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Abstract

Reliable discrimination of recent influenza A infection from previous exposure using hemagglutination inhibition (HI) or
virus neutralization tests is currently not feasible. This is due to low sensitivity of the tests and the interference of antibody
responses generated by previous infections. Here we investigate the diagnostic characteristics of a newly developed
antibody (HA1) protein microarray using data from cross-sectional serological studies carried out before and after the
pandemic of 2009. The data are analysed by mixture models, providing a probabilistic classification of sera (susceptible,
prior-exposed, recently infected). Estimated sensitivity and specificity for identifying A/2009 infections are low using HI (66%
and 51%), and high when using A/2009 microarray data alone or together with A/1918 microarray data (96% and 95%). As a
heuristic, a high A/2009 to A/1918 antibody ratio (.1.05) is indicative of recent infection, while a low ratio is indicative of a
pre-existing response, even if the A/2009 titer is high. We conclude that highly sensitive and specific classification of
individual sera is possible using the protein microarray, thereby enabling precise estimation of age-specific infection attack
rates in the population even if sample sizes are small.
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Introduction

Yearly epidemics of influenza A are the cause of a variable

burden of disease that can be substantial in years with high

influenza activity [1–4]. To date, the methods of choice for

classification of individuals as infected, immune, or susceptible

using serum are the virus neutralization, complement fixation, and

hemagglutination inhibition (HI) tests. These tests have a long

history, have been validated against positive and negative samples,

and have proved their value in countless studies.

Traditionally, the gold standard for detecting influenza infec-

tions is by the use of paired serum samples, the first taken in the

acute phase of infection and the other several weeks later. A

significant (usually fourfold) increase in antibody titers is subse-

quently taken as evidence for recent infection. In practice,

however, it is both costly and logistically challenging to obtain

such samples. Consequently, residual or other one-point serolog-

ical samples are often used instead, and classification is based on a

high antibody titer in the one-point sample. Such classifications,

however, may lack in sensitivity, especially when it comes to

distinguishing between persons that have been infected recently

and persons that have been infected with similar viruses in the

past.

Moreover, in comparative studies when multiple antigens need

to be tested the traditional tests are laborious, and need a

significant amount of serum. Recent studies have made increasing

use of novel diagnostic assays based on protein microarrays [5–8].

Advantages of the protein array are the smaller volumes of blood,

the possibility of simultaneous testing of samples against multiple

antigens, and potentially the test characteristics.

In the Netherlands, two serological studies had been conducted

before and after the H1N1 pandemic of 2009 [9]. In these studies,

samples had been analysed with HI to obtain estimates of the age-

specific attack rates, by comparison of post- versus pre-pandemic

seropositivity. Here, we analyse a subset of these samples with the

newly developed protein microarray. Our aims are to explore the

diagnostic characteristics of the microarray, and in particular to

investigate whether the microarray would enable reliable classifi-

cation of persons as being recently infected (with A/2009 H1N1),

or having a response resulting from infection(s) in previous years.

The data are analysed using mixture models. In contrast to

traditional analyses which use a fixed cut-off value to classify each

sample into one class (susceptible, immune, recently infected),

mixture models estimate the probability that a sample belongs to

one of these classes. Hence, mixture models provide a natural way

to include uncertainty in the classification procedure, and also

enable investigation of optimal cut-off values [9,10].
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Materials and Methods

1. Data
Two age-stratified population based surveys had been conduct-

ed in the Netherlands before and after the pandemic of 2009 [9].

Here, we analyse a structured random subset containing 167 and

190 sera from the earlier study (Table S1). The two samples are

stratified by age (0–4, 5–9, 10–19, 20–44, 45–64, and 65+ years),

as recommended by the Consortium for the Standardization of

Influenza Seroepidemiology (consise.tghn.org). Further, children

under the age of five are excluded due to the small number of

participants [9], and persons receiving pandemic vaccinations and

elderly (65+ years) are excluded because of the interference of

vaccination with the test results [8]. We also excluded sera from

the pre-pandemic survey that had been collected after 12th of

October 2009, which marks the onset of sustained transmission in

the Netherlands.

