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Genome-wide data reveal novel genes for methotrexate response
in a large cohort of juvenile idiopathic arthritis cases
J Cobb1,2,12, E Cule3,12, H Moncrieffe4,12, A Hinks1, S Ursu4, F Patrick4, L Kassoumeri4, E Flynn1, M Bulatović5, N Wulffraat5,
B van Zelst6, R de Jonge6, M Bohm7, P Dolezalova7, S Hirani8, S Newman8, P Whitworth9, TR Southwood9, M De Iorio10, Childhood
Arthritis Response to Medication Study (CHARMS), Childhood Arthritis Prospective Study (CAPS), BSPAR study group14,
LR Wedderburn4,11,13 and W Thomson1,2,13

Clinical response to methotrexate (MTX) treatment for children with juvenile idiopathic arthritis (JIA) displays considerable
heterogeneity. Currently, there are no reliable predictors to identify non-responders: earlier identification could lead to a targeted
treatment. We genotyped 759 JIA cases from the UK, the Netherlands and Czech Republic. Clinical variables were measured at
baseline and 6 months after start of the treatment. In Phase I analysis, samples were analysed for the association with MTX response
using ordinal regression of ACR-pedi categories and linear regression of change in clinical variables, and identified 31 genetic
regions (Po0.001). Phase II analysis increased SNP density in the most strongly associated regions, identifying 14 regions
(Po1� 10� 5): three contain genes of particular biological interest (ZMIZ1, TGIF1 and CFTR). These data suggest a role for novel
pathways in MTX response and further investigations within associated regions will help to reach our goal of predicting response to
MTX in JIA.

The Pharmacogenomics Journal (2014) 14, 356–364; doi:10.1038/tpj.2014.3; published online 8 April 2014

Keywords: juvenile idiopathic arthritis; methotrexate; pharmacogenetics; response

INTRODUCTION
Juvenile idiopathic arthritis (JIA) is a heterogeneous condition with
a variable outcome and considerable ongoing disease burden.1

Studies indicate that functional disability and complications due
to JIA are still common in many teenagers and young people with
JIA, and that the effects of early, uncontrolled inflammation may
cause irreversible damage to joints and other tissues.2–4 Thus,
improving long-term outcomes of children with JIA remains a
critical challenge. Recent studies in JIA have indicated that early
control of joint inflammation correlates with much improved
outcomes, suggesting an early ‘window of opportunity’ when
disease control can translate to profound long-term benefit.5 It is
known that not all children respond equally well to any given
therapy. Despite increasing availability of new therapeutic options
for treating inflammation in JIA, clinicians have no validated tools
to help predict likelihood of good response to a particular drug.
Therefore, the current treatment strategy is to offer disease-
modifying drugs in a sequential approach, with choices typically
driven more by cost or safety profile than by scientific evidence.

The first-line disease-modifying agent for JIA is methotrexate
(MTX). Although MTX has proven efficacy in randomised trials and

a good long-term safety record, response to MTX displays
considerable heterogeneity in JIA with a significant ‘non-response’
rate of 35% or more of cases.6 In addition, consensus concerning
level of ‘response’ that is considered acceptable has shifted, with
a target of complete control of inflammation now being
advocated.7 These developments combined with ever increasing
availability of newer biologic treatments, provide further impera-
tive for the discovery of biomarkers to aid the identification of
children who require early aggressive therapy, compared with
those who can achieve clinically inactive disease on MTX alone.

Response to treatment is thought to be a complex trait
involving multiple genetic variants and environmental factors.8

However, to date, genetic studies of MTX response have been
limited for both JIA and rheumatoid arthritis (RA) and have only
utilised a candidate gene approach, focussing largely on genes
affecting MTX transport and metabolism, enzymes influenced by
MTX and adenosine pathways,9–16 recently reviewed in ref. 17.

