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In recent years, there has been a considerable amount of research on the use of regularization methods for inference and prediction
in quantitative genetics. Such researchmostly focuses on selection ofmarkers and shrinkage of their effects. In this review paper, the
use of ridge regression for prediction in quantitative genetics using single-nucleotide polymorphism data is discussed. In particular,
we consider (i) the theoretical foundations of ridge regression, (ii) its link to commonly used methods in animal breeding, (iii)
the computational feasibility, and (iv) the scope for constructing prediction models with nonlinear effects (e.g., dominance and
epistasis). Based on a simulation study we gauge the current and future potential of ridge regression for prediction of human traits
using genome-wide SNP data. We conclude that, for outcomes with a relatively simple genetic architecture, given current sample
sizes in most cohorts (i.e., 𝑁 < 10,000) the predictive accuracy of ridge regression is slightly higher than the classical genome-
wide association study approach of repeated simple regression (i.e., one regression per SNP). However, both capture only a small
proportion of the heritability. Nevertheless, we find evidence that for large-scale initiatives, such as biobanks, sample sizes can be
achieved where ridge regression compared to the classical approach improves predictive accuracy substantially.

1. Introduction

The advent of large-scale molecular genetic data has paved
the way for using these data to help predict, diagnose,
and treat complex human diseases [1]. In recent years, the
use of such data for the prediction of polygenic diseases
and traits has become increasingly popular (e.g., [2–4]).
This venue has proved successful even for traits such as
educational attainment and cognitive performance [5, 6].
The vast majority of research into the genetic architecture of
human traits and diseases is exploratory and considers the
effects of at least hundreds of thousands of single-nucleotide
polymorphisms (SNPs) on the outcome of interest [7].

Predictions based on molecular genetic data are typically
constructed as a weighted linear combination of the available
SNPs.This yields a so-called polygenic risk score [3] (polygenic
score, genetic risk score, and genome-wide score [8]). Multiple
regression (ordinary least squares, OLS) is a natural technique

for estimating the weights of the predictors (SNPs) in this
context but cannot be applied here: in general, the number of
samples (𝑁) available is far lower than the number of SNPs
(𝑃); typically,𝑁 < 10,000 and 𝑃 > 100,000. OLS would yield
a perfect in-sample prediction without any predictive value
out of sample and would not allow drawing inferences on
the weights of the SNPs, as they are nonunique. A commonly
accepted solution to this problem is to carry out a genome-
wide association study (GWAS), where one regresses the
outcome of interest on each SNP separately. In this paper, we
call this the repeated simple regression (RSR) approach.

Polygenic scores are typically constructed as the weighted
sum of the SNPs with weights resulting from a GWAS using
RSR. We raise four points of critique regarding this method.
The first problem with this approach is that, in contrast to
multiple regression, there is no search for the best linear
combination over all SNPs jointly for predicting the outcome.
A second, related, problem is that highly correlated SNPs (i.e.,
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SNPs in strong linkage disequilibrium) repeatedly contribute
very similar information, thereby distorting the risk score.
For example, consider a set of ten perfectly correlated SNPs.
In the RSR, they receive exactly the same weight. As the
polygenic risk score is a weighted linear sum of the SNPs
with the weights coming fromRSR, these perfectly correlated
SNPs contribute a factor ten stronger to the risk score than
a single SNP capturing all information from that region
does. This factor ten does not depend on the predictive
power of the information in that region. A third problem is
that the polygenic risk score can theoretically be correlated
with confounding variables (confounders, control variables,
and controls). For instance, SNPs can be correlated with the
population structure. Therefore, the polygenic risk—being
a linear combination of SNPs—can be correlated with the
confounders. Usually, confounders, such as age and gender,
are included as regressors in order to control for spurious
relations through these covariates. However, we find that
often in empirical work researchers do not control properly
for the confounders in at least one of the many steps that lead
from phenotype and genotype data to evaluation of the out-
of-sample predictive accuracy of the polygenic risk score. A
fourth problem is that the RSR approach is not able to handle
even two-way interactions between the SNPs, as it would lead
to a number of weights to be estimated that is quadratic in the
number of SNPs, which is clearly computationally infeasible.

In this paper, we review the use of ridge regression (RR)
[9] to tackle the four problems discussed above. The purpose
of this paper is threefold. First, we discuss how prediction
using RR can address the aforementioned four points of
critique pertaining to a typical polygenic score, that is, how
RR can be used to search for the best linear combination of
SNPs jointly, to address the multicollinearity of SNPs [10, 11],
and to account for the presence of confounding variables and
of nonlinear SNP effects (e.g., [12–17]). Second, we review
relevant work on ridge regression both in and outside the
field genetics. Third, we assess the merits of prediction using
ridge regression in the new domain of biobanks. That is, we
predict the expected accuracy of ridge regression in large
scale initiatives with over a 100,000 observations.

An important property of RR is that it cannot select
a subset of predictors (e.g., SNPs). Other regularization
methods related to RR are able to select a subset of predictors
from a large set of predictors. Examples of such methods are
the least absolute shrinkage and selection operator (LASSO),
group LASSO [18], adaptive LASSO [19], and the elastic net
[20].

In a GWAS, SNP selection is a desirable property when
trying to find regions in the DNA that bear a causal influence
on the outcome. However, there is mixed evidence for the
claim that selection techniques in general improve the overall
predictive accuracy of the polygenic score. Some studies
suggest that preselection of markers (e.g., SNPs), based
on either linkage disequilibrium or (in-sample) univariate
association results, is detrimental to predictive accuracy (e.g.,
[3, 8, 11, 21]). Moreover, there is no conclusive evidence on
the relative performance of RR-type methods and LASSO-
type methods. For instance, using a simulation study, Ogutu
et al. [22] find that LASSO-type methods outperform classic

RR, whereas other studies find that RR outperforms LASSO
and similar variable selection methods (e.g., [23–25]). A
reasonable proposition is that the relative performance of RR
and LASSO depends on trait architecture (e.g., [21, 26]). In
particular, a low number of causal SNPs favor LASSO-type
methods, whereas an intermediate or high number of causal
variants favor RR-type methods. Regularization methods
performing selection are computationally more involved and
less amenable to incorporate nonlinear SNP effects than RR.
For the above reasons, as well as our aim to provide a clear
overview of RR, we focus in this paper primarily on RR.

The remainder of this paper is organized as follows. In
Section 2, we present the theory underlying RR. In Section 3,
we show that RR can be perceived as a method between OLS
and RSR, leveraging the advantages of these two methods.
Subsequently, in Section 4, we discuss the relation between
RR and the best linear unbiased prediction used in animal
breeding and the relation between RR and LASSO-type
methods. In Section 5, we pay special attention to the effect
standardization of SNP data has on the implicit assumptions
about the genetic architecture of traits. As indicated, the fea-
sibility of RR depends critically on the use of computationally
efficient approaches. These will be discussed in Section 6.
Related to this, in Section 7, we will discuss methods to tune
the penalty parameter of RR. Following that, in Section 8,
advanced RR techniques will be discussed, such as modelling
nonlinear effects using RR, weighting SNPs differently, and
incorporating information from earlier studies.

In order to assess the current and future use of ridge
regression for prediction in quantitative genetics, we run a
suite of simulations. The design of the simulations and the
results are presented in Section 9. Based on these results we
will estimate the effect sample size, the number of SNPs, the
number of causal SNPs, and trait heritability have on the
predictive accuracy of RR and the classical RSR approach.
Using these estimates wewill extrapolate howRR andRSR are
expected to perform relative to each other in large scale stud-
ies (e.g., 𝑁 ≥ 100,000). Finally, in Section 10, we summarize
the most important aspects of RR in the context of prediction
in quantitative genetics and discuss our expectations for its
future uses.

2. Ridge Regression

Using ridge regression (RR) for prediction in quantitative
genetics was first proposed byWhittaker et al. [27]. RR can be
understood as follows. Like regular least-squaresmethods RR
minimizes a loss function that includes the sum of squared
regression residuals. However, opposed to least squares, the
loss function also includes a term consisting of positive
penalty parameter 𝜆 times the model complexity, measured
by the sum of squared regression weights [9]. This penalty
prevents overfitting by shrinking the weights towards zero,
ensuring that, even in case of multicollinearity and 𝑃 ≫ 𝑁,
the estimator has a solution. The RR estimator has a simple
analytical solution.

More formally, given a set of𝑁 individuals,𝑃 SNPs, and𝐾
confounders, a linear model for quantitative outcome vector
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y (𝑁× 1), with a matrix of SNP data X (𝑁×𝑃), and a matrix
of confounders Z (𝑁 × 𝐾) as predictors, is given by

y = X𝛽 + Z𝛾 + 𝜀, (1)

where 𝛽 is the vector of SNP effects, 𝛾 the vector of effects of
the confounders, and 𝜀 the phenotype noise.

In this particular case, we consider a large set of SNPs and
a small set of potential confounders. Since one of our aims
is to prevent any spurious relations via the confounders, we
use a loss function that does not apply shrinkage to these.
Therefore, the RR estimator minimizes

LRR (𝛽, 𝛾) = (y − X𝛽 − Z𝛾)⊤ (y − X𝛽 − Z𝛾) + 𝜆𝛽⊤𝛽. (2)

Under this loss function, the RR estimator of 𝛽 is given by

�̂�RR = (X
⊤MZX + 𝜆I)−1 X⊤MZy, (3)

whereMZ = I−Z(Z⊤Z)−1Z⊤ is the projectionmatrix, remov-
ing the effects of the confounding variables. The larger the
𝜆 is, the more the shrinkage is applied. When 𝜆 = 0,
RR corresponds to OLS. The OLS estimator only exists if
rank(X⊤MZX) = 𝑃, meaning that there is no perfect collin-
earity amongst the SNPs and that 𝑃 ≤ 𝑁. However, in a
GWAS, almost invariably 𝑃 ≫ 𝑁. Therefore, OLS cannot
be applied in this context. However, the RR estimator has a
solution for any 𝜆 > 0, even if 𝑃 ≫ 𝑁.