The aim of the earlier study was to obtain estimates of age-

specific infection attack rates, and sera had been analysed with a

hemagglutination inhibition test (HI). Most of the samples in the

earlier study tested negative using HI. To prevent a random

sample being drawn that contains mostly test negative sera, we

stratify the sampling procedure by HI titer. One group contains

sera that tested negative, one group contains sera with a low to

intermediate standardised HI titer (positive but ,40; henceforth

called intermediate titer), and one group contains all sera with a

intermediate to high standardised HI titer ($40; henceforth called

high titer). This procedure stratifies the population by age,

(standardised) HI titer, and survey (pre- versus post-pandemic).

Two strata contain no data, as all persons aged 5–9 years tested

negative in the pre-pandemic sample. For the remaining 28 groups

we have drawn a random subset for analysis (Table S1). The

original surveys contained two random samples of the population,

and therefore so do the subsets. Our stratification scheme enables

weighing of the sera in the subset to represent a random sample

from the Dutch population.

The study was approved by the Medical Ethical Testing

Committee of Utrecht University (Utrecht, the Netherlands),

according to the Declaration of Helsinki (protocol 66-282/E).

Written informed consent was given by participants (or next of

kin/caregiver in the case of children) for suitably anonymised

clinical records to be used in this study.

2. Hemagglutinin (HA1) microarray
The subset of sera from the original study was analysed with a

microarray as described earlier [5–8]. Briefly, recombinant

proteins were produced in human embryonic kidney cells

(HEK293) and purified by HIS-tag purification (purity more than

95%), as specified by the manufacturer (Immune Technologies,

New York, USA). Oncyte avid nitrocellulose film-slides containing

64 pads per slide were used (Grace bio-labs, Bend, USA), and spot

signals were quantified by the use of a Scanarray scanner (Perkin

Elmer, Waltham, USA) using an adaptive circle quantification

method. Finally, conjugates consisted of goat anti-human IgG (Fc-

fragment specific) conjugated with Dylight649-fluorescent dye

(Jackson Immuno Research, West Grove, PA, USA).

Table 1 shows the antigens included in the study. Notice that

next to the antibody response against the A/2009 (H1N1)

pandemic virus, we tested the samples against a range of other

antigens, among which A/1918 (H1N1). The hemagglutinin of

H1N1 virus of 1918 is genetically and antigenically related to the

2009 virus [11–14]. Readers of each test (HI and microarray) were

blind to results of the other tests, and had no access to ancillary

information (age, sex).

3. Mixture model
We use a mixture model to provide a probabilistic classification

of individual samples and estimate age-specific infection attack

rates. The mixture model contains three component distributions

that model the responses across age groups. The first distribution

describes samples of low antibody titer, pertaining to susceptible

persons. The second distribution describes samples of intermediate

antibody titers and aims to identify persons that have pre-existing

antibodies, hereafter named the immune component distribution.

The third distribution describes samples of high titer, and aims to

identify persons infected during the pandemic.

The susceptible and immune component distributions are fitted

to pre- and post-pandemic data, while the infected component

distribution is fitted to the post-pandemic data only. We assume

that there are no age dependencies in the component distributions,

and fit Gaussian distributions to the log2 antibody titers. We collect

the means (msus, mimm, and minf) and standard deviations (ssus, simm,

sinf) of the distributions in parameter vectors (hsus, himm, hinf), and

denote by f(x; h) the densities of the distributions.

Table 1. Overview of HA1 antigens included in the protein microarray.

Strain Subtype

A/South Carolina/1/1918 H1N1

A/WS/1933 H1N1

A/New Caledonia/20/1999 H1N1

A/Brisbane/59/2007 H1N1

A/California/06/2009 H1N1

A/Canada/720/2005 H2N2

A/Aichi/2/1968 H3N2

A/Wyoming/2/2003 H3N2

A/Brisbane/10/2007 H3N2

A/Vietnam/1194/2004 H3N2

A/Chicken/Netherlands/1/2003 H5N1

A/Guinea fowl/Hong Kong/WF10/1999 H7N7

Antigens in bold have been used for classification of persons as being susceptible to, immune against, or recently infected with pandemic virus (A/2009 H1N1).
doi:10.1371/journal.pone.0113021.t001

