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Prostate-specific antigen (PSA) is a kallikrein-like
serine protease, which is almost exclusively syn-
thesized in the luminal epithelial cells of the human
prostate. PSA expression is androgen regulated.
Previously, we characterized in vitro the proximal
promoter, and a strong enhancer region, approxi-
mately 4 kb upstream of the PSA gene. Both re-
gions are needed for high, androgen-regulated ac-
tivity of the PSA promoter in LNCaP cells. The goal
of the present study is the in vivo characterization
of the PSA promoter. Three transgenic mouse lines
carrying the Escherichia coli LacZ gene, driven by
the 632-bp proximal PSA promoter, and three lines
with LacZ, driven by the 6-kb PSA promoter, were
generated. Expression of the LacZ reporter gene
was analyzed in a large series of tissues. Trans-
gene expression could not be demonstrated in any
of the transgenic animals carrying the proximal
PSA promoter. All three lines carrying the 6-kb PSA
promoter showed lateral prostate-specific b-ga-
lactosidase activity. Transgene expression was un-
detectable until 8 weeks after birth. Upon castra-
tion, b-galactosidase activity rapidly declined. It
could be restored by subsequent androgen admin-
istration. A search for mouse PSA-related kallikrein
genes expressed in the prostate led to the identi-
fication of mGK22, which was previously demon-
strated to be expressed in the submandibular sal-

ivary gland. Therefore, the 6-kb PSA-LacZ
transgene followed the expression pattern of the
PSA gene in humans, which is almost completely
prostate-specific, rather than that of mGK22 in
mice. In conclusion, the 6-kb promoter fragment
appears to contain most, if not all, information
for androgen regulation and prostate specificity
of the PSA gene. (Molecular Endocrinology 11:
1256–1265, 1997)

INTRODUCTION

Prostate specific antigen (PSA) is a 30- to 33-kDa
glycoprotein, which is almost exclusively produced by
the luminal epithelial cells of the human prostate. It is
one of the predominant proteins secreted into the
prostatic fluid. Serum PSA is a well known marker for
diagnosis and monitoring of prostate cancer (1, 2). The
PSA gene (or KLK3) is a member of the human kal-
likrein gene family. Other members of the kallikrein
gene family are the hGK-1(KLK2) gene, which is also
expressed in the prostate, and the tissue kallikrein
gene (KLK1), which is mainly expressed in the pan-
creas and kidney (3–6). The three genes are clustered
within the 60-kb kallikrein locus on chromosome 19 (7,
8). PSA expression can be regulated by androgens
(9–11). Previously, we and others characterized in vitro
the 632-bp proximal promoter (11, 12) and a strong
440 bp-enhancer region, approximately 4 kb upstream
of the transcription start site of the PSA gene (13, 14).
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Both regions are required for high, androgen-
regulated activity of the PSA promoter in LNCaP cells.
Two functionally active androgen receptor-binding
sites (androgen response elements, or AREs) were
identified in the proximal PSA promoter, at positions
2170 (ARE-I) and 2394 (ARE-II), respectively (11, 12).
The upstream enhancer showed synergistic coopera-
tion with the proximal PSA promoter and was found to
be composed of at least three separate, but cooper-
ating, regulatory regions. At 24.2 kb, the presence of
a functionally active, high-affinity androgen receptor-
binding site (ARE-III) was established (14). Transient
transfection of a 6-kb PSA promoter fragment, con-
taining both the proximal promoter and the upstream
enhancer linked to the luciferase reporter gene, to
prostate and nonprostate cell lines showed largely
LNCaP prostate cell-specific activity (13, 14). The
strong tissue specificity of the endogenous PSA gene
in vivo and the 6-kb PSA promoter fragment in tran-
sient transfection experiments makes the PSA pro-
moter a candidate to deliver therapeutic genes to
prostate cancer cells. To explore this view, the goal of
the present study is the in vivo characterization of the
PSA promoter in transgenic mice.

In mice, the kallikrein gene family is composed of 24
members, half of which are probably pseudogenes
(15). Although structurally related to the PSA gene,
none of the mouse kallikreins can be considered as the
mouse homolog of human PSA, because of the differ-
ent tissue distribution (16). All functional mouse kal-
likrein genes are expressed in the submandibular
gland. Individual genes show additional expression in
pancreas, kidney, spleen, and/or testis. Mouse kal-
likrein expression in the prostate has not yet been
demonstrated. Two members of the closely related rat
kallikrein gene family have been found to be expressed
in both prostate and submandibular gland (17). To
compare PSA promoter specificity in transgenic mice
with the promoter specificity of endogenous mouse
kallikreins, we determined which, if any, of the mouse
kallikrein genes was expressed in prostate.