Given that the mechanisms of action of MTX in JIA are poorly
understood, candidate gene studies may miss key pathways of
mechanistic importance. Pharmacogenetic studies in other
diseases have shown that genes other than those directly involved
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in known-drug pathways often have key roles in variation of drug
response.18 In order to capture the genetic component more
comprehensively, we brought together an International Consor-
tium of investigators (the CHARMS-JIA GWAS International
Consortium), and employed a genome-wide approach to study
response to MTX in a large cohort of children with JIA.

MATERIALS AND METHODS
Study population
A cohort of children was recruited for the SPARKS-CHARM (CHildhood
Arthritis Response to Medication) Study, which has the overall aim to
improve understanding of the variability in response to treatment
observed in children with JIA and ultimately define a multifactorial model
of response outcomes,14 and through the CHARMS-JIA GWAS International
Consortium. All cases fulfilled the International League of Associations for
Rheumatology (ILAR) criteria for JIA and were about to start new MTX
treatment for active arthritis.14 The study had full ethical approval and was
fully compliant with the Declaration of Helsinki; parents provided fully
informed consent and patients provided age-appropriate assent. Samples
and data were collected using the same inclusion and exclusion criteria at
Great Ormond Street Hospital London, Birmingham Children’s Hospital,
Department of Paediatrics and Adolescent Medicine Charles University
Prague, Wilhelmina Children’s Hospital and University Medical Centre
Utrecht, and also as part of the Childhood Arthritis Prospective Study
(CAPS), a prospective inception cohort study of JIA cases from five centres
across the UK.19

A total of 759 individuals were included from all subtypes of JIA,
classified according to ILAR criteria.20 Demographic and clinical data were
collected at baseline (up to 4 weeks before beginning MTX treatment) and
again after 6 months (median 6.2 months, range 4–8 months) of MTX
treatment. MTX was given orally or subcutaneously at 10–15 mg m� 2 per
week (median 11.3 mg m� 2 per week). No other DMARDS were taken
concurrently. Steroid treatment was recorded if administered at any point
between baseline and follow-up. A total of 370 children received at least
one form of steroid medication: this comprised oral prednisolone in 204
children, pulsed iv methylprednisolone was taken by 99 children, whereas
intra-articular joint injections were given to 204 children. Despite patients
coming from different regions in Europe, the indications and protocols for
use of MTX in JIA were the same across centres.

Clinical data included the six core-set variables; erythrocyte sedimenta-
tion rate (ESR), childhood health assessment questionnaire (CHAQ) 0–3,21

active joint count (AJC), limited joint count (LJC), physician’s global
assessment on a visual analogue scale (PhysVAS) 0–10 cm, and the parent/
patient global assessment (ParVAS) 0–10 cm. As this is an observational
study, missing data differed for each core-set variable. These variables
were used to categorise patients according to the American College of
Rheumatology paediatric (ACR-pedi) 30, 50 and 70 improvement criteria, or
as non-responders.22 Note that all children who reach ACR-pedi70
automatically also reach ACR-pedi30 and 50, whereas those who achieve
ACR-pedi50 also achieve ACR-pedi30. In order not to count any child more
than once, we defined the level of response for each child by the highest
level of response achieved (ACR-pedi 30, 50 or 70).

Genotyping
Samples were genotyped using the Illumina HumanOmniExpress infinium
array, according to Illumina’s protocols in Manchester, UK. The default
Illumina clustering algorithm (GenTrain2.0) was used to cluster SNPs in the
software package GenomeStudio. SNPs were excluded if they had a call
rate o98% and a cluster separation score of o0.4. Samples were then
excluded for call rate o98%, incompatible recorded and genotype inferred
gender, duplicates and evidence of identity by descent, or those with
outlying heterozygosity. Combining the samples with data from HapMap
Phase III individuals, principal component (PC) analysis was performed
using Eigensoft v4.2 to identify extreme ethnic outliers.23,24 PC analysis
was performed on a subset of SNPs with minor allele frequency X0.05,
selected by removing SNPs in known regions of high linkage disequi-
librium25 and further pruned for linkage disequilibrium between markers.
Samples failing to cluster with European HapMap individuals were visually
identified and removed. SNPs were excluded from the analysis if they had
a minor allele frequencyo0.05 and failed the Hardy–Weinberg equilibrium
test (Pp 0.001). To assess our dataset for potential systematic over-
inflation due to stratification, the genomic control inflation factor (lGC) was

calculated using the same SNP subset as used in the PC analysis. Cluster
plots were visually inspected for the most associated SNPs to confirm
genotyping quality.