Influenza Antibody Microarray Analysis
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The weights of the distributions are determined by two mixing

parameters per age group, viz. qa, the probability that a person in

age group with label a belongs to the immune component, and pa,

the probability that a person with age label a is in the infected

component. Hence, 1- qa and 1-pa-qa are the probabilities that a

person belongs to the susceptible component in the pre- and post-

pandemic surveys. Notice that we make the implicit assumption

that the fraction of persons in the immune component remained

constant in the short time span (#6 months) between the two

surveys. In the following, the age-specific weights are collected in

vectors p and q. At the individual level, the probability that a

person in the post-pandemic survey with age label a is infected is

given by the product of the mixing parameter pa and the local

density of the infected component distribution, normalised by the

sum of these quantities over all component distributions (suscep-

tible, immune, infected).

The statistical analyses are based maximization of the log-

likelihood. In the following we denote by npre and npost the

number of samples in the pre- and post-pandemic survey, by dpre(i)
the log2 antibody titer of sample i in the pre-pandemic study, by

Figure 1. Standardised hemagglutination inhibition titers as a function of A/2009 microarray titers. Data are stratified by study and age
group (5–9, 10–19, 20–44, and 45–65 years). The bottom left corner in each panel shows the number of samples that tested negative in both assays.
The top right corner shows Kendall’s tau, a nonparametric correlation coefficient.
doi:10.1371/journal.pone.0113021.g001
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Figure 2. A/2009 (H1N1) microarray titers (bars) and the fitted mixture distributions (lines). The data are aggregated as follows: ,20, 20–
40, 40–80, 80–160, 160–320, and 320–640. Grey and red bars represent pre- and post-pandemic data, respectively. The solid and dashed line
represent the immune and infected component distribution, respectively. The cumulative probabilty density of the mixtures below the detection
limit of 20 are marked with black dots.
doi:10.1371/journal.pone.0113021.g002

Table 2. Overview of the microarray data, stratified by age, cut-off for seropositivity, and study period (pre- versus post-
pandemic).

A/2009 (H1N1) Microarray Titer Age Group (years)

5–9 10–19 20–44 45–64

Pre-pandemic .20 0 0?30 0?60 0?55

.40 0 0?23 0?33 0?37

.65 0 0?13 0?22 0?30

Post-pandemic .20 0?64 0?53 0?54 0?59

.40 0?64 0?43 0?42 0?36

.65 0?64 0?43 0?25 0?22

.20 0?64 0?24 20?05 0?04

Post-Pre .40 0?64 0?20 0?10 20?01

.65 0?64 0?30 0?03 20?08

For each group the seroprevalence, i.e. the fraction with a titer higher than the cut-off, is shown. Also shown are the seroprevalence differences between the post-and
pre-pandemic samples.
doi:10.1371/journal.pone.0113021.t002
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g(i) the age label of sample i, and by w(i) the population weight of

sample i. With these notational conventions the log-likelihood of

the pre-pandemic data can be written as

‘pre hsus,himm,qDdpre

� �

~
Xnpre

i~1

w ið Þ log 1{qg ið Þ
� �

fsus dpre ið Þ ; hsus

� �
zqg ið Þfimm dpre ið Þ ; himm

� �� �

and the log-likelihood of the post-pandemic data is given by

‘post hsus ,himm,hinf ,p,qDdpost

� �
~

Xnpost

i~1

w ið Þ log 1{pg ið Þ{qg ið Þ
� �

fsus dpost ið Þ ; hsus

� �
z qg ið Þfimm dpost ið Þ ; himm

� �
z pg ið Þfinf dpost ið Þ ; hinf

� �� �
:

The total log-likelihood is given by the sum of the pre- and post-

pandemic log-likelihoods. In practice, the above formulations need

to be adapted slightly to account for left-censoring of samples

below the detection limit [9]. Notice furthermore that HI

measurements are interval-censored, as the data are based on

analysis of serial dilutions, and this has been taken into account in

the analysis of HI data [9].

