are shown for various markers on monocyte derived DC from (a) 12 FDR and 
12 healthy controls (b) 17 DM1 patients and 17 healthy controls. Means and standard errors are given. DC of FDR 
have an increased HLA-DR (p=0.16) and CD86 expression (p=0.007). DM1 patients had a significantly reduced 
expression of CD86 (p=0.05), CD40 (p=0.02), CD1a (p=0.04) and CD54 (p=0.02). 
 
A. B. 

 
 
Fig. 4. The T cell stimulatory capacity (i.e. proliferation: 3H-thymidine incorporation) in the autologous mixed 
leucocyte reaction (MLR) of DC of controls (n=6, white circles) and FDR (n=7, grey squares). For the DC:T cell 
ratio’s 1:5 and 1:10, DC of FDR induce a significantly higher T cell stimulation compared to controls (* p=0.05 and 
** p=0.03). Means count per minute (cpm) and standard errors are given of the indicated conditions.  

 
 

The stimulatory capacity of DC for autologous T cells 

To assess the T cell stimulatory capacity of DC, DC were co-cultured with autologous T 

cells in various ratio’s (Fig. 4). We found a significantly increased T cell proliferation measured 

by 3H-thymidine incorporation in 7 tested FDR compared to 6 healthy controls for the DC:T cell 
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ratio of 1:5 ( FDR 8245 ± 3278 cpm vs. controls 3982 ± 2155 cpm, p=0.05) and 1:10 (FDR 

23018 ± 9734 cpm vs. controls 10848 ± 7593cpm, p=0.03). 

 

IL-10 and IL-12 production of monocytes  

Figure 5 shows the IL-10 and IL-12 production of the monocytes of 11 ICA negative FDR 

and of the recently-diagnosed DM1 patients as an IL-10 / IL-12 production ratio. The IL-10 / IL-

12 production ratio of the monocytes of these FDR was increased, and values of 579 ± 678 

were found for FDR (n=10) vs. 284 ± 722 for healthy controls (n=11), yet statistical 

significance was not reached (p=0.07) (Fig. 5a). This effect was mainly due to an increased IL-

10 production by monocytes of the FDR (76939 ± 54767 pg/ml, n=10 vs. 35095 ± 42815 

pg/ml, n= 11, p=0.09). The monocytes of the one single FDR positive for ICA had a low IL-10 

production of 13684 pg/ml. 

The data in the ICA negative FDR contrast again to our findings in the recently-

diagnosed DM1 patients. The monocytes of the DM1 patients had a significantly decreased 

monocyte IL-10 / IL-12 ratio as compared to healthy control monocytes. DM1 patients (n=12) 

had a mean IL-10 / IL-12 ratio of 18 ± 30 as compared to a value of 33 ± 34 in appropriate 

healthy controls (n=9), p=0.05 (Fig. 5b). This was mainly due to a lowered IL-10 production 

and values of 3679 ± 4467pg/ml in 12 patients and 8313 ± 4961 pg/ml in 11 controls were 

found (p=0.02). 

 

IL-10 and IL-12 production of the monocyte derived DC  

Figure 6 shows the IL-10 and IL-12 production of the monocyte derived DC of 24 healthy 

controls, 12 ICA negative FDR and 9 recently-diagnosed DM1 patients. Firstly it must be noted 

that the capability of the monocyte-derived DC to produce IL-10 was markedly reduced as 

compared to that of the original monocytes, in some DM1 patients the monocyte-derived DC 

produced undetectable levels of IL-10. We therefore could not use the IL-10 / IL-12 production 

ratio as with the monocytes (see Fig.5). 

Fig 6a shows that the IL-10 production by the monocyte-derived DC of the ICA negative 

FDR was increased, whereas it was decreased in the recently-diagnosed diabetic patients as 

compared to the values found in the healthy controls. DC of the FDR produced significantly 

higher quantities of IL-10 (43 ± 36 pg/ml in 11 FDR vs. 31 ± 70 pg/ml in 24 controls, p=0.02), 

while the IL-10 production by the DC of the patients was significantly decreased (5 ± 14 pg/ml 

in 9 patients vs. 31 ± 70 pg/ml in 24 controls, p=0.03) (Fig. 6a). 

The monocyte-derived DC of the one single case positive for ICA showed a high IL-10 

production of 120 pg/ml. 

With regard to the IL-12 production of monocyte-derived DC Fig 6b shows that the IL-12 

production by the DC of the recently-diagnosed DM1 patients was significantly reduced, but 
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that this was not the case in the ICA negative FDR. The mean IL-12 production by the DC of 

21 healthy controls was 359 ± 36 pg/ml, of the 12 ICA negative FDR 104 ± 159 pg/ml (p=0.40) 

and of 8 DM1 cases tested 14 ± 25 pg/ml (p=0.002). 

The monocyte derived DC of the one single case positive for ICA showed a high IL-12 

production of 139 pg/ml. 

 

 

Discussion 
 

Although the number of included FDR is small, we observed similarly raised serum levels 

of sICAM-1 in FDR as in recently-diagnosed DM1 patients, yet the FDR did not show the lower 

monocyte CD54 expression, lower monocyte IL-10 production, hampered DC development 

from monocytes and lower DC function that we found in recently-diagnosed DM1 patients. On 

the contrary, DC development from monocytes was stimulated in the FDR while their 

monocytes and monocyte-derived DC showed an increased IL-10 production. 

Our sICAM-1 data in the FDR are in accord with the data of three other studies which 

also found increased levels of serum sICAM-1 in FDR of DM1 patients. One of these studies 

reported –as we do– that the levels of sICAM-1 were also raised in ICA negative FDR (1). The 

two other studies, however, did not investigate the sICAM-1 levels in ICA negative FDR versus 

those in healthy controls and can therefore not give definite conclusions on the sICAM-1 level 

in ICA negative FDR of DM1 patients (3, 11). 

These studies reported positive correlations between islet specific auto-antibody titers 

and sICAM-1 serum levels. There were however no indications found for an HLA-DR 

association with the increased sICAM-1 levels in those reports (1, 11). Also, the individual s-

ICAM levels in FDR do not predict an outbreak of type 1 diabetes (12). Nevertheless, taking 

the data of these reports together, there is little doubt that the pre-diabetic phase of type 1 

diabetes (not necessarily resulting in overt type 1 diabetes) is characterized by an elevated 

serum level of sICAM-1. 

Elevated serum levels of sICAM-1 are thought to represent the presence of ongoing 

tissue damage and/ or inflammation, since sICAM-1 is also increased in the serum of patients 

characterized by other chronic inflammatory (auto-immune) processes, such as myasthenia 

gravis, Graves’ disease and rheumatoid arthritis (1, 2, 13, 14). The molecule is thought to be 

derived from activated endothelium, leukocytes and certain immune-activated epithelia (4). 

sICAM-1 is involved in processes of leukocyte adhesion to vessel walls and to tissue 

structures and hence in the migration, accumulation and differentiation of leukocytes in such 

areas of inflammation (15, 16, 17). In addition sICAM-1 is thought to counteract inflammatory 

and auto-immune reactions. 
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Fig. 5. The IL-10/ IL-12 production ratio of monocytes. (a) Monocytes of FDR (n=10) had a higher ratio compared 
to monocytes of healthy controls (n=11), p=0.07. (b) Monocytes of DM1 patients (n=12) had a significantly lower 
ratio compared to monocytes of healthy controls (n=9), p=0.05. Box plots with median and quartiles are shown. 
 

A. B. 

 

 

The molecule is able to inhibit autoreactive T cell proliferation in DM1 patients (18) and 

treatment of prediabetic NOD mice with recombinant ICAM-1 delays disease by active 

immunoregulation by inhibiting pro-inflammatory Th1 responses (19). Elevated levels of 

sICAM-1 in FDR may thus be instrumental in down regulating already existing inflammatory 

processes and pro-inflammatory Th1 cells. Our data -though limited, as stated earlier - also 

show that monocytes and monocyte-derived DC of ICA negative FDR of DM1 patients have 

an increased production of the immuno-suppressive cytokine IL-10. This contrasts to patients 

with recently-diagnosed DM1, whose monocytes and monocyte-derived DC show a 

diminished IL-10 production. Patients with overt diabetes also show a hampered differentiation 

of DC from monocytes, resulting in DC with a poor expression of essential adhesion, 

stimulatory and costimulatory molecules on their cell surface, an abnormal low stimulation of 

the proliferation of autologous T cells and a low capability to skew autologous T cells in either 

a Th1 or Th2 direction (20, 21, Lam-Tse et al, submitted).  

This was not the case in the ICA negative FDR of DM1 patients. On the contrary, their 

monocyte-derived DC showed an increase in the expression of CD86, an important 

costimulatory molecule and an increased T cell proliferation in autologous MLR. 

We have previously listed our arguments to consider the monocyte and DC aberrancies 

in DM1 as a sign of a poor capability of the DM1 immune system to preserve tolerance (Lam-

Tse et al, submitted). 
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Fig. 6. The IL-10 production and IL-12 production by monocyte derived DC. (a) DC of FDR (n=11) had a higher IL-
10 production compared to DC of healthy controls (n=24), p=0.02, whereas of DM1 patients (n=9) had a 
significantly lower production compared to monocytes of healthy controls (n=24), p=0.03. (b) DC of FDR (n=12) 
had a lower, but not significant, IL-12 production compared to healthy controls (n=21). DM1 patients (n=8) had a 
significantly lower IL-12 production compared to controls (n=21), p=0.002. Box plots with median and quartiles are 
shown. Here, we did not use the ratio, because in some DM1 patients the monocytes produced undetectable levels 
of IL-10. 
 