Heteroskedastic ridge regression (HRR) is a generalization
of RR, where each SNP 𝑝 receives a different amount of
shrinkage, 𝜆

𝑝
≥ 0. The loss function of HRR is given by

LHRR (𝛽, 𝛾) = (y − X𝛽 − Z𝛾)⊤ (y − X𝛽 − Z𝛾) + 𝜆𝛽⊤Λ𝛽,
(4)

where Λ = diag(𝜆
1
, . . . , 𝜆

𝑃
). The corresponding estimator is

given by

�̂�HRR = (X
⊤MZX + 𝜆Λ)

−1 X⊤MZy. (5)

The 𝑃 × 𝑃 matrix X⊤MZX in (3) and (5) can be regarded as
a map of the estimated correlation (linkage disequilibrium)
between markers. OLS takes this linkage disequilibrium fully
into account at the expense of overfitting the data, whereas
RSR completely ignores it. For this reason, when constructing
a polygenic score, RSR is often used in combination with a
heuristic procedure, known as linkage disequilibrium prun-
ing, which selects SNPs that are not too strongly correlated.
As is shown in the next section, RR leverages the two extremes
of OLS and RSR. Therefore, opposed to RSR, RR does not
require the a priori selection of SNPs; RR is able to handle
linkage disequilibrium between markers [10, 11].

RR is expected to perform particularly well under a
scenario where a substantial proportion of the SNPs is
expected to contribute to the phenotype and where each
contribution is small.

3. The Limiting Cases of Ridge Regression

Varying the penalty weight, 𝜆, allows specifying special cases
of RR. Prediction by RR can be perceived as a method that

lies between prediction based on OLS estimates considering
all SNPs jointly and OLS estimates considering each SNP
separately. By definition of RR [9], for sufficiently low shrink-
age, the RR estimates converge to the multiple regression
estimates [10], provided these are unique. For sufficiently
high shrinkage a RR prediction score is equivalent to an
RSR prediction score, in terms of the proportion of variance
accounted for by the respective scores. For ease of notation,
we assume in this section that there are no confounders Z.

To establish the aforementioned relations, two conditions
are needed. First, the measure of predictive accuracy is inde-
pendent of scale. That is, given an out-of-sample quantitative
outcome vector (y

2
) and its prediction (ŷ

2
), the accuracy

measure should be such that for any coefficient 𝑏 > 0 the
accuracy of prediction ŷ

2
is identical to that of prediction

ŷ∗
2
= 𝑏ŷ
2
. An example of such a measure is the 𝑅2 of an

outcome and its prediction.The second condition is that SNP
data are standardized, such that each SNPs 𝑝 has mean zero
(x⊤
𝑝
𝜄 = 0, where 𝜄⊤ = (1, . . . , 1)) and equal standard deviation

(x⊤
𝑝
x
𝑝
= 𝑐, where 𝑐 is a scalar).

Consider the prediction of y
2
based on 𝑁

2
× 𝑃 out-of-

sample genotype matrix X
2
, using in-sample RR estimates

�̂�RR.This prediction is given by ŷ
2
= X
2
�̂�RR. Based on the first

condition, we can multiply the prediction ŷ
2
by 𝑏 = (1 + 𝜆).

This is equivalent to inflating the RR estimates by (1 + 𝜆)

instead of inflating the predictions. Thus, we can take �̂�
∗

RR =

(1 + 𝜆)�̂�RR. This yields

�̂�
∗

RR = (𝛼I + (1 − 𝛼)X
⊤X)−1 X⊤y, (6)

where 𝛼 = (1+𝜆)−1𝜆 ∈ (0, 1).TheOLS estimator considering
all SNPs jointly is given by

�̂�OLS = (X
⊤X)−1 X⊤y. (7)

Thus, it follows that when 𝛼 goes to zero (i.e., 𝜆 goes to zero),
the RR estimator goes to the OLS estimator. Moreover, as 𝛼
goes to one (i.e., 𝜆 becomes sufficiently large), the inflated RR
estimator goes to X⊤y.

Using the condition of having standardized SNPs, we
can rewrite the RSR for SNP 𝑝 as 𝛽

𝑝
= x⊤
𝑝
y, where x

𝑝
is

the standardized genotype vector of SNP 𝑝. This expression
can be vectorized over all SNPs as �̂�RSR = X⊤y. From this,
it follows that the inflated RR estimates approach the RSR
estimates as 𝜆 becomes sufficiently large.

4. Related Methods

Prediction using RR is related to the predictions that arise
under a widely used simple mixed linear model, commonly
referred to as the animal model. In such a model, expected
genetic relatedness ismapped to phenotypic relatedness. Usu-
ally pedigree information is used to infer genetic relatedness.
However, with the advent of genome-wide molecular data,
mixed models that use SNPs to estimate genetic relatedness
have been proposed (e.g., see Yang et al. [28]). In most mixed
models using SNPs, the prior assumption is that SNP effects
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are normally distributedwithmean zero and variance 𝜎2𝛽, and
the error terms in the phenotype are also normally distributed
with variance 𝜎2𝜀 .

To understand the relation between RR and mixed mod-
els, consider the following mixed linear model

y = X𝛽 + Z𝛾 + 𝜀,

𝛽 ∼ N (0, 𝜎2𝛽I𝑃) ,

𝜀 ∼ N (0, 𝜎2𝜀I𝑁) ,

(8)

where 𝜎2𝛽 is the SNP effect variance and 𝜎2𝜀 the noise variance.
In this model the effects of the confounders, Z, are assumed
to be fixed. For the remainder of this section we ignore the
confounders for ease of notation. The parameters 𝜎2𝜀 and 𝜎

2

𝛽

can be estimated using, for instance, maximum likelihood,
restricted maximum likelihood [29], or expectationmaximiza-
tion [30]. Alternatively, these parameters can be fixed by
using prior information fromother data sets; see, for instance,
Hofheinz et al. [31].

Consider conditional expectations E[𝛽 | y] and E[y
2
|

y]. In a mixed linear model such expectations are known as
the best linear unbiased prediction (BLUP) [32–36]. BLUP
was first proposed by Henderson [32] in order to obtain
estimates of the so-called breeding values, that is, the part of
the phenotype that can be attributed to genetic variation.

Provided that the RRpenalty𝜆 = 𝜎2𝜀/𝜎
2

𝛽, the BLUPof SNP
effects [28, 37, 38] is equivalent to the RR estimator. Under
that same condition, the BLUP of the SNP-based breeding
values is equivalent to RR prediction. Such genomic estimated
breeding values [38] contain the part of the phenotype that
can be attributed to the genetic variation in the genotyped
markers.

To understand this equivalence, first we rewrite the RR
estimator in (3). By applying the Sherman-Morrison-Wood-
bury formula [39, 40] to the 𝑃 × 𝑃 inverse of X⊤X + 𝜆I, we
obtain

�̂�RR =
1

𝜆
[I
𝑃
− X⊤ (XX⊤ + 𝜆I

𝑁
)
−1 X]X⊤y

=
1

𝜆
X⊤ [I
𝑁
− (XX⊤ + 𝜆I

𝑁
)
−1 XX⊤] y

=
1

𝜆
X⊤ (XX⊤ + 𝜆I

𝑁
)
−1

[(XX⊤ + 𝜆I
𝑁
) − XX⊤] y

= X⊤ (XX⊤ + 𝜆I
𝑁
)
−1 y.

(9)

Second, by rewriting (8) in terms of the joint distribution of
y and 𝛽:

(

y
𝛽
) ∼ N([

0
0
] , [

𝜎
2

𝛽XX
⊤
+ 𝜎
2

𝜀I𝑁 𝜎
2

𝛽X
𝜎
2

𝛽X
⊤

𝜎
2

𝛽I𝑃
]) , (10)

{ { {

{

{

{
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Figure 1: Diagram (b) showing the relation between estimation of
SNP effects using ridge regression (RR), the best linear unbiased pre-
diction (BLUP), andmaximuma posteriori (MAP) estimation, under
the specified mixed linear model (a).

the BLUP of 𝛽 is given by the expectation of 𝛽 conditional on
y [17]. This yields

�̂�BLUP = 𝜎
2

𝛽X
⊤
(𝜎
2

𝛽XX
⊤
+ 𝜎
2

𝜀I𝑁)
−1

y

= X⊤(XX⊤ +
𝜎
2

𝜀

𝜎
2

𝛽

I
𝑁
)

−1

y.
(11)

Clearly, when 𝜆 = 𝜎2𝜀/𝜎
2

𝛽, �̂�RR = �̂�BLUP.
In addition, from a Bayesian perspective the posterior

mode of the distribution of SNP effects (i.e., the mode
of the distribution conditional on a training set) can also
be used as point estimator. Estimation using the posterior
mode is known as maximum a posteriori (MAP) estimation.
However, due to the normality of 𝛽 and 𝜀 the mode coincides
with the conditional expectation E[𝛽 | y]. Therefore, MAP
estimation of 𝛽 in (8) is equivalent to BLUP.

Consequently, there exists a 𝜆 such that the RR estimator
of SNP effects is equivalent to its BLUP [16, 41] and by
extension to the MAP estimator. The diagram in Figure 1
summarizes the relations between RR, BLUP, and MAP.

4.1. SNP Selection Using LASSO-TypeMethods. An important
feature that RR lacks is the selection of SNPs. LASSO-type
methods, such as the LASSO, group LASSO, adaptive LASSO,
and the elastic net, are able to select SNPs. The key to
achieving SNP selection is to include an 𝐿

1
penalty, that is,

adding a penalty consisting of a penalty parameter, 𝜆, times
‖𝛽‖
1
= |𝛽
1
| + ⋅ ⋅ ⋅ + |𝛽

𝑃
|. The loss function of the LASSO is

given by

LLASSO (𝛽, 𝛾) = (y − X𝛽 − Z𝛾)⊤ (y − X𝛽 − Z𝛾) + 𝜆 𝛽
1
.

(12)

This function is highly similar to the RR loss function in (2).
Themost important property of the LASSO is that it performs
variable selection; that is, for a sufficiently large 𝜆 many of
the SNP coefficients 𝛽

𝑝
will be zero. The higher the 𝜆 is, the

fewer the nonzero SNP effects are obtained by the LASSO.
Moreover, this method also shrinks the nonzero coefficients,
that is, the estimated effects of the selected SNPs.
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The loss function of the elastic net [20] is obtained by
taking a convex combination of𝛽⊤𝛽 and ‖𝛽‖

1
as penalty; that

is,

Lnet (𝛽, 𝛾) = (y − X𝛽 − Z𝛾)⊤ (y − X𝛽 − Z𝛾)

+ 𝜆 (𝛼𝛽
⊤
𝛽 + (1 − 𝛼)

𝛽
1
) ,

(13)

with 𝜆 ≥ 0 and 𝛼 ∈ [0, 1]. The elastic-net method preserves
SNP selection, while allowing more than 𝑁 of 𝑃 SNPs to
be selected. Taking a convex combination of the two norms
hardly increases the computational costs of solving this prob-
lem, when compared to solving the LASSO problem [20].
Typically, the LASSO solution is obtained by means of the
least-angle regression algorithm [42]. This algorithm entails
an iterative procedure, where at most one SNP can enter
the model at a time. Therefore, LASSO-type methods are
computationally far more involved than RR-type methods.

