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A B S T R A C T

Ultraviolet radiation (UVR) is part of the electromagnetic spectrum emitted naturally from the sun or

from artificial sources such as tanning devices. Acute skin reactions induced by UVR exposure are

erythema (skin reddening), or sunburn, and the acquisition of a suntan triggered by UVR-induced DNA

damage. UVR exposure is the main cause of skin cancer, including cutaneous malignant melanoma,

basal-cell carcinoma, and squamous-cell carcinoma. Skin cancer is the most common cancer in fair-

skinned populations, and its incidence has increased steeply over recent decades. According to estimates

for 2012, about 100,000 new cases of cutaneous melanoma and about 22,000 deaths from it occurred in

Europe. The main mechanisms by which UVR causes cancer are well understood. Exposure during

childhood appears to be particularly harmful. Exposure to UVR is a risk factor modifiable by individuals’

behaviour. Excessive exposure from natural sources can be avoided by seeking shade when the sun is

strongest, by wearing appropriate clothing, and by appropriately applying sunscreens if direct sunlight is

unavoidable. Exposure from artificial sources can be completely avoided by not using sunbeds. Beneficial

effects of sun or UVR exposure, such as for vitamin D production, can be fully achieved while still

avoiding too much sun exposure and the use of sunbeds. Taking all the scientific evidence together, the

recommendation of the 4th edition of the European Code Against Cancer for ultraviolet radiation is:

‘‘Avoid too much sun, especially for children. Use sun protection. Do not use sunbeds.’’
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1. Ultraviolet radiation (UVR): sources and physical and
biological properties

1.1. Introduction

UVR is part of the electromagnetic spectrum with wavelengths
100–400 nm; it is emitted by the sun and by artificial sources (e.g.
sunbeds). Historically, this wavelength band has been further
subdivided into three wavelength regions: UVC (100–280 nm),
UVB (280–315 nm) and UVA (315–400 nm). The UV components
reaching the Earth’s surface comprise about 95% UVA and only 5%
UVB [1]. Solar UVC is absorbed by (an intact) stratospheric ozone
layer and hardly reaches the Earth’s surface.

Acute skin reactions induced by UVR exposure are erythema
(skin reddening) – or sunburn with increasing UVA dose – and
acquisition of a suntan triggered by UVR-induced DNA damage.
UVR exposure is the main cause of skin cancer, including cutaneous
malignant melanoma (CM), basal-cell carcinoma (BCC) and
d https://creativecommons.org/licenses/by-nc-nd/3.0/igo/
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Box 1. European Code Against Cancer.

[1_TD$DIFF]EUROPEAN CODE AGAINST CANCER

12 ways to reduce your cancer risk

1. Do not smoke. Do not use any form of tobacco

2. Make your home smoke free. Support smoke-free policies in your

workplace

3. Take action to be a healthy body weight

4. Be physically active in everyday life. Limit the time you spend sitting

5. Have a healthy diet:

� Eat plenty of whole grains, pulses, vegetables and fruits

� Limit high-calorie foods (foods high in sugar or fat) and avoid sugary

drinks

� Avoid processed meat; limit red meat and foods high in salt

6. If you drink alcohol of any type, limit your intake. Not drinking alcohol is

better for cancer prevention

7. Avoid too much sun, especially for children. Use sun protection. Do not

use sunbeds

8. In the workplace, protect yourself against cancer-causing substances by

following health and safety instructions

9. Find out if you are exposed to radiation from naturally high radon levels

in your home; take action to reduce high radon levels

10. For women:

� Breastfeeding reduces the mother’s cancer risk. If you can, breastfeed

your baby

� Hormone replacement therapy (HRT) increases the risk of certain

cancers. Limit use of HRT

11. Ensure your children take part in vaccination programmes for:

� Hepatitis B (for newborns)

� Human papillomavirus (HPV) (for girls)

12. Take part in organised cancer screening programmes for:

� Bowel cancer (men and women)

� Breast cancer (women)

� Cervical cancer (women)

The European Code Against Cancer focuses on actions that individual

citizens can take to help prevent cancer. Successful cancer prevention

requires these individual actions to be supported by governmental policies

and actions.
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squamous-cell carcinoma (SCC). In 2009, the International Agency
for Research on Cancer (IARC) classified solar UVR, as well as UV
radiation used in tanning devices, as carcinogenic to humans
(group 1) [1,2].