A.       B. 

 
 

Since we found mirror-image aberrancies in the monocyte and DC functions in the FDR 

it may come as no surprise that we consider these as an indication that the monocyte-DC 

system is levelled at an anti-inflammatory / pro-tolerance set point in practically all the FDR of 

DM1 patients. Interestingly the vast majority of these FDR was negative for ICA and thus are 

at low risk to develop overt type 1 diabetes. 

Similar data have been reported previously with regard to the T cell system. With regard 

to human Th1/ Th2 studies Kallman et al (22) showed that cultured whole blood of an ICA 

negative co-twin, and not an ICA positive co-twin, produced increased amounts of IL-10 and 

IL-4 as compared to the diabetic co-twin. Hussain et al (23) showed that twins of diabetic 

patients who remained non-diabetic in a 6 year follow-up had a Th2 type profile; twins who 

progressed to overt DM1 had a mixed Th1/ Th2 profile. The same author however found – in 

fact dissimilar to our data -a Th1 deviation in FDR of DM1 patients (8). The ICA status was not 

taken into account in this latter study. When the ICA status is taken into account, there are 

ample data that FDR of DM1 patients who are ICA negative do not show a Th1 deviation (24, 

25), but are even in a Th2 mode (22). In ICA positive FDR a Th1 deviation has been shown 

(24; 26, 27-31). In the NOD mouse a Th2 type / anti-inflammatory profile prevails in the pre-

diabetic stage, shifting towards a Th1 type / pro-inflammatory profile at the time of destructive 

insulitis and the development of disease (32, 33). 
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Except for one case, all our tested FDR were ICA negative. The ICA positive individual 

had a raised serum level of sICAM-1, but a profile of monocyte and monocyte-derived DC 

abnormalities intermediate between the ICA negative FDR and the recently-diagnosed DM1 

patients, i.e. a low IL-10 production by monocytes as the overt DM1 patients, but a normal DC 

generation from monocytes as the ICA negative FDR (except for a lower expression of CD86 

on these cells). Needless to say, that many more of such ICA positive FDR need to be studied 

to give solid conclusions on monocyte and DC set points in ICA positive FDR. It must be noted 

that Takahashi et al did find DC abnormalities similar to those found in overt DM1 patients in 

islet-Ab positive individuals (21).  

In conclusion, ICA negative FDR of DM1 patients show various aberrancies in their 

monocytes and monocyte-derived DC which are mirror images of those found in overt DM1 

patients. We favour a view that such aberrancies represent an anti-inflammatory and 

tolerogenic set point of the immune system instrumental to counteract already existing harmful 

deviations in the immune system that heighten the risk for islet autoimmunity in FDR. 
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Introduction 
 

In the early 1980s it was reported that thyrocytes aberrantly express MHC class II 

molecules in Hashimoto and Graves’ disease (normal thyrocytes do not) and that these 

thyrocytes are able to stimulate T cells in vitro. This led to the hypothesis that an aberrant 

expression of MHC class II molecules on thyrocytes is the basic abnormality in thyroid 

autoimmunity and that an immune response to thyroid auto-antigens is initiated by an 

erroneous local presentation of such antigens to intra-thyroidal accumulated T cells (1).  

Another mechanism of initiation of the thyroid autoimmune reaction was also proposed 

(2). A class of antigen presenting cells (APC), the so-called dendritic cells (DC), was reported 

to be present in the thyroids of Hashimoto and Graves’ patients. DC are known to be the most 

potent professional APC of the immune system. Therefore these cells are the most likely 

candidates for the initiation of the thyroid autoimmune response.  

Up to the early 1990’s a plethora of studies has been concentrating on the first 

hypothesis. However progress in immunology over the last 10 years point to the DC as one of 

the most important APC in the initiation of autoimmune reactions. There is perhaps a small 

role for thyrocytes aberrantly expressing immune molecules in later phases of the thyroid 

autoimmune reaction. 
 

 
Dendritic cells (DC) and the physiology of the normal thyroid 
 

DC and the normal thyroid 

DC are present in low numbers in normal thyroids composing 2-3% of the interstitial 

cell population (3, 4, 5). There are indications that such DC are able to proliferate (6), which 

means that not all of the thyroid DC need to be recently immigrated from the blood stream. 

Malignancies of thyroid DC have been described (thyroid Langerhans cell histiocytosis) (7).  

Thyroidal DC are often in close contact with thyrocytes. The thyroidal DC are in a clear 

immature state and often show monocyte marker characteristics (8). It is thought that soluble 

factors produced by TSH-stimulated thyrocytes, such as GM-CSF, TGFβ, IL-6 and 

osteoprotegerin, keep intra-thyroidal DC in their immature state (6, 9, 31). TNFα on the other 

hand induces maturation of immature thyroidal DC (13). Also thyroid hormones and related 

iodinated compounds are known to influence the maturation of immature DC and the 

differentiation of related APC (10, 11). 

DC as thyroid regulators 

DC are capable to regulate the growth of thyroid follicles in vitro. Simons et al (12) 

showed that the co-culture of isolated thyroid or splenic DC with thyroid follicles resulted in 
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intense interactions of the DC with the thyroid follicles and a dampening of TSH-induced 

proliferation of thyrocytes composing the follicles. The thyroid hormone release from the 

follicles was suppressed to a limited extent. Cytokines (IL-1 and IL-6) secreted by the DC, and 

not adhesive interactions are important in this regulatory function of DC (12).  

Interestingly spleen DC and pituitary folliculo-stellate cells (which are in part pituitary 

interstitial DC) express functional TSH-receptors (13, 14). Upon stimulation with TSH, spleen 

DC up-regulate their c-AMP, phagocytic capability and production of IL-1 and IL-12 (13). If 

such TSH-receptor expression and cytokine production also occurs at the level of the thyroidal 

DC this would imply that the T4-TSH feed back mechanism does not only targets thyrocytes, 

but also thyroid DC via which thyrocyte growth can be regulated. 

 

DC and iodine deficient goiters 

In view of the above-reviewed evidence for a thyrocyte regulatory role of DC, it is note-

worthy that DC accumulate and form homotypic clusters in iodine deficient goiters both in man 

as well as in an animal model (15, 16). The accumulation of the DC might be taken as a sign 

that the cells are instrumental in a growth regulation of the iodine-deficient goiter, yet direct 

evidence for this has not been given. The homotypic cluster formation of DC is a sign of 

maturation of the cells (17), and indeed during the formation of iodine-deficient goiter there is 

an activation of Tg-specific T and B cells (16). 

 

 

Dendritic cells (DC) and the autoimmune diseased thyroid 
 
Early accumulation and clustering of DC in the thyroids of animal models of autoimmune 

thyroiditis  

A small increase in the number of DC and a homotypic clustering of the cells in the 

interstitium of the thyroid is one of the first signs of a developing thyroid autoimmune reaction 

in the bio breeding diabetes prone (BB-DP) rat, an important animal model of spontaneously 

developing autoimmune thyroid disease (3). These signs precede the T cell expansion and the 

production of autoantibodies in the thyroid draining lymph nodes and the actual infiltration of 

the rat thyroid with lymphocytes. At this early phase of the autoimmune reaction BB-DP 

thyrocytes are negative for MHC class II (3). In another autoimmune thyroiditis rat model, the 

neonatal thymectomized Buffalo Strain rat and in the non obese diabetic (NOD) mouse (a 

mouse model of spontaneous autoimmune thyroiditis), similar findings have been reported 

(18, 19). After isolation of BB-DP thyrocytes from these “early phase” thyroids, the cells were 

very poor stimulators of T cell expansion in vitro. In contrast, isolated thyroidal DC were 

excellent in this function equalling splenic T cells (8). These arguments provide, at least in the 
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animal models, sufficient proof to reject the idea that an aberrant expression of MHC class II 

molecules is a prime event in thyroid auto-immunity initiating the process.  

With regard to the human, thyrocytes are not capable of expressing costimulatory 

molecules to a noteworthy extent (20, 21), there is however some evidence that they might in 

Hashimoto’s thyroiditis (22). In addition, while the co-culture of thyrocytes and T cells alone, 

resulted in a relatively weak T cell proliferation, addition of low numbers of monocytes or APC 

to the culture led to a clear enhancement of the T cell proliferative response (22). These 

observations point in the direction that also in the human professional APC play a prime role in 

the induction of autoimmunity.  

 

Thyroid factors instrumental in the early attraction of DC to the thyroid of animal models of 

autoimmune thyroiditis 

In the majority of the NOD strains the incidence of autoimmune thyroiditis is in general 

very low, but it varies from colony to colony (19). Certain dietary iodine regimens, however, 

have a triggering effect on the development of autoimmune thyroiditis in the low-incidence 

NOD strains. In such strains an iodine-induced necrosis of thyrocytes is a clear factor leading 

to an intra-thyroidal accumulation of various inflammatory cells, amongst which the DC. This 

early inflammatory influx is followed by a reaction of the draining lymph nodes and an initiation 

of an auto-immune thyroiditis (19).  