Finally, the group LASSO [18] splits the 𝑃 predictors in
𝐺 mutually disjoint groups, with 𝑝

𝑔
predictors in group 𝑔,

and associated effects 𝛽
𝑔
, for groups 𝑔 = 1, . . . , 𝐺. The group

LASSO minimizes

Lgroup (𝛽, 𝛾) = (y − X𝛽 − Z𝛾)⊤ (y − X𝛽 − Z𝛾)

+ 𝜆

𝐺

∑

𝑔=1

√𝛽⊤
𝑔
𝛽
𝑔
.

(14)

Each group can be chosen, for instance, to represent a
single gene in terms of its SNPs. The group LASSO induces
sparsity at the group level (e.g., a gene is either included as
a whole or wholly excluded), whereas within a group the
individual regressors receive an 𝐿

2
penalty. To the best of

our knowledge, Sabourin et al. [43] provide the first, and
so far only, application of a (modified) group LASSO using
SNP data to construct polygenic scores. In this study, each
SNP is considered as a group, with two effects: an additive
and a dominance effect. In a simulation with mild to strong
dominance, this method improves accuracy, compared to
an RSR-type approach [43]. For a detailed comparison of
LASSO-type methods and RR, we refer to Hastie et al. [44].

5. The Implications of Standardizing SNPs

In the preceding sections, we have only considered SNP
standardization as a tool to show that RR can be perceived
as a method between the classical GWAS approach and the
OLS approach considering all SNPs jointly. However, SNP
standardization is often used in themixed linearmodel in (8).

The reason for this is that standardization has a profound
effect on the implicit assumptions about the effect sizes of
SNPs.We show in this section that the standardizationwe use
is equivalent to HRR applied to raw genetic data, where SNPs
measuring rare variants receive less shrinkage than SNPs
measuring common variants.

More specifically, letG (resp.,G
2
) denote raw SNP data in

sample (out of sample) that has already been mean-centered
but not yet standardized to have the same variance. The
standardized data X in Section 3 can now be obtained by

postmultiplying G by a diagonal matrix D. That is, X = GD,
where

D = diag({√
𝑁 − 1

x⊤
𝑝
x
𝑝

}

𝑝=1,...,𝑃

) . (15)

Under the reasonable assumption that only SNPs are consid-
ered for which in-sample variation occurs, this matrix D is
invertible.

By applying this transformation in both the training and
test set, RR prediction based on standardized data is given by

ŷ
2
= X
2
(X⊤X + 𝜆I)−1 X⊤y

= G
2
D (DG⊤GD + 𝜆I)−1DG⊤y

= G
2
(G⊤G + 𝜆D−2)

−1

G⊤y.

(16)

This shows that RR applied to standardized SNP data is
equivalent to HRR, with Λ = D−2, applied to raw geno-
type data. Here, the SNP-specific shrinkage depends on the
amount of SNP variation. This type of shrinkage implicitly
assumes that the standardized SNPs have homoskedastic
effects, whereas the underlying raw genotypes (i.e., the count
data) have effects of which the variance decreases with
minor allele frequency. That is, rare alleles are assumed to
have larger effects on average than common variants. For a
qualitative treatment of the relation between allele frequency
and expected effect sizes, see, for instance,Manolio et al. [45].

To be more precise, this type of shrinkage corresponds
to the implicit assumption that the variance of the effect
of raw SNP 𝑝, denoted by 𝜎2𝛽

𝑝
, with allele frequency 𝑓

𝑝
, is

proportional to (2𝑓
𝑝
(1−𝑓
𝑝
))
−1. This assumption implies that

when𝑓
𝑝
is close to one or zero, the variance of the effect size is

expected to be large, whereas for 𝑓
𝑝
close to 50% the variance

of the effect size attains its minimum.
Naturally, raw SNP effect variances responding differently

to allele frequency can be conceived. As indicated byManolio
et al. [45] such relations depend on the effect of the trait under
consideration, on the fitness of the individual. Therefore, a
natural extension would be to consider HRR with Λ = D𝛼.
Here 𝛼 = 0 corresponds to a trait for which allele frequency
is independent of effect size and 𝛼 = −2 corresponds to
the relation described before. Moreover, −2 < 𝛼 < 0

describes a trait for which there is a slight relation between
allele frequency and effect size. It is interesting to note that
𝛼 > 0 corresponds to a trait where diversity is an asset, that
is, a trait in which variants causing phenotypic divergence
between individuals tend to become common. Finally, 𝛼 <

−2 would correspond to a trait for which there has been
strong selection pressure causing convergence; only very rare
variants are expected to have a large effect. Thus, in future
work 𝛼 can be considered as an additional hyperparameter
which might boost predictive accuracy and of which the
estimate would reveal something about the selection pressure
regarding the trait under consideration. The same type of
transformation has been proposed by Speed et al. [46] for
improving estimation of SNP-based heritability in a mixed
linear model.
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6. Computational Costs

The main hurdle in computing RR predictions is estimating
the 𝑃 parameters, when 𝑃 ≫ 𝑁. In particular, a naive
approach requires solving a system with 𝑃 unknowns. How-
ever, RR can be implemented in a computationally efficient
way. When 𝑃 > 𝑁, using dimensionality reduction tech-
niques the complexity of RR can be reduced from O(𝑃3) to
O(𝑃𝑁2) in case one is interested in the estimated effects [47].

Moreover, if the focus lies solely on obtaining predictions,
a nonparametric representation of RR reveals the fact that a
dual formulation exists, which can be perceived as solving a
linear model with 𝑁 unknowns [48]. Solving such a system
has a complexity slightly less than O(𝑁3). Building on this
computationally efficient approach, RR can also efficiently
control for confounders, both in sample and out of sample.

Finally, when considering a wide array of values of 𝜆, RR
can be reformulated to generate predictions for all values of 𝜆
jointly by exploiting the properties of the eigendecomposition
of an𝑁 ×𝑁matrix, thereby yielding a complexity of O(𝑁3).

To understand these reductions in computational costs,
consider the RR estimator in (9), used to show equivalence of
RR and the BLUP. Premultiplying this expression by X

2
, the

out-of-sample prediction is given by

ŷ
2
= X
2
X⊤ (XX⊤ + 𝜆I

𝑁
)
−1 y. (17)

As discussed, accounting for confounding variables is impor-
tant. Let Z be the in-sample 𝑁 × 𝐾 matrix of confounders
and Z

2
the out-of-sample𝑁

2
× 𝐾 matrix of confounders. By

replacingX byX∗ = MZX andX
2
byX∗
2
= MZ2X2, whereMC

is the projectionmatrix removing the effects ofC, we find that

ŷ
2
= A∗
21
(A∗ + 𝜆GRMI𝑁)

−1 y, (18)

where A∗ = MZAMZ and A∗
21
= MZ2A21MZ, A = 𝑃

−1XX⊤

and A
21
= 𝑃
−1X
2
X⊤, and 𝜆GRM = 𝑃

−1
𝜆. Therefore, one can

correct for covariates by simply pre- and postmultiplying
𝑁
(2)
× 𝑁matrices, by appropriate projection matrices.
MatricesA andA

21
both have the interpretation of a SNP-

based genetic relationship matrix (GRM) [28], measuring the
genetic similarity of individuals in the space of additive SNP
effects.

Given the eigendecomposition

A∗ = Q diag ({𝜃
𝑖
}
𝑖=1,...,𝑁

)Q⊤, (19)

RR prediction can be written as

ŷ
2
= A∗
21
Q diag({ 1

𝜃
𝑖
+ 𝜆GRM

}

𝑖=1,...,𝑁

)Q⊤y. (20)

If 𝑃 ≫ 𝑁, this approach is far more efficient than the
naive approach to RR prediction. GRMs can be computed
efficiently in packages such as PLINK 1.9 [49] and GCTA [28].
Themost involved step in the prediction procedure is finding
the eigendecomposition of A∗.

7. Tuning and Interpreting 𝜆

So far, it was assumed that the penalty strength parameter
𝜆 is given. However, in most applications of RR the optimal
𝜆 is not known in advance. Here, we discuss three ways for
choosing 𝜆.

The dominant approach in the machine learning litera-
ture for tuning 𝜆 is by maximizing out-of-sample predictive
accuracy of RR using cross-validation (CV). In CV one
considers a fine grid L of potential values of 𝜆. The data are
randomly split in a (small) test set (e.g., 10% of the sample)
and CV set (90%). To the CV set one applies𝐾-fold CV (e.g.,
𝐾 = 10), meaning that one splits the CV sample randomly
in 𝐾 blocks of (approximately) equal size. In each fold 𝐾 − 1

blocks are considered as CV training set and the remaining
block as CV test set. Using RR for all values of 𝜆 ∈ L,
predictions in the CV test set are generated. Each block is the
CV test set precisely once. After the 𝐾-folds, the predictive
accuracy over all CV test sets is evaluated for all 𝜆 ∈ L. Now,
�̂� is set to maximize the cross-validation accuracy. Finally,
using �̂� the predictive accuracy in the final test is considered,
using the full CV set as training data. For a more detailed
treatment of CV, see, for instance, Hastie et al. [44].

Nested cross-validation (NCV) is a natural extension of
CV, where the sample is randomly split in 𝑆 “super”-blocks
of approximately equal size (e.g., 𝑆 = 10) and where there are
𝑆 “super”-folds. In each superfold, one block is considered as
final test set and 𝑆 − 1 other blocks as CV set. To this CV set
and test set one applies regular 𝐾-fold CV. Each superblock
is used as final test set precisely once.

Classical CV is used to fit the model and to assess its
predictive accuracy; one can judge themerits of a set of values
of the hyperparameter by means of the CV procedure and
apply the optimal value to a new part of the sample which has
not yet been considered. Using NCV one can test whether the
hyperparameter and accuracy that result from classical CV
are robust; NCV can show the amount of variation in either
of these over the “super”-folds.