In the 4th edition of the European Code Against Cancer (Box 1)
avoiding too much sun and not using sunbeds are recommended in
order to prevent skin cancer. This recommendation is based on
evidence from epidemiological studies, established causal mecha-
nisms, the increasing skin cancer burden in the mostly fair-skinned
European populations, and the modifiability of the risk factor by
individual action, considering also the beneficial effects of sunlight
such as vitamin D production.

1.2. UV index

The amount of solar UV irradiance measured at the Earth’s
surface depends on several factors. The most important ones are
the time of day and season: in summer, about 20–30% of the total
daily amount of UVR is received between 11 am and 1 pm, and 75%
between 9 am and 3 pm (solar time, not local time) [3]. Seasonal
variations in terrestrial UV irradiance at the Earth’s surface,
especially in UVB, are substantial in temperate regions, but less
pronounced closer to the equator. Other important factors
influencing UVR at the Earth’s surface are geographical latitude,
altitude, clouds, surface reflection and air pollution. Annual UV
doses decrease with increasing distance from the equator
(latitude) [3], and in general each 300 m increase in altitude
increases the sun-burning effectiveness of sunlight by about 4% [4].

In order to measure the biological effects of UVR, the concept of
‘minimal erythemal dose’ (MED) has been developed. One unit of
MED has been defined as the lowest radiant exposure to UVR that is
sufficient to produce erythema with sharp margins 24 h after
exposure [5]. In fair-skinned populations there is approximately a
four-fold range in the MED of exposure to UVR depending on the
person’s skin type (Fig. 1) [6]. When the term MED is used as a unit of
‘exposure dose’, a representative value for sun-sensitive individuals
of 200 J/m2 is usually chosen. Measurements of many biological
effects (including erythema) show that UVB is about 103–104 times
more effective in inducing biological effects than UVA.

The UV index (UVI) is a standardised tool intended for the
communication of the UVR intensity to the general public. It
expresses the erythemal intensity of the sun as:

UVI ¼ k � Ebiol

where Ebiol represents the erythemal irradiance (in W/m2) in the
wavelength band 250–400 nm. Introduction of the constant
k = 40 m2/W converts UVI in a dimensionless number which can
be used as a measure of solar UV. A UVI = 1 corresponds to an
erythemal irradiance of 0.025 W/m2.

The clear-sky UVI at solar noon is generally in the range of 0–12
at the Earth’s surface, with values over 11 considered extreme.

1.3. Biological properties of UVR

1.3.1. DNA damage

The main intracellular target for UVR is DNA. A multitude of
photoproducts – the ratio of which depends markedly on UV
wavelength – is formed in DNA and can give rise to pre-mutagenic
lesions. These photoproducts may be formed either via a direct
mechanism (photon absorption in DNA) or via an indirect
mechanism (excitation of other cellular chromophores which
subsequently interact with DNA). Unlike UVB, UVA is only weakly
absorbed by DNA. Induction of DNA damage by UVA occurs
indirectly via absorption of UVA photons by endogenous photo-
sensitisers (melanins, porphyrin, flavin groups) or exogenous
photosensitisers (e.g. azathioprine, an immunosuppressive drug)
[7]. These photosensitisers absorb in the UVA range and release, in
a complex reaction scheme, reactive oxygen species (ROS), giving
rise for example to guanine modifications, including 8-oxo-
guaninine, which is an important pre-mutagenic lesion after
UVA irradiation [7]. UVA can also cause the production of reactive
nitrogen species (e.g. nitric acid and peroxynitrite), which can
cause cellular and DNA damage [8]. UVA predominantly induces
oxidation of purines and of relatively few pyrimidines, as well as a
few (single-)strand breaks in DNA [9–11]. In vitro, UVA also
induces double-stranded breaks in DNA of human keratinocytes
and skin fibroblasts [12,13], rendering an UVA-irradiated genome
prone to the production of chromosomal aberrations. UVA can also
induce epigenetic changes (CpG island promoter methylation,
histone methylation, etc.) in human keratinocytes through chronic
exposure (200 kJ/m2 once a week for 15 weeks), and via these
modifications it can silence for example tumour suppressor p16
expression [14]. UVA can also induce the formation of cyclobutane
– pyrimidine dimers (CPDs) – the most harmful pre-mutagenic
lesions resulting from UVA exposure – in the genome of human
skin cells; CPDs (not oxidative lesions) represent the most frequent
type of DNA damage induced in human skin irradiated with UVA
[15,16].

