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ABSTRACT

Type III iodothyronine deiodinase (D3) catalyzes the inner ring
deiodination (IRD) of T, and T; to the inactive metabolites rT5 and
3,3’-diiodothyronine (3,3'-T2), respectively. Here we describe the
cloning and characterization of complementary DNA (cDNA) coding
for D3 in fish (Oreochromis niloticus, tilapia). This cDNA contains
1478 nucleotides and codes for a protein of 267 amino acids, including
a putative selenocysteine (Sec) residue, encoded by a TGA triplet, at
position 131. The deduced amino acid sequence shows 57—67% iden-
tity with frog, chicken, and mammalian D3, 33-39% identity with
frog, fish (Fundulus heteroclitus) and mammalian D2, and 30-35%
identity with fish (tilapia), chicken, and mammalian D1. The 3’ UTR
contains a putative Sec insertion sequence (SECIS) element. Recom-

binant tilapia D3 (tD3) expressed in COS-1 cells and native tD3 in
tilapia brain microsomes show identical catalytic activities, with a
strong preference for IRD of T; (K,,, ~20 nM). IRD of [3,5-'**1|T; by
native and recombinant tD3 are equally sensitive to inhibition by
substrate analogs (T3 > T, > rT;) and inhibitors (gold thioglucose >
iodoacetate > propylthiouracil). Northern analysis using a tD3 ribo-
probe shows high expression of a 1.6-kb messenger RNA in gill and
brain, although D3 activity is much higher in brain than in gill. The
characterization of tD3 ¢cDNA provides new information about the
structure-activity relationship of iodothyronine deiodinases and an
important tool to study the regulation of thyroid hormone bioactivity
in fish. (Endocrinology 140: 3666-3673, 1999)

HE MAJOR secretory product of the thyroid is a pro-
hormone, T,, which is activated in peripheral tissues by

outer ring deiodination (ORD) to T5. T4 and T; are converted
by inner ring deiodination (IRD) to the metabolites rT; and
3,3'-diiodothyronine (3,3'-T2), respectively (1-5). Three io-
dothyronine deiodinases are involved in these processes (1-
5). In mammals, the type I deiodinase (D1) is located in liver,
kidney, and thyroid. It has both ORD and IRD activities, in
particular toward rT; and sulfated iodothyronines (1-5). The
type II deiodinase (D2) only catalyzes ORD with T, as the
preferred substrate. In rats, D2 is expressed predominantly
in brain, pituitary, and brown adipose tissue, and recent
findings suggest additional expression in human thyroid,
skeletal muscle and, perhaps, heart (1-7). D3 has only IRD
activity with preference for T; as the substrate. In mammals,
D3 is mainly found in brain, skin, placenta, and fetal tissues
(1-5). The three deiodinases have recently been cloned from
different species, showing that they are homologous seleno-
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proteins featuring an essential selenocysteine (Sec) residue in
their catalytic centers (6, 8-20).

Whereas D3 expression in placenta appears to be inde-
pendent of thyroid state (21-23), D3 activity in rat brain is
increased in hyperthyroidism and decreased in hypothy-
roidism (24). High D3 activities are expressed in the fetal
human liver (25) and the embryonic chicken liver (26-28).
Acute down-regulation of hepatic D3 gene expression has
been observed after administration of GH or dexamethasone
to the chick embryo (29-31). Although T; is essential for
normal brain development, high D3 expression levels in
mammalian placenta and fetal tissues, including brain, are
thought to protect the developing fetus against undue levels
of maternal thyroid hormone (32, 33).

The three iodothyronine deiodinases have also been iden-
tified in Oreochromis niloticus (tilapia) and other fish, al-
though their tissue distributions are very different from those
of the mammalian enzymes (5, 18, 20, 34-39). In tilapia, D1
activity is much higher in kidney than in any other tissue. By
far the highest D2 activity is expressed in liver. D3 activity
is high in brain, low in gill, and negligible in all other tissues
(5, 36, 37). The catalytic properties of fish D2 and D3 are very
similar to those of the mammalian enzymes (5, 34-39). How-
ever, at least in tilapia and trout, fish D1 is insensitive to
inhibition by 6-propylthiouracil (PTU), in contrast to the
potent inhibition of mammalian (and chicken) D1 by this
thyrostatic drug (5,36-38). To investigate the molecular basis
for this difference in PTU sensitivity between fish and mam-
malian D1, we have recently cloned and characterized com-
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plementary DNA (cDNA) coding for D1 in tilapia (20). In
contrast to our hypothesis, we found that tilapia D1 contains
a Sec residue in a position corresponding to the Sec residue
in PTU-sensitive D1s, indicating that differences in PTU sen-
sitivity are determined by other structural elements (20).