To investigate whether classification of individual samples can

be improved by the inclusion of a second antigen, we extend the

univariate mixture model described above to a bivariate mixture

model. The analysis of the extended model runs along the same

lines as outlined above, the main difference being that the

component distributions are now specified not by a single mean

and standard deviation, but by two means (e.g., m
(2009)
imm and m

(1918)
imm ),

two standard deviations (
(2009)
imm and

(1918)
imm ), and a covariance

(rimm). Hence, the equations remain the same, but in this case the

parameter vectors contain five instead of two elements.

4. Estimation
The mixture models are fitted using Markov Chain Monte

Carlo methods. Specifically, we use a random walk metropolis

algorithm with normal proposal distributions and the current

value as mean [15]. For each analysis, we run the process for

100,000 cycles, and obtain a thinned sample of 24,000 after a

burn-in of 4,000? Convergence and mixing are assessed visually. A

maximum likelihood estimate of the parameters is obtained, and

limits of 95% parameter confidence intervals are determined by

taking 2?5% and 97?5% quantiles. All statistical procedures have

been programmed in R version 3.0.0.

Results

There is a positive overall correlation between HI and the

microarray response to A/2009 (Kendall’s tau = 0?45, p-value ,

0?001). The correlation is stronger in the post-pandemic study (tau

= 0?57, p-value ,0?001) than in the pre-pandemic study (tau =

0?28, p-value ,0?001), and is strongest in young children (5-9

years) in the post-pandemic study (tau = 0?77, p-value ,0?001). A

further comparison shows that 100 out of 357 samples (28%) test

negative in HI but have a positive response in the microarray

(Figure 1). The opposite is true for just 23 persons (6%). The

number of people that test negative in the HI but positive in the

microarray increases with age (p-value ,0?001, tested with a

logistic regression) and does not appear to be affected by seasonal

vaccinations (p-value = 0?49).

In young children (5–9 years) there is a perfect distinction

between persons that were likely infected, and those that remained

susceptible. In fact, in the pre-pandemic study there are no young

Table 3. Age-specific estimated probabilities (weights) of the component distributions.

Estimated Probability (95% CI)

Age Component Univariate microarray Bivariate microarray Univariate HI

5–9 Susceptible (pre) 1?00 (0?79;1?00)a) 1?00 (0?84;1?00)a) 1?00 (0?52;1?00)

Susceptible (post) 0?35 (0?12;0?61) 0?37 (0?06;0?59) 0?40 (0?01;0?64)

Immune 0?00 (0?00;0?21)a) 0?00 (0?00;0?16)a) 0?00 (0?00;0?48)

Infected 0?65 (0?31;0?82) 0?63 (0?36;0?89) 0?60 (0?25;0?82)

10–19 Susceptible (pre) 0?63 (0?37;0?82) 0?44 (0?24;0?66) 0?76 (0?21;0?98)

Susceptible (post) 0?36 (0?12;0?56) 0?22 (0?03;0?40) 0?56 (0?02;0?72)

Immune 0?37 (0?18;0?63) 0?56 (0?34;0?76) 0?24 (0?02;0?79)

Infected 0?27 (0?11;0?49) 0?22 (0?08;0?46) 0?20 (0?11;0?61)

20–44 Susceptible (pre) 0?30 (0?06;0?43) 0?07 (0?04;0?20) 0?89 (0?22;0?97)

Susceptible (post) 0?25 (0?02;0?36) 0?00 (0?00;0?10) 0?81 (0?09;0?89)

Immune 0?70 (0?57;0?94) 0?93 (0?80;0?96) 0?11 (0?03;0?78)

Infected 0?05 (0?00;0?15) 0?07 (0?03;0?15) 0?08 (0?02;0?26)

45–64 Susceptible (pre) 0?22 (0?05;0?4) 0?12 (0?04;0?24) 0?91 (0?17;0?97)

Susceptible (post) 0?22 (0?02;0?37) 0?07 (0?00;0?18) 0?88 (0?07;0?91)

Immune 0?78 (0?60;0?95) 0?88 (0?76;0?96) 0?09 (0?03;0?83)