UVB is >1000 time more effective than UVA in producing CPDs
(via direct photon absorption by DNA), and is therefore the main
source of CPDs in human cells [17]. Irradiation of in vitro human
keratinocytes with UVB (300 J/m2) induces hundreds of thousands
of CPDs in the genome [18]. If these CPDs are not repaired by
cellular repair systems, or if they undergo error-prone repair
during replication, they give rise to C! T or **CC! TT transitions
or tandem mutations, which are considered ‘‘UV signature
mutations’’ [19]. These types of mutation have frequently been
found in tumour suppressor genes and oncogenes (e.g. p53, PTCH,
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Fig. 1. Skin type chart: a numerical classification scheme for the colour of the skin according to the response of the different types of skin to ultraviolet radiation.
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p16, RAS) which play important roles in the aetiology of skin
cancer. For instance, >90% of all SCCs detected in the United States
carry UV signature mutations in the p53 gene [20].

In addition to CPDs, UVB induces a second pyrimidine dimer,
the pyrimidine-(6-4)-pyrimidone photoproduct ((6-4)PP), in a
ratio of 3:1 (CPD:(6-4)PP) [21].

1.3.2. Immunosuppression

UVR, in addition to inducing mutations which may lead to skin
cancer, also causes suppression of certain aspects of the immune
system [1,22]. In human skin all the necessary cellular require-
ments to elicit anti-tumour immunity are present. Therefore, the
development of skin cancer appears to involve failures in or
suppression of immune responses [23]. For this reason, any
suppression of the immune system may facilitate the development
of UV-induced skin cancer. Patients with organ transplants who
receive immunosuppressive medication are very prone to skin
cancer [24].

Exposure to UVB suppresses the immune system by (1)
inducing the production of immunosuppressive mediators, (2)
damaging and triggering the premature migration of the antigen-
presenting cells required to stimulate antigen-specific immune
responses, (3) inducing the generation of suppressor cells, and (4)
inhibiting the activation of effector and memory T cells [1].

For UVA-induced immunosuppression the production of
reactive oxygen species and reactive nitrogen species alters the
redox equilibrium, targeting proteins, lipids and DNA. This altered
equilibrium may modulate immunocompetent cells, resulting in
aberrant behaviour and migration of antigen-presenting cells, the
inhibition of T-cell activation, and generation of suppressor cells
[25]. In experimental systems and in human skin, UVR can induce
immunosuppression locally and systemically [1]. Immunosuppres-
sion by solar-simulated UVR in men has been observed at doses
three times lower than those required for immunosuppression in
women [1,26].

1.3.3. Tanning of the skin

UVR-induced melanogenesis, or tanning, is widely recognised
as the major defence of exposed skin against further UV damage
[27]. Two types of tanning can be distinguished according to their
UV-wavelength dependence: UVA-induced early pigmentation
(immediate pigment darkening, IPD) and UVB-induced delayed
pigmentation (delayed tanning, DT). Tanning provides a limited
degree of protection against subsequent UVR (though not against
the primary mutagenic effects of UV exposure). Tanning induced
by solar-simulated UVR in human skin (skin types II and III)
induces only moderate protection against erythema [28], and
pigmentation delivers a sun protection factor of only about 2 for
CPD induction in persons of skin types III/IV (i.e. it doubles the
amount of UVR exposure necessary to produce a similar effect) and
gives no protection at all for skin types I/II [29,30].

The tanning process appears to involve cross-talk between
keratinocytes and melanocytes, and results in the transfer of
melanin-containing melanosomes into the more superficially
located keratinocytes, where the pigment forms a ‘‘cap’’ over
the sun-exposed surface of the nucleus [31].