Simultaneous with the cloning of D1 from tilapia kidney,
we also attempted to clone other deiodinases from tilapia
liver. This involved RT-PCR of tilapia liver messenger RNA
(mRNA) using oligonucleotide primers based on amino acid
sequences (NFGSCTSecP, YIEEAH and VVVDTM) highly
conserved in the D1 and D3 sequences available at that
time (8-13). The RT-PCR products were sequenced and
used as probes for cDNA library screening. This resulted
in the isolation of TL31, a cDNA clone coding for tilapia
D3 (tD3).
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Materials and Methods
Materials

Tilapia (O. niloticus) were obtained from CERER-University of Liege
(Tihange, Belgium) and kept as described before (36, 37). TRIzol reagent
was obtained from Life Technologies, Inc. (Breda, The Netherlands);
oligo-dT-cellulose was from New England Biolabs, Inc. (Beverly, MA);
SuperTaq DNA polymerase was from HT Biotechnology Ltd. (Cam-
bridge, UK); AMV reverse transcriptase and pCI-Neo were from Pro-
mega Corp. (Madison, WI); Klenow DNA polymerase was obtained
from Roche Molecular Biochemicals (Mannheim, Germany); pCR-II was
from Invitrogen (San Diego, CA); synthetic oligonucleotides were from
Amersham Pharmacia Biotech (Roosendaal, The Netherlands) or Life
Technologies, Inc.; Hybond membranes, [a-**P]dATP and [«-**P]UTP
were purchased from Amersham Pharmacia Biotech (Buckinghamshire,
UK); polyethyleneglycol (PEG6000) was from Merck (Hohenbrunn, Ger-
many); DEAE-dextran and Sephadex LH-20 were from Amersham Phar-
macia Biotech. Nonradioactive iodothyronines were obtained from Hen-

CTRAATTCCAGTTGTCTCGTTTGCCGGCACAGTCTCATCCTATCAGCCGGGGGAGAGATG 60

ATGGACGACTCCGGCGGTGTCCAAATGGCGAAGGCGCTGAAGCATGCAGCCCTCTGCCTG 120
M D DS G GV Q MA KA ATLI KU HA AN ATLCL 20

ATGCTGCTTCCCCGGTTCCTTCTGGCCGCAGTTATGCTGTGGCTCCTGGATTTCTTGTGC 180
M L L P R F L L AAV ML WUIL UL DV F L C 40

ATTAGGAAAAAAGTGCTGCTGAAAATGGGAGAGAGGCAGGAGAGCCCGGACGACCCGCCG 240

I R K K vV L L K M G E R Q E

s P DD P P 60

GTGTGCGTCTCTGACTCTAACAAGATGTTCACCTTGGAGTCCCTGAGGGCCGTGTGGCAT 300

v ¢ v §8 D

S N K M F T L E S L R A V W H 80

GGTCAGARATTGGACTTTCTCAAATCTGCGCACCTTGGGCACCCTGCGCCCAACACCGAG 360
G Q K L. b F L K S A HL G HUP A PN T E 100

GTGGTGCTTGTCCAGGAGCGGAAGCAGGTGCGAATCCTGGACTGCGTGAARAGGGAATAGA 420

vV v L V. Q E R K @ V R I

L D ¢CV K G N R 120

CCGCTCATTCTTAACTTTGGCAGCTGCTCCTGACCGCCATTCATGACGCGTCTGACGGCG 480

P L I

L N F 6 s ¢ 8 X p P F M T RUL T A 140

TTTCAGCGCGTCGTGAGTCAGTACGCAGACATTGCGGACTTTTTAGTTGTATATATCGAG 540

F ¢ R V V 8 Q Y A D I

A D F L V V Y I E 160

GAGGCGCATCCCTCGGACGGCTGGGTGAGCTCGGACGCGCCGTATCAGATCCCCAAGCAT 600

Fic. 1. Nucleotide and deduced amino E A H P S

acid sequence of cDNA clone TL31. The
Sec residue is denoted by X. The puta-
tive SECIS element in the 3’ untrans-
lated region is underlined.

