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Abstract

Many practical optimization problems are characterized by some flexibility in the prob-
lem constraints, where this flexibility can be exploited for additional trade-off between im-
proving the objective function and satisfying the constraints. Especially in decision making,
this type of flexibility could lead to workable solutions, where the goals and the constraints
specified by different parties involved in the decision making are traded off against one
another and satisfied to various degrees. Fuzzy sets have proven to be a suitable represen-
tation for modeling this type of soft constraints. Conventionally, the fuzzy optimization
problem in such a setting is defined as the simultaneous satisfaction of the constraints and
the goals. No additional distinction is assumed to exist amongst the constraints and the
goals. Thisreport proposes an extension of thismodel for satisfying the problem constraints
and the goals, where preference for different constraints and goals can be specified by the
decision-maker. The difference in the preference for the constraints is represented by a set
of associated weight factors, which influence the nature of trade-off between improving the
optimization objectives and satisfying various constraints. Simultaneous weighted satis-
faction of various criteria is modeled by using the recently proposed weighted extensions

of (Archimedean) fuzzy t-norms. The weighted satisfaction of the problem constraints



and goals are demonstrated by using a simple fuzzy linear programming problem. The
framework, however, is more general, and it can also be applied to fuzzy mathematical

programming problems and multi-objective fuzzy optimization.
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1 Introduction

Optimization isan important activity in many fields of science and engineering. A lot of model-
ing, design, control and decision making problems can be formulated in terms of mathematical
optimization. The classical framework for the optimization is the minimization (or maximiza-
tion) of the objectives, given the constraints for the problem to be solved. Many design prob-
lems, however, are characterized by multiple objectives, where a trade-off amongst various ob-
jectives must be made, leading to under or over-achievement of different objectives. Moreover,
some flexibility may be present for specifying the constraints of the problem. Furthermore,
some of the objectivesin decision making may be known only approximately. I|n management
decisions, for instance, many of the objectives can be expressed approximately in linguistic
terms, but a precise mathematical formulais not available. Also, the decision constraints may
be relaxed in some situations, as long as the decision objectives can be improved. These types
of problems require an extension of the classical optimization and constraint framework in or-
der to deal with the flexibility of the constraints and with the approximate specification of the
objectives.

Fuzzy set theory provides ways of representing and dealing with the flexible or soft con-
straints, in which the flexibility in the constraints can be exploited to obtain additional trade-off
between improving the objectives and satisfying the constraints. Various fuzzy optimization
methods have been proposed in the literature in order to deal with different aspects of soft con-
straints. In one formulation of fuzzy optimization due to Zimmermann [21], concepts from
Bellman and Zadeh model of fuzzy decision making [1] are used for formulating the fuzzy op-
timization problem. In this formulation, fuzzy sets represent both the (aspired) problem goals



and the flexible (soft) constraints. The optimal trade-off amongst the problem goals and the
constraints is determined by the maximizing fuzzy decision, in which the optimal decision is
found by maximizing the simultaneous satisfaction of the optimization objectives and the con-
straints. The asymmetry between the problem goals and the problem constraints disappears in
this formulation, and the fuzzy goals and the constraints are aggregated to a single function
that is maximized. It should be noted that this framework is genera enough to handle crisp
constraints aswell as fuzzy constraints.

In the fuzzy optimization model of Zimmermann, simultaneous satisfaction of the decision
goals and the constraints is sought. No further distinction is made amongst the constraints and
the goals. When there is a possibility to make a trade-off between improving the objective and
satisfying the constraints, however, the user of the optimization algorithm (i.e the designer, the
decision maker, the controller, etc.) can choose to trade a particular constraint or goal prefer-
entially with respect to the other ones. Within the classical framework, constraints of different
importance are distinguished by ordering them hierarchically according to their importance and
to admit them into the optimization problem one by one, often by first starting with the most
constraining set and then gradually removing the constraints one at atime. In addition to the
more conventional hierarchical ordering approach, fuzzy optimization admits another model for
dealing with the preference structure imposed on a constraint set by introducing weight factors
that represent the importance of the constraints for the optimization problem. Since there is
no distinction between the fuzzy goals and the fuzzy constraints in Zimmermann’s formulation
of fuzzy optimization, the weight factors can also be applied to the optimization objectives.
This report extends Zimmermann’'s fuzzy optimization framework with weighted aggregation
of the fuzzy objectives and the fuzzy constraints. Within the extended framework, the trade-off
amongst the objectives and various constraints can be influenced by changing the associated
weight factors. Recently proposed weighted extensions of fuzzy t-norm operators are used for
the aggregation [7].

