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 1Background 

During the past century, most countries in the world have witnessed a substantial in-
crease in life expectancy which was mainly attributable to declines in old-age mortality 
rates (Eggleston and Fuchs 2012). Consequently, the proportion of elderly has increased 
and is expected to increasese even further; a demographic phenomenon commonly 
referred as population aging. Worldwide, people aged 60 and older make up over 11 
per cent of the global population, and is expected that by 2050, this number will rise to 
about 22 per cent (United Nations 2013). For facing these changes in the structure of their 
populations, world nations need to be equipped with the right set of economic policies. 
In that context, extensive societal, political and scientific debates have been associated 
with population ageing. Important examples include discussions on the affordability of 
growing healthcare expenditures (HCE) and those on raising the statutory retirement 
age in order to increase labour force participation of the elderly. The rationale for and 
exact consequences of policy decisions in these areas crucially depend on the extent 
to which the increases in life expectancy are accompanied by concomitant increases in 
life years spent in good health. Therefore, monitoring the level of population health and 
its changes over time and by population subgroups is a key component for determin-
ing whether these proposed policy changes are necessary, possible and will have the 
desired societal effects. The aim of this thesis is to investigate changes in population 
health and the way in which such changes may be used in economic evaluations of 
interventions aimed to improve health. In doing so, it is important to use a measure of 
population health that can capture the complex nature of human health. 

In 1946, the World Health Organization (WHO) defined health as “the state of complete 
physical, mental, and social well-being and not merely the absence of disease or infir-
mity” (WHO 1946). Although this indicates that health is a broad concept, traditionally 
health has been measured rather narrowly. For example, it has been measured by using 
all-cause and disease-specific mortality based indicators or health measures such as 
self-rated health or disability. However, as will be shown in what follows, these measures 
either ignore (e.g. mortality based indicators) or inadequately capture (e.g. self-rated 
health and disability measures) the impact of non-fatal diseases on health. Therefore, 
more recently, the concept of health-related quality of life (HRQoL) has been proposed 
in the context of monitoring population health (Dolan 2000). Estimating population 
health using a multidimensional measure of health such as HRQoL is important in at 
least two contexts. First, it is important to use a health measure that captures various 
health domains (e.g. physical, mental and social) in order to adequately monitor the 
level of population health and its changes over time and by population subgroups 
(Perenboom et al. 2004, Water et al. 1996, Picavet and Hoeymans 2002, Majer et al. 2013, 
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Bruggink et al. 2009). This is particularly relevant in aging societies for informing public 
policies associated with population aging. Second, estimating changes in population 
health using HRQoL is important as these estimates can be used to assess the benefits in 
economic evaluations of health care interventions (Drummond et al. 2005). Then, these 
estimates directly affect the results of economic evaluations and potentially influence 
the allocation of limited resources in the healthcare sector. The purpose of this thesis 
is to use HRQoL in exploring changes in population health in these two contexts, while 
investigating various methodological aspects related to modelling the HRQoL outcome.

Population Health Measures 

Developing a composite measure of overall health status that would allow comparisons 
among populations, countries, regions and over time is challenging. To date, there is no 
single accepted indicator of population health; instead, various measures of health are 
currently in use. Until recently, all-cause, disease-specific mortality based measures were 
used as basic indicators of population health. Although these indicators allow various 
comparisons between population subgroups, in time, by region and across countries 
(Leon 2011, Wilmoth 2000), they provide insufficient information to fully describe the 
health of a population as they do not capture the impact of non-fatal diseases on health 
(Murray et al. 2000). In order to overcome that shortcoming, mainly two other indicators 
– i.e. self-rated health and disability – have been used. 

Measurements of self-perceived or ‘self-rated’ health use a single question that asks 
individuals to rate their own health (commonly by choosing one of the five possible 
answers ranging from very poor to excellent). However, despite this indicator’s popular-
ity and its ease of use, it has been questioned whether this is a suitable measure for 
tracking population health. For example, a US chapter using four national surveys 
identified strong inconsistencies in self-ratings among surveys and in certain population 
subgroups (Salomon et al. 2009). 

Disability measures usually consist of several questions targeted at measuring specific 
aspects of health status, especially aspects referring to physical health. Similar to self-
rated health, disability measures health in one dimension by using a binary outcome (i.e. 
a person is either disabled/not-disabled). Nevertheless, such relatively insensitive, one-
dimensional measures are unlikely to sufficiently capture the complex, broad aspects of 
health. Therefore, the concept of HRQoL, mainly developed by psychologists and health 
economists, may be used to overcome these issues. 

HRQoL can be viewed as a multidimensional or as a one-dimensional concept. As a mul-
tidimensional concept, HRQoL encompasses at least three health domains, i.e. physical, 



General introduction 15

 C
ha

pt
er

 1mental and social, each covered in one or more questions. People can indicate how 
they score on the different domains by answering these questions, in this way HRQoL 
measures are able to capture a wide variety of health states. As a one-dimensional 
concept, HRQoL attempts to capture each health state in just one value referred to as 
‘utility’ which generally is anchored on the state ‘dead’ (with value zero) and the state 
perfect health (with value 1). Most imperfect health states receive a score between 0 and 
1, although negative scores can be possible as well, reflecting health states valued as 
being worse than dead. The health state valuations are typically obtained from a sample 
of the general population using recognized valuation techniques such as time trade off 
(TTO, (Attema et al. 2013)) or standard gamble (SG, (Gafni 1994)). The fact that health 
states are valued using preference-based valuation techniques is perhaps one of the 
most notable advantages of HRQoL measures compared to both self-rated health and 
disability measures. Valuation functions have been developed for instruments such as: 
the EuroQoL EQ-5D (Dolan 1997), the Health Utility index HUI (http://fhs.mcmaster.ca/
hug/) and the SF-6D (Brazier et al. 2002). These instruments are referred to as generic 
preference-based HRQoL measures. A further distinction can be made between ‘generic’ 
and ‘disease-specific’ HRQoL. While a generic measure aims at capturing all health aspects 
relevant to quality of life and allows comparing the health status of various populations 
and across different disease and healthcare areas, a disease-specific measure focuses 
on specific health domains and problems associated with a particular disease. Similar 
to generic questionnaires, disease-specific questionnaires are usually multidimensional, 
but unlike the former, the latter do not aim to cover all relevant aspects of human health. 
Compared to the number of generic questionnaires, the number of disease-specific ones 
is very high: for almost each common disease, a disease-specific questionnaire has been 
constructed. Through-out this thesis the terms health-related quality of life (HRQoL) and 
quality of life (QoL) will be used interchangebly. 

Summary measures of population health have been developed as an extension of 
the basic metrics described above; these measures ‘combine information on mortality 
and nonfatal health outcomes to represent the health of a particular population as a 
single numerical index’ (Murray et al. 2000). A variety of summary population health 
measures are available that differ in the type of health indicator they use for captur-
ing the impact of non-fatal diseases on health. Given that this thesis uses HRQoL as an 
indicator that measures the impact of non-fatal disease on health, quality-adjusted life 
expectancy (QALE) is used as a summary measure of population health. QALE is defined 
as an equivalent of years lived in full health (Murray et al. 2000). 
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Economic evaluations

Economic evaluations aim to inform decisions regarding resource allocation in the field 
of healthcare with the aim to improve human welfare. Typically, this is operationalised 
in such a way that economic evaluations assist in maximizing health benefits from 
available resources (Brouwer et al. 2008). Economic evaluation has been defined as the 
‘comparative analysis of alternative courses of action in terms of both their costs and 
consequences’ (Drummond et al. 2005). Since they offer a systematic and transparent 
framework for deciding which interventions among alternatives to fund from a restrict-
ed budget, economic evaluations are reasonably well accepted in the decision making 
process within the systems of different countries such as the UK, The Netherlands, 
Canada and Australia. In health care, the most common form of economic evaluation 
and commonly proposed as the reference case in decision making processes, is cost-
utility analysis (CUA). This form is required by important health technology assessment 
agencies such as the National Institute for Clinical Excellence (NICE, (Longworth et al. 
2014)) in the UK and the Dutch Health Care Institute (Zinl, (Zorginstituut Nederland 
2016)) in The Netherlands. 

