Long term clinical outcome of chronic hepatitis C patients with sustained virological response to interferon monotherapy

B J Veldt, G Saracco, N Boyer, C Cammà, A Bellobuono, U Hopf, I Castillo, O Weiland, F Nevens, B E Hansen and S W Schalm

Gut 2004;53:1504-1508
doi:10.1136/gut.2003.038257

Updated information and services can be found at:
http://gut.bmjjournals.com/cgi/content/full/53/10/1504

These include:

References
This article cites 34 articles, 5 of which can be accessed free at:
http://gut.bmjjournals.com/cgi/content/full/53/10/1504#BIBL

1 online articles that cite this article can be accessed at:
http://gut.bmjjournals.com/cgi/content/full/53/10/1504#otherarticles

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Drugs: gastrointestinal system (501 articles)
- Cancer: gastroenterological (1219 articles)
- Liver, including hepatitis (954 articles)
- Infection (392 articles)

Notes

To order reprints of this article go to:
http://www.bmjjournals.com/cgi/reprintform

To subscribe to Gut go to:
http://www.bmjjournals.com/subscriptions/
Long term clinical outcome of chronic hepatitis C patients with sustained virological response to interferon monotherapy

B J Veldt, G Saracco, N Boyer, C Cammà, A Bellobuono, U Hopf, I Castillo, O Weiland, F Nevens, B E Hansen, S W Schalm

Background: The key end point for treatment efficacy in chronic hepatitis C is absence of detectable virus at six months after treatment. However, the incidence of clinical events during long term follow up of patients with sustained virological response is still poorly documented and may differ between the Eastern and Western world.

Aims: To assess clinical end points during long term follow up of European patients with a sustained virological response to interferon monotherapy.

Methods: Meta-analysis of individual patient data from eight European protocolled follow up studies of interferon treatment for chronic hepatitis C.

Results: A total of 286 sustained virological responders and 50 biochemical responders (detectable virus but normal alanine aminotransferase levels) were followed up for 59 months. Fifteen sustained virological responders (5.2%) had cirrhosis before treatment and 112 (39%) had genotype 1. The late virological relapse rate after five years of follow up was 4.7% (95% confidence interval (CI) 2.0–7.4) among sustained virological responders; all late relapses occurred within four years after treatment. Among sustained virological responders, the rate of decompensation after five years of follow up was 1.0% (95% CI 0.0–2.3) and none developed hepatocellular carcinoma (HCC). Survival was comparable with the general population, matched for age and sex, the standard mortality ratio being 1.4 (95% CI 0.3–2.5). Clinical outcome of patients with cirrhosis was similar to other sustained virological responders. For biochemical responders, the rates of development of decompensation and HCC during long term follow up were 9.1% (95% CI 0.5–17.7) and 7.1% (95% CI 0–15.0), respectively.

Conclusions: Five year survival of European sustained virological responders was similar to the overall population, matched for age and sex. No HCCs were detected during long term follow up.

Chronic infection with the hepatitis C virus (HCV) can lead to decompensated liver cirrhosis and hepatocellular carcinoma (HCC). However, treatment of hepatitis C is based on surrogate end points, and evaluation of treatment for clinical end points has only slowly been forthcoming due to the slow course of the disease and the small number of clinical events in patients treated for hepatitis C.

Protocolled studies use sustained virological response as the key outcome measure for hepatitis C treatment. This sustained virological response is defined as no detectable HCV-RNA in serum at six months after treatment. However, the incidence of clinical events during long term follow up of patients with sustained virological response is still poorly documented and may differ between the Eastern and Western world.

PATIENTS AND METHODS

Study design
All European centres that had published long term data on patients treated for chronic hepatitis C before 1997 were invited to participate in the protocol and to include patients with response to treatment.

Additional entry criteria were study follow up longer than one year and availability of HCV-RNA data. Nine centres met these criteria. Patients from eight European hepatology units were included in the study.

Patient selection
Data from 343 consecutive chronic hepatitis C patients with response to interferon monotherapy were obtained. All patients had participated in protocolled studies (clear cohort or randomised controlled trial). Data were collected on separate case record forms, one per patient, by the local investigator. The case record forms were sent to the coordination centre in Rotterdam where data were entered into a central database. Before the data were entered, they were checked and, in case of doubt, contact was made with the local investigator.