In the BB-DP rat and obese strain (OS) chicken (both other animal models of 

autoimmune thyroiditis) there are however no signs of an early iodine-induced necrosis of 

thyrocytes attracting the DC in an inflammatory reaction. Interestingly intrinsic disturbances in 

the growth and the differentiation of thyrocytes have been shown in both models, in the BB-DP 

rat leading to a high incidence of ultimo-brachial cysts and an altered production of IL-6 by 

thyrocytes (10, 24). Whether such alterations do lead to a higher influx of DC is not known.  

 

Late accumulation of DC in the thyroid of the BB-DP rat 

After the appearance of Tg autoantibodies in the circulation, T and B cells start to 

infiltrate the thyroid and at the same time as this infiltration there is a remarkable sharp 

increase in the number of thyroid DC (3). The T cells, B cells and DC accumulating in the 

thyroid do not form destructive infiltrates, but are organized as peripheral lymphatic tissue (3, 

26). The diapedesis of lymphocytes from the bloodstream to this tissue is facilitated through 

the formation of specialized “high endothelial venules” (HEV) (25). Intra-thyroid lymphatic 

tissue probably serves a further expansion of autoreactive T cells and a further production of 

Tg auto-antibodies. Thyrocytes adjacent to areas of intra-thyroid lymphatic tissue start to 

express MHC-class II molecules (3, 24, 25), probably as a consequence of the cytokines 

produced in the intra-thyroid lymphatic tissue. Perhaps such MHC class-II positive thyrocytes, 
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but more likely auto-antigen specific B cells (27) play a role as APC in this late phase of 

autoimmune reactivity.  

 

DC in the thyroids of patients with Graves’ disease and Hashimoto’s disease 

Thyroids of patients (predominantly Graves’ goiters) are available for microscopical 

investigation only in a late phase of the disease, when one has decided to a surgical 

intervention. The glands show areas of intra-thyroid lymphatic tissue and areas in which the 

thyroid follicles are largely intact with significantly elevated numbers of perifollicularly located 

DC (9, 33, 34). Such perifollicular DC have an immature phenotype (28).  

Phenotypically mature DC are predominantly present in the larger areas of intra-thyroid 

lymphatic tissue and co-localized with activated CD4+ T cells (28). In such areas HEVs are 

present with an up-regulated integrin expression on their endothelial cells (25, 30).  

 

 
Abnormal DC differentiation in spontaneous animal models of thyroid autoimmune 
disease. A role in defective tolerance induction? 
 

Since DC are critically involved in the initiation of the autoimmune process (see 

above), it is important to note that there is accumulating evidence that the differentiation of DC 

from precursors is abnormal in the BB-DP rat and the NOD mouse. In the BB-DP rat 

precursors were more abundant than DC in the very early infiltrates of the thyroid (8), and 

lymph node and spleen DC were in a relatively immature (interstitial) state (32, 33).  

In the NOD mouse, studies have concentrated on the in vitro development of DC from 

bone-marrow precursors. This development was found to be hampered leading to a low yield 

of DC with a low grade of maturation and a low capability to stimulate T cells (34). However 

opposite findings have been made (35) and differences in results are probably dependent on 

the culture conditions used (Leenen, personal communication). Functional studies on 

interstitial DC are lacking in the NOD mouse. Spleen and lymph node DC of the NOD mouse 

however have a normal state of maturation and are perfectly capable of stimulating T cells 

(36). In fact there is an excessive proliferation reaction of the NOD T cells in vitro, when 

stimulated with DC. This is most likely due to a defect other than the DC maturation defects in 

the immune system of this animal, but a defect in the mechanisms of apoptosis of T cells 

leading to a hampered AITCD (36).  

Although it is not clear if and how differentiation defects of DC in the animal models 

play a role in their defective ability to mount tolerance to auto-antigens, there are a few 

indications that they might. The immature lymph node and spleen DC of the BB-DP rat were in 

particular less capable of expanding an important suppressor T cell population of the rat, the 
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so-called RT6+ T cells (32), while in the NOD mouse, transfers of in vitro maturated DC 

prevented the development of DM1 in this animal (37). 

 

 

An abnormal DC differentiation in DM1 patients, but not in thyroid autoimmune patients 
 

In analogy to the data on differentiation and maturation defects in the animal models 

there are reports including our own data as described in chapter 4 and 5 accumulating on 

similar defects in DM1 patients. We described that this is not the case for monocytes of DM2 

patients or patients with autoimmune thyroiditis. 

However, defects other than differentiation defects of monocyte-derived DC are 

noticeable in the monocytes of patients with autoimmune thyroiditis, such as an altered 

expression of integrin molecules, a hampered ability to arrange the actinomyosin cytoskeleton 

after chemotactic stimulation, and a lower potency to differentiate into a population of APC 

other than the classical DC, namely the motile veiled macrophages (38, 39). Although this 

suggest that adhesive, motile and migratory functions of monocytes are hampered in thyroid 

autoimmune disease, it is not known if and how such defects have any effect on the apparent 

hampered tolerance for thyroid auto-antigens in these patients.  

 

Future prospects: DC as putative tools in the treatment of autoimmune diseases 

 
Although the role of the above-described defective APC function is far from clear in the 

development of type 1 diabetes and autoimmune thyroiditis, it is clear that DC form a potent 

group of cells to modulate immune responses. DC vaccination protocols are presently under 

design to elicit strong immune reactions (40) including autoimmune reactions to eradicate 

tumors, also thyroid malignancies (41). Such vaccination protocols aim at constructing DC 

potent to elicit strong effector immune responses. The present state of the art points to mature 

DC expressing important tumor antigens and producing IL-12 as the most likely candidates to 

perform this job. 

Since DC are also involved in tolerance induction, it is not a far-fetched idea to 

construct DC to induce or restore tolerance. Very immature steady state DC, expressing 

important auto-antigens and producing IL-10, are thought to be able to perform this job (42). 

However the differentiation and maturation defects of DC in the BB-DP rat and the NOD 

mouse suggest that there is no shortage of such very immature DC in these animals. The 

disease preventing effects of the transfer of artificially matured DC in the NOD mouse point in 

another direction, namely that mature DC are more critical to elicit or restore tolerance in 
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conditions of endocrine autoimmunity (43, 44). Such DC might be critical for a deletion of 

autoreactive T cells in the periphery via AITCD.  

 

 

Conclusions 
 

Interstitial thyroid DC regulate the growth and hormone production of thyrocytes. DC 

and not aberrantly MHC-class II expressing thyrocytes are the cells initiating thyroid 

autoimmune reactivity. 

The differentiation of immature and mature DC from precursors is abnormal in the 

animal models of spontaneously developing endocrine autoimmune disease, but 

consequences are not clear for the defective state of tolerance in these animals.  

However, the differentiation of immature and mature DC from precursors is normal in 

patients with autoimmune thyroiditis, apart when co-occurring with type 1 diabetes in the 

setting of an APS type 3. For the latter, further research is required. Whether DC are good 

candidates for a novel form of treatment for auto-immune thyroiditis, i.e. vaccinations to induce 

tolerance, is doubtful. 
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Main conclusions regarding monocytes and monocyte-derived dendritic cells in type 1 
diabetic patients 
 

This thesis describes major aberrancies in monocytes and monocyte-derived dendritic 

cells of type 1 diabetic (DM1) patients. One of these is that monocytes of DM1 patients had an 

abnormal expression of adhesion molecules. Monocytes of DM1 patients specifically 

expressed lower levels of the adhesion molecule ICAM-1 (CD54), while monocytes of DM2 

patients did not (Chapter 4). Monocytes of DM1 patients did also express lower levels of the 

integrin CD49e and higher levels of CD11b and CD18 and their serum levels of sICAM-1 were 

raised. These latter aberrancies were however shared with DM2 patients, and are hence likely 

– at least in part - consequences of the abnormal metabolic status of diabetes. 

Monocytes of DM1 patients also produced lower quantities of the immunosuppressive 

cytokine IL-10 (Chapter 5). This aberrancy was again specific for DM1 patients, it was neither 

found in DM2 patients (metabolic controls) nor in patients with autoimmune thyroid disease 

(organ-specific autoimmune controls). 

Dendritic cells (DC) generated from the aberrant monocytes of DM1 patients were 

themselves also aberrant (Chapters 4 and 5): the DC generated by culture in GM-CSF and IL-

4 had a lower expression of various adhesion molecules (CD54, CD11b, CD18, CD49d and 

e), of MHC class II molecules and of the important costimulatory molecules CD80, CD86 and 

CD40. The DC also produced lower quantities of IL-10 and IL-12 and had a reduced capacity 

to stimulate autologous T cells, i.e. the stimulated T cells showed a poor capability to 

proliferate and also a reduced potency to produce IFN-γ. However, DM1 DC were normally 

capable of stimulating the proliferation of allogeneic T cells. This indicates that the DM1 T cells 

are aberrant as well. 

