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Abstract 

 

The primary purpose of the paper is to analyze the conditional correlations, conditional 

covariances, and co-volatility spillovers between international crude oil and associated 

financial markets. The paper investigates co-volatility spillovers (namely, the delayed 

effect of a returns shock in one physical or financial asset on the subsequent volatility or 

co-volatility in another physical or financial asset) between the oil and financial markets. 

The oil industry has four major regions, namely North Sea, USA, Middle East, and 

South-East Asia. Associated with these regions are two major financial centers, namely 

UK and USA. For these reasons, the data to be used are the returns on alternative crude 

oil markets, returns on crude oil derivatives, specifically futures, and stock index returns 

in UK and USA. The paper will also analyze the Chinese financial markets, where the 

data are more recent. The empirical analysis will be based on the diagonal BEKK model, 

from which the conditional covariances will be used for testing co-volatility spillovers, 

and policy recommendations. Based on these results, dynamic hedging strategies will be 

suggested to analyze market fluctuations in crude oil prices and associated financial 

markets.  

 

Keywords: Co-volatility spillovers, crude oil, financial markets, spot, futures, diagonal 

BEKK, optimal dynamic hedging. 

 

JEL Classifications: C58, D53, G13, G31, O13. 
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1. Introduction  
 

Crude oil is the most influential commodity in energy markets. In industrialized nations, 

crude oil drives machinery, generates heat, fuels domestic and commercial vehicles, and 

allows commercial air travel for businesses, and private travel and transportation for 

domestic and international tourists.  

 

Moreover, crude oil components can produce almost all chemical products, such as 

plastics and detergents. Refined energy products, such as gasoline and diesel, are also 

widely used in industry and commerce. As a consequence, crude oil prices affect many 

industries simultaneously. Crude oil and its derivative products, such as options, futures 

and forward prices, and associated index and volatility indices, such as Exchange Traded 

Funds (ETF) and VIX, respectively, are traded widely in international markets.  

 

Crude oil is generally sold near the origin of production, and is transferred from the 

loading terminal to the free on board (FOB) shipping point. Therefore, spot prices are 

quoted as FOB prices for immediate delivery of crude oil. Futures prices are quoted for 

delivering crude oil at a specified time in the future, in a specified quantity, and at a 

particular trading center. Forward prices of crude oil are agreed on from counterparties in 

forward contracts. Options are more legal and technical, and are one of the most widely 

traded financial derivative products. 

 

As shown in Figure 1, the historical price of spot and futures prices of crude oil in UK 

and USA have has enormous fluctuations since 2007, which coincided with the beginning 

of the Global Financial Crisis (GFC). Thus analyzing the correlations and spillovers 

between crude oil markets and financial markets seems to be super useful for making 

investment strategies.  

 

A stock index is a weighted average of stock prices of selected listed companies. Weights 

mostly depend on market capitalization. Stock indices give investors insights into 

decision making by providing an historical perspective of stock market performance. 
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Investors can invest in index mutual funds to expect as good performance as the market 

index. Stock index also provides a yardstick for investors to compare with their 

individual stock portfolios. Stock index can also be used in forecasting movements in the 

market. The historical prices of financial indices in UK, USA and China are presented in 

Figures 2 and 3.  

 

[Insert Figures 1-3 here] 

 

Volatility is essential in analyzing any markets with high frequency (daily and weekly 

data) or ultra-high frequency data (second, minute or hourly data), but it is usually 

unobservable in commodity and financial markets. Volatility spillovers seem to be 

widespread in both crude oil and financial markets. A volatility spillover is the lagged 

effect on one market due to changes of return shocks in another market. Unfortunately, 

the analysis of volatility and co-volatility spillovers is typically conducted in a confused 

and confusing manner, with incorrect definitions and inappropriate models being used, 

mainly with no standard statistical properties underlying the empirical analysis. 

 

The findings of Arouri, Jouini and Nguyen (2009) show significant volatility spillovers 

between oil price and stock returns. Thus, volatility spillovers and asymmetric effects in 

crude oil markets and financial markets play important roles in calculating optimal hedge 

ratios and optimal portfolios.  

 

In an early analysis on the topic of volatility spillovers, Sadorsky (1999) uses a vector 

autoregression to show that oil price returns and oil price volatility both play important 

roles in influencing real stock returns in financial markets. Oil price fluctuations and 

interest rates were shown to account for approximately 5% - 6% of the stock return 

forecast error variance in the USA.  

 

Faff and Brailsford (1999) find the pervasiveness of an oil price factor, beyond the 

influence of the market, is detected across some Australian industries. Significant 

positive oil price sensitivity is found in the Oil and Gas and Diversified Resources 
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industries, and significant negative oil price sensitivity is found in the Paper and 

Packaging and Transport industries.  

 

A multivariate vector autoregression was used by Cong, Wei, Jiao and Fan (2008) to 

investigate the interactive relationships between oil price shocks and the Chinese stock 

market. The empirical results show that an increase in oil volatility does not affect most 

stock returns, but may increase the speculative behavior in the mining index and 

petrochemicals index, which would lead to an increase in their stock returns.  

 

In analyzing 6 OECD countries, Miller and Ratti (2009) show that stock market indices 

respond negatively to increases in the oil price in the long run. The empirical findings 

support a conjecture of change in the relationship between real oil prices and real stock 

prices in the last decade compared with earlier years, which may suggest the presence of 

several stock market bubbles and/or oil price bubbles since the turn of the Century. 

 

Aloui and Jammazi (2009) use a two-regime Markov-switching EGARCH model to 

analyze the relationship between crude oil and stock market returns. Unfortunately, the 

EGARCH model is well-known not to have any regularity conditions, and hence is not 

invertible and has no asymptotic properties, specifically consistency and asymptotic 

normality (see McAleer and Hafner (2014)). The paper detects two episodes of Markov-

switching time series behavior, specifically, one related to a low mean/high variance 

regime, and the other related to a high mean/low variance regime.  

 

Given the high chance that the expansion is followed by a recession, Jammazi and Aloui 

(2009) find that the stock market variables respond negatively and temporarily to crude 

oil changes during moderate phases in France, and expansion phases in UK and France, 

but not at levels that would plunge them into a recession phase.  

 

Kilian and Park (2009) show that the reaction of US real stock returns to an oil price 

shock differ greatly, depending on whether the change in the price of oil is driven by 

demand or supply shocks in oil markets. Fundamental supply and demand shocks are 
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identified as underlying the innovations to the real price of crude oil. These shocks 

together explain one-fifth of the long-term variation in US real stock returns.  

 

The effects of oil price shocks on stock returns in a major oil-exporting country, namely 

Norway, are analyzed in Bjørnland (2009). The author shows that increasing of oil prices 

had a simulating effect on the economy in Norway, which is consistent with the 

expectation for a country that exports large amount of crude oil. Specifically, following a 

10% increase in oil prices, stock returns increased by 2.5%. The maximum effect is 

reached after 14–15 months (having increased by 4%–5%), after which the effect 

gradually subsides.  

 

Chang et al. (2013) investigate the crude oil and financial markets by examining the 

effect of conditional correlations on volatility spillovers. The alternative models used in 

the empirical analysis are the CCC model of Bollerslev (1990), VARMA-GARCH model 

of Ling and McAleer (2003), VARMA-AGARCH model of McAleer, Hoti, and Chan 

(2008), and DCC model of Engle (2002).  

 

The paper will digress slightly from the extant literature by applying the diagonal version 

of the multivariate extension of the univariate GARCH model, namely the diagonal 

BEKK as presented in Baba et al. (1985) and Engle and Kroner (1995). Chang et al. 

(2015) analyzed the literature on volatility and co-volatility spillovers between the energy 

and agricultural markets, providing and defining useful methodology for testing the 

effects of such spillovers.  

 

2. Financial Econometrics Methodology 

 

There are alternative multivariate volatility models of conditional covariance for 

accommodating volatility spillover effects. For example, the Baba, Engle, Kraft, and 

Kroner (1985) (BEKK) multivariate GARCH model, the diagonal model of Bollerslev et 

al. (1988), the constant conditional correlation (CCC) (specifically, multiple univariate 

rather than multivariate) GARCH model of Bollerslev (1990), the vech and diagonal vech 
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models of Engle and Kroner (1995), the Tse and Tsui (2002) varying conditional 

correlation (VCC) model, the Engle (2002) dynamic conditional correlation (technically, 

dynamic conditional covariance rather than correlation model) (DCC), the Ling and 

McAleer (2003) vector ARMA- GARCH (VARMA-GARCH) model, and the VARMA–

asymmetric GARCH (VARMA- AGARCH) model of McAleer et al. (2009). For further 

details on these multivariate static and dynamic conditional covariance models see, for 

example, McAleer (2005).  