Statistical analysis
Data were available on a number of potential confounding variables:
gender, sample collection centre, presence or absence of concurrent steroid
treatment, age at treatment baseline, time to treatment, duration of treat-
ment and ILAR subtype (grouped into three categories: (1) oligoarthritis:
persistent and extended, (2) polyarthritis: RF-negative and -positive, (3)
psoriatic, enthesitis-related, systemic and unclassifiable arthritis). Each of
these potential confounders were assessed for the association with each
core-set variable. Moreover, presence of population stratification was
checked using the first five PCs of the genotype dataset.

Statistical analysis was performed using Plink v1.0726 and R v2.15 (http://
www.r-project.org), and plots were generated using R and LocusZoom.27

SNPs were coded by minor allele count as 0, 1, 2. MTX response was
defined using the ACR-pedi criteria with four categories: non-responders
(reference category), ACR-pedi30, ACR-pedi50, ACR-pedi70, and association
between genotype and MTX response was analysed using ordinal
regression. Similar to other genetic studies of drug response measured
by composite disease scores,18 we hypothesise that attempting to identify
the underlying genetic basis of MTX response may be usefully performed
by analysing each of the core-set variables individually, as it is likely that
the genetic basis of each of these is different, with varying contributions to
MTX response. As the core-set variables are not entirely independent from
one another or the ACR-pedi status, the multiple testing burden is not as
great as if we performed multiple tests on independent outcomes. Core-
set variables (ESR, CHAQ, AJC, LJC, PhysVAS and ParVAS) were recoded as
change between baseline and follow-up, and linear regression was used to
assess the strength of association for each.

We conducted our analysis in two phases (I and II) with the same
individuals in each analysis phase. We utilised a low stringency of signifi-
cance in Phase I of the analysis in order to maximise discovery of loci for
more detailed investigation in Phase II, where a more stringent significance
threshold was set. In Phase I of the analysis, results from the ordinal
regression of ACR-pedi categories and six linear regressions of the core-set
variables (ESR, CHAQ, AJC, LJC, PhysVAS and ParVAS), totalling seven
analyses, were used to identify genomic regions of interest for further
investigation. The significance threshold selected (Po0.001) allows for
greater emphasis on power than reducing type I error to enable hypothesis
generation, an approach taken previously.18

Regions were then selected for further analysis (Phase II) by searching
for clusters of associated SNPs (Po0.001 in at least two of the seven
analyses) and extending out to include all SNPs within the annotated gene
(based on the Illumina HumanOmniExpress gene annotation file, hg19).
This resulted in regions of interest of varying sizes (range 0.02 kb-12.8 Mb,
average 1359 kb). The aim of Phase II was to refine these regions. This was
performed using SNP imputation to increase the density of SNP coverage
in those regions. SHAPEIT v1 was used to pre-phase genotypes and SNPs
were imputed against the 1000 Genomes Project reference panel (B37
million SNPs) using IMPUTE2.28,29 Imputed SNP genotypes reaching the
probability threshold 0.9 were included in the follow-up re-analysis, which
focused on only these imputed regions using the same samples as Phase I,
and performed ordinal and linear regressions as described in Phase I.
Regions containing at least one SNP in Phase II with association
Po1� 10� 5 are the focus of the results presented here.

Power calculation
Study power was estimated at the two significance thresholds used in
Phase I (Po0.001) and Phase II (Po1� 10� 5) of the analyses, over the
range of sample sizes available, and assuming the variance explained by
the additive effect of the SNP tested ranged from 0.01–0.1 under an
additive genetic model.