Infected 0?00 (0?00;0?10)a) 0?05 (0?00;0?14) 0?03 (0?01;0?20)

Three scenarios are considered, viz. a univariate model that uses A/2009 (H1N1) microarray data (‘Univariate microarray’), a bivariate model that uses A/2009 (H1N1) and
A/1918 (H1N1) microarray data (‘Bivariate microarray’), and a univariate model of hemagglutination inhibition data using A/2009 (H1N1) (‘Univariate HI’). See Table S2
and Table S3 for estimates of the parameters of the distributions.
a)one-sided confidence interval.
doi:10.1371/journal.pone.0113021.t003
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children with a positive test result in the A/2009 microarray, while

64% of the participants has a titer higher than 65 in the post-

pandemic study (Table 2), yielding a clear bimodal distribution of

antibody titers in the post-pandemic study (Figure 2). A bimodal

distribution is also apparent in older children (10–19 years) and

younger adults (20–44 years) in the post-pandemic study, albeit

less pronounced. In older adults (45–64 years), the bimodality of

the distribution of antibody titers in the post-pandemic study has

disappeared.

Subtracting post- and pre-pandemic prevalences yield rough

estimates for the age-specific infection attack rates, suggesting that

infection attack rates are high in young children (64%) and low in

older adults (,4%)(Table 2). Formal analyses using mixture

models yield comparable estimates (Table 3). Above the age of

20, the attack rates decrease less sharply in the bivariate model, as

the bivariate model is better able to identify infected persons (see

below).

Figure 3 shows the bivariate microarray data (dots), the fitted

bivariate immune and susceptible component distributions (con-

tours), and the regions of high estimated infection probability

(shaded areas). There is a positive correlation between the test

results for A/2009 and A/1918, as would be expected. Further,

the infected component distribution is located at modestly higher

A/2009 titers than the immune component distribution, and the

A/2009 antibody titer alone appears to be insufficient to separate

infected persons from those with pre-existing responses (the

immune component). In fact, the main difference between the

infected and immune component distributions is that the former is

located below the latter in the A/2009-A/1918 plane. In other

words, a person with a certain A/2009 antibody titer likely has

some pre-existing immunity if it also has a high A/1918 antibody

titer; if it has a low A/1918 titer, it is more likely that the person

has been infected by A/2009 virus.

Figure 3. Model fit of bivariate H1N1 microarray data (A/2009 versus A/1918). Black and red dots represent the data, i.e. pre- and post-
pandemic samples. Contours indicate the densities of the immune and infected distributions weighted by the the estimated age-specific infection
probabilities (Table 3). The blue dots indicate that multiple samples are negative to both A/1918 and A/2009 (age-specific numbers in the pre-
pandemic survey: 15, 20, 16, 19; post-pandemic survey: 9, 19, 19, 17). Grey areas indicate the regions with high probabilty that a post-pandemic
sample is infected with A/2009. The susceptible component is placed largely placed beneath the detection limit and is not displayed.
doi:10.1371/journal.pone.0113021.g003
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We further evaluated the diagnostic characteristics of the

microarray by analysing classification of post-pandemic sera. In

general, classification is most precise in the bivariate microarray

(Figure 4). For instance, in young adults (20–44 years) many sera

of intermediate to high antibody titers in the A/2009 microarray

(160–640 titer) cannot be classified as infected (estimated infection

probabilities range from 30–50% with confidence intervals

ranging from ,10% to .70%). Inclusion of A/1918 in the

analysis strongly improves classification; samples with low A/1918

antibody titer have estimated infection probabilities of .95% with

small confidence ranges, and samples with high A/1918 scores

have estimated infection probabilities under 20% (confidence

limits range from 20%–40%).

True infection statuses are unknown in the post-pandemic

survey, but we can safely assume that pre-pandemic samples do

not belong to persons who have been infected with A/2009. We

exploit this fact to investigate how many pre-pandemic samples

would be misclassified as infected. Each sample in the pre-

pandemic survey has a certain estimated infection probability, and

we report the expected number of misclassifications i.e. the

infection probabilities cumulated over all positive pre-pandemic

samples. The bivariate microarray yields the lowest percentage of

misclassifications (8?6 out of 64; 13%), followed by the univariate

microarray (18?1 out of 64; 28%), and the HI analysis (16?1 out of

38; 42%).