However, the stimulus that triggers the tanning pathway [27] is
DNA damage. Therefore, it is very unlikely that tanning can occur
without an increase in carcinogenic risk. The proposed concept of
‘‘safe tanning’’ thus warrants scientific scepticism [32], and tan
should be considered a sign of damaged skin, not a sign of good
health.

1.3.4. Vitamin D production

UVB triggers cutaneous synthesis of pre-vitamin D from
7-dehydrocholesterol [33,34]. This is the body’s principal source
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of vitamin D, because usually only small amounts are obtained
from the diet [35]. It has long been known that vitamin D
deficiency leads to severe bone disorders such as rickets and
osteomalacia. There is also strong evidence that vitamin D
deficiency is associated with secondary hyperparathyroidism,
bone loss, fractures, muscle weakness and reduced calcium
absorption [36,37].

In addition to these well-known positive effects of vitamin D,
there is some debate as to whether increased levels of vitamin D
(and thereby UVR) potentially have a protective effect on the
development of certain types of cancer. The evidence base of such
an effect is still poor, and current evidence from randomised trials
does not support it.

Other beneficial effects of vitamin D on many other conditions
(in addition to cancer) have been suggested: for instance,
cardiovascular disease, metabolic syndrome, diabetes, asthma,
multiple sclerosis, neuropsychological functioning, pregnancy
outcomes, and overall mortality. The evidence for such effects is
weak, and alternative explanations for findings in observational
studies are plausible (e.g. confounding, reverse causation, etc.);
further randomised trials seem warranted [38–41].

The World Health Organization (WHO) and other institutions
request more ‘‘balanced’’ communications when dealing with UVR
protection [42], but more scientific evidence backing up this
request appears to be needed, especially in the context of UV
causing skin cancer. In 2008, a literature review by the IARC
suggested a possible protective role for high vitamin D levels in
colon cancer and adenomas of the colon [43–46]. However, a
protective role for vitamin D supplementation in the development
of colon cancer was not observed in one of the largest
interventional trials on vitamin D supplementation [47].

2. Cancer association with ultraviolet radiation (UVR)

2.1. Carcinogenicity of UVR

UVA and UVB from the sun and from UV-emitting devices (e.g.
sunbeds) are classified as known carcinogens in humans (IARC
Group 1) [1]. This classification is based on experimental and
epidemiological data and their meta-analyses. It was concluded
that there is sufficient evidence in humans for the carcinogenicity
of solar radiation in CM, BCC and SCC. With regards to artificial
sources of UVR, there is sufficient evidence for an increased risk of
CM and of ocular melanoma, and a positive association was
observed between sunbed use and SCC [1].

Skin cancer is the most common type of cancer in fair-skinned
populations around the world [48]. CM accounts for about 5–10%
of all skin cancers, whereas of non-melanoma skin cancer (NMSC)
BCC accounts for approximately 80–85% and SCC for 15–20%. CM
derives from pigment- (melanin-)producing melanocytes, whereas
NMSC develops from epidermal keratinocytes.

Overwhelming evidence from epidemiological studies and
basic science shows that the main risk factor for the three main
types of skin cancer is UVR; most other important risk factors are
related to sensitivity to UVR (sensitive skin type, characterised by
low MED) [1].

Most of the evidence for a causal relationship between solar
radiation and CM comes from descriptive epidemiological and case-
control studies. The main measures of exposure were participant-
recalled sun exposure. ‘‘Intermittent’’ sun exposure – which loosely
equates with certain sun-intensive activities such as sunbathing,
outdoor recreations, and holidays in sunny climates – has shown
moderate to strong positive associations with melanoma, particu-
larly if exposure occurred during childhood or adolescence (see
below). However, ‘‘chronic’’ or ‘‘more continuous’’ exposure, which
generally equates with ‘‘occupational’’ exposure, and total sun
exposure (sum of ‘‘intermittent’’ and ‘‘chronic’’ exposure) generally
showed weak, null or negative associations [1,49].

Recent large meta-analyses indeed show that most risk factors
for CM are associated with UVR, such as the number of acquired
nevi (which are UV-induced), number of atypical nevi, sunburn,
intermittent sun exposure, presence of actinic tumours and total
sun exposure (all statistically significantly related with CM).
Chronic sun exposure seemed not to be associated with overall CM
risk. However, studies which focus more on the anatomical site of
the melanoma show that CM of the head and neck is strongly
associated with actinic keratoses (caused by ‘‘chronic’’ UVR
exposure), whereas CM on the trunk is strongly associated with
acquired nevi (‘‘intermittent’’ UVR exposure) [1,50,51].