CV requires a computationally efficient strategy since a
different set of RR predictions will result for each different
value of 𝜆. However, a large set of different values of 𝜆 can be
evaluated in one step at nearly the same costs of evaluating
a single value of 𝜆. This approach avoids computing a full
RR solution for each 𝜆 separately. To see this, the formulation
of RR prediction in (20) is highly relevant. In this equation,
the eigendecomposition of A∗ is independent of 𝜆. Thus,
predictions for each 𝜆 ∈ {𝜆

1
, . . . , 𝜆

𝐿
} can be obtained by the

following equation:

Ŷ
2
= A∗
2,1
Q

⋅

[
[
[
[

[

(

(𝜃
1
+ 𝜆
1
)
−1

⋅ ⋅ ⋅ (𝜃
1
+ 𝜆
𝐿
)
−1

.

.

. d
.
.
.

(𝜃
𝑁
+ 𝜆
1
)
−1

⋅ ⋅ ⋅ (𝜃
𝑁
+ 𝜆
𝐿
)
−1

)∘ ((Q⊤y) 𝜄⊤)
]
]
]
]

]

,

(21)

where 𝜄⊤ = (1, . . . , 1) and “∘” denotes the element-wise (Had-
amard) product. A MATLAB implementation of this approach
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(1) % rdgpred Efficient prediction using ridge regression.

(2) % rdgpred(Y,A,A21,L) returns ridge regression predictions in test set.

(3) % Vector Y contains outcome training set, matrix A similarity measures

(4) % in training set (e.g., A=XX  for N-by-P input matrix X), matrix A21

(5) % similarity individuals in test set (rows) and training set (columns),

(6) % and vector L the penalty values to consider.

(7) %

(8) % rdgpred(Y,A,A21,L,Z,Z2) first corrects A and A21 for confounders.

(9) % Matrix Z contains confounders in traing set and Z2 those in test set.

(10) %
(11) % Author : R de Vlaming and PJF Groenen

(12) % Institute: Erasmus School of Economics Date: November 25, 2014

(13) function Y2 = rdgpred(Y,A,A21,L,Z,Z2)

(14)
(15) P = numel(L); % find size of set of penalties

(16) N = numel(Y); % find size of training set

(17) N2 = size(A21,1); % find size of test set

(18)
(19) if nargin > 5 % correct similarities if confounders present

(20) M = eye(N) − Z∗inv(Z ∗Z)∗Z  ; % anti projection matrix of Z

(21) M2 = eye(N2) - Z2∗inv(Z2 ∗Z2)∗Z2  ; % anti projection matrix of Z2

(22) A = M∗A∗M; % adjust similarties A

(23) A21 = M2∗A21∗M; % adjust similarties A21

(24) end
(25)
(26) [Q,D] = eig(A); D = diag(D); % obtain eigenvecs Q and eigenvalues D of A

(27)
(28) % for each eigenvalue E (rows) and lambda S (cols) find 1/(E+S)

(29) D = 1./(repmat(D,1,P) + repmat(L(:)  ,N,1));

(30)
(31) % predict for observations in test set (rows) for each lambda (cols)

(32) QTY = repmat((Y ∗Q)  ,1,P);

(33) Y2 = A21∗(Q∗(D.∗QTY));

(34) Y2 = real(Y2); % remove imaginary part due to numerical imprecession

(35)
(36) end

Algorithm 1: MATLAB code for efficient ridge regression prediction: rdgpred.m.

to RR prediction is provided inAlgorithm 1.The computation
of the eigendecomposition of A∗ has a computational com-
plexity of O(𝑁3). Given this decomposition, the prediction
consists of (𝑁

2
+ 3)𝑁𝐿+ (𝐿 + 1)𝑁

2 simple operations such as
multiplication and addition of scalars.

To illustrate the differences in the respective approaches
to RR, Figure 2 shows the CPU time for (i) the naive approach
in (3) which involves solving 𝑃 unknowns, (ii) the dual
formulation in (18) which requires solving 𝐿 systems with
𝑁 unknowns each, and (iii) the dual formulation in (21)
solving for all values of 𝜆 jointly. These results are obtained
by applying the approaches to simulated data, with baseline
settings 𝑁 = 100, 𝑁

2
= 10, 𝑃 = 1000, and 𝐿 = 100, and by

varying the levels of the factors𝑁 and 𝐿, one factor at a time.
In order to ensure no approach has an advantage in terms
of preprocessing of the data (e.g., constructing 𝑃−1XX⊤ and
its eigendecomposition) all reportedCPU times include these
preprocessing steps.

In Figure 2(a), we see that as the number of SNPs 𝑃
increases the time required by the naive approach keeps

growing at a fixed rate, whereas the time required by the
dual approaches remains unchanged.Moreover, the approach
considering all values of 𝜆 jointly outperforms the dual
approach solving 𝐿 separate systems. When sample size 𝑁
is relatively large compared to 𝑃 the dual formulations lose
their advantage compared to the naive approach. This is not
surprising: when𝑁 > 𝑃 the dual formulation requires solving
more unknowns than the naive approach. Concordantly,
when faced with data in which 𝑁 ≤ 𝑃 one can apply the
dual approach, and when 𝑁 > 𝑃 one can use the classical
approach to RR. Figure 2(b) shows that for a very small set of
𝜆’s the dual formulation solving 𝐿 systems with𝑁 unknowns
is faster than the formulation solving for all values of 𝜆 jointly.
However, the CPU time required by the former approach
increases continuously with 𝐿, whereas the CPU time of the
method considering all 𝜆’s jointly hardly changes. When 𝐿 ≥
10, the latter method attains a better CPU time than the
former method does.

The second method for setting 𝜆 is based on the mixed
model in (8). In this model, the optimal hyperparameter is
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Figure 2: CPU time in seconds of prediction using naive RR (red), efficient RR for each 𝜆 separately (blue), and efficient RR considering all
𝜆’s jointly (green).

a function of𝜎2𝜀 and𝜎
2

𝛽.Therefore, one can estimate themixed
linear model using methods such as (restricted) maximum
likelihood [28, 29] and take 𝜆 = 𝜎2𝜀/𝜎

2

𝛽.
Finally, one can use an existing heritability estimate of the

trait under consideration. Given the following definition of
SNP-based heritability,

ℎ
2

SNP =
𝑃𝜎
2

𝛽

𝑃𝜎
2

𝛽
+ 𝜎2𝜀

, (22)

provided the SNP data are standardized as 𝑍-scores, it is
shown byHofheinz et al. [31] that the RR shrinkage parameter
𝜆 can be written as a function of the SNP-based heritability.
Specifically, simple algebra shows that, under the above
definition of SNP-based heritability,

𝜆 = 𝑃(
1

ℎ
2

SNP
− 1) . (23)

This implies that heritability estimates can be used to set
𝜆 [31]. When using a GRM (𝑃−1XX⊤) to carry out RR
prediction, the corresponding shrinkage parameter 𝜆GRM =

𝑃
−1
𝜆. This implies the relation between 𝜆GRM and ℎ

2

SNP is
given by 𝜆GRM = (ℎ

2

SNP)
−1

− 1.

8. Advanced Ridge Regression Methods

8.1. Heteroskedastic Ridge Regression. A point of critique
regarding the use of RR is the lack of SNP selection. However,
for highly polygenic traits, given current sample sizes, there
is evidence that SNP selection is sometimes detrimental to
predictive accuracy (e.g., [3, 8, 21]). Nevertheless, since RR
can be used for inference just as well as RSR, the approach of

selecting SNPs that attain a 𝑝 value below some threshold 𝜏
in the GWAS can also be extended to RR.

In a spirit similar to that of SNP selection, one can argue
in favor of a heteroskedastic ridge regression (HRR), where
each SNP receives a different amount of shrinkage [50, 51]. As
with homoskedastic shrinkage, this SNP-specific shrinkage
might be based on either results from the training set or
prior information from different data sets. Depending on
the size of SNP-specific shrinkage, this method can leverage
between SNP selection and full inclusion. Based on prior
evidence or in-sample evidence the weight assigned to a SNP
can be made arbitrarily small or arbitrarily large given the
amount of evidence for association with the outcome. SNP-
specific shrinkage opens up the door for awhole array ofHRR
methods (e.g., [50, 51]).

The HRR estimator in (5) and resulting predictions can
be rewritten as

�̂�HRR = Λ
−1X⊤ (XΛ−1X⊤ + 𝜆I)

−1

y, (24)

ŷ
2
= X
2
Λ
−1X⊤ (XΛ−1X⊤ + 𝜆I)

−1

y, (25)

where Λ = diag({𝜆
𝑝
}
𝑝=1,...,𝑃

) is a diagonal matrix with SNP-
specific shrinkage effects.

It is implied by (24) and (25) that HRR can be carried
out using the same machinery as homoskedastic RR, by
first weighting the SNPs appropriately. More specifically, take
X∗ = XΛ1/2 and X∗

2
= X
2
Λ1/2 and construct corresponding

weighted GRMs by taking

A∗ = MZ (
1

𝑃
X∗X∗⊤)MZ,

A∗
21
= MZ2 (

1

𝑃
X∗
2
X∗⊤)MZ.

(26)
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Now, using the eigendecomposition defined in (19) of the
weighted GRM defined in (26) and by subsequently applying
(21) to resulting eigenvectors inQ and eigenvalues, {𝜃

𝑖
}
𝑖=1,...,𝑁

,
we obtain efficient out-of-sample HRR predictions.

8.2. Incorporating Information from Earlier Studies. Using
HRR prediction it is possible to include results from a GWAS
in other samples as prior information. Consider SNP-specific
shrinkage, given by 𝜆

𝑝
= 𝜎
2

𝜀/𝜎
2

𝛽𝑝
, and a set of GWAS 𝑡-test

statistics from another study without the presence of con-
founding variables. Given that �̂�𝜀 is approximately constant
over the SNPs in the GWAS, the 𝑡-test statistic of SNP 𝑝 can
be written as

𝑡
𝑝
≈
1

�̂�𝜀

(

x⊤
𝑝

√x⊤
𝑝
x
𝑝

) y = 1

�̂�𝜀

x∗⊤
𝑝
y = 1

�̂�𝜀

𝛽
𝑝
, (27)

where x∗
𝑝

denotes SNP 𝑝 standardized to unit length and
𝛽
𝑝

the estimated effect of the standardized SNP. It follows
from this equation that these statistics are proportional to
the estimated effects of standardized SNPs. Therefore, the
square 𝑡-test statistics are approximately proportional to the
square standardized GWAS estimates. Now, under the prior
probability distribution that 𝛽

𝑝
∼ N(0, 𝜎

2

𝛽𝑝
) we have that

𝛽
2

𝑝
is a consistent estimator of 𝜎2

𝛽𝑝
. Correspondingly, the

square 𝑡-test statistics are proportional to this estimator of
the SNP-specific effect variance. Therefore, for a suitable
choice of 𝜆 a consistent estimator of 𝜆

𝑝
is given by 𝜆𝑡−2

𝑝
=

𝜎
2

𝜀/𝛽
2

𝑝
. In the framework of HRR, this entails setting Λ̂ =

diag({𝑡−2
𝑝
}
𝑝=1,...,𝑃

). This definition of Λ̂ implies that SNPs are
weighted according to 𝑡

𝑝
. From these weighted SNPs we can

construct the weighted GRM and apply (25) to obtain out-
of-sample HRR predictions which incorporate information
from a GWAS in another dataset.