D G W V 8 8 D A P Y QI

CGCTGTTTGGAAGACAGACTTAGAGCCGCTCAGCTGATGCTCACTGAGGTGCCGGAGACC 660
R ¢ L E D RL R AAQ@L ML TE V P E T 200

AACGTGGTGGTGGATAATATGGACAACTCGTGTAACGCCGCGTACGGAGCCTACTTTGAG 720
N VvV v v D NMDNSCNA AAB AY G A Y F E 220

P K H 180

AGACTTTACATCGTGAGGGATGARRAAGTGGTGTACCAGGGGGGCAGGGGTCCAGAGGGA 780

R L Y I

V R D E KV V Y Q@ G G R G P E G 240

TACCGGATTTCCGAGCTTAGARACTGGCTGGAACAATACAGGAACGATCTGCCGAATTCC 840

Y R I

S E L R N W UL E Q YR NDL P N S 260

CAAACAGCGGTACTCCATGTGTAGATGCTGAACTGCCCGCTGCTCTGCCCACTCTGCTTA 900
Q T A V L H VvV * 267

ATAAGTATCCAACCCACAGTGCAARATATCCAGATGCTGCTATCAGATGTTCACCCATGG 960

CACATTGTTGTTGTTTTGGTTTTTTTTTTTGCARARAAACATGAGGARAAAAGAAACATT 1020
TTCAGGACTCTTTGTCAAAATAGCCTARAGTCATGTTGARGCATAGACCGTAGGCTGTGA 1080
TTTTGTGCTTGTCTCGACTTTCATTGATTGGCCATAGCGATTCTCTTTATTTCTTCTTTT 1140
GTATGAAAAAGTCTCAGTTGGATTCAATTGGTAATCACTCTATTTTTCTACAATACCTCT 1200
CTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCGGGCTAATATCGCCTTCTGG 1260
TGTCTCTGTGAAGTTCGGTTTTTAAAAGGGTCATCCAGARAACCGACACTGATGTTTCCG 1320

ACACTGGTAGCGGGCCATATTAGCGAGACGCCTCACTCGGTGACCGACTGCTAACGGTGT 1380

AACGTTGAAGCAATTGTAACTGAACAACTGTTTTTAATAAATGTCAGATCACACACTGAT 1440

GACGCACTTTTGAGTGTTGAAAAAAAAAAAAARAAAAAA

1479
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ning Berlin R&D (Berlin, Germany), [3’, 5'-"*°I]T, (~1200 Ci/mmol) and
[3'-T°1]T5 (~2000 Ci/mmol) from Amersham Pharmacia Biotech, and
[3,5-'%1]T; (~35 Ci/mmol) from Mr. R. Thoma (Formula GmbH, Berlin,
Germany) courtesy of Dr. G. Decker (Henning, Berlin, Germany). (3’,
5'-1%)rT, (~2000 Ci/mmol) and [3,5-'*I]T,S were prepared in our
laboratory as described previously (40, 41). 6-n-Propyl-2-thiouracil
(PTU), iodoacetate (IAc), gold thioglucose (GTG), dithiothreitol (DTT),
and chloroquine were obtained from Sigma Chemical Co. (St. Louis,
MO). All other reagents were of the highest purity commercially
available.

Cloning and sequence analysis

Total RNA was isolated from tilapia liver using TRIzol reagent, and
poly(A™) RNA was isolated on oligo-dT-cellulose. cDNA was obtained
by oligo-dT-primed RT using AMV reverse transcriptase. PCR was
performed using the primers 5'-AATTTTGGCAGTTGTACCTGACC-3’
and 5'-RTGIGCTTCCTCIATGTA-3" and SuperTaq DNA polymerase.
The PCR products were TA-cloned into pCR-II and sequenced. The
tilapia liver cDNA library was constructed in Lambda ZAP-Express
(Stratagene, La Jolla, CA). The library was blotted on Hybond-N" and
screened with the RT-PCR products labeled with [e-**P]dATP by primer
extension using Klenow DNA polymerase. The phagemids carried in
selected positive bacteriophages were excised, generating cDNA clones
in pBK-CMV. The inserts were sequenced manually and by automatic
sequencing in both directions using the dideoxy method (42).