About 50–60% of all CMs carry BRAF mutations, leading to
kinase activation in the MAPK pathway inducing proliferation of
melanocytes and impairment of apoptotic response to metabolic
stress. BRAF mutations occur more frequently in CM on intermit-
tent UVR-exposed human skin areas than in CM in more
chronically exposed areas of human skin [52], indicating that
UVR exposure pattern is a determinant of mutation induction.
Although BRAF mutations make up only about 2–3% ‘‘UV signature
mutations’’ [53], they seem to play an important role in the
aetiology of CM. This has been shown in a recent sequencing study
of a melanoma metastasis genome, which demonstrated that
about 70% of single- and di-nucleotide substitutions in the genome
represent C–T, CC–TT ‘‘UV signature mutations’’ [54].

Important risk factors for NMSC are closely related to the
individual sensitivity of the skin to UVR, such as skin type [55,56]),
presence of actinic keratosis [57], a personal history of NMSC [58],
and immunosuppression [59–61].

There is increasing evidence that certain risk factors for CM (e.g.
intermittent UVR exposure and sunburn) are also relevant for BCC
[62,63]; UV signature mutations have been found in the p53, PTCH
and smoothened genes [64,65], all involved in BCC development.
This has been taken as a further indication that UVR plays an
important role in the aetiology of BCC.

SCC appears frequently on sun-exposed areas of the human
body (nose, forehead, ears) and depends to a high degree on total
cumulative sun exposure [49]. Therefore, SCCs are common in
occupationally UVR-exposed populations such as farmers, street
workers, or seamen.p53 mutations are found in more than 90% of
in situ SCC cases [66]. These mutations are predominantly of a ‘‘UV
signature’’ type and occur non-randomly in the p53 gene in so-
called ‘‘mutational hot spots’’, which are located in the gene in
certain positions where nucleotide excision repair of pre-
mutagenic lesions (CPDs) is hindered [67]. According to a well-
described model for SCC development, specific p53 mutations lead
to a pre-cancerous skin lesion (actinic keratosis, AK) where one
allele of the p53 gene is already mutated. This mutation disturbs
the p53-dependent apoptosis of UVR-damaged cells (‘‘sunburn
cells’’) and favours clonal expansion of AK cells [68]. If AK cells are
further exposed to UVR, this can induce mutation of the second p53
allele, leading to a total loss of the ‘‘p53 checkpoint’’ responsible for
cell-cycle control in skin keratinocytes. This leads to uncontrolled
cell division and eventually to the development of invasive SCC
alongside additional gene mutations (e.g., RAS) [69,70]. There is
good evidence that SCC in mouse models as well as in human skin
originates from inter-follicular epidermal stem cells [71] which
might not be able to fully repair UVR-induced damage and
therefore accumulate persistent DNA lesions (CPD retaining basal
cells) [72,73].

2.2. Burden of skin cancer

The incidence of both CM and NMSC has increased steeply in
fair-skinned populations over the past 50 years [74,75]. Worldwide,
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the highest incidence rates are by far those observed in Australia and
New Zealand, where fair-skinned populations are exposed to
intensive UVR [74,75].

According to estimates for 2012, more than 230,000 new cases
of CM occurred globally, of which 100,000 occurred within Europe
[76]. The lifetime risk of CM is highest in New Zealand and
Australia (3.6%) compared to 0.3–1.6% in European countries
[74]. In Europe, incidence rates are particularly high in the Nordic
countries, Switzerland, the Netherlands, the Czech Republic and
Slovenia, while Mediterranean countries, as well as the Baltic and
Eastern European countries, tend to have lower rates [74,76]
(Fig. 2). In most parts of Europe, the incidence rates are higher
among women than among men. Recent findings indicate a
uniformly increasing trend in European countries over the last
decades, with the strongest increases seen among older ages and
with strong North-to-South and East-to-West variation (higher
incidences in the North and East) [74,77]. However, for Norway
and perhaps also France and Iceland indications of a levelling off in
CM incidence rates are observed, most notably in young people
aged 25–44 years. Nonetheless, incidence rates continue to rise
irrespective of age in most European populations, and predictions
suggest a continuation of this trend [74,77].