Overall comparison of classifications is investigated in a receiver

operating characteristic (ROC) diagram, taking different cut-off

values for positive classification (HI and univariate microarray), or

taking different values of the A/1918 to A/2009 ratio for positive

classification (bivariate microarray) (Figure 5). For HI, maximum

sensitivity plus specificity are at a cutoff of 44, with sensitivity and

specificity of 66% and 51%. The univariate microarray scores

higher with sensitivity and specificity of 91% and 84%, at a

microarray titer cutoff of 97. The bivariate mixture scores even

higher with sensitivity and specificity of 96% and 95%, at a

microarray titer ratio of 0?95 (A/1981 to A/2009).

Discussion

Using mixture model analyses of two population-based serolog-

ical studies [9], we have shown that classification of sera for

infection with influenza (A/2009 H1N1) is possible using a

recently developed protein (HA1) microarray. Sensitivity and

specificity are high in the univariate as well as the bivariate model.

In the microarray, misclassification of pre-pandemic samples as

infected occurs infrequently, and estimates of infection attack rates

are comparable to published figures, with comparable precision

even though our sample size is much smaller than in earlier studies

[9,16].

Our analyses have uncovered that classification of sera

belonging to persons infected with A/2009 (H1N1) works best

Figure 4. Classification of sera in the uni- and bivariate mixture analyses as a function of the microarray response to A/2009
(H1N1). Shown are the estimated probabilty of infection in the univariate mixture (dots and solid line) with associated 95% confidence envelope
(shaded area), and for each sample the corresponding estimates in the bivariate mixture (triangles) with associated 95% confidence intervals (bars).
doi:10.1371/journal.pone.0113021.g004
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when using the A/2009 and A/1918 antigens together. The

explanation is that in the univariate analysis the component

distribution of infected persons has a considerable overlap with the

immune component distribution. Incorporation of A/1918 in the

analysis reduces the overlap of the two distributions substantially,

resulting in classifications that have higher estimated specificity

and sensitivity in the bivariate than univariate analysis (Figure 5).

When using a more distantly related A/2007 antigen in

combination with A/2009 in the bivariate mixture, classification

of samples is not improved, the reason being that there is little

cross-reactivity between A/2009 and A/2007 antigens (results not

shown). Hence, our analyses suggest that the use of additional data

works best when using a secondary antigen that is closely related to

the focal virus, so that a distinction can be made between the

specific responses that are the result of infection, and the

correlated but less specific responses that result from earlier

infections with other viruses. Whether such combinations of

viruses that are antigenically related but not almost identical are

available for other subtypes, e.g., H3N2 remains to be investigat-

ed.

The microarray measures antibody binding and the observed

antibody responses are not necessarily protective. It is known,

however, that positive responses in the microarray correlate with

protection against infection [5,6]. Furthermore, the microarray

analyses are broadly consistent with the analyses based on HI, with

the fraction of persons with pre-existing responses increase

strongly with age.

In our analyses the estimated susceptible component is placed

largely below the detection limit in the HI and microarray

analyses, while the immune component still has substantial density

below the detection limit (Figures 2–3). This suggests that it may

not always be easy to distinguish susceptible persons from those

having been exposed before. One question for future studies is

whether classification of persons as being susceptible, immune, or

infected can be improved by extending the analyses to more than

two antigens, or by using larger datasets.

Throughout, we have assumed that the susceptible, immune,

and infected component distributions are independent of age. This

is done for simplicity and since allowing for age-dependence in the

component distributions would lead to identifiability problems,

especially in older adults. As it is, the fit of the infected component

distribution is strongly informed by children. However, visual

inspection of the locations of the pre- and post-pandemic samples

across all age groups in the A/2009-A/1918 plane shows that most

lie within the regions of high support of the model, i.e. there are

very few outliers. This indicates that the model and the fitted

mixture model describes the data well, not only in children but

also in older age groups.

Supporting Information
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