Data recorded
Information was obtained on demographics (date of birth, sex) and on details of treatment (initial dose, duration of treatment, and total dose of interferon). Virological data (genotype, viraemia) and biochemical data (platelet count, bilirubin, albumin, and transaminase levels) were measured in certified laboratories of participating hospitals and added to the case record form by the local investigator. Centrally, results were corrected for local normal values. Results of pre- and post-treatment liver biopsies were recorded using the HAI score for activity and the Knodell score for fibrosis. All centres used polymerase chain reaction (PCR) methods with a detection limit of 100 copies/ml, except for one centre where PCR with a detection limit of 1000 copies/ml was used before 1998. No late virological relapses were reported from protocolled studies.

Abbreviations: HCV, hepatitis C virus; RNA, ribonucleic acid; MU, mega unit; IFN, interferon; PCR, polymerase chain reaction; HCC, hepatocellular carcinoma; ALT, alanine aminotransferase
Clinical outcome of HCV sustained responders

D Laffage, J Bouma, M van der Poel, J Linssen, I Timmermans, A gemperle
Department of Gastroenterology, General Hospital, Rijinburg, Netherlands

Aim. To determine if sustained virological responders to interferon (IFN) monotherapy can have a lower occurrence of clinical events during five years of follow up.

Methods. Data were obtained for 343 patients treated for chronic hepatitis C. A total of 286 patients had a sustained virological response and 50 had a biochemical response. Seven patients did not fit the entry criterion of HCV-RNA data availability at the end of treatment and after six months of follow up and were excluded from further analysis.

Characteristics of sustained virological responders and biochemical responders are shown in Table 1. Patients had been treated with recombinant interferon α2a, α2b, or natural interferon monotherapy. Patients were treated for an average duration of 39 weeks (range 11–96). Patients with genotype 1 were treated longer (mean duration 41 weeks) than patients with other genotypes; p=0.01) and received a higher total dose of interferon (581 mega units (MU) v 525 MU in other genotypes; p<0.01). Patients with genotype 1 had a biochemical response rate of 52% compared with 22% in other genotypes; p=0.00.

Results. The number of expected deaths and the expected survival probability were calculated based on sex and age ranked mortality among the Dutch general population, which is similar to most European countries. The standard mortality ratio was calculated by dividing the observed number of deaths by the expected number of deaths.

We used multiple regression analysis to identify risk factors for fibrosis progression.

Statistical analyses were performed using SPSS for Windows (SPSS Inc, Chicago, Illinois, USA). All analyses were performed by the Meta-Analysis of Individual Data group in Rotterdam (BEH, SWS, BJV), which is experienced in the conduct of such studies.

RESULTS

Study population

Data were obtained for 343 patients treated for chronic hepatitis C. A total of 286 patients had a sustained virological response and 50 had a biochemical response. Seven patients did not fit the entry criterion of HCV-RNA data availability at the end of treatment and after six months of follow up and were excluded from further analysis.

Characteristics of sustained virological responders and biochemical responders are shown in Table 1. Patients had been treated with recombinant interferon α2a, α2b, or natural interferon monotherapy. Patients were treated for an average duration of 39 weeks (range 11–96). Patients with genotype 1 were treated longer (mean duration 41 weeks) than patients with other genotypes; p=0.01) and received a higher total dose of interferon (581 mega units (MU) v 525 MU in other genotypes; p<0.01). Patients with genotype 1 had a biochemical response rate of 52% compared with 22% in other genotypes; p=0.00.

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>Sustained virological responders</th>
<th>Biochemical responders</th>
<th>p Value (Mann Whitney/ χ²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>286</td>
<td>50</td>
<td>0.04</td>
</tr>
<tr>
<td>Age (y) mean (range)</td>
<td>41 (17–72)</td>
<td>45 (23–72)</td>
<td>0.35</td>
</tr>
<tr>
<td>Male (n %)</td>
<td>169 (59)</td>
<td>26 (52)</td>
<td>0.35</td>
</tr>
<tr>
<td>Follow up (months) mean (range)</td>
<td>59 (12–120)</td>
<td>59 (6–96)</td>
<td>0.99</td>
</tr>
<tr>
<td>Total dose of interferon (MU) mean (SD)</td>
<td>550 (283)</td>
<td>469 (290)</td>
<td>0.05</td>
</tr>
<tr>
<td>Genotype 1 (n %)</td>
<td>112 (39)</td>
<td>21 (42)</td>
<td>0.71</td>
</tr>
<tr>
<td>Cirrhosis (n %)</td>
<td>15 (5.2)</td>
<td>11 (22)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Follow up data were recorded every six months and included alanine aminotransferase (ALT) levels, HCV-RNA, and the occurrence of clinical events (decompensation, HCC, death).