 

In order to estimate multivariate models, it is necessary to estimate and acquire the 

standardized shocks from the conditional mean returns shocks. Therefore, univariate 

conditional volatility model GARCH and the multivariate conditional covariance models, 

Diagonal BEKK and the special case of scalar BEKK, will be presented briefly.  

 

Consider the conditional mean of returns, which may be univariate or multivariate, as 

follows: 

 

   (1) 

 

where the returns, , represent the log-difference in commodity or financial 

indices prices, ,  is the information set available at time t-1, and  is an 

unconditionally homoscedastic, but conditionally heteroskedastic, random error term. In 

order to derive conditional volatility specifications, it is necessary to specify the 

stochastic process underlying the returns shocks, . Much of the following section 

follows closely the presentation in McAleer (2005), McAleer et al. (2008), and Chang et 

al. (2015). 

 

2.1. Univariate Conditional Volatility Models 

 

Various univariate conditional volatility models are used in single index models to 

describe individual financial assets and markets. Univariate conditional volatilities can 

also be used as standardization of the conditional covariances in different multivariate 
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conditional volatility models to estimate conditional correlations, which are especially 

useful in developing optimal dynamic hedging strategies. The GARCH model, as the 

most popular univariate conditional volatility model, is discussed below. 

 

Consider the random coefficient autoregressive process of order one: 

 

   (2) 

 

where 

 

 

 
 

and  is the standardized residual.  

 

Tsay (1987) derived the ARCH(1) model of Engle (1982) from equation (2) as:  

 

   (3) 

 

where  is conditional volatility, and  is the information set at time t-1. The use of an 

infinite lag length for the random coefficient autoregressive process in equation (2), with 

appropriate geometric restrictions (or stability conditions) on the random coefficients, 

leads to the GARCH model of Bollerslev (1986). From the specification of equation (2), 

it is clear that both  and  should be positive as they are the unconditional variances of 

two separate stochastic processes.  

 

The Quasi Maximum Likelihood Estimator (QMLE) of the parameters of ARCH and 

GARCH have been shown to be consistent and asymptotically normal in several papers. 

For example, Ling and McAleer (2003) showed that the QMLE for GARCH(p,q) is 

consistent if the second moment is finite. Moreover, a weak sufficient log-moment 
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condition for the QMLE of GARCH(1,1) to be consistent and asymptotically normal is 

given by: 

 

  
 

which is not easy to check in practice as it involves two unknown parameters and a 

random variable. The more restrictive second moment condition, namely , is 

much easier to check in practice. 

 

In general, the proofs of the asymptotic properties follow from the fact that ARCH and 

GARCH can be derived from a random coefficient autoregressive process. In this context, 

McAleer et al. (2008) provide a general proof of the asymptotic properties of multivariate 

conditional volatility models that are based on proving that the regularity conditions 

satisfy the regularity conditions given in Jeantheau (1998) for consistency, and the 

conditions given in Theorem 4.1.3 in Amemiya (1985) for asymptotic normality.  

 

2.2 Multivariate Conditional Volatility Models 

 

The multivariate extension of the univariate GARCH model is given in Baba et al. (1985) 

and Engle and Kroner (1995).  In order to establish volatility spillovers in a multivariate 

framework, it is useful to define the multivariate extension of the relationship between 

the returns shocks and the standardized residuals, that is,  .  

 

The multivariate extension of equation (1), namely , can remain 

unchanged by assuming that the three components are now  vectors, where  is the 

number of crude oil or financial assets. The multivariate definition of the relationship 

between  and  is given as:  

 

   (4) 
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where  is a diagonal matrix comprising the univariate 

conditional volatilities. Define the conditional covariance matrix of as . As the 

 vector, , is assumed to be iid for all  elements, the conditional correlation 

matrix of  , which is equivalent to the conditional correlation matrix of  , is given by 

 . Therefore, the conditional expectation of (4) is defined as:   

 

  . (5) 

 

Equivalently, the conditional correlation matrix, , can be defined as:  

 

  . (6) 

 

Equation (5) is useful if a model of  is available for purposes of estimating , whereas 

equation (6) is useful if a model of  is available for purposes of estimating  .  

 

Equation (5) is convenient for a discussion of volatility spillover effects, while both 

equations (5) and (6) are instructive for a discussion of asymptotic properties, especially 

for the full BEKK model without appropriate parametric restrictions. As the elements of 

 are consistent and asymptotically normal, the consistency of   in (5) depends on 

consistent estimation of  , whereas the consistency of  in (6) depends on consistent 

estimation of   . As both   and  are products of matrices, and the inverse of the 

matrix D is not asymptotically normal, even when D is asymptotically normal, neither the 

QMLE of   nor will be asymptotically normal, especially based on the definitions 

that relate the conditional covariances and conditional correlations given in equations (5) 

and (6).  

 

2.2.1 Diagonal and Scalar BEKK 

 

The vector random coefficient autoregressive process of order one is the multivariate 

extension of equation (2), and is given as: 

9 
 



 

   (7) 

 

where  and  are  vectors,  is an  matrix of random coefficients, and  

 

, 

. 

 

Technically, a vectorization of a full (that is, non-diagonal or non-scalar) matrix A to vec 

A can have dimension as high as , whereas vectorization of a symmetric matrix 

A to vech A can have dimension as low as . Neither of these 

possibilities is as small in dimension as m x m, which is required to generate an 

appropriate BEKK model with any regularity conditions or asymptotic properties. 

 

In a case where A is either a diagonal matrix, or the special case of a scalar matrix, 

, McAleer et al. (2008) showed that the multivariate extension of GARCH(1,1) 

from equation (7), incorporating an infinite geometric lag in terms of the returns shocks, 

is given as the diagonal (or scalar) BEKK model, namely:  

 

   (8) 

 

where A and B is a diagonal (or scalar) matrix.  

 

McAleer et al. (2008) showed that the QMLE of the parameters of the diagonal, and 

hence also the scalar, BEKK models are consistent and asymptotically normal, so that 

standard statistical inference on testing hypotheses is valid. Moreover, as  in equation 

(8) can be estimated consistently,  in equation (6) can also be estimated consistently. 

However, as explained above, asymptotic normality cannot be proved given the 

definitions in equations (5) and (6). 
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In terms of volatility spillovers, as the off-diagonal terms in the second term on the right-

hand side of equation (8), , have typical (i,j) elements 

, there are no full volatility or full co-volatility 

spillovers. However, partial co-volatility spillovers are not only possible, but they can 

also be tested using valid statistical procedures.  

 

2.3 Spillovers 

 

Conditional correlations and spillovers between international crude oil and associate 

financial markets describe the delayed effect of a returns shock in one commodity or 

financial asset on the subsequent volatility or co-volatility in another commodity or 

financial asset.  

 

Define  as the conditional covariance matrix of . It follows that:   

 

• Full volatility spillovers:  ; 

 

• Full co-volatility spillovers:    ; 

 

•  Partial co-volatility spillovers:  .  

 

where   is returns shocks, and  is the conditional covariance matrix of .  

 

Full volatility spillovers occur when the returns shock from financial asset k affects the volatility 

of a different financial asset i. 

 

Full co-volatility spillovers occur when the returns shock from financial asset k affects the co-

volatility between two different financial assets, i and j.  

 

Partial co-volatility spillovers occur when the returns shock from financial asset k affects the 
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co-volatility between two financial assets, i and j, one of which can be asset k.  

 

When m = 2, only full volatility spillovers and partial co-volatility spillovers are possible as full 

co-volatility spillovers depend on the existence of a third financial asset. 

 

2.4 Dynamic Optimal Hedging Strategies 

 

As investors trade massively in both commodity and financial assets, spillovers can 

provide investors with a basis to understand and hedge optimally using derivatives in 

both markets. The optimal dynamic hedge ratio is the size of the futures contract relative 

to the cash transaction.  