Incidence rates and time trends are difficult to estimate for
NMSC, as they are often either not registered at all or incompletely
covered by population-based cancer registries [75]. Of the specific
NMSC types, SCC is included in relatively few cancer registries.
Actinic keratosis is considered by some to be in situ SCC, and to our
knowledge is not registered by any population-based cancer
[(Fig._2)TD$FIG]

Fig. 2. Estimates of age-standardised incidence rates (ASR) of malignant melanoma

in 2012: European variation in estimates of national age-standardised cutaneous

malignant melanoma incidence rates (per 100,000) in 2012 (a) among men, and (b)

among women, all ages.

Adapted from Ferlay J, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality

Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency

for Research on Cancer; 2013. Available from: http://globocan.iarc.fr.
registry; registration of BCC is either absent or rather sporadically
registered in population-based cancer registries.

Among European countries, Denmark, Finland, Scotland, Malta
and the Netherlands have extensive population-based registration
of NMSC over long time periods. Age-standardised incidence rates
(ASRs) of primary BCC are estimated to be 77–158 cases per
100,000 person-years in those regions [78]. In Denmark, the BCC
ASR increased from 27.1 to 96.6 cases per 100,000 among women
and from 34.2 to 91.2 cases among men between 1978 and 2007
(world standard population). For the Netherlands, an increase from
34.4 to 157.3 among women and from 40.2 to 164.7 among men
was observed between 1973 and 2009 (per 100,000, European
standard) [79]. The largest relative increases in BCC in both
Denmark and the Netherlands occurred in young women [79,80]. A
recent systematic review of geographical variations and trends
worldwide indicated that the BCC incidence rates have increased at
a similar rate (about 5.5% per year on average) over the past four
decades in mainland Europe [75].

In comparison to BCC, the SCC incidence rates are much lower
[75,80,81]: for instance, 12 cases per 100,000 person-years among
women and 19.1 among men in Denmark (world standard) [80],
13.8 among women and 36.9 among men in Scotland [81], and 20.5
among women and 35.4 among men in the Netherlands (per
100,000, European standard) [82]. However, SCC incidence rates
are increasing rapidly, although the rate of increase varies between
populations [75].

In general, the steep increase in incidence rates of all skin
cancers has been attributed to population changes in lifestyle from
sun avoidance towards sun-seeking behaviour, as well as improved
diagnosis and registration. A more positive attitude towards
sunbathing, more revealing fashion trends (e.g. the bikini in the
1960s), more outdoor leisure activities, and an increasing trend of
holidays spent at sunny destinations has resulted in increasing
both intermittent and cumulative sun exposure, and probably to
increasing skin cancer rates [83,84]. In the 1960s, artificial UV
sources (e.g. tanning devices such as sunbeds) were introduced and
became increasingly popular during the following decades [85,86].

According to recent estimates 55,500 deaths from melanoma
occurred worldwide in 2012, including 22,200 in Europe
[76]. Whilst NMSC represents the most frequent type of cutaneous
cancer, and contributes to the rising morbidity as well as to a
significant economic burden to health services, mortality has
remained consistently low (only <0.1% of diagnosed cases die
because of NMSC) [87,88]. CM is the most serious skin cancer
due its high potential for metastasis [89]. CM mortality rates in
Europe range between 3.6/100,000 in Norway and 0.7/100,000 in
Malta (Fig. 3) [76]. Overall, mortality rates continue to rise in
several European countries as a result of increasing incidence,
particularly in older age groups. However, in some countries – for
instance Scandinavia – mortality rates appear to be already
levelling off [90]. Survival of CM depends on the gender of the
patient (better in women irrespective of stage), histological type,
tumour thickness, body site, and – most importantly – stage at
diagnosis [86]. A steady improvement in survival among CM
patients has been reported over the last decades, with 5-year
survival exceeding 80% in Europe [91]. Improvements in survival
are most likely due to diagnosis at earlier stages of the disease for
which effective treatment is available. Recently important break-
throughs have been made in the treatment of late-stage cases,
which may be reflected in improved survival in the coming years
[92].