Patients were considered to have decompensation if they showed any of the following symptoms: ascites, bleeding varices, jaundice, or hepatic encephalopathy. Patients were classified as having developed cirrhosis on the basis of ultrasound (nodular contour, diminished hepatopetal flow, collaterals), serology (platelets <80000, albumin <35 g/l, clotting factors<50%), or liver biopsy. Patients were considered to have HCC if the a fetoprotein level was >400 and ultrasound confirmed a focal lesion, or if biopsy proved so. Death was classified as liver related or liver unrelated.

Sustained virological response was defined as no detectable HCV-RNA at the end of treatment and after six months of follow up. Patients with normal ALT levels at these time points, but with detectable HCV-RNA at the end of treatment or six months thereafter, were referred to as biochemical responders. Sustained virological responders were considered to have a late virological relapse if HCV-RNA was detectable on any occasion after six months of follow up, confirmed by either a second PCR or elevation of ALT levels above the upper limit of normal.

Statistical analysis

To evaluate factors of influence on late virological relapse, univariate and multivariate Cox regression analyses were performed. The Kaplan-Meier method was used to evaluate the five year late relapse rate and to determine the rate of occurrence of clinical events during five years of follow up.

At risk: 286 285 270 255 228 171 96 42 15 5 1
At risk: 50 48 47 40 37 26 19 9 6 0

Figure 1 Kaplan-Meier curve showing survival and development of clinical events in sustained virological responders (A) and biochemical responders (B). HCC, hepatocellular carcinoma.
Sustained virological responders
Of 286 sustained responders, 15 patients had cirrhosis before the start of treatment, as determined by liver biopsy.

Two patients presented with decompensated cirrhosis after 30 and 60 months of follow up (fig 1). These patients were hepatitis B surface antigen negative and HCV-RNA negative, and no other risk factors for liver disease were reported. The latter patient died of decompensated cirrhosis. Five other patients died of non-liver related causes. One patient died of lung cancer and two patients died of trauma; another patient died of cardiovascular complications and one patient died of a haemolytic uraemic syndrome.

The standard mortality ratio of sustained responders was 1.4 (95% confidence interval (CI) 0.3–2.5) (table 2), and there was no statistically significant difference in mortality between sustained virological responders and the general population, matched for age and sex (fig 2).

Biochemical responders
Fifty patients had normal transaminase levels at the end of follow up and six months after treatment while HCV-RNA was still detectable. Of these biochemical responders, three patients died during long term follow up, all of liver related causes. The occurrence of decompensation and HCC among biochemical responders was 9.1% (95% CI 0.5–17.7) and 7.1% (95% CI 0–15.0), respectively (fig 1). Biochemical responders were older and had a higher prevalence of cirrhosis. Although there was a trend to a higher standard mortality ratio (corrected for age and sex) in biochemical responders after five years of follow up, the difference did not reach statistical significance (table 2).

Liver histology
One hundred and twenty five patients (110 sustained virological responders and 15 biochemical responders) underwent liver biopsy both before and after treatment. Mean time between these two biopsies was 1.6 years (SD 0.8). Thirty two sustained virological responders (29%) and none of the biochemical responders showed regression of fibrosis. Progression of fibrosis was seen in six sustained virological responders (5%) and in three biochemical responders (20%) (table 3). Baseline characteristics of sustained virological responders and biochemical responders who underwent two biopsies were different, with sustained virological responders being younger (mean 39 (SD 13) v 47 (14) years), having a lower mean pretreatment fibrosis stage (1.75 (1.1) v 2.5 (1.4)), and having a shorter time between the two biopsies (1.5 (0.6) v 2.3 (1.5) years). Therefore, we performed a multiple regression analysis to determine independent risk factors for progression of fibrosis. Fibrosis progression was associated with older age, lower pretreatment fibrosis score, and biochemical response rather than sustained virological response (table 4).

Late relapsers
Twelve sustained responders had a late virological relapse (fig 3). In six patients (50%), late virological relapse was accompanied by an elevation in transaminase levels. Multivariate Cox regression analysis did not show any pretreatment factors to be associated with an increased risk for late virological relapse. None of the late relapers developed decompensation or HCC during follow up.