RESULTS

Activity of the PSA Promoter LacZ Fusion
Constructs in LNCaP Cells

Previously, in transfection experiments, we character-
ized the proximal promoter and a strong 440-bp core
enhancer region, approximately 4 kb upstream of the
transcription start site of the PSA gene (11, 12, 14). Two
functionally active AREs were identified in the proximal
PSA promoter, at positions 2170 (ARE-I) and 2394
(ARE-II), respectively (11, 12). In the center of the 440-bp
upstream enhancer region, a third functionally active
ARE, ARE-III (24200), could be demonstrated (14). Al-
though both the proximal promoter and the upstream
region contributed to maximal androgen-regulated and
cell-specific activity of the PSA promoter, the upstream

enhancer was found to be essential for high activity (12,
14). To investigate the regulatory regions of the PSA
promoter in transgenic mice, two LacZ reporter gene
constructs were designed (Fig. 1A). In these constructs,
the LacZ gene is driven by the 632-bp proximal PSA
promoter (PSA-4-LACH) or by the 6-kb PSA promoter
fragment (PSA-61-LACH). The hormone-induced activity
of the constructs was tested in transiently transfected
LNCaP cells. The PSA-4-LACH construct, cotransfected
with the human androgen receptor expression plasmid
pSVARo, was 7-fold more active in the presence of 1 nM

R1881 than in its absence (Fig. 1A). In the absence of
pSVARo, PSA-4-LACH showed a limited androgen in-
ducibility (1.8-fold). Under these conditions, PSA-61-
LACH activity was induced 600-fold by R1881. These
results are essentially identical to those obtained with
comparable luciferase reporter gene constructs (12, 14).

Identification of Transgenic Mice

Both PSA-4-LACH and PSA-61-LACH were used to
generate transgenic mice. Three PSA-4-LACH and five
PSA-61-LACH founder animals were identified by
PCR of tail DNA with primers PSA-s and LacZ-as (data

Fig. 1. Structure and Activity of the PSA-LACH Constructs
Introduced in Transfected LNCaP Cells

A, Schematic representation of constructs PSA-61-LACH
and PSA-4-LACH. The 440-bp core enhancer region (24380
to 23940) is represented by a hatched box; ARE sequences
are indicated by black bars. The open box represents the
LacZ open reading frame; numbered black boxes indicate
exons 1 and 2 of the mouse protamine gene. Positions of
primers used to identify transgenic animals are indicated
below PSA-61-LACH. B, LNCaP cells were transiently trans-
fected with the PSA-4-LACH and PSA-61-LACH constructs
or with PSA-4-LACH plus the androgen receptor expression
plasmid as described in Materials and Methods and Ref. 14.
Incubation with the plasmid precipitate was for 4 h. In indi-
cated cases, cells were incubated with 1 nM R1881 for 24 h.
Induction values are given at the top of the bars.
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not shown). Transmission of the transgene to their
offspring was demonstrated for three PSA-61-LACH
and all three PSA-4-LACH transgenic lines. One PSA-
61-LACH male founder did not transmit the transgene;
another PSA-61-LACH male founder was infertile.
Comparison of the hybridization signals of the trans-
gene and the endogenous mouse protamine-1 gene
on Southern blots of KpnI-SacI digested genomic DNA
revealed the presence of 4, 2, and 38 copies of the
transgene in lines PSA-61 TG2, TG28, and TG31, re-
spectively (Fig. 2A, lanes 4–6). PSA-4 TG1, PSA-4
TG2, and PSA-4 TG6 carried approximately 150, 100,
and 126 copies of the transgene (Fig. 2A, lanes 1–3).

Note that the endogenous mouse protamine-1 gene
showed a restriction fragment length polymorphism,
resulting in 6- and/or 8-kb hybridizing fragments (Fig.
2A, lanes 7, 8).