The proposed framework is rather general, and it can be applied to various fuzzy non-linear
programming problems with multiple objectives and constraints. In this article, the application
of the framework to fuzzy linear programming is considered. The main concepts areillustrated
by using a small optimization problem as an example. It is assumed that a general optimization

algorithm is available and has been implemented for performing the final (crisp) optimization



in order to obtain the optimal solution to the fuzzy optimization problem. Various well-known
algorithms with different complexity can be used for this purpose. Examples are interior-point
methods, sequential quadratic programming, exhaustive search or even heuristic search. For the
working examplein this report, an optimization algorithm based on Nelder and Mead's simplex
minimizer [14] is used.

The outline of the report is as follows. Section 2 describes the general fuzzy optimization
framework used in the remainder of thisreport. Section 3 discusses the application of the fuzzy
optimization framework of Section 2 to fuzzy linear programming problems. Zimmermann's
solution to fuzzy linear programming is presented. Weighted aggregation of fuzzy setsisintro-
duced in Section 4. Popular methods for weighted fuzzy aggregation are considered as well as
proposals based on recent devel opmentsin the field of fuzzy aggregation. The weighted aggre-
gation methods considered are used in Section 5 for formulating the weighted combination of
constraints within the fuzzy linear programming framework. The proposed formulationisillus-

trated in Section 6 by presenting a small example. Finally, conclusions are given in Section 7.

2 Fuzzy Optimization

Fuzzy optimization isthe name given to the collection of techniquesthat formulate optimization
problems with flexible, approximate or uncertain constraints and goals by using fuzzy sets. In

general, fuzzy sets are used in two different waysin fuzzy optimization.
1. To represent uncertainty in the constraints and the goals (objective functions).
2. To represent flexibility in the constraints and the goals.

In the first case, fuzzy sets represent generalized formulations of intervals that are manipulated
according to ruleswhich are extensions of the interval cal culus by using the a-cuts of fuzzy sets.
In the second case, fuzzy sets represent the degree of satisfaction of the constraints or of the
aspiration levelsof the goals, given the flexibility in the formulation. Hence, the constraints (and
the goals) that are essentially crisp are assumed to have some flexibility that can be exploited
for improving the optimization objective. This framework is suitable for the representation of
interaction and possible trade-off amongst the constraints and the objectives of the optimization,

as discussed in this report. Consequently, the remainder of the report considers the latter case,



where the fuzzy sets represent the flexibility in the constraints and the goals. Further, the term
fuzzy optimization also refers to a formulation in terms of the flexibility of the constraints.
The general formulation for fuzzy optimization in the presence of flexible goals and con-

straintsis given by

fuzzy maximize [f;(x), f2(x), ..., fu(X)]
xeX 1
subject to gi(x) <0, i=1,2,...,m. @

In (1), the tilde sign denotes a fuzzy satisfaction of the constraints. The sign < thus denotes
that g;(x) < 0 can be satisfied to a degree smaller than 1. The fuzzy maximization corresponds
to achieving the highest possible aspiration level for the goals f;(x) to f,(x), given the fuzzy
constraints to the problem. This optimization problem can be solved by using the approach of
Bellman and Zadeh to fuzzy decision making [1].