A cost-utility analysis evaluates at least two alternative interventions in terms of their 
incremental benefits and costs and summarizes the results in an incremental cost-
effectiveness ratio (ICER). Hence, the ICER represents the additional costs per additional 
health unit induced by an intervention in comparison to a relevant comparator, such 
as usual care. In a cost-utility analysis health benefits are assessed in terms of quality-
adjusted life years (QALYs), an index comprising both length of life and health-related 
quality of life (HRQoL). The basic idea underlying QALY calculation is simple; it assumes 
that one year lived in perfect health equals 1 QALY (1 year of life times 1 HRQoL utility) 
and that a year of life lived in a health state less then perfect is worth less than one. Note 
that, QALE, a second acronym for QALY, is used in the population health literature as a 
summary measure of population health status. As mentioned above, QALE represents 
life expectancy weighted for the quality of surviving years and so is actually measured 
in QALYs. 

 The result of an economic evaluation, the ICER, is summarized in incremental costs 
per QALYs gained, which enables outcomes (i.e. ICERs) to be compared across thera-
peutic areas and evaluations. Throughout this thesis the terms economic evaluation, 
cost-effectiveness analysis and cost-utility analysis will be used interchangeably (as is 
commonly done). Note that cost-effectivness analysis represents a generic form of cost-
utility analysis in which effects are expressed in natural (clinically relevant) units such as 
number of successfully treated patients, life years gained.  
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 1In the next sections, the topics covered in this thesis will be further introduced. First, we 
address the issue of estimating changes in population health as measured by HRQoL.  
Next, we address the issues of the appropriate methods to be used when modelling 
the HRQoL outcome. Finally, we present the implications of both changes in population 
health and HRQoL methodological considerations for economic evaluations. 

Topics Considered In This Thesis

Estimating changes population health as measured by HRQoL 

In an aging society, it is important to establish whether the observed increases in life ex-
pectancy are accompanied by concomitant improvements in health. This is particularly 
relevant for the ongoing debates regarding extended labour-force participation by the 
elderly and regarding raising of statutory retirement ages. In those contexts, observing 
increases in peoples’ health levels around the legal or practical retirement or withdrawal 
ages are especially important.

Many empirical studies have estimated changes in population health using various 
populations, health indicators and calendar periods (Perenboom et al. 2004, Water et al. 
1996, Picavet and Hoeymans 2002, Majer et al. 2013, Bruggink et al. 2009). Such studies 
often analysed changes over time in the age and gender-specific health patterns using 
either self-rated health or disability based measures for monitoring population health. 
Potentially due to differences in health measures, calendar periods and included age 
groups, previous research reached diverse conclusions regarding the trends in popula-
tion health, with some studies indicating an increase in the number of years lived in 
good health or free of disabilities (Bruggink et al. 2009) while other pointing towards 
the reverse situation (Salomon et al. 2012). A high number of empirical studies have also 
analysed time patterns stratified by age, gender and socioeconomic status (SES); many 
of which showed that health inequalities by SES have persisted and widened over time 
(Turrell and Mathers 2001, Martikainen et al. 2001, Mackenbach et al. 2003, Singh and Si-
ahpush 2006, Mackenbach et al. 2008, Meara et al. 2008, van Kippersluis et al. 2010, Maki 
et al. 2013). Hence, less educated people do not only have a shorter life expectancy but 
also live more years in poor health (Maki et al. 2013, Kunst et al. 2005, Majer et al. 2011). 
This has been confirmed for many European countries including Belgium, Denmark, 
France and the Netherlands, as well as for New Zealand and the US (Van Oyen et al. 2011, 
Cambois et al. 2001, Bronnum-Hansen and Baadsgaard 2008, Bruggink 2009, Crimmins 
and Saito 2001, Davis et al. 1999). Notably, the vast majority of the above studies used 
health measures based either on self-rated health or disability. Using large survey data, 
in this thesis, we investigate changes in the health of the Dutch population as measured 
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by quality-adjusted life expectancy (QALE). These changes were explored over time and 
by population groups, i.e. by age, gender and education level. 

Besides the above descriptive studies, empirical studies using econometric techniques 
investigated population aging in relation to healthcare use and health (Fryback et al. 
2007, Getzen 1992, Zweifel et al. 1999). Some showed that with advancing age, popu-
lation health deteriorates (Fryback et al. 2007) and health care use increases (Bos and 
von Weizsacker 1989,  OECD 1988) suggesting that further increases in life expectancy 
would likely increase the average number of years lived in poor health and the aggregate 
healthcare use. However, others showed that such straightforward conclusions may be 
flawed. For example, it has been demonstrated that healthcare expenditures (HCE) are 
centred in the last phase of life (Seshamani 2004, Seshamani 2004, Zweifel et al. 2004, 
Werblow et al. 2007, Wanless 2004). This would suggest that age itself is not the main 
driver of the observed HCE patterns, but rather that proximity to death or time to death 
(TTD) is associated with high HCE. In other words, higher average health care costs at 
higher ages are mainly caused by the fact that more people die at higher ages and the 
period before dying is associated with high healthcare use and costs. This implies that 
an increase in life expectancy postpones the expensive last period of life, which sug-
gests that aging of the population per se might have a more limited impact on HCE than 
generally believed. Although this mechanism has been demonstrated using large cost 
databases from insurance companies and hospital registries, less is known whether a 
similar mechanism may explain the relationship between population aging and health. 
If similar to healthcare demand, health losses are centred in the last phase of life then 
further increases in life expectancy would not necessarily translate into additional years 
spent in poor health. On the contrary, increases in life expectancy then could go hand 
in hand with improvements in health. Using survey data for the Dutch population and 
appropriate econometric methods for modelling the HRQoL outcome, the relationship 
between HRQoL, age and TTD has been investigated in this thesis. Furthermore, the 
obtained results have been translated to the economic evaluation context, in particular 
for estimating QALYs gained in economic evaluations of life prolonging interventions.    

Statistical modelling of HRQoL values From a statistical point of view, the HRQoL out-
come variable can be treated either as a collection of discrete variables or as a continu-
ous bounded variable (i.e. the utility). Therefore, for modelling HRQoL data, two main 
categories of methods have been proposed in the literature, depending on whether 
the outcome variable of interest is the utility score or the probability that a respondent 
selects a particular level of functioning on each question of the HRQoL questionnaire. In 
this thesis, we will refer to the former as utility score modelling (Franks et al. 2003, Fryback 
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 1et al. 1997, O’Brien et al. 2003, Versteegh et al. 2012) and to the latter as probability 
modelling (Longworth et al. 2014, Le and Doctor 2011, Gray et al. 2006). 

Utility score modelling is the most frequently used approach and includes methods 
such as OLS, Tobit like models (Austin 2002), censored least absolute deviation models 
(CLAD, (Sullivan and Ghushchyan 2006), hurdle models (Mullahy 1986), beta regressions 
(Basu and Manca 2012, Hunger et al. 2011, Hunger et al. 2012), and finite mixture models 
(FMM, (Hernandez Alava et al. 2012, Hernandez Alava et al. 2014, Coca Perraillon et al. 
2015)). Nevertheless, HRQoL utility scores present certain non-standard features: such 
data typically has mass points at one of the boundaries (i.e. at one), is skewed, exhibits 
discontinuity and is heteroscedastic given that the variance will approach zero as the 
mean approaches either boundary point (Kieschnick and McCullough 2003). Due to 
these characteristics, although different methods have been proposed for modelling 
these data, there is no commonly preferred approach. 

Probability modelling involves modelling the responses to the different HRQoL questions 
rather than their overall utility score and, subsequently apply the valuation functions to 
the estimated probabilities. The commonly used method in this class is the multinomial 
logit (MNL) model proposed by Gray and colleagues (Gray et al. 2006). More complex 
methods have also been proposed, e.g. Lee and Doctor used Bayesian Networks (BNs) 
for predicting the probability of each response level for all HRQoL domains obtained 
from a Bayesian updating process. 