The 6-kb, but Not the 632-bp, PSA Promoter
Directs Lateral Prostate-Specific Transgene
Expression

To determine the expression pattern of the transgene,
male mice were killed at 8 to 16 weeks of age, and
b-galactosidase activity was measured in 26 different
tissue lysates (see Materials and Methods). Thorough

Fig. 2. Characterization of Transgenic Mouse Lines
A, Southern blot analysis of the KpnI-SacI-digested genomic DNA of PSA-4-LACH (lanes 1–3) and PSA-61-LACH (lanes 4–6)

transgenic (TG) lines. Lane 7 contains DNA of a control mouse. DNA (10 mg/lane) was hybridized with a 175-bp mouse protamine
cDNA probe (see Materials and Methods). By comparison of the intensity of the endogenous (see arrowheads) and transgene
bands, the number of transgene copies present in the individual transgenic lines was determined (numbers on top of each lane).
For PSA-4-LACH transgenic animals, two different exposure times of the same Southern blot are shown (a 4-h exposure of the
transgene-hybridizing fragment and a 40-h exposure of the endogenous mouse protamine gene). Note that the endogenous
protamine fragment is polymorphic, leading to a hybridizing fragment of 6 or 8 kb. B, Liquid b-galactosidase assay of tissue
extracts of 10-week old PSA-61-LACH TG28 male mice. SMG, Submandibular gland; SLG, sublingual gland; PG, parotid gland.
C, b-Galactosidase activity in lateral prostate lysates of PSA-4-LACH TG 1, 2, and 6 and PSA-61-LACH TG 2, 28, and 31 animals
as compared with activity in control mice. D, RT-PCR analysis of LacZ/protamine transgene mRNA in RNA obtained from dorsal
(DP), lateral (LP), ventral (VP), and anterior prostate (AP) and SMG of PSA-61-LACH TG 28 male mice. Experimental details are
described in Materials and Methods. The lower panel shows the result of RT-PCR analysis of ubiquitously expressed glyceral-
dehyde-3-phosphate-dehydrogenase (GAPDH) mRNA. PCR products were separated over a 2% agarose gel.
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analysis of all three PSA-61-LACH transgenic mouse
lines showed exclusive b-galactosidase activity in ex-
tracts from lateral prostate. In all other tissues, includ-
ing the dorsal, ventral, and anterior prostate lobes,
LacZ expression was undetectable (as shown in Fig.
2B for PSA-61 TG28). b-Galactosidase activity could
also not be detected in extracts from tissues of virgin
or lactating female transgenic mice (data not shown).
b-Galactosidase expression could not be found in any
of the tested tissues of PSA-4-LACH mice (data not
shown, and Fig. 2C). For PSA-61-LACH, transgene
activity was independent of the number of integrations
because b-galactosidase activity in the lateral prostate
was comparable, despite the difference in copy num-
bers (4, 2, and 38, respectively). The level and speci-
ficity of transgene expression appeared independent
of the integration site.

To screen for the presence of low levels of trans-
gene expression in the different prostate lobes and
submandibular gland, a known expression site of
mouse kallikreins, we performed RT-PCR with trans-
gene cDNA-specific primers, and GAPDH as a control
(see Materials and Methods). Again, transgene expres-
sion could only be detected in the lateral prostate (lane
2, Fig. 2D).

PSA-61-LACH Expression Is Restricted to the
Luminal Epithelial Cells of the Lateral Prostate

Whole mount b-galactosidase staining, followed by
sectioning of the paraffin-embedded tissue, was per-
formed to investigate the cell type in the prostate
expressing the LacZ gene. As demonstrated in Fig.
3B, b-galactosidase staining was restricted to the lu-
minal epithelial cells. Staining was concentrated at the
basal site of the cytoplasm. No staining was found in
the lateral prostate from age-matched control mice

(Fig. 3A). To further evaluate PSA-61-LACH expres-
sion, sections of the paraffin-embedded lateral pros-
tate of PSA-61-LACH-positive and control mice were
analyzed by in situ hybridization using sense and an-
tisense digoxygenin (DIG)-labeled protamine ribo-
probes. Results obtained with the antisense protamine
probe revealed that transgene mRNA was localized
within the cytoplasm of the luminal epithelial cells of
the lateral prostate (Fig. 4, C and D). No hybridization
signal was detected in control mice or with a sense
protamine riboprobe (Fig. 4, A and B). The restricted
expression of the transgene to the luminal epithelial
cells is consistent with endogenous PSA expression in
the human prostate (18).