Consider a decision making problem where the decision aternativesare x € X. A fuzzy
goa F;,j =1,2,...,nisafuzzy subset of X. Itsmembershipfunction F;(x),x € X, with F} :
X — [0, 1] indicates the degree of satisfaction of the decision goal by the decision alternative
x € X. Similarly, a number of fuzzy constraints G;, 7« = 1,2, ..., m can be defined as fuzzy
subsets of X. Their membership functions G;(x), x € X denote the degree of satisfaction of
the fuzzy constraint GG; by the decision alternative x € X. According to Bellman and Zadeh's
fuzzy decision making model, the fuzzy decision D is defined as the confluence of the fuzzy

goals and constraints, i.e.
D(x) = Fi(x) o Fy(x) 0 ---0 F,(x) 0 G1(x) 0 Go(x) 0 - - - 0 Gy (%), (2

where o denotes an aggregation operator for fuzzy sets. Since the goals and the constraints must
be satisfied simultaneously, Bellman and Zadeh proposed to use an intersection operator, i.e. a
fuzzy t-norm for the aggregation. The optimal decision alternative x* is then the argument that

maximizes the fuzzy decision, i.e.

x* = argmax D(x). 3

xeX

The optimization problem is then defined by

max Fi(X) A+ A Fp(x) AGi(x) A+ AGrp(x). (4)

xeX
Note that both the goals and the constraints are aggregated. Hence, the goals and the constraints
are treated equivalently, which iswhy the model is said to be symmetric.
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Figure 1: Hierarchical aggregation of goals and constraints.

The symmetric model is not aways appropriate, however, since the aggregation of the
goals and the constraints may have different requirements. Often, for example, some trade
off amongst the goalsis allowed or may even be desirable, which may be modeled by an aver-
aging operation. The aspiration level for some goals may then be unreachable, but thisis not a
problem if compensation is allowed amongst the goals. The constraints, however, should not be
violated, i.e. their aggregation must be conjunctive. In that case, the goals and the constraints
can not be combined uniformly by using a single aggregation operator. In the simplest case, the
goals must be combined by using one operator and the constraints must be combined by using
another operator. The aggregated results must then be combined at a higher level by using a
third aggregation operator, which has to be conjunctive (i.e. both the aggregated goals and the
aggregated constraints should be satisfied). This leads to the hierarchical aggregation scheme

like the one shown in Fig. 1. An example of an application of this scheme can be foundin [15].

Clearly, the above formulation of fuzzy optimization is closely related to the penalty func-
tion methods known from classical optimization theory. The aggregated goals correspond to an
overall objective function, which is maximized. The constraints extend this objective function
by using fuzzy t-norms. This approach is similar to the addition of a penalty function to an
optimization objective function in classical optimization. After combining the objectives and
the constraints, the resulting optimization is unconstrained, but possibly non-convex. Further-
more, gradient descent methods may not be suitable for the maximization due to possible and
likely discontinuity in thefirst derivative of the final aggregated function. Derivative-free search
and optimization algorithms such as genetic algorithms [5], simulated annealing [12], branch-



and-bound [2] or Nelder and Mead's simplex algorithm [14] can be used to solve this type of

optimization problems.

3 Fuzzy Linear Programming

Fuzzy linear programming can be viewed as a specia case of the general multiple objective
multiple constraint fuzzy optimization. Let there be n decision variables. The genera fuzzy
linear programming (FLP) problem isthen formulated as

fuzzy maximize c¢’x
x€ER™

subject to Ax<b . (5)

x>0

Zimmermann [21] has considered the fuzzy linear programming problem formulated as a sym-
metric problem in terms of (4). In thisformulation, the vectors ¢ and b as well as the matrix A
have crisp elements. The fuzziness arises because of the definition of fuzzy maximization and
the approximate inequality <. These are defined by the fuzzy goal and the fuzzy constraints
whose membership functions represent the degree to which x € R" satisfies the fuzzy goal or
thefuzzy constraints. The membership function of the fuzzy goal isgivenby F'(c’x), whilethe
membership functions of the fuzzy constraints are given by G;(al x), i = 1,2,..., m, where
al representsrow i of the matrix A. The optimal vector x* isfound by