DISCUSSION
This large European study allows, for the first time, an approximation of the incidence of clinical events during long term follow up of sustained virological responders in Europe. The most important finding is that clinical events are rare in this population, indicating that sustained virological responders have an excellent prognosis.

The largest European study to date describing clinical outcome in sustained responders to interferon treatment did not report any events among 74 patients followed up for 2.7 years.13 Two other European studies, involving seven and 56 sustained responders, also showed no clinical events during 4.6 and 5.2 years of follow up, respectively.14 15 Bruno et al described 32 sustained responders of whom one cirrhotic patient developed HCC.17 Although another HCC has been reported recently in a Western sustained responder,18 these cases seem to be rare and limited to patients with cirrhosis. In the present study, no HCCs occurred during long term follow up.

Table 2 Standard mortality ratios (SMR) for sustained virological responders and biochemical responders.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Deaths</th>
<th>SMR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustained virological responders</td>
<td>286</td>
<td>6</td>
<td>1.4</td>
<td>0.3–2.5</td>
</tr>
<tr>
<td>Biochemical responders</td>
<td>50</td>
<td>3</td>
<td>5.6</td>
<td>0.0–12.6</td>
</tr>
</tbody>
</table>

95% CI, 95% confidence interval.

Table 3 Change in fibrosis according to response to treatment in patients who underwent pretreatment and post-treatment biopsies.

<table>
<thead>
<tr>
<th></th>
<th>SVR</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>110</td>
<td>15</td>
</tr>
<tr>
<td>2 points progression</td>
<td>3 (3%)</td>
<td>1 (7%)</td>
</tr>
<tr>
<td>1 point progression</td>
<td>3 (3%)</td>
<td>2 (13%)</td>
</tr>
<tr>
<td>No change</td>
<td>72 (65%)</td>
<td>12 (80%)</td>
</tr>
<tr>
<td>1 point regression</td>
<td>23 (21%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>2 points regression</td>
<td>9 (8%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

SVR, sustained virological responders; BR, biochemical responders.

Figure 2 Kaplan-Meier curve showing survival of sustained virological responders compared with the age and sex matched general population.

www.gutjnl.com
up. According to several large studies, the yearly incidence of
HCC among Japanese sustained virological responders still
varies between 0.02% and 0.5% per year; the difference in
the incidence of HCC between East and West apparently
persists in conditions without detectable viral replication.

The lowest rates in Japan were reported by Yoshida et al.,
with one HCC among 817 sustained responders during
5.4 years of follow up.23 The highest incidence of HCC
reported among sustained responders in Japan was by
Kasahara et al. who reported five HCCs among 313 sustained
virological responders followed up for three years.24

Fifteen cirrhotic patients were included in this study. Only
two patients with decompensated cirrhosis were reported.
Among untreated cirrhotics, occurrence of clinical events of
38% (28% decompensation and 10% HCC) would be
expected, according to Fattovich and colleagues.27 These
results suggest, but do not prove, a change in the natural
course of chronic hepatitis C. Further studies, including more
cirrhotics, will be necessary to investigate the effect of
treatment on the natural course of chronic hepatitis C.

In this study, sustained virological response was associated
with a decrease in fibrosis score. Similar findings have been
reported for sustained responders to pegylated interferon.28 29

Previous studies have shown that regression of fibrosis can
also occur in biochemical responders and non-responders to
interferon. In common with our study, sustained virological
responders show the highest rate of regression.30 Because of
the large proportion of sustained virological responders that
showed regression of fibrosis and the low incidence of clinical
events in these patients, in our view, non-cirrhotic patients
with a sustained virological response can be regarded as
cured.

A limitation of our study is that all patients had been
treated with interferon monotherapy whereas the current
standard therapy for chronic hepatitis C is pegylated
interferon with ribavirin. This current standard however
dates from 2002 and long term follow up data of peginter-
feron and ribavirin were not available at the time of this
study.31 In general, combination therapy leads to higher
sustained virological response rates32 33 and also the late
relapse rate seems to decrease. In this study with data on
interferon monotherapy, the late relapse rate was 4.7% (95%
CI 2.0–7.4); Camma et al. reported 8.7% in a meta-analysis of
14 trials with interferon monotherapy.34 After four years of
follow up of treatment with interferon and ribavirin, late
virological relapse rates of 3% (95% CI 1.4–4.6) and 1% (95%
CI 0–2.0) have been reported for patients treated for 24 weeks
and 48 weeks, respectively.35 After treatment with pegylated
interferon with or without ribavirin, a late relapse rate of
0.8% was reported after four years of follow up.35 The
possibility of reinfection could not be ruled out in our cohort
as data on risk behaviour and concordance of genotypes were
not available. However, introduction of more sensitive PCR
methods may also have contributed to a decrease in late
virological relapse over time. It is possible that with an
insensitive assay, patients with low viraemia are regarded as
sustained virological responders.