We also tested 13 non-selected first-degree relatives (FDR) for above described 

characteristics and functions of their monocytes and DC. One of these FDR was positive for 

ICA, hence virtually all these FDR were at low risk to develop DM1. Interestingly the 

monocytes and monocyte derived cells of the ICA negative FDR did show aberrancies, but 

these were the mirror images of those found in overt DM1 (Chapter 6). The monocytes of FDR 

produced higher quantities of IL-10 as compared to healthy control monocytes and showed a 

development into highly functional dendritic cells. Monocytes of FDR expressed normal levels 

of ICAM-1. Yet the soluble ICAM-1 was already raised in the serum of FDR. Similar to the 

levels of recently diagnosed DM1 patients. This cannot be due to the abnormal metabolic 

status.  
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The abnormal CD54 expression on the monocytes of DM1 patients, a sign of a 
disturbed adhesion and migration of monocytes in DM1? 
 

One study other than ours also showed that the expression of CD54 on monocytes 

was reduced in recent onset diabetic patients, although not significantly (1). However in this 

study DM2 patients were not included as controls.  

The low CD54 expression on monocytes likely implicates a disturbed adhesive 

potential of the cells in DM1. Adhesive processes allow cell to cell interaction, binding to extra 

cellular matrix proteins, and play a role in the activation and maturation of cells (2-7). As an 

example of the latter we demonstrated that a triggering of CD54 by stimulating monoclonal 

antibodies stimulated the differentiation and maturation of DC from monocytes. This process 

also resulted in an increased formation of homotypic cell clusters. This is in accord with other 

studies on the influence of signalling via adhesion molecules on DC and the role of homotypic 

cluster formation in this process (6;8;9).  

Adhesive processes are also important in the diapedesis of monocytes from the 

bloodstream into the tissues. It is thus tempting to speculate that our data of a lower 

percentage of monocytes expressing high levels of CD54 in DM1 represent the disappearance 

of specifically CD54 positive monocytes from the circulation. Indeed pro-inflammatory 

circulating monocytes with a raised tendency to infiltrate tissues have a high expression level 

of various integrins and an enhanced adherence to extracellular matrix (ECM) proteins (10). 

Such pro-inflammatory monocytes are easily trapped in inflamed peripheral tissues. Indeed 

MФ and DC, infiltrating the pancreata of the NOD mouse and DM1 patients are clearly CD54 

positive (11;12). Interestingly various interventions aimed at blocking adhesion molecules, 

including CD54, prevent or delay autoimmune diabetes in the animal models (13-17). These 

interventions include the administration of monoclonal antibodies against the adhesion 

molecules or the administration of recombinant adhesion molecules or transgenic 

manipulations (13;14;16;18). However, if our data represent a preferential disappearance of 

pro-inflammatory monocytes from the circulation in DM1 patients, we should also expect a 

lower number of CD11b and CD18 positive monocytes in the circulation of DM1 patients and 

this was not the case. 

The specifically lowered CD54 expression on DM1 monocytes might also be an 

indication of an intrinsic alteration in the structure of the CD54 molecule. There are 

polymorphisms of the CD54 molecule and these gene polymorphisms have been investigated 

in DM1. An association between these polymorphisms and DM1 could not be shown (19-21). 

There are to our knowledge no studies on these gene polymorphisms and the level of CD54 

expression on peripheral blood monocytes. It is also possible that the lower CD54 expression 

on DM1 monocytes is due to the metabolic status and/ or the specific treatment with insulin of 
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the DM1 patients. Aljada et al showed that insulin is able to down regulate the expression of 

ICAM-1 on human umbilical endothelial cells via inhibition of the NFkB pathway (22). However 

a considerable proportion of our DM2 controls were treated with insulin as well and these did 

not show lower numbers of blood monocytes expressing CD54.  

Hyperglycemia is also known to influence the adhesion molecule metabolism: high 

glucose levels increase CD54 expression on endothelial cells (23) and its ligand CD11b/ 

CD18 on monocytes in vivo (24). We however did not find a higher, but a lower expression of 

CD54 on circulating monocytes specifically of DM1 patients. We consider it therefore unlikely 

that a chronic hyperglycemia explains this phenomenon. The chronic hyperglycemia may 

however serve as a good explanation for the increased CD11b/ CD18 expression on the 

monocytes of both DM1 and DM2 patients described in this thesis. It might also explain the 

increased levels of sICAM-1 in DM1 and DM2 patients, since it is shed from activated 

endothelium (yet we also found a raised sICAM-1 in normoglycemic FDR of DM1 patients).  

Last but not least our data on a low CD54 expression on monocytes in DM1 patients 

may be explained by representing a differentiation disturbance of monocytes from bone-

marrow precursors and/or a recruitment disturbance of sufficiently differentiated monocytes 

from the bone-marrow to the peripheral circulation. Data from Nikolic studying the NOD mouse 

model in our laboratory (personal communication) show that the circulating monocyte pool is 

aberrant in this model of DM1 and that there is a shift in the balance from immature to more 

mature forms of monocytes in the circulation of the NOD mouse. These data will be described 

extensively in a thesis from her hand.  

 
 
The lowered IL-10 production by DM1 monocytes and monocyte-derived dendritic cells, 
a sign of a disturbed immune suppression and a pro-inflammatory set point in DM1? 
 

It is the generally held view that the actual insulitis process with the destruction of the β 

cells is a T cell-mediated process due to Th1 cells and dominated by Th1 type cytokines, such 

as IFN-γ. The Th2 type cytokines IL-4 and IL-10 are under-represented. Many studies in the 

BB-DP rat and the NOD mouse support this view, and although human studies on the cytokine 

expression profile in pancreatic islets are scarce, increased IFN-γ and reduced IL-4 

expression have been reported in established cases of DM1 (25). 

In the NOD mouse model there clearly is a pre-phase to the actual destructive Th1 

mediated insulitis. In this pre-phase there is an extensive pancreatic infiltration of T cells, DC 

and macrophages, but the cells remain strictly around the islets (“peri-insulitis”) and the β cells 

in the islets are not attacked. The peri-insulitis process is dominated by the Th2 type cytokines 

IL-4 and IL-10 (26-28).  Interestingly these cytokines were also found increased in the islets 



Chapter 8 

127 

during diabetes protective treatments (27;29). In addition, manipulation in the Th1/ Th2 

cytokine balance in the NOD mouse by transgenic expression, virus vector induced 

expression, direct administration of cytokines or antibodies against cytokines all influence 

disease course.  

Particularly DC and other APC (monocytes and macrophages) contribute significantly 

to the polarizing influence on T helper cell differentiation. (30). The APC are able to exert 

strong Th1 differentiation signals by the production of the pro-inflammatory cytokine IL-12 

(31;32). IL-10 on the other hand (abundantly produced by APC) is a critical 

immunosuppressive cytokine. It is able to inhibit the cytokine production, including the IL-12 

production by APC and the cytokine down regulates the expression of MHC class II and 

costimulatory molecules on APC (33-36). Supporting the view that autoimmune insulitis is a 

Th1 phenomenon one has found IL-12 increased in the β cell destructive insulitis of the animal 

models (27;37-39). The increased IL-12 expression preceded the IFN-γ expression in the 

islets (38). IL-10 administration to NOD mice protects from disease development (29;40-42). 

Hence it is important to be informed on the IL-12 and IL-10 production capability of 

APC populations in DM1 patients. Recently pancreatic biopsies under laparoscopy have been 

performed safely and in situ cytokine phenomena might perhaps be studied (43). Yet up till 

now cytokine studies on peripheral blood have only been practicle. Cytokine analysis of serum 

and leukocytes in DM1 patients has not provided consistent results (44-53). As described in 

chapter 5, we found that isolated monocytes and monocyte-derived DC of DM1 patients 

produced reduced levels of IL-10, favouring a view that APC in overt DM1 patients allow a Th1 

reaction to occur.  

However, as in the case of the reduced numbers of CD54 positive monocytes (see 

before) this finding might be explained by a preferential outflow of IL-10 producing APC from 

the blood stream to the islets in DM1 patients. We nevertheless favour a view that intrinsic 

disturbances in the generation and differentiation of APC from the bone-marrow explains the 

defective IL-10 production by these APC in DM1 patients. In parallel investigations in our 

laboratory on the BB-DP rat bone marrow derived DC of the BB-DP rat are aberrant in 

differentiation and have a reduced capability to produce IL-10 (Sommandas, personal 

communication).  

Interestingly IL-10 is also required for the induction of the differentiation of certain types 

of regulatory T cells by DC (35;54). Are our data hence indicative of an important intrinsic 

defect in the Il-10 production capability of “DM1” APC leading to a poor induction of regulatory 

T cells and /or an inability to dampen down inflammatory responses? A pro-inflammatory 

status is also shown by Litherland et al, who found higher percentages of monocytes of DM1 

patients and their relatives expressing cyclooxygenase 2 (55). Also with regard to the 

production of the pro-inflammatory cytokines IL-1 and TNFα, Hussain et al found a higher 
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production of IL-1 and TNFα in serum and supernatants of PBMC´s of DM1 patients and 

relatives (45;46). It must be noted however that we were unable to find difference in the 

production of IL-1β and TNFα by monocytes between DM1 patients and control subjects (data 

not described in this thesis). 

 

 

The aberrant differentiation of DC from monocytes in DM1, a sign of a lower potency to 
induce tolerance of the T cell system? 
 