8.3. Nonlinear Prediction Methods. An important question
in genetics is how nonlinear effects (e.g., dominance and
epistasis) contribute to the variation of complex traits. RR
can efficiently implement such nonlinear SNP effects using
the kernel trick frommachine learning. Resulting kernel ridge
regression (KRR) extends the nonparametric approach to RR,
where genetic “similarities” in the space of additive effects
are replaced by genetic “similarities” in a larger (potentially
infinite) feature space, for instance, including two- or three-
way interactions.

The efficient RR predictions in (17) are in essence a
weighted average of the observed phenotypes in the training
set. Weights are based on the genetic similarity of individuals
in the test set and the training set. The more genetically
similar two individuals are in the test and training set, the
more weight will be given to the phenotype of the similar
individual in the training set.

Classical RR measures genetic similarity of individuals in
the space of additive effects and assigns weights accordingly.
KRR, however, can measure genetic similarity in the space

of more than just additive effects. This extended space can
include, for instance, 𝑑-way interactions between SNPs. Now,
a GWAS estimating all potential 𝑑-way interactions between
SNPs is not feasible. However, with KRR, rather than having
to estimate all coefficients of all nonlinear combinations of
regressors, one can instead obtain the measure of genetic
similarity in this higher-dimensional space by applying a
simple kernel function 𝑘(x

𝑖
, x
𝑗
) to any two genotype vectors

x
𝑖
and x
𝑗
corresponding to individuals 𝑖 and 𝑗.

In this context, classical RR corresponds to 𝑘(x
𝑖
, x
𝑗
) =

x⊤
𝑖
x
𝑗
. Similarly, a function measuring similarity in the space

consisting only of two-way linear interactions is given by

𝑘 (x
𝑖
, x
𝑗
) = (x⊤

𝑖
x
𝑗
)
2

. (28)

To see why this is so, consider expanding (28). We then have

𝑘 (x
𝑖
, x
𝑗
) = (

𝑃

∑

𝑝=1

𝑥
𝑖𝑝
𝑥
𝑗𝑝
)

2

=

𝑃

∑

𝑝=1

𝑃

∑

𝑞=1

𝑥
𝑖𝑝
𝑥
𝑗𝑝
𝑥
𝑖𝑞
𝑥
𝑗𝑞

=

𝑃

∑

𝑝=1

𝑃

∑

𝑞=1

(𝑥
𝑖𝑝
𝑥
𝑖𝑞
) (𝑥
𝑗𝑝
𝑥
𝑗𝑞
) = 𝜙(x

𝑖
)
⊤
𝜙 (x
𝑗
) ,

(29)

where 𝜙(x
𝑖
)
⊤
= ({{𝑥

𝑖𝑝
𝑥
𝑖𝑞
}
𝑞=1,...,𝑃

}
𝑝=1,...,𝑃

). Thus, 𝜙(x
𝑖
) is a vec-

tor that contains all possible two-way interactions between
the𝑃markers. Kernel function 𝑘(x

𝑖
, x
𝑗
) represents the genetic

similarity of individuals 𝑖 and 𝑗 in this space of all two-way
interactions between SNPs.

The essence of KRR is the so-called kernel trick that
allows one to efficiently compute the higher-dimensional
similarity measure by applying a simple kernel function
𝑘(x
𝑖
, x
𝑗
) to any two input vectors for individuals 𝑖 and 𝑗

[52]. Provided the kernel is positive definite it constitutes the
reproducing kernel of a unique reproducing kernel Hilbert
space (RKHS) [53]. KRR then is equivalent to a so-called
RKHS regression.

In the case of 𝑑-way interactions the associated kernel
function 𝑘(x

𝑖
, x
𝑗
) can be evaluated for all pairs of individuals

by raising each element of the GRM, 𝑃−1XX⊤, to the power
𝑑. An alternative is the nonhomogeneous polynomial kernel
of degree 𝑑, given by 𝑘(x

𝑖
, x
𝑗
) = (𝑐 + x⊤

𝑖
x
𝑗
)
𝑑. This kernel,

similar to the regular polynomial kernel of degree 𝑑, includes
𝑑-way interactions but also lower-order interaction terms
including the “one-way interactions,” that is, simple additive
linear effects.

The preceding example of the polynomial kernel of
degree two shows how KRR can include dominance and
epistasis in the predictionmodel. For frequently used kernels,
such as the Gaussian (radial basis function) kernel, there
exists a representation in which classical RR is applied to a
model with infinitely many predictors, nevertheless yielding
finite predictions. Obtaining the weights for infinitely many
predictors is not possible.Hence, rather than aiming to obtain
point estimates of 𝛽, KRR only aims to obtain predictions.

BLUP and, by extension, RR are special cases of predic-
tion using KRR (e.g., [54, 55]). There has been a substantial
amount of work in plant and animal breeding, aiming to
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improve predictive accuracy using KRR (e.g., [12, 15, 16]). A
generally used kernel is the aforementioned Gaussian kernel,
defined as

𝑘 (x
𝑖
, x
𝑗
) = exp[−

𝑑
2
(x
𝑖
, x
𝑗
)

𝜂
] , (30)

where 𝑑2(x
𝑖
, x
𝑗
) = (x

𝑖
− x
𝑗
)
⊤
(x
𝑖
− x
𝑗
) and hyperparameter

𝜂 > 0. This type of kernel includes all conceivable lin-
ear interactions between the 𝑃 SNPs and with themselves.
Endelman [16] finds that the Gaussian kernel outperforms
accuracy of RR and a Bayesian approach to LASSO, used
to predict wheat and maize traits in samples, typically with
about 300 observations and 3000 SNPs. Similarly, using a
Bayesian approach, Crossa et al. [15] find in samples of about
250 observations, with 1100 SNPs, that both the Gaussian
kernel and the LASSO outperform predictive accuracy of RR
for grain yield and maize flowering traits. However, when
comparing the LASSO with the Gaussian KRR, which of
two the methods is better, depends on the trait. An efficient
implementation ofKRRbased onmaximum likelihood, using
theGaussian kernel, is available in theRpackage rrBLUP [16].

Morota andGianola [17] compare a wide range of kernels,
such as the exponential [12, 16, 56], Matérn, diffusion (e.g.,
[57]), and 𝑡 kernel [58], for the purpose of obtaining genomic
estimated breeding values [38]. Though it is argued that
selecting a suitable kernel is the most precarious step (e.g.,
[14]), current evidence suggests that most considered kernels
attain a predictive accuracy similar to that of the Gaussian
kernels [17].Thus, it appears that theGaussianKRR is a robust
prediction method for quantitative traits, able to handle
nonlinear genetic architectures. Moreover, Endelman [16]
finds little evidence supporting the hypothesis that aGaussian
kernel is likely to overfit the data [56].

Given the current evidence, KRR using an appropriate
kernel (e.g., the Gaussian kernel) is a promising prediction
technique, especially for traits where epistatic effects and
dominance are expected to contribute to trait variation. De
los Campos et al. [14] suggest an interesting venue for further
research on the use of KRR for prediction in quantitative
genetics, by combining multiple kernels in a single model,
each kernel representing a single variance component (e.g.,
additive, dominance, or epistasis). For a more detailed treat-
ment of KRR and its uses in quantitative genetics, see Morota
and Gianola [17].

Regarding the computation of predictions using KRR, let
K denote the matrix of similarities in the higher-dimensional
feature space in the training set, such that an element of this
matrix 𝑘

𝑖𝑗
is given by 𝑘(x

𝑖
, x
𝑗
) and letK

21
be defined similarly

for individuals in the test set versus individuals in the training
set. Now, KRR prediction without confounders is given by
ŷ
2
= K
21
(K + 𝜆I)−1y and with confounders by

ŷ
2
= MZ2K21MZ (MZKMZ + 𝜆I)

−1 y, (31)

where, as before, MC is the projection matrix removing the
effects of C.

In the case of the nonhomogeneous polynomial kernel of
degree 𝑑, given the GRMs, 𝑃−1XX⊤ and 𝑃−1X

2
X⊤, the matri-

cesK andK
21

can be obtained efficiently by adding a constant

𝑐 to each element of the GRMs and by raising each resulting
element to the power 𝑑. When 𝑐 > 0 and 𝑑 ∈ {1, 2, . . .} are
not fixed, these are additional hyperparameters which can be
tuned via (𝑁)CV.

9. Simulation Study

An important question is under what circumstances can we
expect RR to yield more accurate predictions than RSR? The
answer to this question can help us assess the merits of RR
in quantitative genetics. As discussed, prediction using RR
is intimately related to the BLUP of the phenotype under a
mixed linear model in which SNP effects are assumed to be
all drawn from a normal distribution. This corresponds to
idea of each SNP making a tiny contribution to phenotype.
Therefore, it is reasonable to assume that RRwill performwell
when the SNP effects are as such. However, given that not all
SNPs in existence are causally affecting the outcome, an open
question is how does RR performwhen only a subset of SNPs
affects the outcome?

Moreover, an important factor influencing predictive
accuracy of a classical polygenic score is the training sample
size. Therefore, RR is likely also to be very sensitive to the
sample size. Finally, the more heritable a trait is, the easier
it should be to detect the effects of SNPs. Thus, an additional
question is howdoRRandRSRperformunder different levels
of heritability?

In short, we want to know the relative predictive accuracy
of RR and RSR (i) for a wide range of trait architectures and
(ii) under particular combinations of sample size and the
number of genotyped SNPs. To answer this question we run
a suite of simulations. In these analyses, we vary sample size
of the training set (𝑁), the number of genotyped SNPs (𝑃),
the fraction of SNPs exerting a causal influence (𝑓

𝐶
), and the

SNP-based heritability (ℎ2SNP).
Table 1 shows the levels we consider for these factors. In

addition, a range of values for 𝜆 on the interval [10−6; 109]
is considered. Each unique combination of levels of these
factors constitutes a scenario. The total number of scenarios
is 𝑆 = 7 × 12 × 37 × 20 = 62,160. We consider 𝑅 = 21 runs,
yielding 𝑆 × 𝑅 = 1,305,360 combinations of levels and runs.