Functional annotation
In order to gain a better understanding of the potential biological impact
of our results, the most highly associated SNPs identified in Phase II (as well
as SNPs in high linkage disequilibrium (r240.8)) were queried using the
web tool Assimilator (http://assimilator.mhs.manchester.ac.uk/cgi-bin/
assimilator.pl).30 This facilitates collation of functional annotations from
the publically available ENCODE and UCSC Genome Browser databases.
Using the advanced search options available, output was focussed on
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whether any of the Phase II-associated SNPs have shown evidence of
transcription factor-binding sites, evidence for open chromatin suggesting
regions of active gene expression, and epigenetic marks which may be
affected by drug treatment.31

RESULTS
Following stringent quality control, 694 JIA cases were available
for analysis (Supplementary Table 1A and 1B) comprising indivi-
duals from all ILAR subtypes (Table 1). In total, 31% of children
were non-responders (less than ACR-pedi30 response). Among
responders, categorised by their highest level of response achieved,
8.6% of children reached ACR-pedi30, 14.6% ACR-pedi50 and
45.8% ACR-pedi70 response. Samples clustered together in
the PC analysis (Supplementary Figure 1) and therefore were
analysed together. Following the SNP quality control steps and
removal of low frequency variants (minor allele frequencyo0.05),
586 062 SNPs were included in the Phase I analyses
(Supplementary Table 1). Quantile-quantile plots and inflation
factors showed no systematic inflation of P-values (Supplementary
Figure 2), and power was estimated to range from 10–100% across
the analysed sample sizes for various effect sizes (Supplementary
Figure 3).

None of the potential confounding variables tested (gender,
ILAR–JIA subtype, centre, age at treatment baseline, duration of
treatment, time to treatment, steroid treatment or PCs generated
to identify ethnic outliers) were associated with all six individual
core-set variables (data not shown); therefore to reduce loss of
analysis power no adjustments were made to the linear or ordinal
regressions.

In the hypothesis generating Phase I of the analysis, using both
ACR-pedi and the individual core-set variables, 31 genetic regions
encompassing 75 nearby genes achieved our defined level of
significance (Po0.001 in at least two of the seven analyses),
Table 2 and Supplementary Table 2. This included several notable
associations such as genes related to TGFbeta signalling (ZMIZ1:
zinc finger MIZ-type containing 1, TGIF1: TGFB-induced factor
homeobox 1) and a member of the multi-drug resistance
subfamily of the ATP-binding cassette transporter proteins (CFTR:
cystic fibrosis transmembrane conductance regulator). Overall in
Phase I, the most significant was a variant within an intron of the
calcium channel CACNA1I (voltage-dependent calcium channel T
type alpha 1I subunit) in the analysis of active joint count (AJC)
(rs136855, region 31, b-coefficient¼ 2.71, P¼ 9.18� 10� 8, see
Supplementary Table 2). Two regions showed strong evidence
with 13 SNPs in each associated at Po1� 10� 4 across several
analyses (Region 12, CFTR-CTTNBP2: ParVAS, LJC, CHAQ; Region 20,
ZMIZ1: ACR-pedi, ParVAS, ESR, CHAQ LJC, AJC; Figure 1). Using the
31 significant genetic regions found in the discovery phase of the
analysis, the next analysis performed was to narrow down the
genetic region of interest.

Phase II of analysis involved imputation of SNPs within the 31
regions identified in Phase I to refine the association signals by
increasing SNP density. After imputation, using the increased
Phase II significance threshold of Po1� 10� 5 this analysis
identified 14 of the initial 31 genetic regions as the most strongly
associated with response to MTX (Table 3, Supplementary
Figure 4). Overlapping associations of SNPs were revealed for
AJC and LJC in several genetic regions (regions 16, 17, 23 and 28).
In one of these regions (region 23, chromosome 11 intergenic
between ANGPTL5-KIAA1377) the top-associated SNP was the
same (rs11225055), and in the other three regions the most
significant associated SNPs for the AJC and LJC analyses were in
very high linkage disequilibrium (r2

X0.97). In all four regions
showing association with ACR-pedi (regions 2, 12, 20 and 24), the
ParVAS and/or PhysVAS scores were also associated.