We found the development of DC from monocytes disturbed in recent onset DM1 

patients (Chapters 4 and 5). The DC had maturational aberrancies, expressed lower levels of 

integrins, produced lower quantities of IL-10 and IL-12 and had a lower potency to stimulate 

autologous T cells. In chapter 4 we discussed the possibility that the aberrant development of 

the DC from monocytes might be due to the earlier discussed decreased expression of CD54 

on the DM1 monocytes, since the CD54 signal is involved in the differentiation/ maturation of 

DC.  

Apart from being due to the low expression level of MHC class II molecules and of 

costimulatory molecules, the defective T cell stimulatory capacity of the monocyte-derived DC 

of DM1 patients might also in part be due to the low expression level of integrins, since the 

binding of integrins between DC and T cells provides a strengthening of the “immunological 

synapse” between the DC and T cells. This “immunological synapse” supports an appropriate 

binding between MHC class II and TCRs as well as between the costimulatory molecules 

CD80/ CD86 and CD28 and CTLA-4 (5) (see Fig. 2 in the Introduction).  

In the NOD mouse and the BB-DP rat similar defects in the generation of DC from 

precursors and in the function of spleen and lymph node DC have been found. Spleen and 

lymph node DC of the BB-DP rat have a reduced expression of MHC class II, CD80 and 

CD86, a lower homotypic cluster capability and a lower T cell stimulatory capacity (56-58). 

Spleen and lymph node DC and accessory macrophages of the NOD mouse show a reduced 

expression of costimulatory molecules, a reduced IL-12 production and a reduced stimulatory 

capacity for (autologous) T cells (57-59). Both in the BB-DP rat and the NOD mouse aberrant 

myeloid bone marrow precursors (mainly pro-monocytes) generate lower yields of DC with an 

aberrant low expression of MHC class II and costimulatory molecules, a low IL-12 and IL-10 

production and a reduced capacity to stimulate T cells (56-58;60-62).  

In sum, a defective differentiation and function of DC is obvious in DM1 and the animal models 

of autoimmune diabetes and must therefore represent an important  aberrancy. 

How should a defective generation and function of DC –so obvious in the NOD mouse, 

the BB-DP rat and the DM1– lead to a defective tolerance?  
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As stated in the Introduction of this thesis DC are not only instrumental as accessory 

cells in the generation of effector immune responses, but also in the induction of tolerance. 

Steinman et al consider DC in transit from the periphery to the draining lymph node under 

physiological conditions (“steady state” DC) as capable of maintaining tolerance (63). Also 

recognition of an auto-antigen in the periphery in combination with a triggering of costimulatory 

molecules is required for the maintenance of regulatory T cells in the NOD mouse model (64). 

CD80/ CD86 knock-out NOD mice have a profound decrease of their immuno-regulatory 

CD4+CD25+ T cell subset and show an accelerated diabetes development (64). It is known 

that elimination of this T regulatory subset results in development of autoimmune diseases, 

such as inflammatory bowel’s disease, insulitis and thyroiditis (65;66).  

DC are however not only instrumental in the induction of T cell tolerance via the 

generation of regulator T cells. DC are also instrumental in the induction of T cell tolerance via 

the induction of Activation Induced T Cell Death (AITCD) in already activated T cells and/or via 

a down regulation of  activated T cells via a CD80/ CD86-CTLA-4 signalling. As stated before 

spleen DC and accessory macrophages of NOD mice show a reduced CD86 expression and 

have a lower capacity to stimulate T cells. They however also have a lower capacity to up 

regulate CTLA-4 in these poorly activated T cells (67). CTLA-4 activation has been proven to 

down regulate autoimmunity, since CTLA-4 knock out mice spontaneously develop severe 

autoimmune diseases (68;69). CTLA-4 is exclusively expressed on activated CD4+ and CD8+ 

T cells and binds with a much higher affinity to CD80/ CD86 than CD28. CTLA-4 triggering not 

only down regulates T cell function, it also mediates T cell apoptosis apart from the 

involvement of Fas-FasL interaction in this process (68;70). We previously showed in a co-

culture of NOD mouse spleen and lymph node DC and autologous T cells, that the T cells 

showed a reduced apoptosis. This prolonged the duration of (be it a lower) effector T cell 

immune response (71).  

Up till now evidence is lacking in the DM1 patient (the “human model”) on a 

relationship between a defective DC development/ function and a defective development or 

maintenance of regulatory T cells and/ or a disturbed CTLA-4 function/ AITCD. Interestingly 

CTLA-4 polymorphism have been reported in DM1 patients, as well as Fas-induced T cell 

apoptosis disturbances (70;72-75). Obviously more experiments are needed here.  

 

 

How do these findings of aberrant monocytes and monocyte-derived DC in human DM1 
patients relate to our model of the pathogenesis of autoimmune diabetes in the NOD 
mouse and the BB-DP rat? 
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In Chapter 3 we reviewed the literature on the value of the animal models for studying 

human endocrine autoimmune disease. Studies on the very early phases of the endocrine 

autoimmune diseases in humans are difficult to carry out. Therefore, animal models are good 

alternatives to study the initial aberrancies leading to autoimmunity. Chapter 3 describes in 

detail the various aberrancies in the animal models. 

In sum, the studies in the animal models have shown that the ultimate autoimmune 

destruction of the glandular cells is a multi-step process, requiring several genetic and 

environmental aberrancies (or variants) to converge before full-blown disease develops. Two 

major groups of (early) aberrancies can be detected (figure 1): 

 

I. Inborn and pre-autoimmune aberrancies in the immune system 

Animals at risk to develop endocrine organ-specific autoimmune diseases show 

various aberrancies in their: 

DC and MФ 

As stated before BB-DP rats and NOD mice show pre-autoimmune defects in the 

development and maturation of DC from their precursors and a high pro-inflammatory set-

point of MФ with a high production of IL-1 and prostaglandins (56;76-78) . 

T cells  

In the BB-DP rats and the Tx mice there is a lack of suppressor T cell populations, i.e. in RT6+ 

and CD4+CD25+ T cells respectively. In the BB-DP rat this defect is genetically determined (a 

mutation in the Ian5 gene), in these thymectomised mice it has been surgically induced. The 

NOD mouse and the OS chicken have hyper-proliferative T cells. In the NOD mouse model 

this is due to apoptotic disturbances of the T cells, and stimulation of apoptosis, for example 

by administration of a Fas agonist, can reverse the disease in this model (79). In the OS 

chicken the defective reaction to steroids may play a role in the hyper-proliferation of its T cells 

(80).  

There are indications that the interaction between the aberrant APC and aberrant T 

cells lead to a defective T cell tolerance due to an insufficient induction of regulatory T cells 

and/ or AITCD (Fig. 1). 

 

II. Eliciting local aberrancies in the target glands 

These local aberrancies might firstly be of inborn character. An example is the 

abnormal morphogenesis and stromal composition found in NOD islets. This abnormal 

architecture of the NOD islets goes together with a relatively high local accumulation of DC 

and macrophages (81). Interestingly the growth of BB-DP thyrocytes and OS-chicken 

thyrocytes is abnormal too, in the latter model even in the fetal stage (82), again pointing in 
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the direction of an abnormal morphogenesis of the thyroid in important animal models of 

thyroid autoimmune disease.  

The local glandular aberrancies may also be induced or aggravated by environmental 

factors. A (toxic) high iodine-intake induces thyrocyte necrosis in the NOD mouse and the BB-

DP rat resulting in an aspecific inflammatory influx of DC and macrophages. Whether there 

are environmentally inducing agents regarding the initiation of autoimmune insulitis in animal 

models is not completely clear. The insulitis due to high load of EMC-D virus in a mouse 

model might hint to an influence of microbial factors in the initiation of an autoimmune insulitis 

(83).  

In this thesis we describe various aberrancies in monocytes and monocyte-derived DC 

of DM1 patients, which are very similar to the macrophage and dendritic cell aberrancies in 

the animal models of autoimmune diabetes. 

 

 
Fig. 1 This scheme shows that susceptible genetic features and environmental triggering factors lead to a dys- 
regulated immune system. An autoimmune reaction will be initiated, when there is a trigger for an influx of APC in 
the target-gland-to-be. The APC will take up auto-antigens, travel which these to the draining lymph nodes, present 
the auto-antigens to naïve lymphocytes and initiate an autoimmune response. The clonally expanded autoreactive 
lymphocytes will start to accumulate in the target gland as long as the auto-antigens are presented there by APC. 
Depending on the phenotype of the infiltrated lymphocytes (CD4 helper T cells, CD8 cytotoxic T cells) and the 
cytokines produced (IFNγ) immune destruction of the glandular cells will be initiated. 
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If the model of the pathogenesis of animal endocrine autoimmune diseases is also of 

value for human DM1, it is clear that the monocyte and monocyte-derived dendritic cell 

aberrancies are probably not sufficient to elicit full-blown DM1 in humans. Local glandular 

aberrancies and defects in T cell function are additionally needed for that. 

There is however also an interesting dissimilarity between our data on human 

monocyte and monocyte-derived DC and data on such cells in the animal models. In both the 

NOD mouse and the BB-DP rat the dendritic cell and macrophage abnormalities can be found 

from birth onwards or actually weaning onwards. When we take the data found in the FDR of 

our DM1 patients into consideration, this does not seem the case.  