Although, as discussed above, a large variety of methods has been used for modelling 
HRQoL data, it remains unclear which method performs best and for which HRQoL 
instrument. The majority of these methods have been used for modelling EQ-5D HRQoL 
data, although some methods such as beta regressions have been shown to perform 
better for other HRQoL instruments such as the SF-6D. This thesis contributes to the 
literature referring to HRQoL methodologies in two ways. First, it highlights the use 
of beta regressions for modelling the SF-6D data. A beta regression model is used for 
estimating changes in population health using cross-sectional SF-6D data. Furthermore, 
mixed beta regressions have been previously proposed in the literature for modelling 
longitudinal SF-6D data (Hunger et al. 2012). In this thesis we extend this latter approach 
by developing a mixed beta regression model estimated using the Bayesian paradigm 
for modelling the longitudinal SF-6D utility outcome. Compared to maximum likelihood 
approaches, the Bayesian estimation procedure makes it possible to develop more 
complex models that can better address the idiosyncrasies of HRQoL data, i.e. hetroske-
dasticity and missing data.
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Second, in this thesis a large number of the currently existing methodologies for model-
ling the EQ-5D data will be compared in an EQ-5D mapping exercise (Longworth et al. 
2014). Mapping is used in situations when generic preference-based HRQoL measures 
such as EQ-5D were not included in clinical trials but disease-specific instruments were. 
Since most reimbursement agencies require generic (EQ-5D) values in reimbursement 
dossiers, this poses a problem. In those situations, a common solution is to develop a 
model for predicting or ‘mapping’ the generic HRQoL scores from the disease-specific 
questionnaire using a dataset that includes both of these measures. The developed 
model which specifies how the disease specific scores translate into generic (e.g. EQ-
5D) scores, can subsequently be used to predict generic HRQoL at the patient level in 
situation where this was not directly observed. Generally, the generic HRQoL instrument 
considered in mapping studies is the EQ-5D. Here, we investigate which methods for 
mapping perform best. The methods compared in terms of fit and prediction error are: 
OLS, linear mixed effect models, Tobit models, beta regressions, finite mixture models, 
multinomial logit models and Bayesian Networks.

Implications for economic evaluations

In this thesis we will address two issues regarding HRQoL and economic evaluations. 
First, we investigate how changes in population HRQoL affect the estimation of QALYs 
(and consequently of ICERs) in life prolonging interventions. Second, we will address the 
impact of various methodologies used to model the HRQoL data on economic evalua-
tions’ output. In what follows, we will present both issues in more detail. 

Economic evaluations of life prolonging interventions often use modelling techniques 
to estimate health benefits expressed in quality-adjusted life years (QALYs). That is es-
pecially the case when an intermediate effect (for instance: weight loss, newly detected 
cases through screening) is connected to causally related events (such as the incidence 
of diseases and/or death) which were not directly observed within the trial period of the 
intervention because the follow-up period is too short (Buxton et al. 1997). Although 
modelling is a powerful tool for estimating the health benefits as it enables to synthetize 
evidence from different sources, often certain assumptions are required. For example, for 
estimating QALYs gained of life prolonging interventions, economic evaluation analysts 
need to decide on the assigned HRQoL value(s) in the added years of life. Because guide-
lines are missing, economic evaluation analysts make diverse methodological choices 
in estimating QALY gains. Nevertheless, these choices may have a substantial impact 
on the final economic evaluation results (i.e. ICER). In standard practice of economic 
evaluation, two choices are typically made. First, the vast majority of economic evalua-
tions assume that HRQoL in the added years of life equals perfect health (with the value 
of one). That is, the absence of the disease under study translates into perfect health 
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 1(de Kok et al. 2009). However, to assume that, for example, a 70 year-old woman whose 
death is postponed by 20 years due to a life prolonging intervention will experience 
no HRQoL losses in added life years and hence remains in perfect health until death 
is rather unrealistic. Other researchers recognize this and propose using a population 
average age-specific HRQoL estimate (Anonychuk et al. 2009, Schousboe et al. 2011, 
Tosteson et al. 2008) during gained life years. In that way they attempt to account for the 
usually observed decrease in population health by age (Fryback et al. 2007). However, if 
the observed changes in population health by age can be explained by the relationship 
between health (here as measured by HRQoL) and proximity to death or mortality, then 
estimates of QALY gains (and therefore ICERs) can be further improved by making use 
of this relationship. 

In this thesis we hypothesized that the observed relationship between HRQoL and age 
can be explained to a large extent by a relationship between increasing age-specific 
mortality and low HRQoL associated with the period near death. For example, popula-
tion average HRQoL at age 80 may be lower than that at age 60 because there are many 
more individuals in their last year of life at age 80 than at age 60. Interventions that 
postpone death therefore to some extent also postpone health losses. In other words, 
if HRQoL values correlate with mortality and depend strongly on TTD, postponement of 
death will result in postponement of HRQoL losses and only the last years of life will be 
spend in poor health. Therefore, using age- and gender-specific population HRQoL es-
timates would result in an underestimation of QALYs gained due to these interventions 
compared to the situation in which HRQoL stratified by age, gender and TTD would have 
been used. Consequently, the ICER would be overestimated. Therefore, understanding 
what drives the observed changes in population health by age provides us with better 
tools for accurately estimating the health gains in economic evaluations of life prolong-
ing interventions. 

The second issue addressed refers to the impact that various methodologies have on es-
timating the outcomes in economic evaluations that use mapping functions. Mapping is 
commonly accepted by reimbursement agencies as a last resort solution in the situation 
in which EQ-5D or other generic HRQoL measures are not available in the clinical trial 
data. Nevertheless, guidelines indicating appropriate methodologies when developing 
the mapping models are not available. This is despite the fact that the method of choice 
for developing the mapping model is of critical importance as it has a direct effect on 
estimating HRQoL and QALY changes in those economic evaluations that need to use 
such models. 
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Aim Of This Thesis

The overall aim of this thesis is to investigate changes in population health, to explore 
a mechanism that can explain these changes and to assess their consequences and 
implications for economic evaluations of health interventions. In doing so, several 
methodological challenges associated with modelling HRQoL data were investigated. 
The issues addressed can be separated in several subheadings: the issue of using HRQoL 
as a measure of population health, the issue of investigating changes in population 
health over time and by population subgroups in an aging population and the issue 
of using these changes in economic evaluations, and the issue of employing appropri-
ate techniques for modelling cross-sectional as well as longitudinal HRQoL data. Using 
various datasets for the Dutch population, including survey data and clinical trial data, 
this thesis provides empirical insights into the above-mentioned issues. In particular, 
it yields insights in terms of better understanding changes in population health and 
highlights their implications for economic evaluations. By better understanding what 
drives changes in population health, this thesis contributes to inform health policies 
targeted at addressing population aging as well as to improve the standard practice of 
economic evaluations of life prolonging interventions. Furthermore, this thesis adds to 
the literature of methodologies used for modelling the HRQoL outcome by exploring a 
large variety of methods applied for modelling the HRQoL data. 

Research Questions And The Outline Of This Thesis

Considering the background presented in the previous sections, specific research ques-
tions can be formulated. These research questions contribute to the overall aim of this 
thesis as mentioned above: 
· Are (Dutch) people living longer lives in better or worse health? 
· Compared to the lower educated, are the higher educated (Dutch) people living 

more or less years in good health? 
· What is the relationship between HRQoL, age and time to death (TTD)?
· What are the implications of the relationship between HRQoL, age and TTD for eco-

nomic evaluations of life prolonging interventions? 
· What methods should be used for modelling HRQoL data? 

This thesis includes five chapters, each providing answers to particular research ques-
tions. 
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 1Chapters 2 and 3 of this thesis aim to answer the first and second research question, 
respectively, by establishing whether people live longer lives and in better health. Us-
ing survey data sets for the Dutch population, these chapters investigated population 
health trends for the Dutch population covering the calendar period between 2001 and 
2008 and that between 2001 and 2011. While chapter 2 illustrates HRQoL trends by age 
and gender, chapter 3 presents HRQoL trends stratified by age, gender and level of edu-
cation thus exploring whether there are differences in health trends by socioeconomic 
status, i.e. for the lower educated compared to the higher educated. Estimating such 
changes in population health has important implications for public policies targeted at 
addressing population aging. Examples include public policies referring to increasing 
the official retirement age or those referring to the affordability of healthcare. 

Chapter 4 aims to answer the third research question by proposing a conceptual model 
to further explain the observed changes in population health by age. In doing so, the 
relationship between HRQoL, age and TTD is investigated using a longitudinal dataset 
linked to the mortality registry. 

Chapter 5 focuses on the fourth research question by exploring the implications of the 
observed relationship between HRQOL, age and TTD on estimating health benefits in 
economic evaluations of life prolonging interventions. Therefore, this chapter projects 
the results from chapter 4 into the context of economic evaluations and exemplifies this 
mechanism for life prolonging preventive interventions. The results of this chapter are 
relevant for the standard practice of economic evaluation of life prolonging interven-
tions. 

To some extent the last research question is addressed in each chapter of this thesis. 
Chapters 2 and 3 and 5 used a beta regression approach for modelling cross-sectional 
HRQoL data. Chapter 4 proposed a mixed beta regression estimated using the Bayesian 
approach for establishing the relationship between TTD and HRQoL. Finally, in chapter 6 
a large number of methods are compared and assessed for their predictive performance. 
This is presented in the context of a ‘mapping’ study which aims at mapping or predict-
ing a generic HRQoL instrument (here EQ-5D) from a disease-specific questionnaire. Two 
randomized clinical trials were used for performing the analyses in this chapter. 