 

According to Chang et al. (2011), consider the case of an oil company, which seeks to 

protect their exposure in the crude oil spot price by taking a position in a futures financial 

markets. The return on the oil company’s portfolio of spot and futures position can be 

denoted as:  

 

  , (9) 

 

where  is the return on holding the portfolio between t−1 and t,  and  are the 

returns on holding spot and futures positions between t and t−1, and  is the dynamic 

hedge ratio, that is, the number of futures contracts that the hedger must sell for each unit 

of a spot commodity on which price risk is borne. 

 

According to Johnson (1960), the variance of the returns of the hedged portfolio, 

conditional on the information set available at time t−1, is given by  

 

 (10) 

  

where , , and  are the conditional 

variances and covariance of the spot and futures returns, respectively. The Optimal 
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Hedging Ratios (OHR) are defined as the value of  which minimizes the conditional 

variance (risk) of the hedged portfolio returns.  

 

Taking the partial derivative of equation (10) with respect to  , setting it equal to zero, 

and solving for , yields the  conditional on the information available at t−1 (see, 

for example, Baillie and Myers (1991)): 

 

  , (11) 

 

where returns are defined as the logarithmic differences of spot and futures prices. 

Estimates of dynamic conditional volatility and co-volatility for purposes of testing 

spillover effects will be undertaken using alternative univariate and multivariate 

conditional volatility models, as discussed above.  

 

3. Data and Variables 

 

As the topic of the paper is to test co-volatility spillovers in the crude oil and financial 

markets, important indices in both markets are taken into consideration and will be 

discussed below.  

 

3.1. Crude oil markets 

 

Two key indices used in crude oil markets are West Texas Intermediate (WTI) in the 

USA and Brent Blend Oil Index in the UK. Daily spot and futures price of WTI, and the 

futures price of Brent, are available during from 24 June 1988 to 13 May 2016, but there 

is no spot price available for Brent. All the crude oil indices used in the paper are 

expressed in US dollars and in cents per barrel. 

 

WTI refers to oil extracted from wells in the USA and sent via pipeline to Cushing, 

Oklahoma. The transportation price of WTI is relatively expensive because supplies are 

land-locked, and cannot be transported in large quantities, as can be done where large 
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container ships are used. WTI oil is very light and sweet, which makes it ideal for the 

refining of gasoline. 

 

The New York Mercantile Exchange (NYMEX) designates petroleum with less than 

0.42% Sulphur as sweet. Higher levels of Sulphur content are called sour crude oil. 

NYMEX defines light crude oil for domestic USA oil as having an American Petroleum 

Institute (API) gravity between 37° API (840 kg/m3) and 42° API (816 kg/m3). API 

gravity is a measure of how heavy or light a petroleum liquid is compared with water. If 

its API gravity is greater than 10, it is lighter and floats on water; if it is less than 10, it is 

heavier and sinks. Light crude oil produces a higher percentage of gasoline and diesel, so 

the price is higher than that of heavy crude oil. 

 

The daily spot price of WTI is available using “Bloomberg West Texas Intermediate 

(WTI) Cushing Crude Oil Spot Price”. It uses benchmark WTI crude at Cushing, 

Oklahoma, and other USA crude oil grades trade on a price spread differential to WTI, 

Cushing. Prices are on a free-on-board basis. WTI crude oil at Cushing, Oklahoma 

typically trades in pipeline lots of 1,000 to 5,000 barrels a day, for delivery between the 

25th day in one month to the 25th of the following month. These prices are for physical 

shipments. API gravity is 39°, while the sulfur content is 0.34%. The number of barrels 

per ton is 7.640. 

 

Daily futures price of WTI is available under the designation “CL1 COMDTY” in 

Bloomberg. It is Generic 1st ‘CL’ Future, which is one-month-front contract, traded at 

NYMEX. The contract trades in units of 1,000 barrels, and the delivery point is Cushing, 

Oklahoma.  

 

Brent Blend refers to oil from four different fields in the North Sea, namely Brent, Forties, 

Oseberg and Ekofisk. Crude oil from this region is less “light” and “sweet” than that of 

WTI, but it is still an excellent product for the refining of diesel fuel, gasoline and other 

high-demand products. As the supply is water borne, it is relatively easy to transport large 

quantities to distant locations. 
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The daily futures Price of Brent Blend is available under the designation “CO1 

COMDTY” in Bloomberg. It is Generic 1st ‘CO’ Future, which is also one-month-front 

contract, traded at the Intercontinental Exchange (ICE) in the UK. The unit of trading is 

one or more lots of 1,000 net barrels of Brent crude oil. 

 

3.2. Financial Markets 

 

The paper examines three leading financial markets internationally, namely USA, the UK 

and China. Daily data are used for eight indices, namely S&P 500 Spot, S&P 500 Futures, 

FTSE 100 Spot, FTSE 100 Futures, SSE Composite Spot, SZSE Composite Spot, China 

A50 Spot, and China A50 Futures. 

 

For the US market, both daily spot and daily futures prices of the widely-used Standard & 

Poor’s 500 Composite Index (S&P 500) is accessible from 24 June 1988 to 13 May 2016. 

S&P 500 is based on the market capitalizations of 500 large companies listed on the 

NYSE or NASDAQ. It is one of the most suitable representations available of the stock 

market in the USA, which is expressed in US dollars. 

 

For the UK market, daily spot and daily futures prices of the Financial Times Stock 

Exchange 100 Index (FTSE 100) are available from 24 June 1988 to 13 May 2016. FTSE 

100 is an index of the 100 companies with the largest capitalization listed on the London 

Stock Exchange. The index is considered a benchmark of prosperity for business under 

the company law of UK, which is calculated in GdP. 

 

Regarding the Chinese markets, both domestic and non-domestic indices are considered. 

In domestic Chinese financial markets, the daily spot price of the Shanghai Stock 

Exchange Composite Index (SSE Composite) and Shenzhen Stock Exchange Composite 

Index (SZSE Composite) are seen as the leading indicators of financial market trends in 

China. The SSE Composite includes all stocks (A shares and B shares) that are traded at 
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the Shanghai Stock Exchange, and SZSE Composite calculates all stocks listed on the 

Shenzhen Stock Exchange.  

 

A shares are denominated in CNY traded by domestic investors, whereas B shares are 

denominated in foreign currencies traded by qualified international investors. Until 13 

May 2016, there were 1,140 listed companies are included in SSE Composite, and 1,808 

companies were available in SZSE Composite. Both spot prices are calculated in CNY. 

SSE Composite is available from 19 December 1990, and SZSE Composite is available 

from 2 January 1992.  

 

Another important index is the FTSE China A50, which is the benchmark for 

international investors to access China’s domestic financial market through A Shares. 

The index incorporates the 50 largest A share companies by market capitalization. Daily 

spot and futures price of FTSE China A50 are available from 5 January 2007 to 13 May 

2016, and are denominated in CNY. As the paper emphasizes hedging strategies in both 

spot and futures markets, for Chinese financial markets, only data after 5 January 2007 

are used when China A50 futures price were initiated.  

 

The paper uses daily time series data from 24 June 1988 to 13 May 2016, where all the 

data are downloaded from Bloomberg. Three time periods are also analyzed from the 

whole period due to the Global Financial Crisis (GFC) that occurred between 2007 and 

2009, namely Pre-GFC (from 24 June 1988 to 4 January 2007), GFC (from 5 January 

2007 to 5 March 2009), and Post-GFC (from 6 March 2009 to 13 May 2016).  

 

The initial date of the GFC is widely regarded as having started somewhere between 

November 2007 (the high point of the S&P 500 Composite Index prior to the GFC) to 

August 2009 (after Lehmann Brothers entered bankruptcy). In the paper, the starting 

point of the GFC is taken to be the date when the futures price of China A50 became 

available, namely August 2007. By adding seven months of data, the prices and returns 

move with slightly lower volatility.  
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3.3. Descriptive Statistics and Unit Root Tests 

 

The returns of crude oil prices and financial market indices are calculated on a continuous 

compound basis, defined as: 

 

 
 

where  and  are the closing prices i of market j for days t and t-1, respectively. 

WTI-s, WTI-f, BRENT-f, SP500-s, SP500-f, FTSE-s, FTSE-f, SH-s, SZ-s, CNA50-s, 

CNa50-f denote returns of WTI spot prices, returns of WTI futures prices, returns of 

BRENT futures prices, returns of S&P 500 spot prices, returns of S&P futures prices, 

returns of FTSE 100 spot prices, returns of FTSE 100 futures prices, returns of SSE 

Composite, returns of SZSE Composite, returns of FTSE China A50 spot prices, and 

returns of FTSE China A50 futures prices, respectively.  