 
 
Aberrancies in monocytes and monocyte derived DC in first degree relatives of DM1 
patients, do they represent compensatory mechanisms?  

 

It must first be noted that the tested FDR were few in number and virtually all negative 

for ICA and hence at low risk for the development of DM1. Interestingly the monocytes and 

monocyte-derived DC of the FDR of DM1 patients are not defective as in the case of the overt 

DM1 patients and in the animal models prior to the development of autoimmune diabetes. On 

the contrary, the monocytes of the FDR showed a raised production of anti-inflammatory IL-10 

and their monocyte-derived DC showed an enhanced differentiation from monocytes and had 

an increased expression of HLA-DR and the costimulatory molecule CD86. The monocyte-

derived DC of the FDR also stimulated autologous T cells to an enhanced proliferation. In 

addition these monocyte-derived DC showed an increased IL-10/ IL-12 production profile, 

which contrasted to the cytokine production profile of the DC of overt diabetics, which were 

poor simulators of IL-10 and IL-12. As stated before, the pre-diabetic NOD mouse has 

dendritic cell maturation defects from birth (weaning) onwards. However it also shows similar 

phenomena regarding the IL-10 production as the FDR. A peak of serum levels of IL-10 can 

be found in pre-diabetic animals and such peak was evident in animals with an already 

existing autoimmunity, i.e. a peri-insulitis. The subsequent progression to infiltrative insulitis in 

the NOD mouse is marked by a decrease of serum IL-10 and an increase of serum IFN-γ, i.e. 

a shift towards a Th1 type inflammation (84). These data suggest that in the NOD mouse APC 

might be set at an anti-inflammatory set point compensating an underlying immune 

abnormality leading to infiltrative insulitis.  

We therefore assume that the monocytes and monocyte-derived DC of the FDR of 

DM1 patients (also when they are at low risk) are set at an anti-inflammatory set point 

probably to compensate an underlying immune abnormality already existing in the FDR and 

leading to a proneness for autoreactivity and/ or inflammation. As a sign of such proneness we 
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found an increased sICAM-1 level in the serum of our low risk FDR. Others have also found a 

raised sICAM-1 in FDR of DM1 patients, be it in high risk FDR (85). sICAM-1 has been 

associated with various inflammatory diseases and might indeed represent a proneness for 

inflammation or an already existing inflammatory process in the FDR. However, one has also 

speculated on a tolerogenic role for sICAM-1. Reports show that s-ICAM inhibits the 

proliferation of autoreactive T cells and shifts the immune response to a Th2 cytokine profile 

(15;16;86). As such it would support the view of an anti-inflammatory set-point in our low risk 

FDR.  

We like to construct the following hypothetic model for the development of human 

DM1: 

 

 

1. In healthy individuals there is no elevation of sICAM-1 and the differentiation and 

function of monocyte and monocyte-derived dendritic cell functions and cytokine production 

are normal. 

2. In an early phase of predisposition to diabetes (first degree family members) there is 

an elevation of sICAM-1, as a sign that there is an endothelial dysfunction and a tendency for 

leukocyte infiltration into tissues. Yet monocytes and DC are set at an anti-inflammatory set 
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point and counteract the tendency to develop autoimmunity. The majority of these individuals 

will never progress to pre-diabetes and overt diabetes. 

3. In an early pre-diabetic phase pancreas infiltration starts and some islet-reactive 

antibodies may appear in the circulation. This infiltration is however of Th2 type and not 

destructive to islet cells (the peri-insulitis in the NOD mouse), since monocytes and DC are still 

levelled at an anti-inflammatory set point. A proportion of these individuals will never progress 

to  destructive insulitis. Interestingly in the NOD mouse the generation of DC from precursors 

is already compromised in this phase (actually already from birth onwards). It seems not to be  

the case in the human. 

4. A late pre-diabetic phase. High risk pre-diabetic FDR with positive antibodies to a panel 

of islet antigens show a pro-inflammatory Th1 set point (46;48;51;52;87;88). This would 

indicate that in this phase there is a shift from anti-inflammation characteristic of the early pre-

diabetic phase (high IL-10 production by monocytes, appropriate DC, overrepresentation of 

Th2 cells) to pro-inflammation (low IL-10 production by monocytes, a defective dendritic cell 

function and generation, overrepresentation of Th1 cells). This shift to pro-inflammation would 

eventually lead to the actual islet cell destruction.  

5. Infiltrative insulitis and overt diabetes develops, when monocytes and monocyte-

derived DC have completely broken down and have totally lost their capacity to produce 

sufficient IL-10 and to develop into appropriately functioning and tolerizing DC.  

 
 
A dissimilar pathogenesis of DM1 and autoimmune thyroid disease at the level of the 
immune system? 
 

DM1 and autoimmune thyroid disease (AITD) are both organ specific autoimmune 

endocrine diseases and frequently coexist as so-called APS type 3b. This co-existence is 

reviewed in chapter 2 and is particularly evident in the spontaneous animal models of DM1, 

the NOD mouse and the BB-DP rat. Thyroid autoimmunity is evident in up to one third of 

patients with DM1. Also relatives of DM1 patients, particularly their mothers, have a high 

frequency of AITD.  

The literature on DC and AITD is reviewed in chapter 7. Apart from being involved in a 

physiological regulation of growth and function of thyrocytes, there also exists evidence that 

DC are involved in the early stages of autoimmune thyroid disease. Local thyroid DC start to 

form clusters and increase in number in the very early phases of the thyroid autoimmune 

reaction in the animal models of the disease (89). This local reaction of the intra-thyroidal DC 

is followed by the swelling of the regional lymph nodes and the production of anti-thyroglobulin 
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antibodies in these lymph nodes. Increased numbers of DC are also present in the thyroid 

glands of patients with Graves’ disease and Hashimoto’s thyroiditis (90;91). 

Recently, our group described aberrancies in the expression of adhesion molecules on 

monocytes of AITD patients. Monocytes of such patients could not efficiently be activated by 

adherence to a fibronectin surface: the cells had a lower upregulation of adhesion molecules 

after such adherence as compared to monocytes of healthy controls, and had a reduced 

capacity to rearrange their cytoskeleton (“polarize”) upon chemotactic stimuli. The fibronectin-

adhered monocytes of AITD patients also had a reduced capacity to transform into actively 

moving accessory veiled macrophages (92).  

In this thesis we describe that the expression of CD54 and that of other adhesion 

molecules on non-fibronectin adhered monocytes of patients with AITD was normal. We did 

detect a slight increase in serum sICAM-1.  

With regard to the aberrancies of monocytes and monocyte-derived DC, which are 

characteristic of DM1 (the lower IL-10 production, the hampered differentiation, see before), 

we were unable to find such aberrancies in these cells of the AITD patients. 

This means that the pathogenesis of DM1 and AITD (when occurring as separate 

diseases) differs at the level of the aberrancies in the immune system, although both disorders 

are closely related as organ specific autoimmune diseases and show a tendency to co-occur 

(see Chapter 2). Studies on monocytes and monocyte-derived DC in APS type 3b are 

therefore indicated.  

 

 

Possible therapeutic strategies in DM1 based on the aberrancies described in this 
thesis. 
 

There are a few possibilities to explore interventions in DM1, focussing on a correction 

of the here-described aberrant IL-10 production of DM1 monocytes and the aberrant 

accessory functions of the DM1 monocyte-derived APCs. 

Drug treatment  

The phosphodiesterase inhibitor pentoxifylline inhibits disease development in the BB-

DP rat and NOD mouse model (93;94) and suppresses TNFα production and restores IL-10 

production. It has minimal side effects. A decade ago, pentoxifylline has been used for treating 

new onset DM1 patients and was shown to decrease insulin requirement (95). Hence this drug 

is an interesting drug to be used in prediabetics at the time their monocytes loose the capacity 

to produce high quantities of IL-10.  

Plain IL-10 administration might be effective as well under such circumstances. IL-10 is 

effective in psoriasis (96) and Crohn’s disease (97). A disadvantage of a direct administration 
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Plain IL-10 administration might be effective as well under such circumstances. IL-10 is 

effective in psoriasis (96) and Crohn’s disease (97). A disadvantage of a direct administration 

of the cytokine is its side-effects: transient neutrophilia, monocytosis, thrombocytopenia and T 

cell suppression (98;99). 

Vaccination protocols 

Although the role of the above-described defective APC function is not entirely clear in 

the development of DM1 and autoimmune thyroiditis, it is clear that DC form a potent group of 

cells to modulate immune responses. DC vaccination protocols are presently under design to 

elicit strong immune reactions (46) including autoimmune reactions to eradicate tumors, also 

thyroid malignancies (47). Such vaccination protocols aim at constructing DC potent to elicit 

strong effector immune responses. The present state of the art points to mature DC 

expressing important tumor antigens and producing IL-12 as the most likely candidates to 

perform this job in tumor eradication. 

Since DC are also involved in tolerance induction, it is not a far-fetched idea to 

construct DC to induce or restore tolerance. Very immature steady state DC, expressing 

important auto-antigens and producing IL-10, are thought to be able to perform this job (5). A 

more focused approach is perhaps the vaccination with auto-antigen loaded DC which are in 

addition virus-transfected with IL-10. Since the IL-10 is defective in monocytes and mo-DC of 

DM1 patients, an artificially transient increased IL-10 expression in such cells might perhaps 

restore the counteracting regulatory T cell or Th2 responses. Transient expression is 

important, because continuous elevated production of IL-10 by APC is thought to increase 

susceptibility for infections (100). 