Chapter 7 focuses on the main discussion points and policy recommendations that fol-
low from the studies presented in this thesis. Finally, a summary is included in English 
and in Dutch. 





Chapter 2
Did the health of the Dutch population 
improve between 2001 and 2008? 
Investigating age- and gender-specific 
trends in quality of life.

With Werner Brouwer and Pieter Van Baal 

European Journal of Health Economics; 2015 Nov;16(8):801-811. 
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Abstract

Although many countries’ populations have experienced increasing life expectancy in 
recent decades, quality of life (QoL) trends in the general population have yet to be 
investigated. This chapter investigates whether QoL changed for the general Dutch 
population over the period 2001-2008. A beta regression model was employed to ad-
dress specific features of the QoL distribution (i.e. boundedness, skewness and hetero-
skedasticity), as well non-linear age and time trends. Quality-adjusted life expectancy 
(QALE) was calculated by combining model estimates of mean QoL with mortality rates 
provided by Statistics Netherlands. Changes in QALE were decomposed into those 
changes caused by QoL changes and those caused by mortality-rate changes. The 
results revealed a significant increase in QoL over 2001-2008 for both genders and most 
ages. For example, QALE for a man/woman aged 20 was found to have increased by 
2.3/1.9 healthy years, of which 0.6/0.8 was due to QoL improvements.
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Introduction

During the 20th century, the populations of Western European countries experienced a 
substantial increase in life expectancy (Cutler et al. 2006). Whereas in the early decades 
of that century life-expectancy increases mainly resulted from decreases in young-
age mortality, in the past few decades most gains in life expectancy are attributable 
to decreases in old-age mortality. For example, only in the period 2001-2008, in the 
Netherlands, life expectancy at birth has increased by 1.57 years for women and 2.52 
years for men (Statistics Netherlands. 2011), mainly due to decreases in 65+ mortality 
(Mackenbach et al. 2011). An important question that arises is to what extent these extra 
years of life are spent in good or bad health (Gruenberg 1977, Fries 2000). One of the 
most relevant economic implications of this increased longevity among the elderly is 
the effect on labour-force participation (Eggleston and Fuchs 2012). In this context, it 
is becoming increasingly important to estimate whether population ageing is accom-
panied with a concomitant increase in the quality of life. This chapter aims at doing so 
for the Netherlands. Further we will present a short review of the most commonly used 
population health measures and highlight the benefits of using quality of life (QoL) for 
monitoring population health.

Until recently, health had been measured solely by mortality-based indicators. Life 
expectancy and all-cause, disease-specific and infant mortality were compared in time, 
by region and across countries (Leon 2011, Wilmoth 2000). Although mortality-based 
indicators are useful, they provide insufficient information to fully describe the health of 
a population as they do not capture the impact of non-fatal diseases on health (Murray 
et al. 2000). To date, mainly two indicators – i.e. self-rated health and disability – have 
been used to monitor the impact of non-fatal diseases on population health.

Self-rated health measures health by using a single question that asks individuals to 
rate their own health (commonly by choosing one of the five possible answers rang-
ing from very poor to excellent). However, despite this indicator’s popularity, it is still 
unclear to what extent changes in self-rated health reflect differences in, or perceptions 
of, health (Layes et al. 2012). Disability measures usually consist of several questions 
targeted at measuring specific aspects of health status, especially aspects referring to 
physical health. Because neither disability nor self-rated health is sufficiently generic for 
evaluating the health of a population, economists and psychologists proposed the con-
cept of Quality of Life (QoL, (Dolan 2000)). QoL measures health by including multiple 
questions referring to various health dimensions such as physical health, mental health 
and social functioning. Furthermore, as a continuous variable generally defined on a 
scale from 0 (death) to 1 (full health), QoL measures are able to capture a wide variety of 
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health states. Perhaps one of the most notable advantages of QoL measures compared 
to both self-rated health and disability is that, the measured health states are valued 
using preference weights. These weights are commonly obtained from a sample of the 
general population using recognized valuation techniques such as time trade off (TTO) 
or standard gamble (SG). In this chapter, we will use the SF-6D index which is able to 
distinguish 7500 health states. Each of these health states is assigned a value between 0 
and 1 using the valuation algorithm developed by Brazier and Roberts (Brazier and Rob-
erts 2004). These valuations were derived using the SG technique in which respondents 
from the general population were asked to choose between remaining in a state of ill 
health (defined by SF-6D) for a period of time or a medical intervention which would 
either restore perfect health or result in death.  

QoL measurements are widely used in clinical trials and cost-effectiveness analyses 
(Drummond et al. 2005, Drummond et al. 2005). Although influential health economists 
have proposed using QoL to monitor population health (Cutler and Richardson 1997, 
Williams 1999), few studies have been reported in this area. A cross-country comparison 
in QoL and quality-adjusted life expectancy (QALE) has been published (Heijink et al. 
2011), and trends in QALE for the American population have been investigated (Jia 
et al. 2011). More recently, trends in healthy life expectancy between 1990 and 2010 
were reported for 187 countries by combining disease prevalences and corresponding 
disease-specific disability weights (Salomon et al. 2012). However, none of these studies 
looked at QoL trends in the general population and possible influences on QALE. This 
is mainly due to the lack of QoL data measured in the general population.  Attempting 
to fill that gap, the present chapter investigates whether QoL changed for the Dutch 
population in the period 2001-2008 and seeks to interpret any such changes as gains 
or losses of healthy years lived (in addition to gains due to decreased mortality rates). 
The data analysed here is taken from an annual health survey in the Netherlands, which 
includes the SF-12 from which the SF-6D was derived and valued using the algorithm 
developed by Brazier and Roberts (Brazier and Roberts 2004). There are two main steps 
in our analysis. First, we consider how age- and gender-specific patterns in QoL changed 
over the period in question. Second, we interpret changes in QoL as additional gains or 
losses of healthy years lived by estimating how QALE changed over the period in ques-
tion, thereby decomposing changes in QALE into those due to mortality-rate changes 
and those due to QoL changes. 

In order to draw meaningful conclusions when investigating QoL trends in 2001-2008, 
we need to properly model the non-standard QoL distribution. Important concerns 
when modelling SF-6D QoL are: a bounded distribution between 0 and 1; a strongly left 
(i.e. negatively) skewed distribution; and heteroscedasticity, which is unsurprising for 
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such bounded variables. For these reasons, it is inappropriate to model QoL by assum-
ing a normal distribution. Obviously, a bounded outcome such as QoL is not normally 
distributed because it is not defined for negative values. Moreover, the fact that the 
QoL is observed over a closed interval has two major implications. First, the conditional 
expectation function must be nonlinear, and, second, the conditional variance must 
be a function of the mean (Kieschnick and McCullough 2003). Clearly, both of these 
conditions would be violated if a normal distribution were to be assumed for the QoL 
outcome. In contrast, previous research has shown that these conditions are satisfied 
by beta regression models, which provide a flexible method for modelling both cross-
sectional QoL data (Basu and Manca 2012, Hunger et al. 2011) and longitudinal QoL 
measurements (Hunger et al. 2012). In this chapter, we will use this state of the art and 
model the SF-6D score using a beta distribution assumption.

This chapter is organized as follows. Section 2 describes the data used in the present 
chapter. Section 3 presents in greater detail the methods used to model changes in QoL 
over time. Section 4 illustrates the main results and findings of our analyses. Finally, Sec-
tion 5 draws conclusions and discusses the most salient points.