 

The descriptive statistics for crude oil returns and financial index returns in UK and USA 

for four time periods, which are whole sample (1988-2007), Pre-GFC (1988-2007), GFC 

(2007-2009) and Post-GFC (2009-2016), are reported in Table 1.  

 

[Insert Table 1 here] 

 

All the series present large negative mean returns for the During-GFC period, whereas 

mean returns for each of the variables are positive for Pre-GFC, Post-GFC and the Whole 

Period. Crude oil returns show a larger standard deviation than financial index returns for 

all periods, indicating that crude oil markets are more volatile than financial markets, in 

general, at the aggregate level. Not surprisingly, all the variables have the largest standard 

deviations for all variables During-GFC.  

 

However, except for futures returns of BRENT, all the maximum values exist During-

GFC, indicating that, although crude oil markets and financial markets are volatile 
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During-GFC, large positive returns can be obtained during the same period. As for the 

minimum value, crude oil returns display large negative returns Pre-GFC, due to the fact 

that, on 16 January 1991, USA began an air attack against Iraqi military targets, as well 

as the drawdown of Strategic Petroleum Reserves (SPR) in the USA.  

 

The normal distribution has skewness of zero and kurtosis of 3. Spot and futures returns 

of WTI show positive skewness During-GFC and Post-GFC. Futures returns of BRENT 

also have positive skewness. These statistics show that Post-GFC, crude oil markets have 

more extreme positive returns. Nevertheless, financial index returns always present 

negative skewness, except futures returns of S&P 500 During-GFC, indicating that 

compared with crude oil markets, financial markets are more likely to have extreme 

negative returns.  

 

All the return series have high kurtosis, suggesting the existence of fat tails. The Jarque-

Bera Lagrange Multiplier statistics of all series of returns are statistically significant, 

indicating non-normality in the distribution of returns.  

 

As shown in Table 2, descriptive statistics for China During-GFC and Post-GFC display 

similar results to those in Table 1. SSE Composite, China A50 spot and futures show 

negative mean returns During-GFC, and positive mean returns Post-GFC. SZSE 

Composite has positive mean returns for the During-GFC and Post-GFC periods, 

indicating that, in general, the companies listed on SZSE performed well During-GFC 

and Post-GFC. All returns During-GFC and Post-GFC show negative skewness, large 

kurtosis, and large Jarque-Bera Lagrange Multiplier statistics, indicating that it is likely to 

have negative returns in Chinese financial markets, on average, and that the returns are 

not normally distributed.  

 

[Insert Table 2 here] 

 

Table 3 presents the correlation matrix for crude oil and financial markets in UK and 

USA for the Pre-GFC, During-GFC and Post-GFC periods. Most of the correlation 
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coefficients between pairs of variables show an increasing trend from Pre-GFC to Post-

GFC, indicating that spot and futures returns for crude oil and financial markets have 

been more closely tied together in recent years. This empirical regularity strengthens the 

need and importance of testing for co-volatility spillovers between indices in crude oil 

and financial markets.  

 

[Insert Table 3 here] 

 

The highest correlation coefficient in the whole sample is between the spot and futures 

returns of S&P 500, at 0.974, followed by the spot and futures return correlation 

coefficient of 0.963. The spot and futures returns are also highly correlated in WTI, at 

0.901, and with BRENT, at 0.804. The correlation coefficient between WTI spot returns 

and BRENT futures returns is 0.795, indicating that returns of oil markets are relatively 

highly correlated between UK and USA.  

 

The financial markets in UK and USA are only moderately correlated. The correlation 

coefficient between spot returns of S&P 500 and FTSE 100 is 0.491. However, by 

examining the whole sample, returns from crude oil markets and financial markets are 

slightly correlated. Specifically, the highest correlation coefficient is 0.147 between 

futures returns of WTI and spot returns of FTSE 100.  

 

Pre-GFC, the correlation coefficients are all negative and close to 0 between the crude oil 

and financial markets. During-GFC and Post-GFC, the two markets become moderately 

correlated. Specifically, the highest correlation between crude oil and financial markets 

Post-GFC is 0.430, which is between the spot or futures returns of WTI and spot returns 

of S&P 500.  

 

Table 4 shows the correlations of crude oil in UK and USA, and financial markets in 

China During-GFC and Post-GFC. Focusing on the financial markets in China During-

GFC and Post-GFC, the highest correlation coefficient is 0.948 between SSE Composite 
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returns and China A50 spot returns, followed by 0.930 between spot and futures returns 

of China A50.  

 

Interestingly, the correlation coefficient between SSE Composite returns and SZSE 

Composite returns is 0.902, whereas SZSE Composite returns and China A50 spot returns 

have a correlation coefficient of only 0.783. The reason behind the statistics might be the 

fact that there are only 7 SZSE-listed companies in China A50, so the leading companies 

in SSE Composite are also included in China A50.  

 

[Insert Table 4 here] 

 

The correlation coefficients between crude oil in UK and USA, and financial markets in 

China, are generally very low. The highest coefficient is 0.132, which is between futures 

returns of BRENT and SSE Composite returns Post-GFC. Comparing this number with 

the correlation coefficients between crude oil and financial markets in UK and USA, it is 

only one-third of those in UK and USA. These results indicate that China has limited 

experience regarding trading in international crude oil markets.  

 

In the interests of saving space, the unit root tests of all the variables for all time periods 

are not reported. In order to summarize the unit root tests results, all prices are found to 

be nonstationary, while all return series are found to be stationary.  

 

4. Empirical Results  

 

By testing the significance of the estimates of matrix A in the Diagonal BEKK model, the 

co-volatility spillover effects can be obtained directly. Specifically, if the null hypothesis 

is rejected, there will exist spillovers from the returns shock of commodity or financial 

index j at t-1 to the co-volatility between commodities or financial indices i and j at t that 

depends only on the returns shock of commodity or financial index i at t-1. Estimation of 

the model in equations (1) and (2) by QMLE is accomplished by using the EViews 8 

econometric software package.  
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4.1. UK and USA 

 

Tables 5-10 report the empirical results of the estimates of matrix A of the Diagonal 

BEKK model, with various dimensions for the UK and US markets. The estimates of the 

coefficients in matrix A can be interpreted as the weights that each variable have on the 

co-volatility. Mean return shocks and mean co-volatility spillovers are calculated in order 

to obtain a more precise interpretation and understanding of the two markets.  

 

Table 5 shows the estimates of matrix A using 2 x 2 Diagonal BEKK for spot markets for 

UK and USA for four periods. Specifically, spot returns of WTI are tested with spot 

returns of S&P 500 and spot returns of FTSE 100, respectively. Thus for each period, 

there are two pairs of mean co-volatility spillovers.  

 

[Insert Table 5 here] 

 

From the estimates of matrix A of the Diagonal BEKK model in Table 5, all the 

coefficients are statistically significant at the 1% level. For example, the coefficients are 

0.236 and 0.248 for WTI spot and S&P 500 spot prices during the whole sample. The 

empirical results show that there are spillover effects from the spot returns of WTI at t-1 

to the co-volatility between WTI spot and S&P 500 spot prices, and from the spot returns 

of S&P 500 at t-1 to the co-volatility between WTI spot and S&P 500 spot prices. Similar 

empirical results and interpretations hold for the Pre-GFC, During-GFC and Post-GFC 

sub-periods. 

 

As highlighted in bold in Table 5, there are 2 of 8 scalar matrices A, which are WTI spot 

and S&P 500 spot prices for the whole period, and WTI spot and FTSE spot prices Pre-

GFC. The scalar matrix A shows that the two variables have similar weights on the co-

volatility between the pair. If the two variables have different effects on their respective 

co-volatility, a diagonal matrix A will be interpreted as appropriate weights. In Table 5, 

there are 4 of 8 diagonal matrices A, which are highlighted in italics.  
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The mean return shocks for all pairs of variables are shown alongside the estimates of the 

weight matrix A. The highest difference in mean return shocks is between WTI spot and 

S&P 500 spot prices Pre-GFC at 0.036. The partial co-volatility spillovers effects are 

calculated according to the definition presented in Section 2. The columns of mean co-

volatility spillover effects show that there are significant co-volatility spillovers in all the 

cases presented.  