For a combination of sample size, the number of SNPs,
trait heritability, and a fraction of causal SNPs chosen from
the levels shown in Table 1, let 𝐶 be the corresponding
number of causal SNPs. Now, the data generating process for
this combination of levels is given by

𝑦
𝑖
=

𝐶

∑

𝑝=1

𝑥
𝑖𝑝
𝛽
𝑝
+ 𝜀
𝑖
, for 𝑖 = 1, . . . , 𝑁total,

𝑥
𝑖𝑝
=

𝑔
𝑖𝑝
− 2𝑓
𝑝

√2𝑓
𝑝
(1 − 𝑓

𝑝
)

, for 𝑖 = 1, . . . , 𝑁total, 𝑝 = 1, . . . , 𝑃,

𝑔
𝑖𝑝
∼ Binom (2, 𝑓

𝑝
) , for 𝑖 = 1, . . . , 𝑁total, 𝑝 = 1, . . . , 𝑃,

𝑓
𝑝
∼ U (0.05, 0.95) , for 𝑝 = 1, . . . , 𝑃,

𝛽
𝑝
∼ N (0, 𝜎

2

𝛽) , for 𝑝 = 1, . . . , 𝑃,

𝜀
𝑖
∼ N (0, 𝜎

2

𝜀) , for 𝑖 = 1, . . . , 𝑁total,

(32)
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Table 1: Factors and levels of the simulation study. ℎ2SNP: heritability
simulated phenotype, 𝑁: sample size training set, 𝑃: number of
SNPs, and 𝑓

𝐶
: fraction of SNPs causal.

Factors Levels Number
of levels

𝑁 {200; 500; 1, 000; . . . ; 10, 000; 20, 000} 7
𝑃 {100; 200; 500; . . . ; 100, 000; 200, 000; 500, 000} 12
𝑓
𝐶

(%)
{0.1; . . . , 100} 37
(Linear increases on logarithmic scale)

ℎ
2

SNP
(%) {5; 10; 15; . . . ; 100} 20

where Binom(𝑎, 𝑏) denotes the binomial distribution with
𝑎 draws each with probability of success 𝑏 and U(𝑎, 𝑏)
denotes the uniform distribution on the interval (𝑎, 𝑏). This
data generating process corresponds to a quantitative trait
which is normally distributed and has only additive genetic
variation to which common variants contribute (i.e., minor
allele frequency above 5%).

The total number of observations 𝑁total includes the
individuals in the test set. The size of the test set is 10% of
the size of the training set, hence, yielding 𝑁total = ⌊1.1𝑁⌋.
Here, ⌊𝑥⌋ denotes the nearest smaller integer.

In order not to be dependent on a single generated
dataset, the entire simulation consists of 𝑅 = 21 independent
runs (replications). In each run we simulate only one set of
genotype data for 𝑁max = 22,000 individuals and 𝑃max =

500,000 SNPs. Given any combination of 𝑁 and 𝑃 listed in
Table 1 we can take an appropriate submatrix of the genotype
matrix. To this submatrix we apply a set of𝑃weights of which
some are zero, such that we attain the desired fraction of
SNPs being causal. Moreover, by scaling these weights and
the noise vector 𝜀 appropriately we can attain any specified
heritability. The result is a four-dimensional phenotype array
with individuals along the first dimension and the factors 𝑃,
𝑓
𝐶
, and ℎ2 along the remaining dimensions.
When computing the out-of-sample predictions based on

RR and RSR, the available genotype matrix only depends on
𝑁 and 𝑃, not on ℎ

2 or on 𝑓
𝐶
. Therefore, given 𝑁 and 𝑃,

when 𝑁 ≤ 𝑃 the eigendecomposition of the 𝑁 × 𝑁 GRM,
𝑃
−1XX⊤, can be reused for all combinations of ℎ2 and 𝑓

𝐶
.

Moreover, the approach has already been amended to reuse
the eigendecomposition for different values of 𝜆. Similarly,
when𝑁 > 𝑃 the eigendecomposition of𝑃×𝑃matrix𝑃−1X⊤X
can be reused. Since there only are 7 unique levels of 𝑁
and 12 unique levels of 𝑃, RR prediction (i) for the 62,160
scenarios per replication reduces to computing 7 × 12 = 84

eigendecompositions and (ii) for each scenario to carrying
out the matrix multiplications seen in (21).

In a typical run it takes 4.5 hours to predict using RR on a
machine with 16 cores at 2.60GHz per core with 64GBRAM.
The RSR predictions are generated alongside at virtually no
costs in terms of CPU and memory. The computing time
includes computation of the GRM, 𝑃−1XX⊤, when 𝑁 ≤ 𝑃

and 𝑃−1X⊤X when𝑁 > 𝑃. Given𝑁 and 𝑃, failure to exploit
(i) the constancy of the GRM and of 𝑃−1X⊤X over the 20×37

different combinations of ℎ2 and 𝑓
𝐶
and (ii) the properties of

the eigendecomposition which enable the joint evaluation of
the 151 values of𝜆we consider dramatically increases theCPU
time of RR. In fact, we infer that the less efficient approach
yields a CPU time that is at most a factor 20 × 37 × 151 =

111,740 larger than the 4.5 hours we attain (i.e., about 57 years
per run). Even worse, when the naive RR approach is applied
and also when 𝑃 ≫ 𝑁, RR predictions cannot be obtained
for datasets with more than 50,000 SNPs on the machine we
use. Thus, using the efficient approach based on the GRM
when𝑁 ≤ 𝑃 and based on 𝑃−1X⊤X when𝑁 > 𝑃, combined
with the smart use of eigendecompositions and constancy of
GRMs over different combinations of 𝑓

𝐶
and ℎ2 we are able

to reduce CPU times from several decades to several hours.
In each run, for each combination of levels we compute

the 𝑅
2 of the RSR prediction with the outcome and the

𝑅
2 of the RR prediction with the outcome. 𝑅2 is measured

by the squared sample correlation coefficient between the
polygenic score and the outcome in the test set. Our aim is to
assess predictive accuracy of RSR and see whether it differs
significantly from zero for a wide range of configurations.
Moreover, we want to test whether RR provides a significant
improvement compared to RSR. Therefore, the performance
of RR is measured relative to RSR. That is, we take the log-
ratio of the two, given by log(𝑅2RR/𝑅

2

RSR). This measure is
continuously distributed over (−∞, +∞).

Wemeasure the absolute performance of RSR by the logit
transformation of 𝑅2RSR/ℎ

2

SNP; that is,

logit(
𝑅
2

RSR
ℎ
2

SN
) = log(

𝑅
2

RSR/ℎ
2

SNP
1 − 𝑅
2

RSR/ℎ
2

SNP
) . (33)

This measure is also distributed over (−∞, +∞). The reason
for dividing 𝑅

2

RSR by ℎ
2

SNP is that we want to know what
part of the genetic variation the polygenic score captures. If
ℎ
2

SNP is low, for instance, 5%, we consider a polygenic score
that attains an 𝑅

2 of 4% to be more impressive than a risk
score that explains 10% of the variation in a highly heritable
trait (e.g., ℎ2SNP = 50%). Note that we exclude observations
with 𝑅

2

RSR > ℎ
2

SNP as these are uninformative outliers; a
polygenic score that “explains” more genetic variation than
there actually is is simply wrong.

Regarding the RR penalty, let 𝑅2RR(𝜆, 𝑟) denote the accu-
racy of RR in run 𝑟, given penalty 𝜆, conditional on some𝑁,
𝑃, 𝑓
𝐶
, and ℎ2. Now, let

𝑅
2

RR,med (𝜆) = median ({𝑅2RR(𝜆, 𝑟)}𝑟=1,...,𝑅
) (34)

denote the median of the RR performance over the runs for
a specific value of 𝜆. Now, for this combination of 𝑁, 𝑃, 𝑓

𝐶
,

and ℎ2 we take

�̂� = argmax
𝜆∈{𝜆1 ,...,𝜆𝐿}

𝑅
2

RR,med (𝜆) . (35)

Thus, for a given combination of levels of factors 𝜆 is tuned
by setting it such that it maximizes the median 𝑅2 of RR over
the runs for the given combination of levels. Based on this
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Table 2: Summary statistics of log(𝑅2RR/𝑅
2

RSR) for the full set of observed log-ratios and for the subset excluding log-ratios outside (−1, +1),
and 𝑅2RSR for the full set and for the subset excluding observations for which 𝑅2RSR ≥ ℎ

2

SNP. Results stem from all combinations of the levels of
the factors in the simulation design, with 21 replications per combination.

Outcome Restriction Count (% total) Mean Var. Min Max
log(𝑅2RR/𝑅

2

RSR) None 1,305,360 (100.0%) 0.065 0.403 −22.2 20.7
log(𝑅2RR/𝑅

2

RSR) ∈ (−1, +1) 1,254,168 (96.1%) 0.060 0.041 −1.00 1.00
𝑅
2

RSR None 1,305,360 (100.0%) 0.177 0.058 0.000 0.997
𝑅
2

RSR <ℎ
2

SNP 1,239,721 (95.0%) 0.160 0.051 0.000 0.997

procedure, the optimal 𝑅2 of RR in run 𝑟 is given 𝑅2RR(�̂�, 𝑟).
This yields a single measure of accuracy of RR per replication
and per combination of levels. This procedure results in a
value of 𝜆 that performs well in 21 independent samples.
Hence, it is similar to a value that would result fromCV; there
is little scope for overfitting. Moreover, since the median is
less sensitive to outliers than, for instance, themean, wemake
ourmeasuremore robust by taking themedian over the runs.
The reason that we choose for this approach instead of CV
is to reduce the computational complexity of the simulation
procedure at the expense of having a slightly less elegant
approach.