Data

This chapter was based on the Permanent Survey of Living Conditions (POLS: Permanent 
Onderzoek Leef Situatie) for the years 2001-2008. POLS is an on-going annual cross-
sectional survey. The survey is sampled on records from a centralized municipal registry 
and does not include the institutionalized population. The POLS health survey monitors 
developments in lifestyle, health, medical consumption, preventive behaviour and 
well-being in the Netherlands and since 2001 has included the SF-12 questionnaire. The 
Health Module of the survey is collected using a face-to-face interview and a written 
questionnaire. The interviewer visits the participants at home, askes for informed con-
sent, conducts an interview and then leaves a written (drop-off ) questionnaire, which 
includes the SF-12 form. This questionnaire contains 12 items for measuring health across 
8 dimensions such as: physical functioning, social functioning, mental health, bodily 
pain, role limitations-physical, role limitations-emotional, general health and vitality.  By 
excluding the question regarding general health and by combing the two questions re-
ferring to role limitations, the SF-6D questionnaire (which has 6 questions) was obtained 
from the SF-12. Some interviewees failed to return the written questionnaire, so approxi-
mately 20-25% of the SF-12 items (used to obtain the SF-6D) were missing. For those 
who did respond, the mean self-rated health was slightly higher than for those who did 
not indicating that the missing completely at random (MCAR) assumption is violated. In 
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practice, it is difficult to distinguish between the other two missing data mechanisms as 
described by Rubin (Rubin 1976)(Rubin 1976)(Rubin, 1976), i.e. the missing at random 
(MAR) and missing not at random (MNAR) assumptions. For imputing the missing items 
of the SF-12 questionnaire, we used here multiple imputation (MI, (van Buuren et al. 
1999, van Buuren et al. 2006, Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J. 2001)) 
which yields valid estimates under the MAR assumption. Although it is difficult to test 
for departures from this assumption, Peyre and colleagues showed that, regardless of 
the missing data mechanism, MI is superior to other methods when imputing missing 
data in quality of life questionnaires (Peyre et al. 2011). Appendix 1 illustrates details 
regarding our imputation model. It is worth mentioning that the imputation resulted in 
ten different datasets which were first analysed separately. Subsequently, the estimates 
of interest from the ten analyses were combined using standard MI rules (Rubin 1987). 

Utility valuation functions have been derived for SF-6D, by using the preference-based 
valuation algorithm developed by Brazier and Roberts. The analysed sample included 
57612 individuals: 27804 men and 29808 women. Error! Reference source not found. below 
shows descriptive statistics of this sample including details of the socio-demographics 
variables employed: age and gender. For reasons that will become obvious later, in this 
chapter we focus only on these two socio-demographic variables and we excluded 
others such as education or income. Error! Reference source not found. shows that both 
men and women have similar ages in our sample. Furthermore, mean QoL is larger for 
men compared to women which is consistent with previous knowledge about QoL for 
men and women (Heijink et al. 2011). It is worth mentioning that mean QoL has been 
calculated from the 10 imputed datasets used. Error! Reference source not found. shows 
also a list with assigned SF-6D values that have high frequency in our dataset: 0.922, 
0.863, 0.8 and 1. These are imperfections resulting from the SF-6D valuation process 
and are beyond our control. Compared with other QoL instruments such as the EQ-5D 
(Pullenayegum et al. 2010) or the HUI (Austin 2002), the distribution of the SF-6D index 
does not show the strong ceiling effect at the value of one: only approximately 5% of 
respondents have an SF-6D utility score of one.

Figure 2-1 shows that the observed SF-6D distribution is left-skewed for both genders; in 
this case, it is slightly more skewed for men than for women. Moreover, the distribution 
is bounded with values ranging from 0.345 to 1. A simple glance at Figure 2-1 suggests 
that methods based on normality distribution assumptions are unlikely to be suitable 
for modelling the asymmetric and bounded SF-6D outcome.  
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Methods

Beta regression 

Let us consider a variable Y following a beta density which is described by two pa-
rameters: the location or mean parameter denoted by μ(0< μ <1) and the dispersion 
parameter also called the precision parameter denoted by φ(φ > 0). Typically, in a beta 
regression framework, μ is modelled using a regression structure, that is as a function of 
various explanatory variables, whereas the precision parameter can either be assumed 
constant over observations (Ferrari 2004, Smithson and Verkuilen 2006) or modelled 
using a regression structure (Smithson and Verkuilen 2006). As QoL data are usually 
characterised by the presence of heteroscedasticity, we opted to explicitly model not 
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Figure 2‑1: The distribution of the observed SF-6D.
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only the mean parameter but also the precision parameter φ as a function of explana-
tory variables 

Note that, the beta distribution is defined on the closed interval between 0 and 1, hence, 
including the end points. However, in the beta regression context, the beta distribution 
needs to exclude the two end points. This is mainly because, for defining a regression 
structure on the parameters, a link function needs to be specified for mapping the ob-
served interval onto the real line. For example, for beta regression, Cox tested a number 
of link functions for the mean parameter and found that logit link function works best 
(Cox 1996). Hence, for beta regression, the conditional mean parameter is commonly 
modelled using a logit link function. Such a link cannot be defined at 0 or 1. For data that 
is observed between 0 and 1 including 0 and 1, Ospina and Ferarri developed a general 
class of regression models that include a mixture of a continuous and a discrete distribu-
tion (Ospina 2010). The continuous part is described by a beta distribution defined on 
(0,1) and the discrete part is defined by a Bernoulli distribution at either point. These are 
referred to as beta inflated models by Ospina and Ferarri. Because, we had observations 
at 1, in this chapter, we used the beta inflated at one (BEINF1) distribution to model the 
SF-6D data. Hence, besides the two typical parameters that define a beta distribution, i.e. 
μ and φ, the BEINF1 distribution will have one more parameter, the inflation parameter, 
denoted by ν that models the observations at 1. This distribution is implemented in the 
package gamlss which is freely available in R (R. A. Rigby, et al. 2010, Stasinopoulos and 
Rigby 2007). The interested reader can find more details regarding the parameterization 
of the BEINF1 in gamlss elsewhere (R. A. Rigby, et al. 2010).

The expectation of a random variable Y that follows a BEINF1 distribution, as parameter-

ized in gamlss, is
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Previous research has shown that the relationship between QoL and age is typically nonlinear and it 
is modelled using either a polynomial of order 2 (Austin 2002) or dummy variables (Hunger et al. 

 . Hence, the inflation parameter has an effect on the mean 

estimate. The variance of E[Y] will be estimated using the delta method (Cramer 1946) 
with the first-order Taylor expansion (for details, see Appendix). Furthermore, the vari-
ance of a variable Y that follows a BEINF1 distributions is a function of both the mean 
parameter μ and of the precision parameter φ (Ospina 2010). 

Previous research has shown that the relationship between QoL and age is typically non-
linear and it is modelled using either a polynomial of order 2 (Austin 2002) or dummy 
variables (Hunger et al. 2011, Li and Fu 2009). The disadvantage of using dummies is 
that the gradient is not smooth and there is an inherent arbitrariness in defining age 
categories. Although polynomials are smooth functions, they have the limitation of 
being global functions. To overcome these problems when modelling the non-linear 
relation between QoL and age, we will use smoothers such as P-splines (Eilers 1996). 
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When modelling QoL changes between 2001 and 2008, the observed age-specific QoL 
trajectory may be different for different years. For generating different P-splines curves 
for each year in 2001-2008, we used varying coefficients models (VCM, (Hastie and 
Tibshirani 1993)). Within gamlss, the R function for using P-splines in conjunction with 
VCM models is denoted by pvc(b, by=c, df), where b is generally a continuous variable, 
c denotes either a continuous or a discrete variable and df are the degrees of freedom 
that define the smoothing parameter. Hence, the complexity of a P-spline is defined by 
the corresponding df Model selection and; therefore, the optimal df were obtained here 
by minimizing the Akaike information criterion (AIC, (Akaike 1973))1 . 

A common problem for bounded variables such as QoL is the presence of heteroscedas-
ticity because the variance changes with the mean (Kieschnick and McCullough 2003). 
Hence, it is important to model not only the mean or location parameter but the entire 
outcome distribution. This has been achieved here by modelling all three parameters 
that described the beta inflated at one (BEINF1) distribution as functions of explana-
tory variables. Note that, as commented above, the inflation parameter models just the 
probability at one. By modelling the other two parameters of the BEINF1 distribution (μ 
and φ ), we implicitly model the shape of the QoL distribution and hence, the skewness 
and the variation. Hence, each parameter of the BEINF1 distribution has been modelled 
using the pvc function in gamlss. We used log link functions for both the precision 
parameter φ and the inflation parameter ν. Because men and women have different 
QoL patterns and for ease of computation, we developed separate regression models 
for men and women. The final developed models for men and women are denoted by 
equations (1)-(3) and (4)-(6), respectively:

logit (μ)=pvc(a,by=y,df=5.6) (2.1)

logit (φ)=pvc(a,by=y,df=4.5)  (2.2)

log (ν)=pvc(a,by=y,df=2.63),  (2.3)

1  In gamlss a generalized Akaike information criterion (GAIC) is implemented GAIC=GD+λ×df, where λ is 
the penalty, GD is the global fitted deviance GD=−2L with L is the fitted log likelihood function. The user 
can chose various penalties, however the most widely used ones are λ=2 and λ=log(n). Whereas for λ=2, 
Akaike criterion is derived, for λ=log(n) with n being the sample size, the Schwartz Bayesian criterion 
(SBC) is obtained. In this chapter, we chose to use AIC over SBC because the AIC splines were smoother 
and gave a more convincing visual fit to the data.
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logit (μ)=pvc(a,by=y,df=4)  (2.4)

log (φ)=pvc(a,by=y,df=1.7)  (2.5)

log(ν)=pvc(a,by=y,df=1.68),  (2.6)

where a denotes the age variable and y denotes the calendar year. 