2.3. UVR risk in children

Epidemiological findings from several migrant studies into
countries with a high UVI indicate childhood as a susceptible

http://globocan.iarc.fr/
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Fig. 3. Estimates of age-standardised mortality rates (ASR) of malignant melanoma

in 2012; European variation in estimates of national age-standardised cutaneous

malignant melanoma mortality rates (per 100,000) in 2012 (a) among men, and (b)

among women, all ages.

Adapted from Ferlay J, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality

Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency

for Research on Cancer; 2013. Available from: http://globocan.iarc.fr.
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period for UV carcinogenesis. In some studies conducted in
Australia the incidence of and mortality from NMSC was generally
lower in migrants from Northern Europe than in those born in
Australia [93,94]. However, immigrants who arrived during the
first 10 years of life had the same risk of BCC as people born in
Australia. Migration into Australia later in life resulted in a lower
relative risk (of the order of 0.2) compared to that in people born in
Australia. Similar results were obtained in migration studies in
Israel, Australia and New Zealand, showing that persons who
migrated during childhood had the same relative risk of developing
CM as if they were born in the country to which they moved, while
the relative risk decreased if they migrated later in life [95–98]. The
underlying cellular and molecular biological mechanisms for an
increased risk of CM induction at young ages may lie in the fact that
the bulge region of hair follicles hosting melanocytic stem cells are
located deeper (more UV-protected) in the skin in adults (terminal
hair) than in pre-pubertal children (vellus hair) [99,100].

3. Scientific justification for the recommendation

The carcinogenicity of UVR is well documented [1]. UVR is
the predominant cause of all types of skin cancer, which is
the commonest cancer in fair-skinned (i.e. the European) popula-
tions. CM, when diagnosed at a late stage, is a lethal disease, while
early-stage CM and (normally) NMSC have very good prognoses.
However, NMSC sometimes occurs at visible body sites (e.g.
the face), resulting in disfigurement, and carries a substantial
economic burden. In the UK, UVR has been estimated to cause 3.4%
of all cancers in men (90% of all CMs), 3.5% of all cancers in women
(82% of all CMs), and altogether 3.5% of cancers in both sexes
combined (86% of all CMs), NMSC being excluded from this
analysis; the population-attributable fractions are likely to be
comparable for other European countries [101].

UVR is received mainly from natural but also from artificial
sources, and individual exposure to either source can be relatively
easily modified. UVR from the sunlight can be reduced, but cannot
be completely avoided. Moreover, complete avoidance of UVR
exposure should not be the aim, because of the health benefits of
UVR exposure (largely related to vitamin D, see below), and also
the health benefits related to physical outdoor activities [102]. Ef-
fective sun protection methods allow being outdoors without
excessive direct sun exposure. There is scientific evidence that too
much UVR exposure should particularly be avoided during
childhood and adolescence.

Specifically with regard to artificial UVR, a 2012 meta-analysis
including 27 epidemiological studies reported a meta-relative risk
of ever versus never use of sunbeds for CM of 1.20 (95% confidence
interval (95%CI) 1.08–1.34), increasing to 1.59 (95%CI 1.36–1.85) if
the first sunbed use was before the age of 35 years (13 studies)
[103]. A dose–response relationship was seen with a 1.8% (95%CI
0–3.8%) increase in CM risk for each additional session of sunbed
use per year. From this, an estimated 5% of all CM cases in Europe
could be attributable to sunbed use, most of them occurring in
women. In the meta-analysis, relative risk estimates of ever versus
never sunbed use for SCC was 2.23 (95%CI 1.39–3.57) and for BCC
1.09 (95%CI: 1.01–1.18) [103].

UVR from artificial sources (i.e. tanning devices) can be
completely avoided by the individual.

Overall, this leads to the evidence-based recommendation:
‘‘Avoid too much sun, especially for children. Use sun protection.
Do not use sunbeds.’’

4. Individual action for protection

The best protection against natural UVR is to avoid exposure by
staying inside when the UVI is highest or, second best, by seeking
shade. However, even in the shade one receives UVR, depending on
the source of the shade [104,105] and the amount of reflection
from the ground surface. A parasol used on a beach might block
around 40–50% of the UVR [105]; the rest reaches the skin by passing
through the parasol or being reflected by the sand (up to 15%).