Developmental and Hormonal Regulation of PSA-
61-LACH Expression

PSA gene expression has been shown to be develop-
mentally regulated and to follow plasma testosterone
levels (19). In in vitro studies, expression of PSA mRNA
and protein PSA promoter activity are strongly andro-
gen regulated (9–14). To determine the pattern of the
PSA-61-LACH transgene expression during develop-
ment, lysates of lateral prostate tissues were prepared
from line 28 males between 2 and 52 weeks of age. As
indicated in Fig. 5A, the dorsolateral prostate of
2-week-old and the lateral prostate of 4-week-old
mice did not show significant b-galactosidase activity.
In contrast, sexually mature males, ranging from 8 to
52 weeks of age, showed an almost constant, high
level of b-galactosidase activity (;1500 relative light
units (RLU)/mg protein).

To obtain information on androgen inducibility of the
6-kb PSA promoter in transgenic mice, sexually ma-
ture PSA-61-LACH males of line 28 were castrated,
and b-galactosidase activity in the lateral prostate was

Fig. 3. Transgene Expression in the Lateral Prostate
A and B, Whole mount X-gal staining, followed by neutral red counterstaining, of 5-mm paraffin-embedded sections of lateral

prostate of a 10-week PSA-61-LACH TG 28 male (B) and lateral prostate of a nontransgenic littermate (A) (magnification 4003).
Blue X-gal staining is shown as blue spots in the cytoplasm of luminal epithelial cells.
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determined at 4 days after castration and at 4 days
after castration followed by 2 days of hormone re-
placement [(5 mg dihydrotestosterone (DHT)/kg body
weight)]. As demonstrated in Fig. 5B, transgene activ-
ity decreased dramatically after castration and re-
turned very rapidly to precastration levels after DHT
administration. This finding strongly indicates andro-
gen regulation of transgene expression.

Mouse Kallikrein Expression

To investigate mouse kallikrein gene expression in the
prostate, RNA was isolated and RT-PCR was per-
formed with primers overlapping highly conserved re-
gions in exon 3 (KALK-3-s) and exon 4 (KALK-4-as) of
all known mouse kallikrein genes (see GenBank data
for mouse kallikrein sequences). Thirty-four cloned,
146-bp PCR fragments were sequenced. Thirty-two
clones contained a mGK22 fragment (20), the two

additional cDNA fragments were 94% identical, and
both contained novel kallikrein sequences, with high-
est homology to mGK16 (91 and 92%, respectively)
(21). Previously, mGK22 was found to be expressed in
both male and female salivary glands, but absent in all
other tissues tested (22). RT-PCR with mGK22-spe-
cific primers confirmed the presence of mGK22 mRNA
in lateral prostate and submandibular gland. mGK22
was absent in dorsal, ventral, and anterior prostate
(Fig. 6). The expression level in submandibular gland
was much higher than in lateral prostate.

DISCUSSION

Previously, we investigated the properties of the
632-bp proximal promoter and a strong far up-
stream (24 kb) 440 bp enhancer region of the PSA

Fig. 4. RNA in Situ Hybridization Analysis of Lateral Prostate Tissue Sections of a 10-Week-Old PSA-61-LACH TG 28 Male
Transgenic Mouse

Five micrometer sections of paraffin-embedded tissue were incubated with a DIG-labeled protamine RNA probe. Hybridization
was visualized with alkaline-phosphatase-conjugated anti-DIG antibody (see Materials and Methods). C and D, Tissue sections
of a 14-week-old PSA-61-LACH male transgenic mouse; B, nontransgenic littermate (antisense probe; 400 3 magnification). A,
Incubation of a transgenic mouse prostate with a sense protamine riboprobe.
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gene in transfected LNCaP cells (11, 12, 14).
Although both regions contributed to androgen-
regulated activity of the promoter, the presence of
the 440-bp core enhancer was a prerequisite for
high activity. A 6-kb PSA promoter fragment, which
contains both the proximal promoter and the
upstream enhancer region, was mainly active in LN-
CaP prostate cells. However, PSA promoter activity
was also observed in T47D mammary tumor cells
(14).