9.1. Simulation Results. Table 2 shows the summary statistics
of the measure log(𝑅2RR/𝑅

2

RSR) and of 𝑅2RSR. As can be seen,
overall the combinations of levels and runs RR seems to
outperform RSR on average by about 6%. However, there is
much variation in the log-ratio. The lowest log-ratio is −22.2
and the highest is +20.7. Since this ratio is on a log scale
this implies a tremendous difference in 𝑅

2. The reason for
this is that when either the nominator or the denominator
of 𝑅2RR/𝑅

2

RSR gets close to zero, the log-ratio can attain a large
value (in absolute terms). For this reason we excluded log-
ratios outside the interval (−1, +1). This leads to a drop in
the variance from about 0.4 to 0.04, only at the expense of
losing 3.9% of the observed combinations of levels and runs.
Moreover, the mean log-ratio hardly changes by removing
the outliers. This reduction in variance allows us to display
the results in a more insightful manner and ensures further
inferences on the relation between our factors (e.g., sample
size) and predictive accuracy are not influenced by aberrant
observations. For𝑅2RSR we see that the average𝑅2 of about 17%
is significantly greater than zero.

Figure 3 shows the histogram of log(𝑅2RR/𝑅
2

RSR) over the
combinations of runs and levels inside the range (−1, +1).
This histogram confirms that there are long and thin tails.
Most mass centers around zero. However, the empirical
distribution is slightly skewed to the right, giving rise to the
positive average log-ratio. The figure shows that RR often
performs better than RSR. Given the fact that RR lies between
RSR and OLS, this is not surprising. Using the penalty
parameter 𝜆, RR tries to find the optimum between these two
extremes. Figure 4 shows the histogram of logit(𝑅2RR/ℎ

2

SNP)

excluding observations for which 𝑅2RR > ℎ
2

SNP. The observa-
tions are smoothly distributed. A value of zero corresponds
to an 𝑅2 equal to half the heritability. Thus, in a substantial
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Figure 3: Histogram of log(𝑅2RR/𝑅
2

RSR) for 21 runs of simulated data,
for different values of𝑁, 𝑃, 𝑓

𝐶
, and ℎ2. Ridge parameter 𝜆 is chosen

to maximize median 𝑅2RR. Values outside (−1, +1) are excluded.

proportion of the cases RSR captures more than half of the
genetic variation.

Figure 5 shows the log-ratio of the median 𝑅
2 of ridge

regression and of RSR, with values outside the interval
(−1, +1) truncated to corresponding extremes of this interval.
This truncation is necessary in order for the figure not to be
dominated by the outliers. For 𝑁 ≪ 𝑃 (see the lower right
block in Figure 5), the performance of RR and RSR is volatile.
Sometimes, RR strongly outperforms RSR and sometimes it
is the other way round. However, on average RR seems to
outperform RSR. As 𝑁 approaches 𝑃 (see the lower left and
upper right blocks in Figure 5) RR starts to outperform RSR.
There are large regions, where the log of the gain in accuracy
is consistently between zero and a half. This corresponds to a
relative increase between zero and 65%. For example, for𝑁 =

𝑃 = 20,000, ℎ2SNP = 50%, and 200 causal SNPs RSR attains a
median𝑅2 of 17% andRR 20%, constituting a relative increase
of 16%. This gain in accuracy peaks when𝑁 ≈ 𝑃.

When 𝑁 ≫ 𝑃 (see the upper left block in Figure 5), the
gain in accuracy drops to zero.However, it is unlikely that this
pattern, where the gain of RR dies out as𝑁 keeps increasing,
replicates empirically. The reason for this is that the pattern
is probably an artefact of the design of the simulation; all
SNPs are simulated independent of each other. Even though
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SNP) for 21 runs of simulated
data, for different values of𝑁, 𝑃, 𝑓

𝐶
, and ℎ2, excluding observations

for which 𝑅2RSR ≥ ℎ
2.

Table 3: The observed median of the 𝑅2 of RSR and of RR relative
to RSR, over 21 simulations, for different sample sizes (𝑁), number
of SNPs (𝑃) of which 1% causal, and heritabilities (ℎ2SNP). Ridge
parameter 𝜆 is chosen to maximize the median 𝑅2RR.

𝑁 𝑃 ℎ
2

SNP Median 𝑅2RSR
Median 𝑅2RR/
median 𝑅2RSR

5 k 500 k 0.50 0.003 1.078
10 k 500 k 0.50 0.005 1.029
20 k 500 k 0.50 0.009 1.038
10 k 100 k 0.50 0.027 1.079
10 k 200 k 0.50 0.011 1.000
10 k 500 k 0.50 0.005 1.029
10 k 500 k 0.25 0.001 1.000
10 k 500 k 0.50 0.005 1.029
10 k 500 k 0.75 0.011 1.011

empirical correlations between SNPs can arise in the sim-
ulations, asymptotically there is none. Thus, for sufficiently
large 𝑁 (compared to 𝑃) the standardized simulated SNP
data are such that X⊤X approaches the identity matrix and
RR becomes equivalent to RSR (see Section 3). Therefore, the
accuracy of RR and RSR does not differ for such extremely
large values of𝑁. How the performance differs in these large
samples when there is linkage disequilibrium in the data
remains to be seen.

Table 3 shows the median of the 𝑅2 of RSR and that
of RR relative to RSR for combinations of sample size and
the number of genotyped SNPs that are typically seen in a
GWAS (e.g., 𝑁 = 10,000, 𝑃 = 500,000). We see that for
these data dimensions a trait with a heritability of 50% has
a classical polygenic score which on average only explains
0.5% of the total phenotypic variation. Moreover, RR yields a
relative increase of just 2.9%. This increase gives an absolute
𝑅
2 of 0.51% for RR. This observation clearly illustrates that

Table 4: Regressors used to explain the predictive accuracy of RR
and RSR.

Regressor Captures
Intercept Level
log(𝑁) Effect sample size
log(𝑃) Effect number of SNPs
log(𝐶) Effect of number of causal SNPs (𝐶)
log(𝑓
𝐶
) Effect of fraction of SNPs causal

log(ℎ2) Effect of heritability

the so-called missing heritability [45] is hard to find, even
under a very simple data generating process, that is, a
process for which we are sure that both RSR and RR should
asymptotically capture all genetic variation.

9.2. Modelling the Simulation Results. To understand the
relation between the various factors in the simulation study
and the gain in predictive accuracy byRRwefit a linearmodel
to the logarithm of the ratio 𝑅

2

RR/𝑅
2

RSR for all replications
and for all considered levels of factors, such as sample size.
Moreover, in order to obtain the 𝑅2 of RSR as a benchmark
we also fit a linear model, the logit transformation of 𝑅2RSR.

The results in the previous section indicate that the rela-
tion between sample size𝑁 and the performance is nonlinear.
The relation seems to exhibit an inverted U-shape. For this
purpose, we include log(𝑁) and its square as regressors.
Moreover, the location of the peak depends on the number
of SNPs, implying that the parameters of regressors related to
sample size depend on𝑃. Consequently, interactions between
𝑃 and 𝑁 are added to the model. By symmetry of Figure 5,
similar arguments hold for the performance as function of
𝑃. Based on this argument we consider up to three-way
interactions between the regressors.

In addition, we see in many subplots of Figure 5 that the
gain in predictive accuracy differs systematically between low,
intermediate, and high heritabilities. Therefore, heritability
is included as regressor. Finally, although the effect of the
fraction of causal SNPs is hard to judge from Figure 5, we
include this factor as regressor as well.

Both outcomes are modelled as a linear function of
the aforementioned basic regressors. These regressors are
reported in Table 4. We consider models ranging from
merely an intercept up to all 3-way interactions between the
explanatory variables. We choose the model that minimizes
the Bayes information criterion (BIC) [59].

Table 5 reports the BIC values of the respective models.
On the basis of these values we find that a model including
all three-way interactions is most appropriate, both in case
of the log-ratio and in case of the logit of the performance
of RSR relative to the heritability. The model for the gain in
accuracy of RR relative to RSR can explain approximately 12%
of the variation in thismeasure on the basis of sample size and
the other regressors. The model for the accuracy of RSR can
explain about 61%.

A likely reason for the fact that we can explain far more
variation in the 𝑅2 of RSR than in the gain of RR relative to
RSR is the following. In case both the𝑅2 of RR and RSR are to
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Figure 5:The logarithm of the ratio of themedian of the𝑅2 over 21 simulations, attained by ridge regression and the classical GWAS approach
of RSR, for different combinations of training sample size (𝑦-axis), number of SNPs (𝑥-axis), trait heritability (𝑦-axis in the sub-plots), and
fraction of SNPs with a causal effect (𝑥-axis in the subplots). Ridge parameter 𝜆 is chosen to maximize the median 𝑅2RR. Values truncated to
lie between minus one (red) and plus one (green).

Table 5: Bayes information criterion (BIC) and the proportion of explained variance (𝑅2model) of the model for the gain in predictive accuracy
of RR relative to RSR and the model for the performance of RSR, over different combinations of levels of the factors sample size, number of
SNPs, fraction of causal SNPs, and heritability. Lowest BIC printed bold.

Outcome Regressors (number of regressors) Number of observations 𝑅
2

model BIC
log(𝑅2RR/𝑅

2

RSR) Intercept (1) 1,254,168 0.0% −3.998 ⋅ 10
6

log(𝑅2RR/𝑅
2

RSR) Regressors in Table 4 (5) 1,254,168 4.7% −4.058 ⋅ 10
6

log(𝑅2RR/𝑅
2

RSR) & 2-way interactions (15) 1,254,168 8.4% −4.107 ⋅ 10
6

log(𝑅2RR/𝑅
2

RSR) & 3-way interactions (35) 1,254,168 12.4% −4.163 ⋅ 106

logit(𝑅2RSR/ℎ
2

SNP) Intercept (1) 1,239,721 0.0% 2.542 ⋅ 10
6

logit(𝑅2RSR/ℎ
2

SNP) Regressors in Table 4 (5) 1,239,721 48.6% 1.717 ⋅ 10
6

logit(𝑅2RSR/ℎ
2

SNP) & 2-way interactions (15) 1,239,721 56.3% 1.515 ⋅ 10
6

logit(𝑅2RSR/ℎ
2

SNP) & 3-way interactions (35) 1,239,721 60.9% 1.379 ⋅ 10
6

a large extent influenced by our factors in a similarway, taking
the log-ratio basically eliminates these common effects.What
then remains is a measure over which the factors have less
predictive power than over the absolute 𝑅2 measure.

Using the parameters estimates of the models we predict
the log-ratio of 𝑅2RR and 𝑅2RSR as well as 𝑅2RSR for sample sizes
between 100,000 and 500,000 individuals and the number of
SNPs between 100,000 and 500,000. For heritability and the
fraction of causal SNPs we use the ranges considered in the
initial simulations. The resulting predictions of the gain in
accuracy are displayed in the heatmap in Figure 6.