D(x*) = sup F(c'x) AGi(alx) A -+ A Gp(al x). (6)

x€eR”
Usually, shouldered trapezoidal fuzzy sets are used as membership functions. The fuzzy con-
straints (&; are then defined by their membership function

1 aZTX < b
T pi + b; — aiTx T
Gi(a;x) = T bi < ajx < bi+pi - (7)
T
0 b; + P < aiTx

Next, afuzzy set representing the satisfaction of the aspiration level for the objectiveis specified

as
1 w < cl'x
T CTX—Zl T
F(c'x) = 7 < cf'x < oz (8)
Zy — 2l
0 c'x < z



The coefficients z; and z, are obtained by solving the conventional linear programming prob-

lems
maximize c’'x
subjectto Ax < b , ©)
x>0
and
maximizec’'x
subjectto Ax < b+p , (10)
x>0
respectively, where p is avector of relaxation coefficientsp;, i = 1,2, ..., m.
Let now
ag =c’,
and
1 2 < alx

Zo—po < agx <z ;

0 alx < zy—po
with z, = 2, and p, the relaxation of the aspiration level of the goal c”x. We have then
Go(alx) = F(c'x). The solution to the fuzzy linear programming is now given by the con-
junction of al fuzzy setsas

D(x) = /\ Gi(al'x), (11)

where A isthe minimum operator. The solution isfound by seeking an optimal x* € R" such
that
D(x*) = sup D(x). (12

xeRn?
After introducing an additional variable ), the solution to the optimization (12) can be found

by solving the conventional linear programming problem [21]

maximize A

subjectto c’x > z— (1 — N)pg
aTX < bl—f— 1—A iy i:1,2,...,m
i X < (1=X)p (13)
x > 0
> 0
A< 1



The optimization (12) can not be reduced to the problem (13) when the membership func-
tions are not trapezoidal, or when t-norms other than the minimum are used for the aggregation.
In that case, the optimization must be solved by a more general optimization algorithm that can

deal with nonlinear programming problems such as sequential quadratic programming [4].

4 Weighted Fuzzy Aggregation

Weighted aggregation has been used quite extensively especially in fuzzy decision making,
where the weights are used to represent the relative importance that the decision maker at-
taches to different decision criteria. Almost always an averaging operator has been used for the
weighted aggregation, such as the generalized means [3, 16], fuzzy integrals [6] or the ordered
weighted average (OWA) operators [19]. Consequently, the weighted aggregation of fuzzy sets
has been studied with averaging type of operators. The generalized means extend naturally to
weighted equivalents. The weighted generalized mean operator has been used in many fields,
and it has been studied in the context of fuzzy set aggregation in [3, 9, 10]. The OWA oper-
ators and the fuzzy integrals are inherently weighted operators, which do not need a separate
extension to the weighted case. Applications of these operators have also been reported in the
literature (see e.g. [6, 20]).

The averaging operators are suitable for modeling compensatory aggregation. They are not
suitable, however, for modeling simultaneous satisfaction of aggregated criteria. Since the goal
in fuzzy optimization is the simultaneous satisfaction of the optimization objectives and the
constraints, t-norms must be used to model the conjunctive aggregation. In order to use the
weighted aggregation in fuzzy optimization, weighted aggregation using t-norms must thus be
considered.

The axiomatic definition of t-norms does not allow for weighted aggregation. In order to
obtain a weighted extension of t-norms, some of the axiomatic requirements must be dropped.
Especialy the commutativity and the associativity properties must be dropped, since weighted
operators are by definition not commutative. The commutativity and the associativity require-
ments must be relaxed to hold only in case of equal weight factors, which is a special case of
weighted aggregation.