In the present study we demonstrate the in vivo
prostate specificity of the PSA promoter. We showed
that the 6-kb, and not the 632-bp, PSA promoter is
able to direct reporter gene activity in transgenic mice.
In three independent transgenic lines, carrying a LacZ
reporter gene under control of the 6-kb PSA promoter,
hormonally and developmentally regulated expression
of the transgene was exclusively targeted to the lumi-
nal epithelial cells of the lateral prostate, which mimics
the expression pattern of the endogenous PSA gene in
the human prostate. This strongly suggests that the
6-kb PSA promoter contains most, if not all, informa-
tion for prostate-specific activity. The specific expres-
sion of the transgene in the mouse lateral prostate is in
agreement with the structural homology between the
human prostate and the mouse lateral prostate, and
the mouse kallikrein expression in the lateral prostate.
The variable level of PSA expression in human breast
cancer (23) and the activity of the 6-kb PSA promoter
in transiently transfected T47D human mammary tu-
mor cells (14) could not be confirmed in normal breast
tissue of female PSA-61-LACH transgenic mice (data
not shown).

Transgene expression was assessed in a liquid
b-galactosidase assay by RT-PCR and by RNA in situ
hybridization. Additionally, X-gal staining of the differ-
ent tissues was performed. X-Gal staining of adult
mouse tissues is complicated due to high endogenous
b-galactosidase activity present in many tissues, in-
cluding testis, epididymis, vas deferens, liver, intes-
tine, and prostate. This problem was overcome by
modification of the standard protocols (24, 25). Incu-
bation at elevated temperature before staining (1 h at
50 C), and a raised pH (8.6) during the various incu-
bation steps (see Materials and Methods) suppressed
endogenous b-galactosidase activity, without notice-
able loss of activity of the E. coli-derived transgene.
Only in epididymis, vas deferens, and anterior prostate
could endogenous b-galactosidase activity be found

Fig. 5. Developmental (A) and Androgen (B) Regulation of
PSA-61-LACH Expression

A, b-Galactosidase activity in extracts of dorsolateral pros-
tate of 2-week, and lateral prostate of 4-week and 8- to
52-week old PSA-61-LACH TG 28 mice. B, Androgen regu-
lation of b-galactosidase activity in lateral prostate of PSA-
61-LACH TG 28 mice. Mice were castrated at 10 weeks of
age. After 4 days, part of the mice were supplemented with
DHT or vehicle. In indicated cases, mice were supplemented
once a day with DHT (5 mg/kg body weight; in 100% ethanol
mixed with 9 vol sesame oil, and injected subcutaneously).
Lateral prostate of 10-week-old PSA-61-LACH mice and
nontransgenic littermates served as control. Data shown are
the average of three mice, except for the 8- to 52-week group
in Fig. 5A, which is the average of ten animals (6SEM).

Fig. 6. RT-PCR Analysis of Mouse Glandular Kallikrein 22
Expression in the Various Lobes of the Mouse Prostate and
Male Submandibular Gland

The RT-PCR products were blotted to Hybond N1 mem-
brane and hybridized with a random primed 32P-labeled
probe specific for the expected 634-bp cDNA fragment. RT-
PCR of GAPDH mRNA in the RNA preparations of the differ-
ent tissues is shown in the lower part. For abbreviations see
legend to Fig. 2D.
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at a long (.16 h) staining period, which precludes
detection of a low level of transgene expression in the
X-gal assay (data not shown).

b-Galactosidase expression was undetectable in
the PSA-4-LACH mice, despite the presence of 100 or
more copies of the transgene in all three transgenic
lines. Transient transfection of LNCaP cells with PSA-
4-LACH (Fig. 1) and also PSA-4-LUC constructs (12,
14) showed low activity of this 632-bp promoter frag-
ment, especially in the absence of a cotransfected
androgen receptor expression plasmid. The observa-
tion by Schaffner et al. (26), that transgenic mice car-
rying a Ha-rasT24 oncogene, driven by the 632-bp
proximal PSA promoter, developed salivary gland and
gastrointestinal tract tumors seems to be in contrast to
our findings for this promoter. However, mutant Ha-ras
expression was only confirmed in salivary gland tu-
mors, and not in gastrointestinal tumors. Furthermore,
the late onset of tumorigenesis could indicate that
Ha-ras expression was a secondary event. This might
be related to PSA expression in a subset of salivary
gland tumors in humans (27). An alternative hypothesis
is that Ha-ras intron or exon sequences affect the
selectivity and level of expression of the oncogenic
transgene.