As the late relapse rate seems to decrease with newer
treatment regimens, long term clinical outcomes may be
similar or even better than results obtained with interferon
monotherapy. Therefore, in our opinion, the favourable
clinical outcome of sustained virological responders is likely
to hold true in the era of pegylated interferon and ribavirin.

In conclusion, the long term clinical outcome of patients
with a sustained response to interferon is favourable. Five
year survival of European sustained virological responders
was similar to the general population, matched for age and
sex, and no HCCs were detected during long term follow up.

ACKNOWLEDGEMENTS

The input of patient data by the following members of the Benelux
Study Group on Hepatitis C was greatly appreciated:
M Adler, Erasme University Hospital, Belgium; R Breenard, Hospital
St Joseph, Brussels, Belgium; JT Brouwer, Reineer de Graaf Hospital
Group Delft, the Netherlands; J Delwaide, University Hospital Liège,
Belgium; A Elewaut, University Hospital Gent, Belgium; ML
Hauettee and H Reynaert, Academic Hospital AZ-VUB, Brussels,
Belgium; MHGM Houben, Rode Kruis Hospital Den Haag, the
Netherlands; JBMJ Jansen, Academic Hospital St Radboud
Nijmegen, the Netherlands; PP Michielsen, University Hospital
Antwerp, Belgium; C J Mulaer, Rijnstaten Hospital Arnhem, the
Netherlands; HJC Weegink, Academic Medical Center Amsterdam,
the Netherlands; PJ Wismans, Haven Hospital Rotterdam, the
Netherlands.

Table 4 Multiple regression analysis assessing risk factors for fibrosis progression

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Hazard ratio</th>
<th>95% CI Lower</th>
<th>95% CI Upper</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.95</td>
<td>0.92–0.98</td>
<td>0.98–1.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Fibrosis stage pretreatment</td>
<td>0.33</td>
<td>0.16–0.70</td>
<td>0.29–0.40</td>
<td>0.003</td>
</tr>
<tr>
<td>Activity score pretreatment</td>
<td>0.50</td>
<td>0.30–0.86</td>
<td>0.40–0.74</td>
<td>0.008</td>
</tr>
<tr>
<td>Time between biopsies</td>
<td>0.60</td>
<td>0.40–0.89</td>
<td>0.49–1.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Biochemical response to therapy v sustained virological response</td>
<td>0.60</td>
<td>0.40–0.89</td>
<td>0.49–1.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*Higher pretreatment fibrosis stage associated with a smaller chance of fibrosis progression, while older age and biochemical response were with a higher chance of fibrosis progression.

Figure 3 Kaplan-Meier curve showing late virological relapse among sustained virological responders. No late virological relapses were seen after four years of follow up, the maximal delay between the last negative polymerase chain reaction (PCR) and the first positive PCR result being 12 months.
This study was financially supported by a grant from the European Union (Biomed grant No BMMI-CT-92-0755, Eurohep), by an unrestricted grant from Schering-Plough International, Kenilworth, USA, and by the Foundation for Liver Research (SLO) Rotterdam.

....................

Authors’ affiliations
B J Veldt, S W Schalm, Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, the Netherlands
G Saracco, Department of Gastroenterology, Ospedale Molinette, Torino, Italy
N Boyer, Hôpital Beaujon, Clichy, France
C Camma, Cattedra e Unità Operativa di Gastroenterologia, University of Palermo, and IIBM, Consiglio Nazionale delle Ricerche, Palermo, Italy
A Bellabuono, Ospedale Generale di zona “San Giuseppe”, Milan, Italy
U Hopf, Charité, Campus Virchow-Klinikum Universitätsmedizin, Berlin, Germany
I Castillo, Fundacion Estudio Hepatitis Virales, Madrid, Spain
O Weiland, Karolinska Institute, Huddinge Hospital, Huddinge, Sweden
F Nevens, University Hospital Leuven, Belgium
B E Hansen, Department of Gastroenterology and Hepatology, and Department of Epidemiology and Biostatistics, Erasmus Medical Centre, Rotterdam, the Netherlands

REFERENCES