Weighted aggregation of fuzzy sets by using t-norms has been considered first by Yager



in [17]. He proposed to modify the membership functions with the associated weight factors
before the fuzzy aggregation. The weighted aggregation is then the aggregation of the modi-
fied membership functions. A generalized form of this idea leads to the weighted aggregation
function [18]

D(x,w) =T[I(G1(x),wy), [(Go(x),ws), ..., [(Gp(x),wn)], (14)

where w isavector of weight factorsw; € [0,1],7 = 1,2,. .., m associated with the aggregated
membership functions G,(x), T"isat-norm and I isafunction of two variables that transforms
the membership functions. Usually, the power-raising method is used for the transformation

and the minimum operator for the t-norm, so that the aggregation function becomes

m

D(x,w) = \ [Gi(x)]" (15)

=1

The weighted t-norm aggregation (14) and its specia cases like (15) have long been moti-
vated on intuitive grounds [17], and an axiomatic framework for the extension of t-norms with
weight factors has been unavailable. Nevertheless, the aggregation function (15) is quoted of -
ten (see e.g. [13]) in various publications regarding fuzzy weighted aggregation, especially in
multicriteria decision making, without regard to mathematical analysis for the requirements re-
garding the implication functions I and the conditions under which they can be applied. Thisis
possibly one reason why weighted aggregation of fuzzy sets has not been considered in fuzzy
optimization previously.

Recently, weighted aggregation of fuzzy sets has been investigated in more detail in a gen-
eralized framework [7, 10, 11], where weighted counterparts of fuzzy t-norms have also been
proposed based on a sensitivity analysis of weighted fuzzy aggregation. The analysis providesa
general mechanism for introducing weight factors into Archimedean t-norms and t-conorms by
considering several requirements that can be imposed on a weighted aggregation operator. The
results are extensions of fuzzy aggregation operators such as the t-norms and the t-conorms to
their weighted counterparts. The analysisindicates, for example, that the power raising method,
apart from the idempotent case, can only be used with strict Archimedean t-norms, but not with
the nilpotent t-norms. An application of the weighted counterparts of Archimedean t-normscan
befoundin[§].

Weighted counterparts of several Archimedean t-norms as studied in [7] are used in this

report. The specific operators considered are the weighted extension of the product t-norm

10



given by

m

D(x,w) = [ [ 1Gi()]"™, (16)
=1
the extension of the Hamacher t-norm given by
1 e
m if Vi, GZ(X) >0
1-— Gz X
D(x,w) = 1+Zwiw (17)
i=1 ¢

and the extension of the Yager t-norm given by

D(x,w) = max (0, 1- i zm:wi(l — Gi(x))'S) , s>0. (18)

Note that the extension (16) of the product t-norm according to the sensitivity based analysisis
the same as the application of (14) with the product operator as 1" and the power raising as 1.

However, the extensions (17) and (18) can not be obtained from (14).

5 Fuzzy Linear Programming with Weighted Aggregation

In fuzzy optimization, the importance of the constraints can be used to indicate which con-
straints should be satisfied preferentially, in a similar fashion to the aggregation of decision
criteriain fuzzy decision making. Since it is possible to satisfy a constraint partially in fuzzy
optimization, the weight factorsindicate to what degree various constraints can be interchanged.
The extension of fuzzy linear programming with weighted aggregation follows naturally from
theformulationin (6). Thefuzzy linear programming problem isformulated in the usual way by
specifying the constraints, the flexibility in the constraints (fuzzy sets representing the allowed
relaxation) and the coefficients for the objective function from which the aspiration level for
the optimization goal is computed. Additionally, the user must now specify a set of weight fac-
tors that indicate the importance of the corresponding constraints or the objective in the fuzzy
aggregation used for fuzzy optimization.

Following the notation in (11), note that there are m + 1 fuzzy sets to be aggregated in the
problem, where m isthe number of constraints. Hence, m + 1 weight factors must be specified.