In addition, point estimates of 𝑅2RR/𝑅
2

RSR and 𝑅
2

RSR are
reported together with confidence intervals in Table 6. There
are three groups of predictions. In the first group𝑃 = 500,000,
ℎ
2
= 50%, and 𝑁 varies from 100,000 to 500,000. In the

second group 𝑁 = 500,000 and 𝑃 varies from 100,000 to

500,000. In the last group 𝑃 = 𝑁 = 500,000 and ℎ2 ranges
from 25 to 75%.

Results from Figure 6 and Table 6 indicate that in most
cases RR is expected to yield a relative increase in 𝑅2 between
10% and 20% for sample sizes ranging between 100,000 and
500,000 individuals. All increases in accuracy are greater than
zero at a 5% significance level. Moreover, RSR attains values
of𝑅2 ranging between 15% and 75%. As an example, in case of
200,000 individuals and 500,000 SNPs, for a trait with ℎ2SNP =

50% the 𝑅2 of RSR is expected to be 33.7% and the 𝑅2 of RR
37.3%.

Regarding these findings, combining the 𝑅2 attained by
RSRwith the relative increase by RR yields expected values of
the 𝑅2 of RR which in some cases surpass ℎ2. In practice this
cannot be true. In case a trait has an ℎ2 of 50% it is not possible
to consistently predict more than 50% of the phenotypic
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Figure 6: The predicted logarithm of the ratio of the 𝑅2 attained by ridge regression and the classical GWAS approach of RSR, based on
a model fitted to this measure in 21 runs of simulations. Predictions are shown for different combinations of training sample size (𝑦-axis),
number of SNPs (𝑥-axis), trait heritability (𝑦-axis in the subplots), and fraction of SNPs with a causal effect (𝑥-axis in the subplots). Predicted
values are not truncated. Deep green represents the highest prediction.

Table 6: Predictions of the predictive accuracy of RSR and of the gain in predictive accuracy of RR compared to RSR in large scale samples
(e.g., 𝑁 ≥ 100,000) based on a linear model with sample size, number of SNPs, fraction of causal SNPs, and heritability as predictors. 95%
confidence intervals (CI) are reported in parentheses, with the middle value indicating the point estimate. 1% of the SNPs are assumed to be
causal.

𝑁 𝑃 ℎ
2

SNP 95% CI 𝑅2RSR 95% CI 𝑅2RR/𝑅
2

RSR

100 k 500 k 0.50 (0.139; 0.146; 0.153) (1.062; 1.070; 1.079)
200 k 500 k 0.50 (0.324; 0.337; 0.349) (1.094; 1.107; 1.121)
500 k 500 k 0.50 (0.473; 0.478; 0.482) (1.142; 1.167; 1.193)
500 k 100 k 0.50 (0.486; 0.488; 0.490) (1.218; 1.244; 1.270)
500 k 200 k 0.50 (0.482; 0.485; 0.488) (1.193; 1.218; 1.244)
500 k 500 k 0.50 (0.473; 0.478; 0.482) (1.142; 1.167; 1.193)
500 k 500 k 0.25 (0.205; 0.212; 0.218) (1.110; 1.135; 1.160)
500 k 500 k 0.50 (0.473; 0.478; 0.482) (1.142; 1.167; 1.193)
500 k 500 k 0.75 (0.733; 0.736; 0.739) (1.191; 1.218; 1.245)

variation on the basis of SNP data.This seems to indicate that
our estimates are somewhat optimistic. Nevertheless, for the
ranges in which we actually simulated data (i.e.,𝑁 ≤ 20,000
and 𝑃 ≤ 500,000) RSR is able to attain a substantial 𝑅2 when
𝑁 ≈ 𝑃 and RR is able to considerably increase the 𝑅2. For
instance, at ℎ2 = 50% and 𝑁 = 𝑃 = 20, 000, with 200
causal SNPs the median 𝑅

2 of RSR is 17%, and the median
𝑅
2 of RR is 20%. This constitutes a relative increase in 𝑅2 of

about 16%. As shown in Figure 5, this pattern seems to persist
while𝑁 ≈ 𝑃. Hence, at the very least, the expectation that RR

improves the 𝑅2 of RSR considerably for large samples (e.g.,
𝑁 ≈ 𝑃 ≈ 500,000) is not unreasonable.

10. Conclusions and Discussion

Ridge regression is a flexible technique that can be used to
estimate the association between a set of 𝑃 SNPs and an out-
come observed for𝑁 individuals, even when 𝑃 ≫ 𝑁. When
the ridge penalty is equal to the ratio of the noise variance
and the variance of random SNP effects in a mixed linear
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model, prediction using the weights from ridge regression
is equivalent to the best linear unbiased prediction used in
animal breeding, agricultural science, and more recently also
human genetics.

Ridge regression can be perceived as a method that par-
tially accounts for linkage disequilibrium between markers.
For a sufficiently low penalty the method fully accounts for
linkage disequilibrium and is therefore equivalent to the OLS
estimator of the multiple regression problem using all SNPs
jointly. On the other hand, for a sufficiently high penalty,
in terms of predictions ridge regression ignores linkage
disequilibrium and is therefore equivalent to the approach of
a simple regression per SNP, which is common in a GWAS.

Using standard results from, for instance, machine learn-
ing and animal breeding, prediction using ridge regression
can be shown to constitute solving an equation with 𝑁

unknown weights and applying these weights to a measure of
relatedness of individuals out of sample and in sample. For-
mulating ridge regression this waymakes it a computationally
efficient technique, even for a large number of SNPs.

As withmultiple regression and GWAS predictions, ridge
regression can account for the presence of confounding
variables, such as age, gender, and population structure.
Moreover, such corrections can again be implemented at low
computational costs.

When the shrinkage parameter is unknown ridge pre-
diction can be formulated such that predictions for different
values of this parameter can be generated in a single step,
requiring the eigendecomposition of an 𝑁 × 𝑁 matrix only
once. This expression allows the researcher to efficiently
carry out procedures, such as cross-validation, to tune this
parameter.

Finally, ridge regression prediction is amenable to a wide
array of advanced techniques. First, using the kernel trick
from machine learning, nonlinear effects such as dominance
and epistasis can easily be incorporated in the prediction
model. Moreover, in a Bayesian spirit, results from earlier
studies can be used to give a prior weight to SNPs in the ridge
regression prediction. Similarly, when prior information is
not available, in-sample information can be used to discount
SNPs differently, yielding a heteroskedastic ridge regression
prediction.

Empirical findings so far seem to suggest that for current
sample sizes the performance of plain vanilla ridge regression
is very similar to that of the repeated simple regression
approach used in a GWAS. This raises two questions. First,
howdomore advanced ridge regression approaches perform?
Second, how will the plain version of ridge regression per-
form in upcoming large scale initiatives, such as biobanks?

Using a suite of simulations we consider the second
question. We confirm the finding that for most current
studies, with sample sizes usually below 10,000 individuals
andmore than 500,000 SNPs, ridge regression hardly outper-
forms the classical GWAS approach. For a sample of 10,000
observations, with 500,000 SNPs of which 5,000 causal,
for a trait with a heritability of 50%, the median 𝑅

2 in 21
independently simulated datasets is 0.5% for repeated simple
regression and 0.51% for ridge regression.This resonates with
the finding that the main determinant of predictive accuracy

of the polygenic score is the sample size of the training set
(e.g., [60, 61]). As long as 𝑁 ≪ 𝑃, there seems to be little
advantage of advanced approaches, such as ridge regression,
over the classical GWAS approach [61].

However, by analyzing the difference in accuracy of the
classical approach and ridge regression for different values of
𝑁, 𝑃, trait heritability, and the fraction of causal variants, we
are able to extrapolate the performance of ridge regression for
large scale initiatives. For a sample size of 200,000 individuals
and 500,000 SNPs, we find that in a trait with 50% heritability
and with 5,000 causal variants the polygenic score of a
GWAS is expected to explain 34%of the phenotypic variation,
whereas ridge regression is expected to capture about 37%.
Thus, in this scenario ridge regression is expected to capture
about 75% of the genetic variation, whereas the classical
approach captures 67%.

However, these predictions are rather coarse. They
depend highly on the model being fitted (e.g., by including
interactions between the number of individuals, SNPs, and
heritability). This observation comes as no surprise; we
extrapolate quite a bit outside the interior of the levels of the
factors that were considered in the simulations (e.g., 𝑁 ≤

20,000). However, one thing that remains unchanged even
under different specifications of themodels that try to explain
the accuracy of respective methods is that ridge regression
outperforms the repeated simple regression approach in all
large scale samples considered.

A final note is concerned with the independence of the
loci. In the present simulations at most 500,000 truly inde-
pendent markers were used. As a result, all carry their own
idiosyncratic bit of information about the genetic relationship
of individuals in the data. As is shown, however, by Yang
et al. [62], in real data with linkage disequilibrium taking a
random subset of 60% or more of the SNPs from a grand set
of 295 k SNPs yields heritability estimates of human height
highly similar to estimates based on the full set; apparently
adding more markers hardly changes the genetic relatedness
estimates.

The findings of Yang et al. [62] illustrate that there might
be a limited number of SNPs that canmake ameaningful con-
tribution to the SNP-based measure of genetic relationship.
After this “effective number of SNPs” [63], new SNPs are pri-
marily repeating the story that has been told by previous SNPs
already. Therefore, even with many millions of SNPs (e.g.,
in imputed data), the resulting genetic relatedness estimates
are highly similar to those obtained from a considerably
smaller set of SNPs. Consequently, if this “effective number
of SNPs” exists this implies that for large scale initiatives the
performance of ridge regression relative to repeated simple
regression might be similar to what we have observed in our
simulations when 𝑁 ≈ 𝑃, even when in fact 𝑃 is far greater
still than𝑁. Such a propositionwould need to be tested either
in empirical work or by means of simulations using actual
genotype data in which linkage disequilibrium is present.

The use of GWAS data for the prediction of complex traits
based on sample sizes far below 100,000 individuals yields
genetic risk scores with little predictive accuracy, regardless
of whether one applies the classical GWAS approach or ridge
regression. However, as sample sizes approach the “effective
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number of SNPs” we expect the polygenic risk score based on
repeated simple regression to be able to explain a substantial
proportion of the normal genetic variation. Moreover, under
this scenario prediction using ridge regression is likely to
outperform the classical GWAS predictions significantly.
Bearing in mind that ridge regression is amenable to include
nonadditive genetic variance in the prediction model it is
therefore not unlikely that ridge regression will make an even
more substantial contribution to the accuracy of polygenic
scores in traits where epistasis and dominance are expected
to play an important role.
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