As we used MI to impute the missing items of the SF-12, the developed models for each 
gender were applied to each of the ten imputed data sets. The estimates of interest, i.e. 
the parameters of the QoL distribution together with the mean QoL for persons aged 
20-80, were derived for each model. Then, final results of the estimates were obtained 
by applying the standard MI rules defined in (Rubin 1987) and adapted by (Schafer and 
Olsen 1998). The ultimate step in our analysis was to calculate the QALE.

Decomposing quality adjusted life expectancy (QALE) 

QALE is an equivalent of years lived in full health (Murray et al. 2000) and was computed 
by combining estimates of mean QoL from the regression models developed using 
GAMLSS with mortality rates from Statistics Netherlands. QALE was calculated for every 
gender, age and year, using the Sullivan life table approach (Sullivan 1971):
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where QALE(a, t) denotes the number of healthy years lived by a person of age a in 
year t, L(a, t) are the number of  years lived at age a in year t, QoL(a, t) is the mean 
QoL at age a in year t, and l(a,t) is the total number of survivors at age x in year t. As 
stated in the introduction (above), changes in QALE between 2001 and 2008 are to be 
decomposed into those due to QoL changes and those due to mortality-rate changes. 
We therefore calculated QALE in two situations. Firstly, for each gender and year in the 
period 2001-2008 we computed QALE by assuming that the mean QoL was constant 
over time (QALE (QoL=ct)) and equal to the mean QoL estimated from the regression 
models for year 2001. In this way, we observed changes in QALE over 2001-2008 due 
to trends in mortality rates only. Secondly, we computed QALE by using the estimated 
mean QoL from the beta models for all years in the period 2001-2008 (QALE (QoL≠ct)) 
and thus revealed changes in QALE due to both mortality-rate and QoL changes. The dif-
ference between QALE (QoL=ct) and QALE (QoL≠ct) indicates the healthy years gained 
or lost due to changes in QoL only.
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Results

While smoothers such as P-splines aid in modelling the unknown relationship between 
QoL and age, the estimated smooth curves’ coefficients cannot be tested for significance 
in the p-value sense. However, p-splines are an excellent tool for prediction purposes 
which was, in fact, the aim here. Our modelling approach enables us to examine the 
entire estimated distributions of the SF-6D for various ages. Figure 2-2 illustrates the 
trends of the estimated mean QoL (the vertical line) and those of the estimated SF-6D 
QoL distributions for men and women aged 20, 65 and 75, respectively. Over 2001-2008, 
for both genders, mean QoL shows an increasing trend. Moreover, the shape of the QoL 
distribution changes over this period. Although variability increases with age, it decreases 
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Figure 2‑2: Trends of the estimated QoL distributions and the estimated mean QoL (vertical line) for 
different ages: top — a model for men; bottom — a model for women. The dashed line is for year 2001, 

whereas the continuous line is for year 2008
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over this period. However, all these trends over 2001-2008, both in the mean and in the 
shape of the QoL distribution, are small. For interpreting such small changes, in particular 
those in the mean QoL, we use QALE, which, as stated in section 3.2, combines estimates 
of mean QoL with mortality rates from Statistics Netherlands. Figure 2-3 illustrates the 
two ingredients used in calculating the QALE: the mean QoL estimated from the regres-
sion models, and the mortality rates. Figure 2-3 suggests that QoL increased more for 
women than for men. Although it is not easily observable from Figure 2-3, mortality rates 
as provided by Statistics Netherlands, decreased more for men than for women. 

Using the method described in Subsection 3.2 (above), we calculated QALE (QoL=ct) 
and QALE (QoL≠ct). In this way, we decomposed changes in QALE over the period 2001-
2008 due to mortality-rate changes and QoL changes. Table 2‑2 shows life expectancy 
(LE) and QALE for the years 2001 and 2008 for an average man and woman aged 20 and 
65, respectively. We chose to illustrate the results for these ages in order to juxtapose 
the healthy life years for the younger and the aging population. As Table 2‑2 shows, over 
2001-2008, LE at age 20 and 65, increased by approximately 2.3 and 1.7 years for men, 
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Figure 2‑3: Mean QoL (left) and mortality rates (right), in 2001 and 2008, for men and women
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respectively. Over the same period, LE at age 20 and 65, increased by approximately 1.4 
and 1.2 years for women, respectively. Table 2 indicates that although, in 2001, QALE 
(QoL=ct) was slightly higher for an average woman aged 20 than for an average man 
of the same age, by 2008 the situation was the converse; that is, QALE (QoL=ct) showed 
an increase of approximately 1.8 healthy years for an average man aged 20 and an in-
crease of 1.1 healthy years for an average woman of the same age. Perhaps even more 
interestingly, QALE (QoL≠ct) indicates that over 2001-2008 the increase in QoL induced 
approximately 0.6 and 0.8 healthy years for a man and a woman aged 20, respectively. 

Table 2‑1: Descriptive statistics of the POLS sample

VARIABLE MEN WOMEN BOTH

mean Age ±SE 47.16±0.2 47.96 ±0.1 47.6±0.15

mean SF-6D QoL ±SE 0.82 ±0.001 0.79 ±0.001 0.8±0.001

% QoL values of 1 7%  3.8% 5%

% QoL values of 0.922 27% 19.45% 24%

% QoL values of 0.863 19% 20% 20%

% QoL values of 0.8 6.5% 7.4% 7%

Year: -2001 3395 (12.21%) 3639 (12.21%) 7034 (12.21%)

-2002 3418 (12.29%) 3691 (12.38%) 7109 (12.34%)

-2003 3467 (12.47%) 3666 (12.30%) 7133 (12.38%)

-2004 3905 (14.04%) 4168 (13.98%) 8073 (14.01%)

-2005 3732 (13.42%) 3912 (13.12%) 7644 (13.27%)

-2006 3465 (12.46%) 3764 (12.63%) 7229 (12.55%)

-2007 3070 (11.04%) 3341 (11.21%) 6411 (11.13%)

-2008 3352 (12.06%) 3627 (12.17%) 6979 (12.11%)

Table 2‑2: LE, QALE (QoL=ct) and QALE (QoL≠ct) with 95% confidence intervals for a man and a woman 
aged 20 and aged 65, respectively

MAN WOMAN

  2001 2008 2001 2008

Age 20 LE 57.06 59.33 61.81 63.24

QALE(QoL≠ct) 46.87[46.30-47.44] 49.20[48.65-49.74] 48.42[47.84-49.00] 50.28[49.68-50.88]

  Gain in QALE 2.33 1.86

 
Gain in QALE due 
to mortality

1.76 1.06

 
Gain in QALE due 
to QoL

0.57 0.8

Age 65 LE 15.90 17.64 19.72 20.88

QALE(QoL≠ct) 12.71[12.46-12.96] 14.30[14.05-14.55] 14.90[16.62-15.18] 15.92[15.63-16.22]

  Gain in QALE 1.59 1.02

 
Gain in QALE due 
to mortality

1.33 0.85

 
Gain in QALE due 
to QoL

0.26 0.17



38  Chapter 2

Smaller changes over this period were found at age 65. At that age, over 2001-2008, 
QALE (QoL=ct) increased by approximately 1.3 and 0.8 healthy years for an average 
man and an average woman, respectively. Changes in QoL in the same period induced 
approximately 0.3 and 0.2 healthy years for an average man and woman, respectively. 