Furthermore, the membership functions are functions of a}x, i.e. G;(a/x), i = 0,1,...,m

11



with a; € R" and x € R". The solution to the fuzzy linear programming in the presence of

weight factors is then given by the weighted conjunction of all fuzzy sets according to
D(x,w) =T (w,Go(agx),G1(alx),...,Gn(anx)) . (19)
The solution is then found by seeking an optimal x* € R" such that
D(x*,w) = S&@ D(x,w). (20)

In case of using Yager’s approach to weighted fuzzy aggregation, (19) becomes

m

D(x,w) = /\ [Gi(a/x)]"" . (21)

=0
When using the extension of the product t-norm, one obtains

m

D(x,w) = H [Gi(a]x)]™". (22)

1=0

When using the extension of the Hamacher t-norm, one obtains

D(x,w) = ; (23)

and when using the extension of the Yager t-norm, one obtains

D(x,w) = max (0, 1- J Zwi[l - Gi(aiTx)P) . (24)

Note that avalue of s = 2 isused in (24). Thisvalueis aso used in the example in Section 6.

Just like in fuzzy decision making, one of the questions to answer is how to select which
t-norm to use for the aggregation. This question is more genera to fuzzy optimization. The
problem of selecting an aggregation operator is not studied explicitly in this report. We suffice
by applying several t-norms and by observing their influence on the optimization results.

The weight factors represent the relative importance of various constraints and the objective
with respect to one another. The general assumption is that the higher the weight of a partic-
ular constraint, the larger its importance on the aggregation result. Hence, final optimization
result will be closer to the more important constraints. If the objective is more important, the

constraints will be relaxed to a larger degree in order to increase the objective function. The

12



user can specify preferences regarding the outcome of the optimization by changing the weight
factors.

Note that a similar effect can also be achieved by modifying the membership functions that
represent the flexible constraints and the objective. If a constraint should have more influence
on theresult, it can be set tighter by reducing the fuzzy spread of the membership function, i.e.
by reducing the value of p;. However, the analysis of the optimization problem is simplified if
the specification of the constraints can be separated from the specification of the aggregation
to determine the solution. The membership functions then represent the actual constraints im-
posed on the problem. The weight factors represent the preferences of the user regarding the
optimal solution, and they indicate the influence of the constraints on the total aggregation. By
separating the specification of the constraints from the specification of the aggregation, a more
transparent problem specification can be obtained. The membership functions can be modified
to study the influence of the constraint flexibility on the optimization results. The weight factors
can be modified to study the sensitivity of the optimization results to the preference information
articulated by the user for satisfying the different constraints.

One of the issues regarding the use of weight factorsin any problem specification is to find
a common scale for the weight factors corresponding to the constraints and the objective. The
problem is to determine a suitable normalization for the weight factors so that the influence of
the weight factors on different constraints can be compared. Often, the normalization is done

so that the sum of the weight factorsequalsto 1, i.e,,

d wi=1 (25)

This normalization is suitable for weighted aggregation by using averaging operators. Essen-
tially, the increase in the importance of one of the constraints is coupled to a decrease in the
importance of the remaining constraints. Since the sum of the weight factorsis 1, only an aver-
aging result can be obtained. The conjunctive aggregation with t-normsis not compatible with

averaging aggregation, and hence a different normalization is needed. We propose to use
\ wi=1 (26)
=0

as the normalization, where v denotes the maximum operator. Equation (26) has the desired

property that the influence of a constraint diminishesto zero as the corresponding weight factor

13



decreases to zero, while the influence of a constraint can not increase arbitrarily due to the

maximal value.

6 Example

In this section, weighted fuzzy linear programming is illustrated by using a small fuzzy lin-
ear programming problem based on an example from [13]. The solution of the fuzzy linear
programming problem is studied by using the t-norms from Section 5 for aggregation. The

influence of different weighting is studied for three scenario’s.
1. With equal weigh factors.
2. With unequal weight factors with preference for one of the constraints.
3. With unequal weight factors with preference for increasing the objective function.