However the differentiation and maturation defects of DC in the BB-DP rat and the 

NOD mouse suggest that there might in fact be no shortage of such very immature DC in 

these animals. The disease preventing effects of the transfer of artificially matured DC in the 

NOD mouse point in another direction, namely that mature DC are more critical to elicit or 

restore tolerance in conditions of endocrine autoimmunity (48, 49). Such DC might be critical 

for a deletion of autoreactive T cells in the periphery via AITCD. 

 

Overall, we conclude that the development and function of monocyte-derived DC of 

DM1 patients are aberrant. One of the causes for the poor development of DC from 

monocytes probably is the low CD54 expression on monocytes of DM1 patients. Although this 

has to be investigated in more detailed experiments and in causal way. Moreover, the 

aberrantly developped DC in DM1 show a poor capability to skew T cells in either a Th1 or 

Th2 type response. 

FDR show almost mirror images of the aberrancies in monocyte-derived DC. We 

hypothesize that the raised soluble ICAM-1 levels are a sign of proneness for inflammation 
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and that the mirror images of the aberrancies in monocyte derived DC serve to compensate 

for the pre-existing vulnerability for autoimmunity. When a FDR decompensates from an anti-

inflammatory setpoint to a pro-inflammatory setpoint, the pathway to excessive insulitis and β 

cell destruction is taken. Treatments with anti-inflammatory agents, such as IL-10, could not 

only be usefull strategies in diabetic patients, but also FDR under such circumstances as 

preventative strategies. 

The aberrancies found in DC of DM1 patients were not detectable in autoimmune 

thyroiditis patients. However, disturbances have been found in monocytes of AI thyroididtis 

patients, although not as outspoken as in DM1 patients. 
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SUMMARY 
 

 

Type 1 diabetes mellitus (DM1) and autoimmune thyroid disease (AITD) are organ 

specific autoimmune diseases in which the immune system is directed against the β cells and 

the thyrocytes respectively. The etio-pathogenesis of organ-specific or endocrine autoimmune 

diseases is complex, polygenic and heavily dependent on various environmental influences. 

The exact etiology of these diseases remains to be clarified, the pathogenesis is strongly 

associated with autoimmune phenomena. None of current treatment approaches provide a cure, 

but represent replacement therapies.  

In Chapter 2 we review the literature on the co-existence of DM1, AITD and 

autoimmune gastritis (AIG). These diseases often co-occur forming the so-called autoimmune 

polyendocrine syndrome (APS) type 3. In our own large study on DM1 families, we indeed 

showed a clear association between the presence of DM1 and AITD. We were not able to 

show an association between DM1 and AIG, probably due to the small numbers of subjects.  

Overall, it was concluded that thyroid autoimmunity and gastric autoimmunity are more 

frequent in patients with DM1 and in relatives of DM1 patients, particularly females. Therefore, 

screening DM1 patients and their relatives (particularly females) for thyroid (and to a lesser 

extent gastric) autoimmunity is recommended. If positive, excess iodine should be avoided 

and thyroxine treatment considered. There is not sufficient support to recommend screening 

for islet Ab in patients or relatives of patients with autoimmune thyroiditis and autoimmune 

gastritis. 

In Chapter 3 we discuss the usefulness of animal models for the understanding of 

precisely the very early stages of endocrine autoimmune diseases. To prevent the outbreak of 

endocrine organ-specific autoimmune diseases, detection of individuals at risk for such 

diseases and development of intervention strategies are crucial. An exquisite knowledge of 

the early stages of these diseases is therefore required. Experiments in human subjects at risk 

to develop such diseases can only be carried out to a limited extent. Animal models might be 

helpful in this problem. From the studies into the early stages of the pathogenesis of endocrine 

organ-specific autoimmune diseases in these animal models we have been able to construct a 

general blueprint for the etio-pathogenesis, which might lead the way for human studies. The 

animal models show various pre-autoimmune aberrancies in their target glands, T cells, 

macrophages (MФ) and dendritic cells (DC). The aberrant target cells, T cells, DC and MФ need 

to interact abnormally before the autoimmune disease can fully develop. The various 

aberrancies are partly genetically determined by a variety of separate genes (particularly MHC-

related genes and other immune genes) and partly environmentally induced (e.g. via viruses, a 
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high iodine diet, and experimental manipulations). In this thesis we have concentrated on 

aberrancies in the monocyte and monocyte-derived DC compartment in humans with endocrine 

organ-specific autoimmune diseases, which are similar autoimmune abnormalities in the animal 

models already occurring in the pre-diabetic phase.  

In Chapter 4 we describe the role of monocyte and DC in endocrine organ-specific 

autoimmune diseases. The function of DC and their development from precursors have been 

shown defective in the animal models of DM1 and AITD as well as in DM1 patients. In this 

study we confirm that the generation of DC from DM1 monocytes results in populations of DC 

that are relatively immature. We also found that the expression of the adhesion molecules was 

considerably decreased on monocytes and DC of DM1 patients and that these molecules are 

involved in the differentiation and maturation of DC. We conclude that the low expression of 

CD54 on DM1 monocytes and immature DC likely plays a role – at least in part - in their defect 

to mature into fully potent APC. The aberrancies in adhesion molecule expression on 

monocytes and DC were not found in metabolic controls (DM2 patients) and patients with 

autoimmune thyroid disease (AITD). 

In Chapter 5 we analyse the cytokine production profile of monocytes and monocyte-

derived DC of 22 DM1, 14 DM2, 21 AITD patients and 34 healthy controls and we showed that 

DM1 patients have an aberrant IL-10 / IL-12 production profile. Monocytes of DM1 patients 

had a lower capability to produce IL-10. DC were poor producers of IL-12. Autologous T cells 

stimulated by such DC were poor proliferators and poor producers of both Th1 type cytokines 

(IFN-γ) and Th2 type cytokines (IL-13 and IL-10). These results are compatible with the view 

that monocytes are in a pro-inflammatory state in DM1. The generation of DC from such 

monocytes is hampered and results in DC with an aberrant immature marker pattern (see also 

Chapter 4) and a low IL-12 production capability. Such aberrant DC are unable to stimulate T 

cells properly. We argue that such DC are in particular unable to induce tolerance towards 

autoantigens.  

In Chapter 6 we investigate whether the aberrancies we found in DM1 patients were 

also already detectable in 13 first degree relatives of DM1 patients. These relatives were 

except for one case all islet cell antibody negative. Like DM1 patients the relatives had 

increased serum levels of sICAM-1, yet the FDR showed a normal monocyte CD54 

expression, an increased monocyte IL-10 production, an enhanced DC development from 

monocytes and these DC had an increased stimulatory capacity of T cell proliferation. Thus 

this study showed various aberrancies in the monocytes and DC of the FDR, which were 

mirror images of those found in overt DM1 patients. We argue that such aberrancies represent 

an anti-inflammatory and tolerogenic set point of the immune system in FDR of DM1 patients 

that is instrumental to counteract already existing harmful deviations in the immune system 

that heighten the risk for islet autoimmunity.  
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In Chapter 7 we review the literature on the role of DC in the development of AITD. DC 

are normally present in the interstitium of thyroids and such DC regulate the growth and 

hormone production of thyrocytes. DC increase in number and form homotypic clusters in the 

very early phases of the thyroid autoimmune response in the animal models of endocrine 

autoimmune disease and in the thyroids of Hashimoto and Graves’ patients. Therefore DC are 

the most likely candidates for the initiation of the thyroid autoimmune response. Unlike the 

situation in DM1 patients, however, the differentiation of DC from precursors is normal in 

patients with AITD as well as their monocytic IL-10 production. Some minor abnormalities in 

monocyte functioning and functioning of monocyte-derived APC have been detected 

previously in AITD patients. Apparently monocytes and monocyte-derived APC of DM1 

patients show a wider spectrum of aberrancies as compared to monocytes and monocyte-

derived APC of AITD patients. 

In Chapter 8 the results of chapter 2-7 are integrated and discussed to try to 

understand the etio-pathogenesis of organ specific autoimmune diseases in relation to the 

found aberrancies of monocyte and DC. Also suggestions for future therapies based on a 

correction of the described aberrancies are given. 
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SAMENVATTING VOOR NIET INGEWIJDEN 
 

 

Type 1 diabetes mellitus (DM1) en autoimmuun schildklierziekten (AITD) zijn 

chronische orgaan specifieke autoimmuunziekten. Autoimmuunziekten zijn ziekten waarbij 

het afweersysteem van een individu zich tegen lichaamseigen cellen of stoffen keert en 

waardoor die cellen/ stoffen niet goed meer functioneren. DM1 en AITD onstaan als een 

groot deel van de insuline producerende cellen (β-cellen) in de alvleesklier en respectievelijk 

het schildklierweefsel gedestrueerd zijn. De behandeling is levenslang en bestaat uit 

toediening van hormoonvervangers. De complicaties en gevolgen van deze ziekten zijn 

ernstig. Tot op heden zijn er geen curatieve therapieën voorhanden en is het niet bekend 

waarom het afweersysteem zich tegen deze lichaamseigen cellen keert. In dit proefschrift  

beschrijven we de rol van het afweersysteem bij het ontstaan van deze ziekten.  