 

The largest absolute value of mean co-volatility spillovers in Table 5 is from spot returns 

of FTSE 100 to the mean co-volatility between WTI spot and FTSE 100 spot prices 

During-GFC. It can also be found that the mean co-volatility spillovers have the largest 

absolute values During-GFC as compared with Pre-GFC and Post-GFC. These empirical 

results correspond with the fact that During-GFC, the volatility in crude oil markets and 

financial markets is higher than in the Pre-GFC and Post-GFC sub-periods.  

 

Table 5 shows that Pre-GFC, the mean co-volatility spillovers have different signs in 

each of the testing pairs, whereas the mean co-volatility spillovers all have negative signs 

in the pairs During-GFC and Post-GFC. Optimal hedging strategies can be considered if 

the product of the two mean return shocks is negative. Therefore, there are little or no 

hedging opportunities between the oil spot and financial spot markets During-GFC and 

Post-GFC, as indicated by the 2 x 2 Diagonal BEKK model, whereas dynamic hedging is 

possible in the Pre-GFC sub-period. 

 

Table 6 demonstrates the estimates of the weight matrix A using the 2 x 2 Diagonal 

BEKK model for futures markets for UK and USA for the four periods. In each period, 

WTI futures returns are analyzed in combination with S&P 500 returns and FTSE 100 

returns. BRENT futures returns are also tested in related to the futures returns of the two 

financial markets. Therefore, there are four pairs of spillovers tests to be considered for 

each period.  

 

[Insert Table 6 here] 

22 
 



 

As shown in Table 6, all the estimates of the weight matrix A are significant at the 1% 

level, indicating that each of the variables has significant impacts on the co-volatility in 

alternative pairs. Among 16 pairs that are considered, 4 pairs show scalar matrices A. 

WTI futures and FTSE 100 futures, BRENT futures and FTSE 100 futures Pre-GFC both 

demonstrate scalar weights in matrix A. Of 16 pairs, 7 are found to have diagonal 

matrices A.  

 

The results of the signs for futures mean co-volatility spillovers are similar to those of the 

spot prices. Positive and negative signs of mean co-volatility spillovers can be seen Pre-

GFC. The signs are always the same for each pair During-GFC and Post-GFC. When the 

products of the mean return shocks are examined, optimal hedging strategies can only be 

applied Pre-GFC.  

 

A 3 x 3 Diagonal BEKK model can be used if three spot returns, namely WTI spot, S&P 

500 spot and FTSE 100 spot prices, are estimated simultaneously. Table 7 shows the 

results of the weight matrix A in the 3 x 3 Diagonal BEKK model, the mean return shocks, 

and mean co-volatility spillovers for all sets of three spot prices. All the estimates of 

matrix A are statistically significant at the 1% level. For the whole sample period, the 

coefficients are scalar, whereas the estimates of matrix A are diagonal in the separate sub-

periods Pre-GFC, During-GFC, and Post-GFC.  

 

[Insert Table 7 here] 

 

The mean co-volatility spillovers have similar results as for the 2 x 2 Diagonal BEKK 

model. Examination of the whole sample and Pre-GFC sub-period, optimal hedging 

strategies can be considered between WTI spot and S&P 500 spot prices, and WTI spot 

and FTSE 100 spot prices. However, there is little or no opportunity of hedging between 

these two pairs During-GFC and Post-GFC.  
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Table 8 presents the results of the weight matrix A in the 4 x 4 Diagonal BEKK model, 

the mean return shocks, and mean co-volatility spillovers for UK and US futures markets 

in the four periods. It is notable that in the Post-GFC sub-period, WTI futures, BRENT 

futures and FTSE 100 futures have similar estimates of the weights, namely 0.217, 0.222, 

and 0.225, respectively, but S&P 500 futures provide a distinctly different coefficient at 

0.291). As for the results of mean co-volatility spillovers, it confirms the interpretation of 

the results in Tables 5-7. Optimal dynamic hedging is not possible between crude oil 

futures markets and financial futures markets During-GFC and Post-GFC by using a 4 x 4 

Diagonal BEKK model.  

 

[Insert Table 8 here] 

 

It would be interesting to analyze the spot and futures markets in pairs. Tables 9 and 10 

provide the results of a 7 x 7 Diagonal BEKK model consisting of 3 crude oil returns, 

namely WTI spot, WTI futures and BRENT futures, and 4 financial index returns, 

namely S&P 500 spot, S&P 500 futures, FTSE 100 spot and FTSE 100 futures. As can be 

seen from the estimates of the weights of matrix A, all the matrices are found to be 

diagonal. Although spot and futures markets are analyzed together to determine mean co-

volatility spillovers, similar results are found to hold as in the cases of lower dimensions, 

namely the crude oil and financial markets in UK and USA cannot be hedged using a 7 x 

7 Diagonal BEKK model.  

 

[Insert Tables 9-10 here] 

 

4.2. China 

 

Tables 11 and 12 present the estimates of the weight matrix A in the Diagonal BEKK 

model, mean return shocks, and mean co-volatility spillovers, for the crude oil markets in 

UK and USA, and financial markets in China, for the During-GFC and Post-GFC sub-

periods.  
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Table 11 shows the results of the 2 x 2 Diagonal BEKK model. All the coefficients of 

matrix A are statistically significant at the 1% level. Among the 15 pairs of spillovers that 

are analyzed, there are 9 pairs of variables that display estimates of diagonal matrices A.  

It is worth mentioning that for the Post-GFC period, diagonal matrix A exists in each pair 

of variables, indicating that Post-GFC, Chinese financial markets and crude oil markets in 

the UK and USA have nearly the same impacts on the co-volatility among any pair of 

commodities and markets. 

 

[Insert Table 11 here] 

 

Interestingly, the results of the mean co-volatility spillovers in Chinese markets are quite 

different from the empirical results presented for UK and USA. Positive and negative 

mean co-volatility spillovers pairs can be seen Post-GFC, indicating that there is an 

opportunity that optimal dynamic hedging strategies can be obtained by using a  2 x 2 

Diagonal BEKK model.  

 

Table 12 shows the results of a 5 x 5 Diagonal BEKK model, using three crude oil 

indices, namely WTI spot, WTI futures and BRENT futures, and two financial indices in 

China, namely China A50 spot and China A50 futures. The estimates of matrix A are all 

statistically significant at the 1% level, and all the matrices are diagonal. In addition, the 

resulting mean co-volatility spillovers are consistent with the results presented in Table 9, 

which demonstrate that it is possible to hedge by using a 5 x 5 Diagonal BEKK model in 

Chinese financial markets, together with UK and US crude oil markets Post-GFC.  

 

[Insert Table 12 here] 

 

5. Concluding Remarks 

 

The main purpose of the paper was to analyze the conditional correlations, conditional 

covariances, and spillovers between international crude oil and associated financial 

markets.  
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The oil industry has four major regions, namely the North Sea, USA, Middle East, and 

South-East Asia. Associated with these four regions are three major financial centers, 

namely those centred in UK, USA and China, for which the data are more recent. The 

paper examined the co-volatility spillover effects between crude oil and financial markets 

among these three countries by partitioning the whole sample time period from 1988 to 

2016 into three representative time periods that are associated with the Global Financial 

crisis (GFC), namely Pre-GFC, GFC and Post-GFC.  

 

The paper analyzed three crude oil indices returns and eight financial indices returns 

using various dimensions of the multivariate conditional covariance Diagonal BEKK 

model, from which the conditional covariances were used for testing co-volatility 

spillovers. Based on these results, dynamic hedging strategies could be suggested to 

analyze market fluctuations in crude oil prices and associated financial markets. 

 

The empirical findings revealed that, for markets in UK and USA, there were significant 

negative co-volatility spillover effects for any pairs of crude oil and financial indices 

During-GFC and Post-GFC, whereas for Pre-GFC and for the whole sample period, most 

of the pairs had different signs of co-volatility effects. These empirical results suggested 

opportunities for optimal dynamic hedging. 