Functional annotations for the most highly associated Phase II
SNPs from Table 3 (plus SNPs in high linkage disequilibrium Ta
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(r240.8) with these lead SNPs) were assigned using Assimilator
software.30 The results presented in Supplementary Table 3
suggest the regions identified in Phase II of the analysis contain
evidence of many markers of regulation and highlight many
possible functional mechanisms. Certain regions were less fully
covered by current databases, for example, region 14 containing
the gene CSMD1. Others, including region 30 containing the gene
CYTH4 (cytohezin 4), have more evidence for regulatory activity,
including multiple SNPs showing evidence of acting as an
expression quantitative trait loci.32

DISCUSSION
Recent developments in treatments and management of child-
hood arthritis have lead to increased expectations from clinicians,
parents and patients for complete control of disease and
consequent reduction of long-term adverse health outcomes.4,5,33

The first step in JIA treatment, in parallel with joint injections, is

typically administration of MTX; however, it is clear that a
proportion of patients treated with MTX will fail to respond
adequately. Given recent recommendations for early aggressive
treatment, it is important that MTX treatment is targeted to those
children most likely to respond well.34 Increasing our under-
standing of the influence of genetic variants in MTX response
could assist clinicians to choose the best treatment options for
their patients and identify patients who need more aggressive
treatments. Performing large-scale genetic studies searching for
variants contributing to MTX response has great appeal, but has
proved challenging due to the relative rarity of JIA and lack of well
co-ordinated international efforts. With this in mind, the CHARMS-
JIA GWAS International Consortium facilitated the collection of
carefully phenotyped response to medication data, and DNA
samples from children with JIA treated with MTX for their arthritis,
enabling the largest genetic analysis of MTX response in JIA to
date. In Phase I of the analysis, a total of 31 regions were identified
as associated with response to MTX at Po0.001. To narrow down

Table 2. Summary of the most highly associated regions identified in phase I of analysis, indicating the genes nearby each region and the total
number of SNPs associated at Po0.001and for which analysis

Region Chr Region
start (bp)

Region
end (bp)

Nearby genes Number of SNPs
in region (across

all analyses)

Analyses with associated SNPs (at Po0.001)

ESR CHAQ Phys
VAS

Par
VAS

AJC LJC ACR-
pedi

1 1 162918233 163039777 C1orf110, RGS4 7 � � �
2 1 165103951 165103971 LMX1A, PBX1 3 � � �
3 1 209121677 209420098 PLXNA2 13 � � �
4 3 115447624 115523299 GAP43, LSAMP 8 � � �
5 3 126099612 126175401 CCDC37, KLF15, ZXDC 13 � � � �
6 3 144100011 145662790 C3orf58, PLOD2 15 � � � �
7 5 30284836 31185714 CDH6 10 � �
8 5 153846868 166676216 HAND1, SAP30L, LARP1, SGCD,

KID43, HAVCR2, THG1L, ADRA1B,
GABRG2, CCNG1, MAT2B, ODZ2

27 � � � � � �

9 7 52018700 53011628 POM121L12 14 � � �
10 7 77663087 78947912 MAGI2 13 � � � �
11 7 94932904 94948028 PON1 25 � �
12 7 117261293 117517293 CFTR, CTTNBP2, LSM8 20 � � �
13 7 122057923 122520343 CADPS2 3 � � �
14 8 2520024 6082233 CSMD1 19 � � � � � �
15 8 76462383 77366608 HNF4G 6 � � �
16 8 82892518 85802488 RALYL, SNX16 19 � � � �
17 8 129703419 129884159 PVT1 15 � �
18 9 81265380 84141525 PSAT1, TLE4, TLE1 5 � � �
19 10 29900664 30286263 KIAA1462, SVIL 16 � � � �
20 10 80872270 80999869 ZMIZ1 22 � � � � � �
21 10 130778452 131633463 MGMT, MKI67, EBF3 19 � � � � �
22 11 97748769 100456604 CNTN5, JRKL 10 � � � � � �
23 11 101771433 101806639 ANGPTL5, KIAA1377 4 � �
24 12 101843240 101856596 ARL1, SPIC 4 � � �
25 12 104048454 109147745 STAB2, CHST11, C12orf75, NUAK1,