RNA secondary structure prediction was done using the MFOLD
program provided by Dr. M. Zuker (Institute for Biomedical Computing,
Washington University, St. Louis, MO) on the internet (http://www.
ibc.wustl.edu/~zuker; Ref. 43). Hydropathicity analysis of the protein
was done according to Kyte and Doolittle (44) with a window of 11 using
the ProtScale program provided on the website of the Swiss Institute of
Bioinformatics (http://expasy.hcuge.ch).

Expression

cDNA was cut out of pBK-CMV with Sall/Notl and ligated into
Xhol/Notl digested pCI-Neo and expressed in COS-1 cells grown in
DMEM/F12 containing 10% FCS (Life Technologies, Inc.) and 40 nm
Na,SeO; (45). One day before transient transfection, COS-1 cells were
seeded at 50% confluence in 55 cm? cell culture dishes. Expression
constructs (7 ug) isolated by alkaline lysis and polyethyleneglycol pre-
cipitation (46) were added to serum-free DMEM/F12 medium contain-
ing 100 pg/ml DEAE-dextran. After 2 h, the medium was replaced by
serum-free DMEM/F12 medium containing 100 uM chloroquine. Again,
2 h later the medium was replaced by DMEM/F12 containing 10% FCS
and 40 nM Na,SO;. After 3 days, the cells were rinsed with PBS, collected
in 0.3 ml 0.1 M phosphate (pH 6.9), 1 mm EDTA and 10 mm DTT,
sonicated, snap-frozen on dry-ice/ethanol, and stored at —80 C.

Northern blots

Total tissue RNA (20 ng per lane) was separated on 1% (wt/vol)
formylaldehyde-agarose gels and blotted onto Hybond-N"* membranes
by overnight capillary transfer using 20 X SSC. For preparation of a
riboprobe, the TL31-pCI-Neo plasmid was double-digested with EcoRI/
Xbal and religated to remove nonspecifically hybridizing repetitive
3'UTR sequences. The 3'UTR-deleted construct was linearized with
Nhel, and the riboprobe was generated using the T; Ampliscribe kit
(Epicentre Technologies, Madison, WI) and [a-**P]JUTP. Hybridization
of the Northern blot was performed in NorthernMax buffer (Ambion,
Inc., Austin, TX) overnight at 67 C. Blots were washed once for 30 min
at 50 C with 0.1 X SSC, 0.1% SDS, and twice for 30 min at 70 C with 0.1 X
SSC, 0.1% SDS. Autoradiographs were prepared by exposure of the blots
at —70 C to Fuji Photo Film Co., Ltd. RX film. Analysis of the ethidium
bromide-stained gels indicating 20-30% variation in the amount of
applied RNA.

Enzyme assays

Tilapia tissue homogenates and microsomal fractions were prepared
as described before (37). Deiodinase activities of native and recombinant
enzyme preparations were determined by measuring the radioiodide
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released from either [3’, 5'-'*I|T, or [3', 5'-"*I]rT; by ORD, or from
[3,5-'%1]T; or [3,5-'*1]T; sulfate (T,S) by IRD (40, 41). In short, appro-
priate amounts of tissue or lysate ?rotein were incubated in triplicate for
30-60 min at 37 C with 10 nm [**I]substrate in 0.2 ml, 0.1 M sodium
phosphate buffer (pH7.2),2 mm EDTA, and 10 mm DTT. Reactions were
stopped and [*’I]iodothyronines were precipitated by successive ad-
dition of 0.1 ml 5% BSA and 0.5 ml 10% TCA. Radioiodide was further
isolated from the supernatant on Sephadex LH-20 minicolumns (40, 41).