The three PSA-61-LACH transgenic lines show a
comparable level of lateral prostate-specific, but copy
number-independent, b-galactosidase expression.
This could indicate that the PSA-61-LACH transgene
cassette lacks elements, such as matrix attachment
regions or locus control regions, that might determine
boundaries in chromatin structure, leading to copy
number-dependent and position-independent activity
of transgenes (see Ref. 28 and references therein). The
6-kb PSA promoter fragment contains all DNAseI-
hypersenstive sites (which indicate important regula-
tory regions) in the 31 Kb region upstream of the PSA
gene (see Ref. 14). However, it might lack putative, so
far unidentified regulatory sequences within the PSA
gene, or in the flanking region downstream of the PSA
gene, or even downstream of the hGK-1(KLK-2) gene,
which is also prostate specifically expressed, and
which is at a distance of 12 kb in the human genome
(7, 8). Alternative explanations for copy number-
independent activity are also possible. Although diffi-
cult to compare, the RT-PCR and X-gal staining ex-
periments suggest that the expression level of the
transgene in PSA-61-LACH mice is not as high as that
of the endogenous PSA gene in the human prostate.
Although this might be due to the integration site and
the properties of the LacZ and protamine part of the
transgene cassette, it is a real possibility that one or
more trans-acting factors that direct high level PSA
expression in the human prostate are absent, or
present in a much lower concentration in the mouse
prostate. If this is indeed the case, these factors could
limit expression of the transgene, which corresponds
to a comparable activity of the 6-kb PSA promoter in
the three independent transgenic lines. This might also
explain the low expression level of the mouse kallikrein

mGK22 in the prostate. On the other hand, the latter
might be caused by differences in promoter make up.
Further analysis of mGK22 mouse kallikrein promoter
activity in human prostate cell lines should provide
additional information. In this regard, it is also inter-
esting that the 6-kb PSA promoter-driven transgene
expression pattern was different from that of mGK22,
which is expressed at a high level in submandibular
glands. The PSA-61-LACH transgene follows the ex-
pression pattern of the endogenous PSA gene in hu-
mans, and not that of mouse kallikreins.

The 6-kb PSA promoter is the first human promoter
that directs prostate-specific expression in transgenic
mice. Previously, three rat promoters, rKLK8, C3(1),
and probasin, have been studied with respect to pros-
tate specificity and applicability in the development of
rodent prostate cancer models (29–35). Transgenic
rats carrying a 2.5-kb rKLK8 rat kallikrein promoter
fragment did not show tissue specificity. Expression of
the transgene was demonstrated in almost all tissues
tested, including prostate, but was absent at the major
sites of endogenous gene expression, the submandib-
ular and sublingual salivary glands (29). Transgenic
mice carrying a 6-kb 59-flanking region of the rat C3(1)
gene linked to the b-galactosidase reporter gene (30)
or a 9.5-kb fragment carrying the C3(1) gene with 4-kb
upstream and 2-kb downstream flanking sequences
(31) did not direct transgene activity strictly to the
prostate. Depending on integration site, expression
was also detected in testis, heart, lung, and skeletal
muscle. Transgenic mice bearing a 5.7-kb C3(1) pro-
moter linked to the SV40 large T antigen region devel-
oped at 7 months a prostate adenoma or adenocar-
cinoma (32). Female mice carrying this transgene
acquired mammary adenocarcinomas. The mice also
developed other phenotypic changes including sev-
eral proliferative lesions and malignancies leading to
premature death. Greenberg et al. (33) reported a
426-bp promoter fragment of the rat probasin gene
directing chloramphenicol acetyltransferase (CAT) re-
porter gene expression to the prostate of transgenic
mice. These transgenic mice showed CAT expression
in dorsal, lateral, and ventral prostate. Low levels of
transgene expression were observed in the anterior
prostate and in the seminal vesicles. Although pros-
tate specific, the expression level of the transgene was
dependent on the integration site and did not strictly
follow the expression pattern of the endogenous rat
probasin gene, which is selectively expressed in the
dorsolateral prostate. Cointegration of chicken ly-
sozyme matrix attachment regions resulted in trans-
gene expression in dorsolateral prostate of adult mice.
Cointegration of matrix attachment sites was insuffi-
cient to facilitate high-level and copy number-depen-
dent expression. Transgenic mice carrying the 426-bp
probasin promoter-driven SV40 large T antigen onco-
protein developed progressive forms of prostatic can-
cer (34, 35).