Figure 2-4, which illustrates QALE gains for persons aged 20-80 years, shows that over 
the analysed period, QALE gains decreased with age for both genders. Over 2001-2008, 
QALE (QoL=ct) gains were generally smaller for women than for men for most ages in 
the range 20-80, whereas QALE gains due to QoL changes (the cross-hatched region) 
were higher for women than for men aged 20-65 years and higher for men than for 
women ages 65+. However, for persons aged 65+, QALE gains due to changes in QoL 
were small (less than 0.2 healthy years).
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Conclusions And Discussion

Our results indicate that, over the analysed period of 2001-2008, the health of the Dutch 
population improved for both men and women. More broadly and arguably of greater 
importance, we observed small QoL improvements in 2001-2008, i.e. at most ages, QoL 
increased with approximately 0.02 for women and 0.01 for men. However, as indicated 
by quality-adjusted life expectancy (QALE), in 2001-2008, these apparent small changes 
resulted in approximately 0.8 and 0.6 heathy years gained by a men and a women aged 
20. These results indicate that, small improvements in QoL among the general popula-
tion may have a sizeable impact on population health as measured by QALE. Although 
reduced mortality rates contribute more to the improvement in QALE than does the 
increase in QoL, our results indicate that, in recent years, the Dutch population has 
gained both in length and quality of life. Interestingly, for most ages, Dutch women 
benefited more from QoL changes than Dutch men did, while the converse is true of 
mortality-rate changes. 

As shown by Statistics Netherlands, in 2001-2008, life expectancy at all ages increased 
more for men than that for women (Statistics Netherlands. 2011). With respect to QoL 
changes, we are not aware of any chapter reporting on QoL trends for the Dutch popula-
tion. However, there are several studies reporting on trends in healthy expectancy (HE) 
(Perenboom et al. 2004, Water et al. 1996, Picavet and Hoeymans 2002, Majer et al. 2013, 
Bruggink et al. 2009). Because these studies used various health measures, calendar 
periods and age groups, they reached diverse conclusions on the trends. For example, 
Bruggink and colleagues reported that the number of years lived without disability has 
decreased in 1980-2010 for both men and women, but slightly more for men. On the 
other hand, Perenboom et.al. reported similar results for both men and women, i.e., 
in 1989-2000, the number of years with severe and moderate disability has decreased 
while the number of years with minor disability has increased. However, more recent 
research that investigated trends in HE for 187 countries including the Netherlands 
indicated that the number of years lived without disability has increased in 1990-2010 
for the Dutch population and this increase was larger for Dutch women compared to 
Dutch men (Salomon et al. 2012).

This chapter has several strengths. Firstly, it confirms that beta distribution is suitable 
for modelling the SF-6D score due to its flexibility in modelling highly skewed outcomes 
(Hunger et al. 2012, Figueroa-Zúñiga and Arellano-Valle, Reinaldo B., Ferrari, Silvia L.P. 
2013). Moreover, an issue often rose when modelling HRQoL data is the presence of 
heteroscedasticity, which is a typical characteristic of such bounded outcome variables. 
Our modelling approach provided an explicit solution to this issue by modelling both 
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parameters that describe the beta distribution, i.e. the location and the precision pa-
rameter, as functions of explanatory variables such as age and gender. In doing so, we 
implicitly modelled the shape of the QoL distribution and hence, the skewness and the 
variation. Note that, for beta distributed outcomes, the conditional variance is a function 
not only of the precision parameter but also of the mean. This is particularly important 
for bounded outcomes, because for these response variables the variance changes with 
the mean (Kieschnick and McCullough 2003).  This modelling approach enabled us to 
explore trends not only in the mean QoL but also in the shape of the QoL distribution. 
We found that with advancing age, variation increased while skewness decreased. Fur-
thermore, over the analysed period of 2001-2008, the QoL variation decreased whereas 
skewness increased. An additional advantage of our approach is the use of VCM and P-
splines to model the relationship between QoL, age and calendar year. P-splines proved 
to be useful in modelling the relationship between age and QoL, which was unknown a 
priori and is often difficult to model. 

This chapter has a number of limitations. Firstly, in comparison with estimating single 
parameters, the interpretation of the smooth curves’ coefficients is more difficult. To 
address this limitation, we used QALE. Therefore, changes in mean QoL over the period 
2001-2008 were interpreted as gains or losses of healthy years lived. Secondly, it could be 
argued that QoL should have been modelled using other variables that had previously 
been proven to predict QoL well, such as education or income (Muennig et al. 2005, 
Luo et al. 2005, Cherepanov et al. 2010). In the present chapter, models including the 
explanatory variables of age, year and education were developed (results not shown). 
Although QoL differed significantly for various educational brackets, health gains were 
observed for both the low and the highly educated. Nevertheless, when the results were 
averaged on age and calendar year to compute QALE in a Sullivan Life Table, they were 
similar to those given above in this chapter. It should be noted that mortality rates for 
different education or income levels were not available. Thirdly, the analyses presented 
above include only the non-institutionalized population, which may lead to biased QoL 
estimates. In order to quantify the impact that the institutionalized population may 
have had on the QoL estimates, we performed a calculation involving the percentage of 
the institutionalized Dutch population. For each age, we assumed that the institutional-
ized persons had the lowest SF-6D index. Our calculations showed that the QoL trend 
estimates were not changed by the inclusion of the institutionalized population. Fifthly, 
the results presented above are derived from the analyses performed for the imputed 
data sets. It should be noted that analyses of the complete data set were also performed 
(results not shown). Due to a relatively small percentage of missing data (20-25%), re-
sults from the complete data and from the imputed data were similar, though QoL was 
slightly overestimated using the complete data (differences between 0.01 and 0.07). In 
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addition, in the sample used, many respondents had the same SF-6D utility score. For 
example, the values 0.922, 0.863 and 0.8 were assigned to approximately 24%, 20% and 
7% of the individuals, respectively. This makes the SF-6D variable quasi-discrete at some 
intervals. Previous research indicates that, generally, the beta distribution is robust to 
such violations of the continuity assumption (Tamhane et al. 2002). Finally, in this chapter 
we used the SF-6D derived from the SF-12. It should be noted that the observed range 
of the SF-6D was between 0.345 and 1. In one chapter (Fryback et al. 2007), the authors 
showed that for a national survey sample of non-institutionalized adults, both the range 
and the mean of a number of QoL indices (e.g. HUI2, HUI3, EQ-5D, SF-6D derived from 
the SF-36) differ significantly. For example, the minimum observed value for the EQ-5D 
was −0.11 whereas for the HUI3 it was −0.34 and for the SF-6D (derived from SF-36) it 
was 0.3. The range discrepancies between various QoL indices suggest that our results 
may be sensitive to the QoL instrument used. In addition, a recently published chapter 
(Luo et al. 2012) indicates that the SF-6D derived from the SF-36 is more discriminative 
than that derived from the SF-12; hence, the former is preferable for use in population 
health surveys. 

In conclusion, this chapter provides compelling evidence that Dutch people are not only 
tending to live longer than they previously did but are also living more healthily. From a 
policy perspective, our results can be considered important in various contexts. Firstly, 
the on-going debates on mounting healthcare expenditures have raised controversial 
questions regarding the efficiency of such expenditure. In that context, the benefits of 
healthcare - including both length and quality of life - need to be rigorously investigated. 
Our approach and results may be useful in justifying increased healthcare expenditures, 
though in the context of the present chapter we cannot draw any conclusions regard-
ing the causal relationship between the increase in QALE that we have observed and 
increased healthcare spending. Secondly, that we have observed (moderate) quality 
of life improvements at most ages is also relevant to the on-going debates regarding 
extended labour-force participation by the elderly and the raising of pension ages. In 
those respects, observing increases in peoples’ health levels around the legal or practi-
cal retirement ages are especially important. Obviously, translating our current results 
into answers to these policy questions requires further research. The current chapter 
represents an important first step in demonstrating, at least for the Netherlands, that 
in recent years the general public has been living longer and more healthily than was 
previously the case. 
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Appendix

Multiple imputation model

We used a fully conditional specification (FCS), also known as multivariate imputation 
by chained equations (MICE), proposed by various authors (van Buuren et al. 1999, van 
Buuren et al. 2006, Raghunathan, T.E., Lepkowski, J.M., Van Hoewyk, J. 2001) for each SF-12 
item with missing values, conditional on all other variables in an imputation model. We 
developed the imputation model based on variables from the POLS face-to-face inter-
view, in particular: year, age, educational level, marital status, self-rated health, general 
practitioner (GP) visits, smoking status, number of sport activities per week, happiness, 
number of working hours per week, number of church visits per month. The number of 
imputations used was established following pre-defined guidelines (Graham 2007). Given 
the percentage of missing data (around 20-25% of the SF-12 items) and the computer 
power necessary, ten imputations were used to impute the SF-12 missing values. 

Analysing multiple imputed data involves two steps: first a standard method is applied 
to each simulated data set, then the estimates of interest from each data are combined 
to obtain a final result using the rules defined in (Rubin 1987) and adapted from (Schafer 
and Olsen 1998).