For HPLC analysis of the deiodination products, 1 nm [3’, 5'-'*°I]T,
or [3'-'*1]T; was incubated in duplicate for 1 h at 37 C with (1 mg
protein/ml) or without cell lysate in 0.2 ml, 0.1 m phosphate (pH 7.2),
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Fic. 2. Predicted stem-loop structure of the SECIS element in the
TL31 3'UTR. Consensus nucleotides are indicated in bold.
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2 mm EDTA and 50 mMm DTT. The reactions were stopped by addition
of 0.2 ml ice-cold methanol. After centrifugation, 0.2 ml of the super-
natant was mixed with 0.2 ml 0.02 M ammonium acetate (pH 4), and 0.1
ml of the mixture was applied to a 250 X 4.6 mm Symmetry C18 column
(Waters, Etten-Leur, The Netherlands) connected to an Alliance HPLC
system (Waters) and eluted isocratically with a mixture of acetonitrile
and 0.02 M ammonium acetate (33:67, vol:vol) at a flow of 1.2 ml/min.
Radioactivity in the eluate was monitored on line using a Radiomatic
A-500 flow scintillation detector (Packard, Meriden, CT).

Results

By RT-PCR of tilapia liver mRNA using oligonucleotide
primers corresponding to the conserved amino acid se-
quences NFGSCTSecP and VVVDTM, a 246-bp cDNA frag-
ment was obtained, the sequence of which showed high
homology with the corresponding region in Xenopus laevis
and Rana catesbeiana D3 (12, 13). The labeled PCR product
was used as a probe to screen the tilapia liver cDNA library
(200,000 independent clones). Seven double-positive clones
were identified after plating 500,000 pfu’s of the amplified
library. Using vector- and PCR product-specific primers, sev-
eral possibly full-length clones were identified. One cDNA
clone (TL31) was found to be 1479 bp long with a reading
frame coding for a 267-amino acid protein, assuming that
TGA at codon 131 is translated as Sec (Fig. 1). The protein has
a calculated molecular weight of 30,356 kDa and an iso-
electric point (pl) of 6.2. Analysis of the 3'"UTR region of TL31
by RNA secondary structure prediction reveals a stem-loop
structure containing consensus SECIS element nucleotides
(Fig. 2). SECIS elements are essential for the incorporation of
Sec at the in-frame UGA opal stop codon (47-50). Evidence
presented below indicates that TL31 represents cDNA cod-
ing for tD3.

Figure 3 shows the alignment of the deduced amino acid
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sequence of tD3 with the D3 sequences of X. laevis, R. cates-
beiana, chicken, human, and rat. The amino acid identity of
tD3 amounts to 62-65% with frog D3 (12, 13), 67% with
chicken D3 (19), and 57% with mammalian D3 (14, 15). The
amino acid sequence of tD3 shows 35% identity with tilapia
D1 (20), 33% identity with chicken D1 (19) and 30-33% iden-
tity with mammalian D1 (8-11). The amino acid identity of
tD3 with fish (F. heteroclitus) D2 is 36% (18), with frog D2 33%
(16) and with mammalian D2 38-39% (6, 17).

Figure 4 shows the hydropathicity plot of the tD3 protein
using the Kyte and Doolittle algorithm (44), indicating a
strongly hydrophobic domain between amino acids 16 and
41 which probably represents a transmembrane domain.

Figure 5 shows the analysis of the enzyme activity ex-
pressed in tD3 cDNA-transfected COS-1 cells using different
iodothyronine derivatives as substrates. In agreement with
the well-known catalytic profile of native D3 from tilapia and
other species (1-5), recombinant tD3 catalyzes the IRD of Ty
but much less so of T5S, whereas it does not catalyze the ORD
of T, and rT;. The deiodination products of T, and T; were
also analyzed by HPLC (Fig. 6). The results show that re-
combinant tD3 specifically catalyzes the IRD of T, to rTj,
whereas ORD of T, to T; is undetectable (Fig. 6A). T; un-
dergoes only IRD to 3,3'-T2, whereas release of radioiodide
through ORD of [3'-"**[]T, is undetectable (Fig. 6B). Similar
data were obtained using tilapia brain homogenate as source
of native tD3 (data not shown).