Progress toward the understanding of the biology of
prostate cancer benefits enormously from the avail-
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ability of proper animal models displaying the whole
range of clinical stages. The present study provides a
baseline for the generation of such models, utilizing
the 6-kb PSA promoter hooked to the appropriate
oncogenes. Because of its tissue specificity and inte-
gration site-independent, constant activity it might
even be preferred above the probasin and C3(1) pro-
moter-driven prostate cancer models.

The observations presented in this study are not
only relevant to the generation of mouse prostate can-
cer models, but also to gene therapy programs of
human prostate cancer. The PSA gene is not only
expressed in the luminal epithelial cells of the normal
human prostate, but also in almost all prostate can-
cers. Therefore, the regulatory elements that deter-
mine PSA expression in prostate cancer are of poten-
tial interest for building a promoter to drive expression
of therapeutic genes in prostate cancer cells. The strict
prostate specificity of the 6-kb PSA promoter frag-
ment strongly supports the applicability of this large
promoter fragment, or derivatives, in gene therapy of
human prostate cancer. Preliminary experiments, in-
dicating prostate specificity of the 6-kb promoter-
driven TK gene in an adenovirus construct, are in
accordance with this view (A. Gotoh, A. S. C. Ko, C.
Kao, L-J. Ho, K. B. J. M. Cleutjens, J. Trapman, F. L.
Graham, and L. W. K. Chung, unpublished results).

MATERIALS AND METHODS

Cell Culture

LNCaP prostate cells were cultured as described (36). For
examination of androgen-driven promoter activity, the syn-
thetic androgen, R1881 (DuPont NEN, Boston, MA), was
added to steroid-depleted medium to a final concentration of
1 nM.

Construction of Plasmids

All plasmid constructs were prepared according to standard
procedures (37). The human androgen receptor expression
plasmid pSVARo and the LacZ-containing reporter plasmid
pLACH were described previously (38, 39). A mouse prota-
mine gene fragment (mP1, 195 to 1625, see Ref. 24) pro-
vides the LacZ cassette with an intron and the 39-untrans-
lated region, including the polyadenylation signal. PSA-61-
LACH was generated by integration of the blunt ended
HindIII/HindIII (26 kb/112) fragment of the PSA promoter
into the SmaI site of the pLACH multiple cloning site. PSA-
4-LACH was generated by integration of the EcoRI/HindIII
(2632/112 bp) PSA promoter fragment into pLACH.

Transient Transfections

Cells were transfected according to the calcium phosphate
precipitation method, essentially as described (14).

Generation and Identification of Transgenic Mice

The 632-bp and 6-kb PSA promoter-driven LacZ genes were
released from vector sequences by restriction digestion, pu-

rified by gel electrophoresis, and prepared for injection ac-
cording to standard methods (40). The appropriate fragments
were microinjected into the male pronuclei of fertilized eggs
of C57BL63DBA2C (F1) mice. The presence of the transgene
was established by PCR amplification on DNA from tail bi-
opsies (40), using oligonucleotide primers PSA-s: 59-TTGTC-
CCCTAGATGAAGTCTCCATGA-39 and LacZ-as: 59-CGC-
CAGGGTTTTCCCAGTCACGAC-39 (indicated in Fig. 1).

Transgene copy numbers were quantitated by phospho-
image analyses of Southern blots of tail DNA. To this pur-
pose, 10 mg DNA were digested with KpnI and SacI, electro-
phoresed on 0.8% agarose gel, and transferred to Hybond
N1 membrane (Amersham, Cardiff, UK). Filters were hybrid-
ized at high stringency with a random primed 32P-labeled
protamine probe (see RNA in Situ Hybridization). DNA trans-
fer and filter hybridization were carried out according to the
protocol of the manufacturer.

Liquid b-Galactosidase Assay

b-Galactosidase activity was measured in lysates of LNCaP
cells and mouse tissues using the Galacto-Light Plus chemi-
luminescent reporter assay (Tropix Inc., Bedford, MA). Two to
5 mg of mouse tissue were incubated in 100 ml lysis solution,
and transfected LNCaP cells were collected in 350 ml lysis
solution. b-Galactosidase activity in 10 ml extract was cor-
rected for variations in protein concentrations (protein mi-
croassay, Bio-Rad, München, Germany).