 

However, for China, there were significant negative co-volatility effects for numerous 

pairs of crude oil indices and financial indices During-GFC, but positive and negative 

signs of co-volatility spillovers in the Post-GFC period. The empirical results for China 

also suggested numerous opportunities for optimal dynamic hedging across the oil and 

financial markets, as well as with UK and USA. 
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Table 1  
Descriptive Statistics for UK and USA 

        
Returns 

 
Mean SD Max Min  Skewness  Kurtosis  Jarque-Bera 

Whole Sample: 1988-2016 
WTI-s 0.015 2.450 21.277 -40.826 -0.698 18.586 74240.627 
WTI-f 0.014 2.392 16.410 -40.048 -0.756 18.278 71460.620 

BRENT-f 0.015 2.212 13.151 -42.722 -1.096 25.787 158879.705 
SP500-s 0.028 1.100 10.957 -9.470 -0.263 12.131 25358.268 
SP500-f 0.027 1.130 13.197 -10.400 -0.196 13.935 36296.838 
FTSE-s 0.016 1.087 9.384 -9.266 -0.140 9.252 11874.199 
FTSE-f 0.016 1.139 9.580 -9.699 -0.147 8.414 8911.304 

Pre-GFC: 1998-2007 
WTI-s 0.026 2.431 14.886 -40.826 -1.240 23.935 89533.234 
WTI-f 0.025 2.354 13.572 -40.048 -1.294 24.574 95114.659 

BRENT-f 0.026 2.214 13.151 -42.722 -1.650 35.390 213547.316 
SP500-s 0.034 0.965 5.573 -7.113 -0.154 7.422 3957.782 
SP500-f 0.034 1.009 5.755 -8.730 -0.300 8.414 5976.879 
FTSE-s 0.025 0.982 5.904 -5.885 -0.133 6.368 2299.857 
FTSE-f 0.025 1.070 6.373 -6.557 -0.094 6.090 1930.618 

During GFC: 2007-2009 
WTI-s -0.043 3.333 21.277 -13.065 0.472 8.331 690.083 
WTI-f -0.043 3.307 16.410 -13.065 0.223 6.918 366.075 

BRENT-f -0.041 2.836 12.707 -10.946 -0.195 5.712 176.732 
SP500-s -0.129 1.978 10.957 -9.470 -0.210 9.272 930.089 
SP500-f -0.130 1.998 13.197 -10.400 0.123 11.687 1777.879 
FTSE-s -0.102 1.835 9.384 -9.266 -0.018 8.439 696.510 
FTSE-f -0.103 1.825 9.580 -9.699 -0.109 8.423 693.530 

Post-GFC: 2009-2016 
WTI-s 0.004 2.169 11.621 -10.794 0.108 6.158 783.537 
WTI-f 0.004 2.151 11.621 -10.794 0.116 6.139 774.799 

BRENT-f 0.006 1.982 10.416 -8.963 0.207 6.099 764.396 
SP500-s 0.059 1.054 6.837 -6.896 -0.093 7.550 1621.836 
SP500-f 0.058 1.057 6.731 -7.496 -0.155 7.763 1781.712 
FTSE-s 0.029 1.041 5.032 -4.779 -0.077 5.199 380.064 
FTSE-f 0.029 1.037 4.854 -4.950 -0.099 5.316 422.473 

Note: There are 7277, 4835, 565 and 1877 observations for four periods, respectively. 
The Jarque-Bera Lagrange Multiplier test is asymptotically chi-squared, and is based on testing 
skewness and kurtosis against the normal distribution. 
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Table 2  
Descriptive Statistics for China 

        

Returns 
 

Mean SD Max Min  Skewness  Kurtosis  Jarque-Bera 
During & Post-GFC: 2007-2016 

SH-s 0.002 1.787 9.034 -9.256 -0.612 6.894 1695.525 
SZ-s 0.049 2.001 8.515 -8.930 -0.743 5.535 878.809 

CNA50-s 0.000 1.912 9.198 -9.861 -0.196 6.381 1209.280 
CNA50-f -0.001 2.063 16.106 -15.979 -0.196 9.997 5023.172 

During GFC: 2007-2009 
SH-s -0.036 2.485 9.034 -9.256 -0.256 4.331 47.890 
SZ-s 0.046 2.645 8.515 -8.930 -0.546 3.987 51.064 

CNA50-s -0.029 2.667 9.198 -9.861 -0.206 4.084 31.672 
CNA50-f -0.031 2.779 10.110 -10.359 -0.107 4.392 46.731 

Post-GFC: 2009-2016 
SH-s 0.013 1.516 5.604 -8.873 -0.927 7.927 2167.348 
SZ-s 0.049 1.762 6.320 -8.601 -0.859 5.890 883.716 

CNA50-s 0.009 1.618 6.827 -9.744 -0.418 7.125 1385.175 
CNA50-f 0.009 1.793 16.106 -15.979 -0.493 15.185 11687.501 
Note: There are 2442, 565 and 1877 observations for the three periods, respectively. The 
Jarque-Bera Lagrange Multiplier test is asymptotically chi-squared, and is based on testing 
skewness and kurtosis against the normal distribution. 
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Table 3  
 

Correlations of Crude Oil and Financial Markets for UK and USA 

        Whole Sample WTI-s WTI-f BRENT-f SP500-s SP500-f FTSE-s FTSE-f 
WTI-s 1.000 

      WTI-f 0.901 1.000 
     BRENT-f 0.795 0.804 1.000 

    SP500-s 0.105 0.098 0.103 1.000 
   SP500-f 0.104 0.096 0.097 0.974 1.000 

  FTSE-s 0.146 0.147 0.139 0.491 0.487 1.000 
 FTSE-f 0.140 0.140 0.131 0.475 0.473 0.963 1.000 

Pre-GFC WTI-s WTI-f BRENT-f SP500-s SP500-f FTSE-s FTSE-f 
WTI-s 1.000 

      WTI-f 0.874 1.000 
     BRENT-f 0.759 0.775 1.000 

    SP500-s -0.065 -0.079 -0.073 1.000 
   SP500-f -0.060 -0.077 -0.076 0.965 1.000 

  FTSE-s -0.018 -0.017 -0.037 0.401 0.383 1.000 
 FTSE-f -0.014 -0.017 -0.035 0.385 0.372 0.952 1.000 

GFC WTI-s WTI-f BRENT-f SP500-s SP500-f FTSE-s FTSE-f 
WTI-s 1.000 

      WTI-f 0.914 1.000 
     BRENT-f 0.861 0.845 1.000 

    SP500-s 0.252 0.249 0.282 1.000 
   SP500-f 0.265 0.264 0.284 0.982 1.000 

  FTSE-s 0.386 0.370 0.430 0.537 0.570 1.000 
 FTSE-f 0.393 0.386 0.434 0.536 0.570 0.989 1.000 

Post-GFC WTI-s WTI-f BRENT-f SP500-s SP500-f FTSE-s FTSE-f 
WTI-s 1.000 

      WTI-f 0.977 1.000 
     BRENT-f 0.872 0.872 1.000 

    SP500-s 0.430 0.430 0.429 1.000 
   SP500-f 0.422 0.420 0.423 0.984 1.000 

  FTSE-s 0.402 0.404 0.400 0.643 0.642 1.000 
 FTSE-f 0.396 0.397 0.397 0.639 0.634 0.972 1.000 

 

32 
 



 

Table 4  
 

Correlations of Crude Oil in UK and USA, and Financial Markets in China 

        During & Post-GFC WTI-s WTI-f BRENT-f SH-s SZ-s CNA50-s CNA50-f 
WTI-s 1.000 

      WTI-f 0.951 1.000 
     BRENT-f 0.867 0.861 1.000 

    SH-s 0.084 0.094 0.117 1.000 
   SZ-s 0.066 0.080 0.098 0.902 1.000 

  CNA50-s 0.086 0.093 0.114 0.948 0.783 1.000 
 CNA50-f 0.089 0.093 0.114 0.894 0.746 0.930 1.000 

GFC WTI-s WTI-f BRENT-f SH-s SZ-s CNA50-s CNA50-f 
WTI-s 1.000 

      WTI-f 0.914 1.000 
     BRENT-f 0.861 0.845 1.000 

    SH-s 0.092 0.097 0.096 1.000 
   SZ-s 0.047 0.064 0.058 0.927 1.000 

  CNA50-s 0.096 0.099 0.098 0.975 0.892 1.000 
 CNA50-f 0.100 0.100 0.098 0.927 0.855 0.947 1.000 

Post-GFC WTI-s WTI-f BRENT-f SH-s SZ-s CNA50-s CNA50-f 
WTI-s 1.000 

      WTI-f 0.977 1.000 
     BRENT-f 0.872 0.872 1.000 

    SH-s 0.078 0.091 0.132 1.000 
   SZ-s 0.079 0.092 0.124 0.884 1.000 

  CNA50-s 0.079 0.089 0.126 0.925 0.704 1.000 
 CNA50-f 0.081 0.088 0.124 0.870 0.671 0.918 1.000 
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Table 5 
 

Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers for UK and US Spot Markets,  
Four Periods (2 x 2) 

 

Periods Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers 

Whole 
Sample 

WTI-s 0.236* 0.006 -0.0012 WTI-s 0.239* -0.003 -0.0011 
SP500-s 0.248* -0.021 0.0004 FTSE-s 0.264* -0.017 -0.0002 

Pre-GFC WTI-s 0.263* 0.026 -0.0005 WTI-s 0.242* 0.020 -0.0008 
SP500-s 0.170* -0.010 0.0012 FTSE-s 0.246* -0.013 0.0012 

GFC WTI-s 0.211* -0.207 -0.0093 WTI-s 0.205* -0.231 -0.0078 
SP500-s 0.276* -0.159 -0.0121 FTSE-s 0.362* -0.105 -0.0171 

Post-
GFC 

WTI-s 0.235* -0.028 -0.0010 WTI-s 0.232* -0.009 -0.0002 
SP500-s 0.325* -0.014 -0.0021 FTSE-s 0.266* -0.003 -0.0005 

Notes: 1. * significant 1%.  
      2. Scalar weight matrices A are in bold, while diagonal weights are in italics.  