Figure 7 demonstrates that recombinant tD3 expressed in
COS-1 cells has exactly the same substrate specificity and
inhibitor sensitivity as the native enzyme in tilapia brain
microsomes. IRD of 10 nm ['*°I]T; by both recombinant and
native tD3 is inhibited progressively by increasing concen-

til MDDSGGVQMAKALKHAALCLMLLPRFLLAAVMLWLLDFLCIRKKVLLKMGERQ—~——~—=~ 53
xen mlhca.phtg.lv.gv.a.cl....... tg..eans g...rr...tar.es—————== 53
ran mlpaphtcerl.qgg.la.cl....... tvll...... p.v.rr.irgak.edpg----- 54
chi .a.il.f..... Eeveenenenennenn m.tmptaeeaag——-- 40
rat mlr.lllhslrlcaqt.s..v.f....gt.f.......c0ve hf.rrrhpdhpepevel 60
hum mlh.lllhslrlcagt.s..v.f....gt.f...0cavee hf.grrrrgkpepevel 60
til - ESPDDPPVCVSDSNKMFTLESLRAVWHGQKLDFLKSAHLGHPAPNTEVVLVQER 107
xen = ----- taehe...l...... FaCeVeeooooaonsonn yEeoooon CSevevnns mleg. 108
ran  —-——— apere... ..ter.c..... KeoeYereonn foeou.. gGeeeoens tlegq 109
chi Ealt-Yo[=1¢ § o) « TSR Feveouso Keceooeonns f....v.s....p..1qldggq 98
rat nsegeemp..... i d.rlc..a..kececven..n f.q..e.g....s...rpdgf 120
hum nsegeevp..... i d.rlc..a..kececeenene. f.g..e.g....s....pdgf 120

Fic. 3. Alignment of the cDNA-de-
duced amino acid sequences of tilapia

til KQVRILDCVKGNRPLILNFGSCSXPPFMTRLTAFQRVVSQYADIADFLVVYIEEAHPSDG 167

. . . xen rick...fsq.k...vv..... t.o.... a..g.yr.laa.hvg..... leeeeeneones 168
(til), X. .laevzs ()fen), R. catesbeiana ran rlc....fs..h...v...... te.... a..qg.y..laa.rl.f.....00000 . c.. 169
(ran), chicken (chi), human (hum) and  ¢ph;  rl....far.kee........ teunn. a..rs.r.laadfv...... Leveinennnns 158
rat D3. The Sec residue is denoted by X. rat GG+ YAt et o Veennss tevnns a.mS....l.tk.Qrav...iiceeeeonn.. 180
Identical amino acids are indicated by hum gsqh...yage... Voo, teoa.. a.ms....l.tk.grdv...ii..ccovennn. 180

dots, and gaps are indicated by hyphens.

til WVSSDAPYQIPKHRCLEDRLRAAQLMLTEVPETNVVVDNMDNSCNAAYGAYFERLYIVRD 227

xen [ P DO TR O TN O Y- TSI dga.gCr....tieeeBeeennecnnennns le 228
ran dl.t..as...t.geigeeeieenn. dgga.gcr..a.t.t.as.....000ca.. vil. 229
chi  ...... - 0 - PUPAPIIYc PR « rega.dcpla..t...as8.c.c000000e vige 218
rat ..ttes..v..g..8....v8. . rViggga.gcal.l.t.a..558. s e en e vigs 240
hum Sottesoiilige.S....vS.arvlggga.gcal.l.t.8..8SS0 000 vigs 240
til EKVVYQGGRGPEGYRISELRNWLEQYRNDLPNSQTAVLHV 267
xen [ Kevess Meveoo qgg.mgtkgsggv. iqv 271
ran Jeveonnoononne KeGeeoenn d..qgtratgngal.iq. 269
chi ceeMecnacononn | S t..d..ktr.gspgav.iq. 258
rat gtim....... d..gv....t...r.deqg.hgtrprr. 278
hum gtim....... d..gv....t...r.deq.hgarprrv 278
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Fic. 4. Kyte and Doolittle hydropathicity plot of the tD3 amino acid
sequence. Positive values indicate hydrophobic regions and negative
values indicate hydrophilic regions.
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Fic. 5. Catalytic profile of recombinant tD3 expressed in TL31-trans-
fected COS-1 cells. Cell sonicates (1 mg protein/ml) were incubated for
1 h at 37 C with 10 nM substrate and 10 mm DTT. Results are the
means * SD of triplicate incubations in a representative experiment.

trations of unlabeled T, T,, and rT5, with IC5, values of ~10,
~100 and >>1000 nMm, respectively (Fig. 7, A and B). The
apparent K, value of T; for both native and recombinant tD3
amounts to ~20 nM, which is close to the K,,, values found
for other D3 enzymes (1-5). Native and recombinant tD3 also
show equal patterns of inhibition by increasing concentra-
tions of GTG, IAc, and PTU (Fig. 7, C and D). Under the
conditions used, ICs, values for these inhibitors amount to
~1 uM, ~1 mm and >>1 mw, respectively.