POLR3B, RFX4, BTBD11, CMKLR1,
FICD, CORO1C, SSH1

20 � � � � � �

26 13 101597058 101840684 NALCN, TMTC4 11 � � �
27 15 26373375 27462334 GABRB3, GABRG3 17 � � � � �
28 18 3388779 3405415 MYL12B, TGIF1 5 � �
29 20 58951428 60326201 CDH4 10 � � � �
30 22 37581485 37763862 C1QTNF6, CYTH4, RAC2, ELFN2 8 � � �
31 22 39395612 40083730 APOBEC3B, APOBEC3C, CACNA1I,

SYNGR1
14 � � � � �

Abbreviations: AJC, active joint count; CHAQ, childhood health assessment questionnaire; ESR, erythrocyte sedimentation rate; LJC, limited joint count;
PhysVAS, physician’s global assessment on a visual analogue scale; ParVAS, parent/patient global assessment; SNP, single nucleotide polymorphism. This
formed the basis of the regions selected for SNP imputation in Phase II (some nearby regions were merged and others were expanded to comply with the
minimum size requirements in IMPUTE2). Region coordinates based on the NCBI37 assembly. See Supplementary Table 2 for full results.
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these genetic regions, additional SNPs were imputed in Phase II of
the analysis, with the results in 14 regions satisfying a more
stringent cut-off of Po1� 10� 5. The most strongly associated locus

was CACNA1I, which encodes the alpha chain of a low voltage-
activated calcium channel that has been implicated in calcium
signalling in neurons and may have other roles that have yet

Figure 1. (a) Linear regression analysis of ZMIZ1 (region 20) for the change in ESR with MTX treatment, with the top hit in this region
rs2802369 coloured purple. Similar results were seen for the ParVAS, CHAQ, and ACR-pedi analyses of this region. (b) Linear regression analysis
of CFTR-CTTNBP2 (region 12) for parent’s global assessment (ParVAS), with the top hit in this region rs757278 coloured purple. Similar results
were seen for the ACR-pedi and LJC analyses of this region. Coordinates are based on the NCBI36 assembly.
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to be characterised. Other notable associated genes include CFTR,
ZMIZ1 and TGIF1. Although the genes identified from this analysis
need replication in independent cohorts, they provide some
plausible novel candidates for further investigations into MTX
response.

One association of considerable interest is the cystic fibrosis
transmembrane conductance regulator gene, CFTR. The peak asso-
ciation signal for this region is within the 3́ end of the downstream
CTTNBP2 gene (Figure 1b); this is interesting as it is known that CTFR
expression is regulated by complex structural looping involving this
region of CTTNBP2.35 CFTR, also known as ABCC7, is a member of the
ATP-binding cassette transporter superfamily, specifically the multi-
drug resistance subfamily. These proteins are known to be
important to drug transport and elimination.36 Interestingly, a
gene within the same subfamily, ABCC3, which is known to be
involved in MTX efflux has recently been shown to contain a SNP
(rs4793665) associated with MTX response in a cohort of 287 Dutch
JIA patients.10 This finding led us to specifically review this gene
within our results despite it not fulfilling the selection criteria for
Phase I or II. We found that rs4793665 was not directly genotyped
in this study nor were there SNPs within r2

X0.8 on the chip;
however, there were 38 SNPs within the introns/exons of ABCC3
genotyped, with 15 showing association in our cohort at Po0.05
with the MTX response outcomes analysed (except ESR). The most
associated of these, rs4148411 within an intron of ABCC3, was
found in the PhysVAS analysis (P¼ 7.55� 10� 5) and is in low
linkage disequilibrium with the SNP identified by de Rotte and
colleagues10(r2¼ 0.02), suggesting that comprehensive further
investigation of this gene is warranted.