   3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
   4. Pairs with different signs of Mean Co-volatility Spillovers are in color.  
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Table 6 
Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers for UK and US Futures Markets,  

Four Periods (2 x 2) 

Periods Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers 

Whole 
Sample 

WTI-f 0.224* -0.002 -0.0014 WTI-f 0.228* -0.010 -0.0010 
SP500-f 0.265* -0.023 -0.0001 FTSE-f 0.258* -0.018 -0.0006 

BRENT-f 0.232* 0.001 -0.0016 BRENT-f 0.238* -0.004 -0.0011 
SP500-f 0.270* -0.025 0.0001 FTSE-f 0.253* -0.019 -0.0002 

Pre-
GFC 

WTI-f 0.231* 0.012 -0.0005 WTI-f 0.225* 0.007 -0.0008 
SP500-f 0.194* -0.010 0.0005 FTSE-f 0.243* -0.015 0.0004 

BRENT-f 0.253* 0.007 -0.0006 BRENT-f 0.251* 0.008 -0.0010 
SP500-f 0.199* -0.012 0.0004 FTSE-f 0.235* -0.016 0.0004 

GFC 

WTI-f 0.204* -0.203 -0.0094 WTI-f 0.217* -0.224 -0.0076 
SP500-f 0.296* -0.155 -0.0122 FTSE-f 0.357* -0.098 -0.0173 

BRENT-f 0.194* -0.173 -0.0094 BRENT-f 0.209* -0.195 -0.0077 
SP500-f 0.295* -0.164 -0.0099 FTSE-f 0.360* -0.103 -0.0147 

Post-
GFC 

WTI-f 0.233* -0.029 -0.0014 WTI-f 0.228* -0.008 0.0000 
SP500-f 0.355* -0.017 -0.0024 FTSE-f 0.261* 0.001 -0.0005 

BRENT-f 0.225* -0.009 -0.0010 BRENT-f 0.220* 0.005 0.0001 
SP500-f 0.333* -0.013 -0.0007 FTSE-f 0.250* 0.002 0.0003 

Notes: 1. * significant 1%.  
      2. Scalar weight matrices A are in bold, while diagonal weights are in italics. 

   3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
   4. Pairs with different signs of Mean Co-volatility Spillovers are in color. 
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Table 7 
Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers for UK and US Spot Markets, 

Four Periods (3 x 3) 
 

Periods Variables A 
Mean Return 

Shocks Pairs 
Mean Co-volatility 

Spillovers 

Whole Sample 

WTI-s 0.219* 0.004 WTI-s -0.0010 
SP500-s 0.228* -0.021 SP500-s 0.0002 
FTSE-s 0.237* -0.013 WTI-s -0.0007 

      FTSE-s 0.0002 

Pre-GFC 

WTI-s 0.232* 0.022 WTI-s -0.0004 
SP500-s 0.166* -0.009 SP500-s 0.0008 
FTSE-s 0.231* -0.012 WTI-s -0.0006 

      FTSE-s 0.0050 

GFC 

WTI-s 0.199* -0.194 WTI-s -0.0082 
SP500-s 0.260* -0.158 SP500-s -0.0100 
FTSE-s 0.267* -0.054 WTI-s -0.0028 

      FTSE-s -0.0103 

Post-GFC 

WTI-s 0.217* -0.019 WTI-s -0.0007 
SP500-s 0.281* -0.011 SP500-s -0.0011 
FTSE-s 0.246* -0.005 WTI-s -0.0003 

      FTSE-s -0.0010 
Note: 1. * significant 1%.            
2. Scalar weight matrices A are in bold, while diagonal weights are in italics.  
3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  

 4. Pairs with different signs of Mean Co-volatility Spillovers are in color. 
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Table 8 
Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers for UK and US Futures Markets, 

Four Periods (4 x 4) 
 

Periods Variables A 
Mean Return 

Shocks Pairs 
Mean Co-volatility 

Spillovers Pairs 
Mean Co-volatility 

Spillovers 

Whole Sample 

WTI-f 0.240* 0.004 WTI-f -0.0012 BRENT-f -0.0011 
BRENT-f 0.217* 0.001 SP500-f 0.0002 SP500-f 0.0001 
SP500-f 0.228* -0.022 WTI-f -0.0007 BRENT-f -0.0007 
FTSE-f 0.213* -0.014 FTSE-f 0.0002 FTSE-f 0.0001 

Pre-GFC 

WTI-f 0.290* 0.011 WTI-f -0.0004 BRENT-f -0.0003 
BRENT-f 0.228* 0.007 SP500-f 0.0005 SP500-f 0.0003 
SP500-f 0.165* -0.009 WTI-f -0.0008 BRENT-f -0.0006 
FTSE-f 0.198* -0.014 FTSE-f 0.0006 FTSE-f 0.0003 

GFC 

WTI-f 0.319* -0.233 WTI-f -0.0123 BRENT-f -0.0092 
BRENT-f 0.238* -0.228 SP500-f -0.0179 SP500-f -0.0130 
SP500-f 0.240* -0.160 WTI-f -0.0046 BRENT-f -0.0034 
FTSE-f 0.229* -0.063 FTSE-f -0.0171 FTSE-f -0.0124 

Post-GFC 

WTI-f 0.217* -0.012 WTI-f -0.0007 BRENT-f -0.0008 
BRENT-f 0.222* -0.002 SP500-f -0.0008 SP500-f -0.0001 
SP500-f 0.291* -0.012 WTI-f -0.0001 BRENT-f -0.0001 
FTSE-f 0.225* -0.002 FTSE-f -0.0006 FTSE-f -0.0001 

Notes: 1. * significant 1%.            
2. Scalar weight matrices A are in bold, while diagonal weights are in italics. 

  3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
  4. Pairs with different signs of Mean Co-volatility Spillovers are in color. 
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Table 9 
Matrix A in Diagonal BEKK and Mean Return Shocks for UK and US Spot and Futures Markets,  

Four Periods (7 x 7) 
        

    

Periods Variables A 
Mean Return 

Shocks Periods Variables A 
Mean Return 

Shocks 

Whole 
Sample 

WTI-s 0.266* 0.016 

GFC 

WTI-s 0.253* -0.307 
WTI-f 0.220* 0.007 WTI-f 0.315* -0.297 

BRENT-f 0.248* 0.009 BRENT-f 0.284* -0.270 
SP500-s 0.155* -0.013 SP500-s 0.209* -0.185 
SP500-f 0.157* -0.015 SP500-f 0.217* -0.182 
FTSE-s 0.138* -0.007 FTSE-s 0.075* -0.111 
FTSE-f 0.139* -0.008 FTSE-f 0.071* -0.109 

Pre-
GFC 

WTI-s 0.319* 0.012 

Post-
GFC 

WTI-s 0.218* -0.014 
WTI-f 0.350* 0.038 WTI-f 0.229* -0.017 

BRENT-f 0.253* 0.016 BRENT-f 0.209* -0.009 
SP500-s 0.104* -0.007 SP500-s 0.159* -0.021 
SP500-f 0.103* -0.008 SP500-f 0.182* -0.017 
FTSE-s 0.125* -0.010 FTSE-s 0.403* -0.016 
FTSE-f 0.130* -0.013 FTSE-f 0.379* -0.021 