Het is bekend dat AITD vaak voorkomt bij DM1 patiënten. In hoofdstuk 2 hebben we 

onderzocht of dat ook geldt voor eerstegraads familieleden van DM1 patiënten. We hebben 

in een groot cohort van bijna 700 eerstegraads verwanten de aanwezigheid van AITD en 

atrofische gastritis (een andere orgaan specifieke autoimmuunziekte) bekeken. Atrofische 

gastritis is het gevolg van een destructieve autoimmuun reactie tegen de slijmproducerende 

cellen in de maag. We hebben de aanwezigheid van auto-antistoffen bepaald. Auto-

antistoffen zijn eiwitten die specifieke lichaamseigen cellen en stoffen herkennen en ertegen 

gericht zijn en zij komen vaak voor in het bloed van patiënten met autoimmuunziekten. Uit dit 

onderzoek kwam naar voren dat de eerstegraads verwanten van DM1 patiënten frequenter 

auto-antistoffen tegen β-cellen en schildkliercellen hebben dan de algemene bevolking. Zij 

hebben dus naast een verhoogd risico op het ontwikkelen van DM1, ook een verhoogde kans 

op AITD. Bij dit onderzoek was er echter geen verhoogde frequentie van de aanwezigheid 

van auto-antistoffen tegen maagcellen gevonden.  

Er bestaat een correlatie tussen DM1 met het vaker voorkomen van genen die 

verantwoordelijk zijn voor verhoogde gevoeligheid op autoimmuunziekten. Ook in deze studie 

zijn deze verbanden gevonden. Het is dus zinvol om eerstegraads verwanten van DM1 

patiënten op auto-antistoffen tegen schildkliercellen te screenen. Indien deze auto-antistoffen 

aanwezig zijn, dient de schildklierfunctie bepaald te worden. Zo kan AITD vroegtijdig herkend 

en behandeld worden. 

Omdat er bij de mens nog geen veilige niet invasieve methoden voor handen zijn om 

de initiatie en het verloop van de autoimmuunziekten te bestuderen, wordt er veel gebruik 

gemaakt van proefdiermodellen. In hoofdstuk 3 beschrijven we de verschillende 

proefdiermodellen voor DM1 en AITD. Uit deze modellen blijkt dat reeds in de vroege fase 
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van de ziekten er afwijkingen zijn in de betreffende organen. Ook zijn al afwijkingen te vinden 

in de afweercellen (o.a. dendritische cellen (DC), macrofagen en T cellen). Deze afwijkingen 

kunnen zowel genetisch bepaald zijn als door omgevingsfactoren uitgelokt worden. De 

modellen hebben elk hun voordelen, maar ook nadelen voor de interpretatie naar de mens. 

Elk model kan staan voor de pathogenese van elke patiënt afzonderlijk, en meerdere 

modellen kunnen in een patiënt voorkomen. De extrapolatie van de uitkomsten van deze 

studies dient dan ook met uiterste voorzichtigheid te geschieden. 

In dit proefschrift is de nadruk gelegd op de (vroege) afwijkingen in DC in DM1 en 

AITD. DC zijn de belangrijkste afweercellen voor het opgang zetten van een goede en 

effectieve afweerreactie. DC kunnen bacteriën en virussen opnemen, deze op een zodanig 

modificeren en presenteren dat deze herkend kunnen worden door andere afweercellen (met 

name T cellen). Daarnaast zijn DC ook essentieel voor het herkennen en tolereren van het 

eigen lichaam. DC zorgen voor een goede aansturing van T cellen. In proefdiermodellen voor 

DM1 en AITD zijn er aanwijzingen gevonden van gestoorde functies van DC waardoor de T 

cellen de lichaamseigen cellen aanvallen en zodoende  de ziektebeelden kunnen ontstaan. In 

hoofdstuk 4 en 5 bestuderen we de DC en haar voorlopercel, de monocyt, op afwijkingen in 

DM1 en AITD patiënten. We vonden dat monocyten van DM1 patiënten minder 

adhesiemoleculen op hun celoppervlakte hebben. Dit heeft gevolgen voor de adhesie en 

migratie van cellen uit de bloedbaan naar de plaats van onsteking. Bovendien kan het 

gevolgen hebben voor de ontwikkeling van een monocyt tot DC en hun functies. DC van DM1 

patiënten zijn minder goed ontwikkeld waardoor zij niet in staat zijn een goede afweerrespons 

te geven cq. T cellen te stimuleren. Tevens kunnen monocyten van DM1 patiënten minder 

interleukine (IL)-10 produceren, een ontstekingsremmende eiwit. IL-10 productie door deze 

cellen is belangrijk voor het induceren en behouden van tolerantie. Deze afwijkingen in DC 

en monocyten kunnen (mede) verantwoordelijk zijn voor het ontstaan van DM1. In AITD 

patiënten waren hierin geen afwijkingen gevonden.  

Vervolgens onderzoeken we in hoofdstuk 6 in een pilotstudie of ook eerstegraads 

verwanten afwijkingen hebben van hun DC en monocyten. Deze verwanten hebben geen 

auto-antistoffen tegen β-cellen en eerder onderzoek heeft uitgewezen dat dan het risico op 

het ontwikkelen van DM1 laag is. Hun DC zijn zeer goed ontwikkeld en hebben een hoge 

productie van IL-10, wat wijst op een afweeronderdrukkende reactie. Deze verwanten 

zouden, alhoewel ze genetisch gevoelig kunnen zijn om DM1 te ontwikkelen en zich aan 

dezelfde omgevingsfactoren blootsstaan als hun diabetische familielid, door de juiste 

afweeronderdrukkende reactie de ziekte niet ontwikkelen. Bij verwanten mét auto-antistoffen 

tegen β-cellen (hoog risico op het ontwikkelen van DM1) moet nog onderzocht worden of 

deze afweeronderdrukkende reactie aan het falen is. Bij deze personen zouden preventieve 
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therapieën toegepast kunnen worden. Het toedienen of stimuleren van de IL-10 productie is 

logischerwijs een mogelijke interventie. 

In hoofdstuk 7 beschrijven wij wat in de literatuur reeds bekend is over DC in AITD. 

Alhoewel wij geen duidelijke afwijkingen in DC en monocyten bij AITD patiënten hebben 

gevonden in hoofdstuk 4, zijn er in de literatuur (voornamelijk proefdiermodellen) toch 

aanwijzingen dat DC een rol spelen in de initiatie van de ziekte. Het is mogelijk dat deze op 

een ander niveau in het systeem plaatsvindt, zoals in de schildklier zelf of volgens een ander 

mechanisme. Het is ook mogelijk dat de afwijkingen alleen in de zeer vroege fase van de 

ziekte aanwezig zijn. Onderzoek hiernaar moeten nog plaatsvinden in eerstegraads 

verwanten van patiënten met AITD.  

Samengevat is in dit proefschrift aangetoond dat DC een (centrale) rol spelen bij de 

initiatie van het autoimmuun proces bij DM1. Bovendien dragen de bevindingen bij aan 

mogelijke strategieën voor behandeling correctie van de defecten van DC bij de verwanten 

van DM1 patiënten. 
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LIST of ABBREVIATIONS  

 

 
AIG  autoimmune gastritis 
AITD  autoimmune thyroid disease 
APC  antigen presenting cell  
APS  autoimmune polyglandular syndrome 
BB DP  biobreeding diabetes prone 
BB DR  biobreeding diabetes resistant 
CD  cluster of differentiation 
cpm  counts per minute 
CTLA-4  cytotoxic T lymphocyte antigen-4 
DC  dendrtitic cell 
DC-SIGN DC-specific ICAM-grabbing non integrin 
ECM  extracellular matrix  
ELISA  enzyme linked immuno sorbent assay 
FACS  fluorescence activated cell sorter 
FCS  foetal calf serum 
FITC  fluorescein isothiocyanate 
FN  fibronectin 
GAD(A)  glutamate decarboxylase (antibody) 
GD  Graves’ disease 
GM-CSF granulocyte macrophage-colony stimulating factor 
GPA  gastric parietal cell antibody 
HLA  human leukocyte antigen 
HT  Hashimoto’s thyroiditis 
ICA  islet cell antibody 
ICAM  intercellular adhesion molecule 
IFNγ  interferon γ 
Ig  immunoglobulin 
IL  interleukin 
IP-10  interferon inducible protein-10 
LFA  lymphocyte function associated antigen 
mAb  monoclonal antibody 
MHC  major histocompatibility complex 
Mφ  macrophage 
NOD  nonobese diabetic 
OS  obese strain 
PE  phycoerythrin 
PERCP  peridin chlorophyl protein  
poly I:C  polyionisinic-polycytidilic acid 
RIP-LCMV rat insulin promoter- lymphocytic choriomeningitis virus 
SAC  staphylococcus aureus cowan strain 1 
SD  standard deviation 
TCR  T cell receptor 
Th  T helper 
TNFα  tumor necrosis factor α 
Tx  thymectomy 
VLA  very late antigen 
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