Figure 8 compares the tissue distributions of D3 activity
and mRNA levels in tilapia. Analysis of the IRD of T; in tissue
homogenates indicates high D3 activity in brain and much
lower activities in other tissues (Fig. 8A). On the Northern
blots, a prominent 1.6-kb mRNA species is detected in gill
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Fic. 6. HPLC analysis of the deiodination of T, (A) and T3 (B) by tD3.
Conditions were: 1 nm (3', 5'-125)T, or (3'-1251)T;, 50 mm DTT, 1
mg/ml TL31-transfected cell lysate protein, and 1 h incubation at 37
C. Representative results of duplicate incubations with or without
enzyme are illustrated with the continuous and interrupted lines,
respectively.

and brain by hybridization with the tD3 riboprobe (Fig. 8B).
Gill shows extensive hybridization of progressively shorter
mRNA species, with a prominent band of ~1.2 kb which is
clearly visible after shorter exposure times (not shown).
Much weaker bands are present in liver and kidney. Fur-
thermore, smaller mRNA species of ~1 kb are observed in
heart and spleen. Gut and muscle show very little tD3
mRNA.
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Discussion

Evidence that the TL31 cDNA cloned and characterized in
this study codes for tD3 may be summarized as follows. 1)
The nucleotide and deduced amino acid sequences of TL31
show much higher homologies with D3 sequences from var-
ious species than with D1 and D2 sequences from fish and
other species. 2) The catalytic properties of the enzyme ex-
pressed in TL31-transfected cells are characteristic for D3. It
efficiently catalyzes the IRD of relatively low concentrations
of T, and T5 but is much less effective in the IRD of T;S. This
is in contrast to D1 from tilapia and other species, which
show much higher IRD rates with T5S than with T; as sub-
strate (1-5, 20). Furthermore, the TL31-encoded enzyme does
not catalyze the ORD of rT; and T,, which are the most
prominent reactions catalyzed by D1 and D2, respectively
(1-5). 3) IRD of T; by TL31-transfected cells and native tD3
expressed in tilapia brain is characterized by identical K,
values and equal sensitivities to inhibition by the substrate
analogs T, and rT; and the deiodinase inhibitors GTG, IAc,
and PTU. The higher concentrations of unlabeled T, than of
T required to inhibit the IRD of labeled T; by recombinant
and native tD3 are in agreement with the higher apparent K,
values of T, than of T; for D3 in general (1-5).

GTG, IAc, and PTU are potent inhibitors of D1 from dif-
ferent species, where GTG and IAc are thought to react with
the selenolate anion of the native enzyme and PTU is sup-
posed to react with a selenenyl iodide enzyme intermediate

107 10 105 10 102 0

107 10 105 104 102

M

(1-5). However, tilapia D1 is much less sensitive to inhibition
by GTG and IAc and is virtually insensitive to PTU (20, 36,
37). D2 and D3 from different species are even less sensitive
than tilapia D1 to the effects of these inhibitors (1-5). Because
Sec is supposed to be the catalytic center in all deiodinases,
the reason for their differential sensitivities to these inhibi-
tors remains an enigma (1-20).

The alignment of tD3 with the human, rat, R. catesbeiana,
X. Inevis, and chicken D3s reveals regions of high homology.
The Kyte and Doolittle hydropathicity plot strongly suggests
that the highly conserved N-terminal sequence from Ala'® to
Ile*! in tD3 represents a hydrophobic membrane-spanning
domain that anchors the protein in the membrane of the
endoplasmic reticulum or in the plasma membrane. Such a
transmembrane domain has also been identified near the N
terminus of other deiodinases (6, 8-20). Studies of the to-
pography of mammalian D1 suggested that the N terminus
is hidden in the lumen of the endoplasmic reticulum with the
major part of the protein exposed to the cytoplasm (51). Such
an orientation fits with the requirement of thiols as cofactors
for the deiodination of iodothyronines which are abundant
in the reductive environment of the cytoplasm (52). These
studies of D1 topography have also shown that basic amino
acids flanking the transmembrane domain, which are located
in positions 11 and 42-44 of tD3, are essential for proper
insertion in the membrane (51).