Consider acompany that makes two products, P; and P,. Product P; has a k$0.40 profit per
unit, while product P, has a k$0.30 profit per unit. Product P; takes twice as long to produce
than product P,. Thetotal labor time per day is 500 hours, and it may be extended to 600 hours
per day due to special arrangements for overtime work and hiring of external labor resources.
The supply of material is sufficient for at least 400 units of both products, but it may possibly
be extended to 500 units per day. The problem is to determine the number of units to produce
per day of each product P; and P, in order to maximize the total profit.

Let x; and x5 represent the number of units of the products P, and P, respectively. Then

the fuzzy optimization problem isformulated as

fuzzy maximize z = 0.4z + 0.3z
x€R2

subject to T + 9 < 400 materia 2
921 + 15 < 500 labor hours

x>0
Note that
ag =c’ = [04 0.3],
al = [1.0 1.0],

aj = [2.0 1.0].
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Assume that the membership functions for the constraints are defined as piecewise linear

membership functions

1 Zi+zy < 400
Gi(z1 +2) = 500_1(gé+x2) 400 < 1 4+w < 500 (28)
0 500 < @1+ 2
and
1 %) + 25 < 500
o2y +15) = { O (120%1 ) 500 < 9wy ta < 600 - (29)
0 600 < 2x1 + 79

Figure 2 shows the membership functions for the constraints.

We now determine the membership function for the aspiration level of the objective (profit).
The coefficients z;, and z, for the membership function for the objective are determined by
solving (9) and (10), respectively. The solution obtained is z; = 130 and z, = 160, which leads

to the membership function

1 160 < 0.4z, + 0.37,
Tx — 130
Go(cTx) = ch 130 < 0.4a; 403z, < 160 - (30)

The relaxation coefficients can be read directly from (28), (29) and (30) asp, = p, = 100, and
po = 30.

By using (13), the optimal solution of the fuzzy linear programmingisobtained for A* = 0.5
asz; = 100 and x5 = 350. The optimal profit 2* is found to be k$145. Note that thisis an

15



intermediate result between z; and z,. The number of labor hours needed per day is 550, and
450 products are produced. Hence, by relaxing the constraints within the allowed flexibility
bounds, the profits have increased from k$130 to k$145. Note that this solution corresponds to
a non-weighted aggregation using the minimum operator according to (11).

Similarly, other aggregation operators can be used to determine the optimal solution. We
now report the result of optimization using the operators (22), (23) and (24) when the weight
factorsare equal, i.ew; = 1,47 = 0,1,2. In al these cases, the optimization is performed by
the simplex algorithm of Nelder and Mead [14], using the optimal solution due to (13) as the
initial estimate. The optimization results are rounded to the nearest integer, since the products
are assumed to be fully completed on each day. When the product operator (22) is used for
the aggregation, the optimal solution isfound to be = = 50 and =5 = 400, which corresponds
to a profit of k$140. The aggregation using the Hamacher operator (23) leads to = = 79,
and x5 = 370 corresponding to z* = 142.6. When the Yager operator (24) isused, x; = 79
and =5 = 364 with z* = 140.8. Observe that all four operators considered make different
trade-offs amongst the constraints and the objective. The minimum operator leads to the largest
profit, but of course it requires also the largest relaxation of the constraints. The minimum
operator relaxes the two constraints to an equal degree (0.5 membership), while the product
operator relaxes only the constraint on the materials. The other two operators are positioned
between the minimum and the product. The optimal solutions with each operator are aso listed
in Table 1. Figure 3 shows the regions within which the trade-off amongst the constraints and
the objective function occurs. Also the contour lines (lines of equal function value) for the
aggregated decision function that is maximized are shown.