Notes: 1. * significant 1%.  
     2. Scalar weight matrices A are in bold, while diagonal weights are in italics. 
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Table 10 
Mean Co-volatility Spillovers for UK and US Spot and Futures Markets,  

Four Periods (7 x 7) 

Periods Pairs 

Mean Co-
volatility 
Spillovers Pairs 

Mean Co-
volatility 
Spillovers Pairs 

Mean Co-
volatility 
Spillovers 

Whole 
Sample 

WTI-s -0.0006 WTI-f -0.0005 BRENT-f -0.0005 
SP500-s 0.0006 SP500-s 0.0003 SP500-s 0.0003 
WTI-s -0.0006 WTI-f -0.0005 BRENT-f -0.0006 

SP500-f 0.0007 SP500-f 0.0003 SP500-f 0.0003 
WTI-s -0.0003 WTI-f -0.0002 BRENT-f -0.0002 
FTSE-s 0.0006 FTSE-s 0.0002 FTSE-s 0.0003 
WTI-s -0.0003 WTI-f -0.0003 BRENT-f -0.0003 
FTSE-f 0.0006 FTSE-f 0.0002 FTSE-f 0.0003 

Pre-
GFC 

WTI-s -0.0002 WTI-f -0.0002 BRENT-f -0.0002 
SP500-s 0.0004 SP500-s 0.0014 SP500-s 0.0004 
WTI-s -0.0003 WTI-f -0.0003 BRENT-f -0.0002 

SP500-f 0.0004 SP500-f 0.0014 SP500-f 0.0004 
WTI-s -0.0004 WTI-f -0.0004 BRENT-f -0.0003 
FTSE-s 0.0005 FTSE-s 0.0016 FTSE-s 0.0005 
WTI-s -0.0005 WTI-f -0.0006 BRENT-f -0.0004 
FTSE-f 0.0005 FTSE-f 0.0017 FTSE-f 0.0005 

GFC 

WTI-s -0.0098 WTI-f -0.0122 BRENT-f -0.0110 
SP500-s -0.0163 SP500-s -0.0195 SP500-s -0.0161 
WTI-s -0.0100 WTI-f -0.0124 BRENT-f -0.0112 

SP500-f -0.0168 SP500-f -0.0202 SP500-f -0.0166 
WTI-s -0.0021 WTI-f -0.0026 BRENT-f -0.0024 
FTSE-s -0.0058 FTSE-s -0.0070 FTSE-s -0.0057 
WTI-s -0.0020 WTI-f -0.0024 BRENT-f -0.0022 
FTSE-f -0.0055 FTSE-f -0.0067 FTSE-f -0.0055 

Post-
GFC 

WTI-s -0.0007 WTI-f -0.0008 BRENT-f -0.0007 
SP500-s -0.0005 SP500-s -0.0006 SP500-s -0.0003 
WTI-s -0.0007 WTI-f -0.0007 BRENT-f -0.0006 

SP500-f -0.0005 SP500-f -0.0007 SP500-f -0.0003 
WTI-s -0.0014 WTI-f -0.0015 BRENT-f -0.0014 
FTSE-s -0.0012 FTSE-s -0.0015 FTSE-s -0.0008 
WTI-s -0.0017 WTI-f -0.0018 BRENT-f -0.0017 
FTSE-f -0.0011 FTSE-f -0.0014 FTSE-f -0.0007 

Notes: 1. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
2. Pairs with different signs of Mean Co-volatility Spillovers are in color. 
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Table 11 

Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers  
for UK and US Crude Oil Markets, and Chinese Financial Markets,  

Three Periods (2 x 2) 
 

Periods Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers Variables A 

Mean 
Return 
Shocks 

Mean Co-
volatility 
Spillovers 

During 
& Post-

GFC 

WTI-s 0.248* -0.063 -0.0001 WTI-f 0.238* -0.056 -0.0001 
SH-s 0.193* -0.002 -0.0030 CNA50-f 0.221* -0.001 -0.0029 

WTI-s 0.249* -0.057 0.0001 BRENT-f 0.221* -0.038 0.0001 
SZ-s 0.197* 0.002 -0.0028 CNA50-f 0.223* 0.003 -0.0019 

WTI-s 0.246* -0.061 0.0001         
CNA50-s 0.202* 0.001 -0.0031         

GFC 

WTI-s 0.275* -0.271 -0.0039 WTI-f 0.270* -0.277 -0.0050 
SH-s 0.192* -0.073 -0.0143 CNA50-f 0.184* -0.100 -0.0138 

WTI-s 0.256* -0.274 -0.0066 BRENT-f 0.230* -0.205 -0.0002 
SZ-s 0.281* -0.093 -0.0197 CNA50-f 0.228* -0.004 -0.0108 

WTI-s 0.266* -0.277 -0.0032         
CNA50-s 0.165* -0.072 -0.0122         

Post-
GFC 

WTI-s 0.228* -0.024 0.0005 WTI-f 0.222* -0.016 0.0008 
SH-s 0.214* 0.011 -0.0012 CNA50-f 0.228* 0.016 -0.0008 

WTI-s 0.229* -0.016 0.0004 BRENT-f 0.217* -0.001 0.0010 
SZ-s 0.211* 0.008 -0.0008 CNA50-f 0.229* 0.021 0.0000 

WTI-s 0.228* -0.021 0.0007         
CNA50-s 0.219* 0.013 -0.0011         

Notes: 1. * significant 1%.  
2. Scalar weight matrices A are in bold, while diagonal weights are in italics. 
3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
4. Pairs with different signs of Mean Co-volatility Spillovers are in color. 
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Table 12 
Matrix A in Diagonal BEKK, Mean Return Shocks, and Mean Co-volatility Spillovers  

for UK and US Crude Oil Markets, and Chinese Financial Markets,  
Three Periods (5 x 5) 

 

Periods Variables A 

Mean 
Return 
Shocks Pairs 

Mean Co-
volatility 
Spillovers Pairs 

Mean Co-
volatility 
Spillovers Pairs 

Mean Co-
volatility 
Spillovers 

During 
& Post-

GFC 

WTI-s 0.236* -0.042 WTI-s 0.0000 WTI-f 0.0000 BRENT-f 0.0000 
WTI-f 0.281* -0.034 CNA50-s -0.0015 CNA50-s -0.0015 CNA50-s -0.0012 

BRENT-f 0.265* -0.028 WTI-s 0.0001 WTI-f 0.0002 BRENT-f 0.0002 
CNA50-s 0.157* 0.000 CNA50-f -0.0018 CNA50-f -0.0018 CNA50-f -0.0014 
CNA50-f 0.187* 0.003             

GFC 

WTI-s 0.262* -0.334 WTI-s -0.0060 WTI-f -0.0070 BRENT-f -0.0063 
WTI-f 0.308* -0.341 CNA50-s -0.0208 CNA50-s -0.0249 CNA50-s -0.0206 

BRENT-f 0.276* -0.314 WTI-s -0.0060 WTI-f -0.0070 BRENT-f -0.0063 
CNA50-s 0.237* -0.096 CNA50-f -0.0215 CNA50-f -0.0256 CNA50-f -0.0212 
CNA50-f 0.245* -0.093             

Post-
GFC 

WTI-s 0.225* -0.021 WTI-s 0.0001 WTI-f 0.0001 BRENT-f 0.0001 
WTI-f 0.214* -0.024 CNA50-s -0.0006 CNA50-s -0.0007 CNA50-s -0.0003 

BRENT-f 0.217* -0.011 WTI-s 0.0002 WTI-f 0.0002 BRENT-f 0.0002 
CNA50-s 0.140* 0.002 CNA50-f -0.0009 CNA50-f -0.0010 CNA50-f -0.0005 
CNA50-f 0.190* 0.005             

Notes: 1. * significant 1%.  
2. Scalar weight matrices A are in bold, while diagonal weights are in italics. 
3. Mean Co-volatility Spillover = ∂Hijt/∂ɛkt-1, i ≠ j, k = either i or j.  
4. Pairs with different signs of Mean Co-volatility Spillovers are in color.   
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Figure 1 

Spot and Futures Price of WTI, and Futures Price of BRENT, 1988-2016 
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Figure 2 

Spot and Futures Price of S&P 500, Spot and Futures Price of FTSE 100, 1988-2016 
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Figure 3  

Spot Prices of SSE Composite, SZSE Composite, China A50, Futures Price of China A50, 2007-2016 
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