Alternatively, the skin can be covered with textiles, clothing and
a (preferably wide-brimmed) hat; loose clothing with long sleeves
made of tightly woven fabrics provides good protection (UV
protection factor >15) [106,107]. Sunglasses with UV protection
shield the eyes against the harmful effects of sunlight [107].

Application of sunscreens is another possibility for reducing the
harmful effects of UVR exposure. Sunscreens have been developed
to prevent sunburn. If sunscreens are properly used, they have
been shown to reduce the risk of developing actinic keratosis (AK)
and NMSCs [108–110]. There was concern that sunscreen use
could increase the risk of CM as it motivates people to stay longer
in the sun, but recent studies show that proper application of
sunscreens, under controlled conditions, reduces the CM risk as
well [111,112]. According to the standards of the Food and Drug
Administration of the United States (US FDA) for sun protection
factor (SPF) testing, proper application requires 2 mg/cm2 of
sunscreen on the body surface to protect the skin [113]. However,
application thickness in ‘‘real life’’ is estimated to be 0.5–1.0 mg/
cm2, which lowers the effective SPF. Sunscreen failures can
therefore stem from insufficient amounts being applied, but also
from infrequent reapplication [114,115]. The American Academy
of Dermatology (AAD) recommends regular sunscreen use to
prevent skin cancer. Selecting a sunscreen with broad band (UVB/
UVA) coverage is vital, and daily use of an SPF30 product is
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Fig. 4. Action spectra for pre-vitamin D3 formation (blue), induction of squamous-

cell carcinomas (SCCs) and cyclobutane-pyrimidine dimers (CPDs) (nearly identical,

green), and erythema induction (red) (taken from [118]).
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recommended. Sunscreens must be applied uniformly, 15–30 min
before exposure. To remain effective, they must be re-applied often
(at least every 2 h), especially when perspiring or swimming
[113]. The vehicle type of the sunscreen determines its durability
and water resistance. The FDA designates sunscreens with intact
photo-protective properties after 20 min exposure to water as
‘‘water-resistant’’ [113].

Exposure to artificial UVR should be completely avoided, unless
under medical guidance. In contrast to what is often advertised by
the tanning industry, the use of sunbeds to increase (or stabilise)
vitamin D serum levels in order to ‘‘stay healthy’’ is not necessary.
The action spectrum for the induction of UV-induced DNA damage,
skin cancer induction and cutaneous vitamin D production are
broadly alike (Fig. 4), with their most effective wavelengths in the
UVB range 290–310 nm. Therefore, no such advertised vitamin D
production is possible without increasing DNA damage and hence
an increased skin cancer risk [116].

Recent findings have shown that the amount of UVR needed to
produce a sufficient level of vitamin D under ‘‘realistic’’ conditions
(e.g. summer sun at noontime, informal clothing such as T-shirt
and short trousers) is limited to 27–38 min, depending on latitude
(30–608 N). However, one should keep in mind that these times are
already long enough to induce erythema for sensitive skin types
(skin type I/II). Times longer than 27–38 min are needed to
produce sufficient vitamin D, if UV exposure does not occur around
noontime or in other seasons of the year. To reach the levels of UVR
exposure sufficient to regulate vitamin D levels one does not have
to spend much time in the sun, or use sunbeds. Short periods
outdoors, perhaps repetitively, are sufficient in most circum-
stances [117,118]. People with vitamin D deficiency should consult
their physician.

Worldwide, several countries have legislative limits or bans
on sunbed use for minors [119]. Regulatory action is also required to
support the individual to take action. For outdoor workers, sun
protection has to be provided, complemented with education on
how and when to apply it, and with instructions to comply with
the safety guidelines. For the general public shady places need to be
provided where people tend to stay in the sun for longer time
periods, in particular in kindergartens and schools.

Overall, scientific knowledge on the excess cancer risk from UVR
and on effective protection measures leads to the evidence-based
recommendation: ‘‘Avoid too much sun, especially for children. Use
sun protection. Do not use sunbeds.’’
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