Suppose, now, that there is preference for satisfying one of the constraintsto alarger degree.
The employees, for example, may find the constraint on the materials less important than the
constraint on labor hours. After al, making long overtime may not always be desirable, and
it may be difficult to arrange for outside labor resources. Accordingly, let the corresponding
weight factors be w, = 1 (profit), w; = 0.5 (material) and w, = 1 (labor hours). Table 1 shows
the results of optimization with the modified weight factors. Note that the requirement for labor
time has decreased for all the solutions. This corresponds to the fact that the satisfaction of the
labor time constraint is more important to the user. Hence, the trade-off is achieved by relaxing

the materials constraint more. Thisisindeed what one would expect from decreasing the weight
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Figure 3. Regions within which the optimal solution is sought for different fuzzy aggregation

operators.

or importance of the materials constraint. Note that the weight of the materials constraint has
also decreased compared to the weight of the profits. Hence, the influence of the profit on the
overall aggregation has also increased. Thisis visible in the increased profits compared to an
aggregation with equal weight factors. Observe that the Yager operator leads to a comparable
profit as with the minimum operator in the non-weighted case. The relaxation of the labor
constraint is much less, however, which may be a more preferable solution in this case.

The management of the company may want to put more emphasis on the daily profits. Let
this goa be represented by the weight factors wy = 1, w; = 0.25 and ws = 0.5. The optimal
results obtained from different aggregation operators are given in Table 1. As expected, the
profits increase further by relaxing the constraints more. The profit according to the minimum
operator is very close to the profit according to the Yager operator. However, the constraint
on the labor hours is relaxed to a smaller degree with the Yager operator, which may be a
more acceptable solution, given the context. The merits of one trade-off against the other must
be decided upon by the decision maker, but this example shows that the range of fuzzy set
operators together with different weight combinations can be used to explore various trade-off

possibilities. As an illustration, Fig. 4 shows the region within which the Yager operator leads
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Aggregation w, w; ws x; 1x Materiad Labor Profit
Minimum 10 10 10 100 350 450 550 145.0
Product 10 10 10 50 400 450 500 140.0
Yager 10 10 10 79 364 443 522 1408
Hamacher 10 10 10 79 370 449 528 1426
Minimum 10 05 10 76 391 467 543 147.7
Product 10 05 10 33 433 466 499 143.1
Yager 10 05 10 50 417 467 517 1451
Hamacher 10 05 10 60 400 460 520 1440
Minimum 10 025 05 75 402 ar7 552 150.6
Product 10 025 05 36 443 479 515 1473
Yager 1.0 025 05 33 456 489 522  150.0
Hamacher 10 025 05 66 400 466 532 1464

Table 1. Optimal solutions (rounded to the nearest integer) obtained for various aggregation and

weight factor combinations.

to the optimal solution, and the solutions corresponding to different weight combinations. Note
how the optimal solution moves towards to edge of the initial feasible region as the weight of

the labor constraint and the profit increases.

7 Conclusions

An optimization model based on weighted fuzzy aggregation has been proposed for satisfy-
ing the constraints and the objectives in fuzzy optimization. The model is an extension of the
solution framework proposed by Zimmermann [21]. In the proposed model, the user of the
optimization scheme is able to convey preference information for satisfying various goals and
constraints. For example, certain constraints can be more important to satisfy, and hence the so-
Iution should take into account this preference information provided by the user. The difference
in the importance is represented as a set of weight factors. Weighted extensions of t-norms are
used for the aggregation. These operators can model simultaneous satisfaction of the constraints

and the goals, while taking the difference in the importance into account.
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Figure 4. Solutionswhen using the Yager operator for different combinations of weight factors:

X - non-weighted solution, o - more weight on labor constraint, x - more weight on profit.

A main advantage of the proposed method is that it allows the user to concentrate on the
actual limitationsin a problem during the specification of theflexible constraints. The difference
in preference information is then incorporated during the specification of the weight factors.
In this way, a separation can be achieved between the requirements of the problem and the
preferences of the user regarding the preferred solution. In classical optimization, the preference
is specified as a hierarchical ordering of problem constraints that can be removed one by one
if needed. The fuzzy optimization setting provides the user with an aternative method to the

hierarchical ordering of constraints.
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