Whole Mount b-Galactosidase Staining

Immediately after death, mouse tissues were fixed by perfu-
sion fixation in 2% paraformaldehyde in a 0.1 M piperazinebis
(ethane sulfonic acid) buffer (pH 6.9), containing 2 mM MgCl2
and 1.25 mM EGTA. Tissues were dissected and fixed for an
additional 60–90 min at room temperature. To inactivate en-
dogenous b-galactosidase activity, tissues were washed
three times for 30 min in PBS (PBS, pH 8.6: 1.5 mM KH2PO4/
6.5 mM Na2HPO4/2.7 mM KCl/135 mM NaCl). Subsequently,
tissues were incubated in PBS for 60 min at 50 C. After
cooling to room temperature, tissues were incubated in
prestaining solution (containing 2 mM MgCl2, 5 mM

K3Fe(CN)6, 5 mM K4Fe(CN)6, and 5 mM EGTA in PBS) for 60
min. After transfer to staining solution (prestaining solution
supplemented with 0.5 mg/ml X-Gal), incubation was contin-
ued for 6–24 h at room temperature. The reaction was
stopped by extensive washing in PBS, and tissues were
postfixed in 4% paraformaldehyde in PBS before paraffin
embedding. Five-micrometer sections were counterstained
with neutral red.

RT-PCR

Isolation of total cellular RNA was carried out according to the
guanidinium isothiocyanate method (41). RT-PCR amplifica-
tion of LACZ-protamine (primers LACZ-s and PRO1/2-as),
mouse kallikreins (primers KALK- 3-s and KALK-4-as),
mGK22 (mGK22–1/2-s and mGK22–4/5-as), and GAPDH
(GAPDH-s and GAPDH-as) were performed on 1 mg total
RNA in the single tube Access RT-PCR, system (Promega,
Madison, WI), according to the protocol of the manufacturer.
Annealing steps were at 58 C, except for the kallikrein cDNAs
expressed in mouse prostate (primers KALK-3-s and KALK-
4-as), which was at 50 C.

RT-PCR Primers

LACZ-s: 5 9-AGCCATCGCCATCTG-39
PRO1/2-as: 5 9-GACGGCAGCATCTTCGCCTC-39
KALK-3-s: 5 9-TGCGGATCCTCAGGCTGGGGCAGCA-39
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KALK-4-as: 5 9-TGTCAGATCTCCTGCACACAA/GCAT-39
mGK22–1/2-s: 5 9-CTAGGAGGGATTGATGCTGC-39
mKG22–4/5-as: 5 9-CCTCCTGAGTCTCCCTTACA-39
GAPDH-s: 5 9-GGTCTACATGTTCCAGTATGACTCC-39
GAPDH-as: 5 9-GAGACAACCTGGTCCTCAGTGTAGC-39

The resulting PCR products were separated over a 2%
agarose gel and, in indicated cases, transferred to Hybond
N1 membrane. Filters were hybridized at high stringency with
random primed 32P-labeled probes specific for the expected
cDNA fragment. The PCR product obtained with primers
KALK-3-s and KALK-4-as was cloned in PCR-II (Invitrogen,
Leek, The Netherlands), and resulting clones were
sequenced.

RNA in Situ Hybridization

Sense and antisense DIG-labeled protamine RNA probes
were generated on a 175-bp protamine cDNA fragment, ob-
tained by RT-PCR on mouse testis RNA with primers PRO-s
(59 GAAGATGTCGCAGACGGAGG 39) and PRO-as (59 GAT-
GTGGCGAGATGCTCTTG 39). The PCR fragment was first
cloned in pCR-II. After sequencing, the EcoRI-EcoRI cDNA
fragment was recloned in pTZ19 (Pharmacia, Uppsala,
Sweden). After linearization with HindIII, DIG-labeled RNA
was transcribed from the T7 promoter. Hybridization of 5-mm
paraffin-embedded sections and visualization with alkaline
phosphatase-coupled anti-DIG antibodies and indoxil-
nitroblue tetrazolium substrate were done essentially as de-
scribed (42). Sections were counterstained with neutral red.

Experimental Animals

In accordance with the NIH Guidelines for Care and Use of
Laboratory Animals, all experiments were conducted using
the highest standard for humane care.
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