The His residues located at positions 163 and 180 of tD3
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Fic. 8. A, Tissue distribution of D3 activity in tilapia. Homogenates
(1 mg protein/ml) were incubated for 1 h at 37 C with 10 nm [*2°I]T,
and 50 mM DTT. Results are the means of closely agreeing triplicates
in a representative experiment. B, Northern blot of total tissue RNA
(20 pg) hybridized with radiolabeled tD3 riboprobe.

are conserved throughout the iodothyronine deiodinase
family and have been shown in rat D1 to be essential for
enzyme activity (53). One of these may directly participate in
the catalytic process by forming a hydrogen bond with the
selenol group, further increasing its nucleophilicity (53, 54).
Phe® in rat and human D1 (11, 41) has been shown to be
involved in binding of rT;. The absence of Phe in a corre-
sponding position of D3 may contribute to the low affinity
of Ty for this enzyme.

Although incorporation of Sec into tD3 has not been dem-
onstrated directly, our findings strongly suggest that this
enzyme features a Sec residue in a position corresponding to
the Sec residue in other deiodinases. Sec is encoded by the
UGA opal stop codon if the termination of translation nor-
mally signalled by this codon is suppressed in the presence
of a SECIS element in the 3'UTR of the mRNA (47-50). The
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stem-loop structure predicted in the 3" UTR of the tD3 cDNA
contains most but not all of the consensus nucleotides ob-
served in other SECIS elements (47-50). The putative tD3
SECIS element contains the sequence GUGA (nucleotides
1268-1271) instead of AUGA in other SECIS elements (47—
50). The function of this first adenosine is not clear, since it
is not involved in the nonWatson/Crick base-pairing pro-
posed by Walczak et al. (50). A similar deviation from the
consensus SECIS element was found in the second putative
SECIS element in tilapia D1 cDNA (20). The consequences of
this substitution for the efficiency of Sec incorporation are
unknown. However, the tD3 SECIS element appears to func-
tion effectively in COS-1 cells not only in the context of
wild-type tD3 cDNA but also in a chimeric construct com-
binir11g the coding sequence of human D2 and the 3'UTR of
tD3.

The TL31 cDNA clone represents most of the tD3 mRNA
because the size of the largest and most prominent band
observed on Northern blots is only slightly bigger than TL31.
Smaller mRNA species are observed in heart and spleen. The
significance of these multiple mRNA species is unknown, but
they may represent mRNA processing intermediates. How-
ever, the smaller D3 mRNA species in heart and spleen (~1
kb) are not expected to translate into functional protein be-
cause they are too short to contain both the initiator codon
and the SECIS element. The high-stringency conditions used
in the Northern analysis preclude hybridization of the tD3
riboprobe with D1 and D2 mRNA. This is supported by the
barely detectable hybridization with RNA from liver and
kidney which show abundant expression of D2 and DI,
respectively (5, 20, 36, 37). Furthermore, hybridization with
D1 (20) and D2 (55) riboprobes shows different hybridization
signals.

The translational efficiency of the tD3 mRNA apparently
shows substantial differences between tissues. Brain contains
high levels of both D3 activity (37) and D3 mRNA. Even
higher D3 mRNA levels are found in gill, although this tissue
contains only limited D3 activity (37). The tailing observed
with D3 mRNA from gill suggests high mRNA degradation.
It is also remarkable that the Northern blots showed very
little expression of D3 mRNA in tilapia liver, although D3
cDNA fragments were produced by RT-PCR of liver mRNA,
and the tilapia liver cDNA library contained several inde-
pendent TL31-like clones.

In conclusion, we have cloned and characterized D3 cDNA
from tilapia. Together with the human, rat, chicken, and frog
D3 sequences, the elucidation of a fish D3 sequence helps to
define the conserved regions of these proteins which are
essential for IRD activity.
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