Interestingly, our study identifies several genes related to TGFbeta
signalling as being associated with response to MTX. ZMIZ1 has
been identified in several GWAS of autoimmune diseases.37–40 It is a
member of the protein inhibitor of activated STAT family, is known
to regulate several transcription factors (androgen receptor, Smad3/
4, p53) and TGFbeta/SMAD signalling, and is induced by retinoic
acid.41 It is well established that TGFbeta/SMAD and retinoic acid
have important roles in the balance between Th17 and Treg cells,42

which are known to impact directly upon JIA severity.43 Therefore, a
possible role for this gene in response to treatment in JIA is of
considerable interest. Corroborating this finding, another associated
region contains TGFbeta-induced factor homeobox 1 (TGIF1), known
to be an active transcriptional corepressor of SMAD2 and to
modulate the downregulation of aryl hydrocarbon receptor.44,45

Together these results suggest TGFbeta signalling is a strong
biological candidate for a role in reducing disease activity with MTX
treatment. These data are of particular interest, as they directly
parallel our gene-expression profiling studies, which identified
TGFbeta signalling, TGFB-2 and the zinc finger protein ZEB1,
which interacts with SMAD signalling proteins, as being involved
in response to MTX in children with JIA.14

Four genetic regions associated with ACR-pedi status also
showed associations with either ParVAS or PhysVAS. In some
research studies, using the ACR-pedi status can present difficulties
due to missing data observed in long-term observational cohorts.
This finding suggests the ACR-pedi, ParVAS and PhysVAS scores
measure MTX response similarly, leading to the possibility that
both ParVAS and PhysVAS could be used to measure response to
treatment, when full clinical data are unavailable.

To our knowledge, this is the first report of a large-scale genetic
association study of MTX response in inflammatory arthritis;
despite several international efforts in GWAS studies of JIA and RA
as a whole, no previous large-scale analysis of MTX response are
available to date, perhaps in part due to the considerable
challenges of collecting adequate numbers of cases with detailed
response data as well as DNA. A study investigating interferon-
beta treatment in MS (using 53 responders and 53 non-
responders) found that of the best associations most were in
glutamate and interferon receptors, a cell cycle-dependent

protein, and guanosine triphosphatase-activating and zinc finger
proteins, all genes not known to be directly involved in the drug
metabolism pathway.46 A recent GWAS in 706 RA patients treated
with tocilizumab, a biologic therapy targeting the interleukin-6
receptor, found eight putative loci associated with tocilizumab
efficacy; however none were in known RA risk or interleukin-6
receptor pathways.18 Similarly, our results suggest that multiple
genes determine response to MTX treatment in JIA, and not just
those in known MTX pathways. In fact, none of the MTX pathway
genes previously investigated in candidate gene studies in both
JIA and RA met our selection criteria for Phase II. This is possibly
due to the small sample size and lack of power in previous studies
resulting in false positive associations, and may be additionally
confounded by the power limitations of our study including the
availability of ACR-pedi scores on only a subset of our cohort.
Despite this, the lack of strong association in the MTX pathway
genes is interesting, and suggests that novel pathways and
mechanisms, hitherto not known, may be important to pursue in
order to understand and fully elucidate the actions of MTX and the
genes involved in success or failure of MTX treatment.47 It also
suggests that the previously developed MTX efficacy prediction
models for both RA16 and JIA9 could be further enhanced or
further optimised by incorporating additional genetic variants
outside the MTX pathway genes.

Previous investigations of the genetics of MTX response in JIA have
been small, often underpowered, studies taking a candidate gene
approach focussing on genes in MTX drug pathways. In contrast, this
study is large and comprehensively covers the genome, the first of its
kind for JIA. We have identified several regions of interest, three of
which show a remarkable degree of functional overlap with genes
and pathways implicated by gene-expression profiling and previous
candidate gene studies. By analysing each clinical outcome variable
individually, we show their genetic contributions to MTX response
may differ, although with interesting overlap in novel candidates
including TGIF1, ZMIZ1 and CFTR. Future targeted replication of the
exciting novel regions identified is now required to confirm these
findings. This study provides an excellent basis for the future
development of genetic risk models for MTX response prediction.
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