Delta method 

The delta method estimates the variance of a non-linear function of one or more vari-
ables by using the Taylor expansion around the mean of the variables. Therefore, if x0 
and y0 are the mean values of μ and ν, respectively, the first order Taylor expansion of 
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where p is the product moment correlation between μ and ν. If we assume ρ=0, the 
estimated variance of the f(μ,ν) is:
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Although many countries’ populations have experienced increasing life expectancy in 
recent decades, quality of life (QoL) trends in the general population have yet to be 
investigated. This chapter investigates whether QoL changed for the general Dutch 
population over the period 2001-2008. A beta regression model was employed to ad-
dress specific features of the QoL distribution (i.e. boundedness, skewness and hetero-
skedasticity), as well non-linear age and time trends. Quality-adjusted life expectancy 
(QALE) was calculated by combining model estimates of mean QoL with mortality rates 
provided by Statistics Netherlands. Changes in QALE were decomposed into those 
changes caused by QoL changes and those caused by mortality-rate changes. The 
results revealed a significant increase in QoL over 2001-2008 for both genders and most 
ages. For example, QALE for a man/woman aged 20 was found to have increased by 
2.3/1.9 healthy years, of which 0.6/0.8 was due to QoL improvements.
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Abstract

Quality-adjusted life expectancy (QALE) has been proposed as a summary measure of 
population health because it encompasses multiple health domains as well as length of 
life. However, trends in QALE by education or other socio-economic measure have not 
yet been reported. This chapter investigates changes in QALE stratified by educational 
level for the Dutch population in the period 2001-2011. Using data from multiple sources, 
we estimated mortality rates and health-related quality of life (HRQoL) as functions of 
age, gender, calendar year and educational level. Subsequently, predictions from these 
regressions were combined for calculating QALE at ages 25 and 65. QALE changes were 
decomposed into effects of mortality and HRQoL. In 2001-2011, QALE increased for men 
and women at all educational levels, the largest increases being for highly educated re-
sulting in a widening gap by education. In 2001, at age 25, the absolute QALE difference 
between the low and the highly educated was 7.4 healthy years (36.7 vs. 44.1) for men 
and 6.3 healthy years (39.5 vs. 45.8) for women. By 2011, the QALE difference increased 
to 8.1 healthy years (38.8 vs. 46.9) for men and to 7.1 healthy years (41.3 vs. 48.4) for 
women. Similar results were observed at age 65. Although the gap was largely attribut-
able to widening inequalities in mortality, widening inequalities in HRQoL were also 
substantial. In the Netherlands, population health as measured by QALE has improved, 
but QALE inequalities have widened more than inequalities in life expectancy alone. 
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Introduction

In recent decades, inequalities in health status by educational level or other measures 
of socio-economic status (SES) have persisted and widened (Turrell and Mathers 2001, 
Martikainen et al. 2001, Mackenbach et al. 2003, Singh and Siahpush 2006, Mackenbach 
et al. 2008, Meara et al. 2008, van Kippersluis et al. 2010, Maki et al. 2013). Health expec-
tancy calculations have consistently shown that less educated persons not only have a 
shorter life expectancy but also live more years in poor health (Maki et al. 2013, Kunst et 
al. 2005, Majer et al. 2011), (Van Oyen et al. 2011, Cambois et al. 2001, Bronnum-Hansen 
and Baadsgaard 2008, Bruggink 2009, Crimmins and Saito 2001, Davis et al. 1999). In 
the Netherlands, for example, Statistics Netherlands (CBS) reported a difference of ap-
proximately seven years in life expectancy at birth between the groups with the lowest 
and the highest educational levels, whereas this difference was as high as 14 years for 
disability-free life expectancy (Bruggink 2009). These findings may be explained through 
a variety of mechanisms running from education to health but also vice-versa (Cutler 
and Lleras-Muney 2010) e.g. important channels through which education influences 
health are life-style related risk factors such as smoking, alcohol consumption and physi-
cal inactivity but also financial resources, housing and work conditions and access to 
care. 

To compare the health of different populations, summary health measures that combine 
information on both non-fatal and fatal health outcomes are recommended (Murray et 
al. 2000). A variety of summary population health measures are available that differ in 
how they account for the health impact of non-fatal diseases. Hence, various definitions 
of disability and self-rated health (SRH) measures are used extensively. However, there 
are concerns that these measures inadequately measure the health impact of non-fatal 
diseases. Firstly, SRH is measured using a single question: individuals are asked to rate 
their own health (usually by choosing one of five possible answers ranging from very 
poor to excellent). Despite this indicator’s popularity, it is still unclear to what extent 
changes in SRH reflect actual differences in health, or just perceptions thereof (Salomon 
et al. 2009, Layes et al. 2012). Secondly, disability measures usually focus on aspects 
of physical health and disregard other important dimensions such as mental health. 
Hence, one concern is that such one-dimensional measures are unlikely to capture the 
complex multidimensional concept that is human health (Crimmins 1996).

With the aim of broadly measuring aspects of health, economists and psychologists 
proposed the concept of health-related quality of life (HRQoL) (Dolan 2000). Although 
HRQoL has been extensively used for monitoring health in clinical trials, its use for 
measuring population health is still limited, mainly due to its unavailability in large-
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scale surveys. HRQoL is a generic multidimensional measure of health; in other words, it 
measures health with multiple questions that refer to both physical and mental health 
resulting in a large number of health states. Perhaps, the most distinctive feature of 
HRQoL compared to the other health measures is that the HRQoL health states are 
valued by measuring the strength of individuals’ preferences for these health states. For 
this valuation step representative samples of the general population are used.  The ex-
plicit valuation of different health states in terms of a common metric makes it possible 
to calculate QALE in combination with mortality rates. 

Few studies have been reported using HRQoL for monitoring population health: ex-
amples include a cross-country comparison in HRQoL and QALE (Heijink et al. 2011), and 
time trends in QALE ( Jia et al. 2011). Recently, QALE has been proposed as a more useful 
indicator of health inequalities than all other healthy life expectancy measures (Collins 
2013); however, to our knowledge, trends in QALE by education or other SES measures 
have not yet been reported in the literature.

The aim of this chapter is to investigate, for the Dutch population over the period 2001-
2011, trends in health inequalities, measured in QALE, that are related to educational 
level. Furthermore, QALE trends by education level were decomposed those trends 
into effects of disparities in HRQoL and mortality. The focus will be on whether health 
inequalities by education as measured by QALE have winded or narrowed in 2001-2011. 

Methods

Datasets

This chapter used several data sources. Firstly, to estimate mortality by education for 
the period 2001-2011, we used the Dutch Labour Force Survey (LFS) linked to mortal-
ity registry. In LFS, each year about 60.000 households are added which participate in 
multiple question rounds within one year. Because education is not a time dependent 
variable, we used only the baseline round of LFS of the years 1997-2011 from which we 
extracted education level; therefore, in fact we did not make use of the longitudinal de-
sign of this data. Information on mortality rates was obtained by linking the LFS survey 
to mortality registries for the period 2001-2011. Therefore, our final sample consisted of 
all individuals that were interviewed between 1997 and 2011 and died between 2001 
and 2011. This means that the follow-up time of the respondents ranged between 15 
years and 1 year. Thus, the average follow-up time was by design larger for more recent 
years. However, because follow-up was included in the models developed for estimating 
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mortality rates by education it is unlikely that the differences in follow-up time by year 
would bias our results. 

Previous studies using data collected in the Netherlands generally classified educational 
level into four categories (Bruggink 2009, Kulhanova et al. 2014); however, due to re-
stricted sample sizes we have pooled the upper two categories, resulting in the follow-
ing categories: low educated, which includes primary education (ISCED 0 and 1); medium 
educated, which includes pre-vocational education (ISCED 2) and highly educated, which 
includes secondary and tertiary education (ISCED 3-6).

Secondly, for estimating HRQoL by age and educational level we used data from the 
POLS (Permanent Onderzoek Leef Situatie, in english Permanent Research into Living 
Conditions) survey over the period 2001-2011. POLS is sampled on records from the 
municipal population registries and does not include the institutionalised population. 
Between 2001 and 2009 the self-reported health data was collected by interviews and 
written questionnaires, whereas since 2010 it was collected via the Internet and by tele-
phone. The number of respondents in POLS used in our analyses was relatively similar 
between 2001 and 2011, i.e. it ranged from 7000 to 8000 respondents with about 50% 
men and 50% women, respectively. 

In POLS, information on health is obtained by using the SF-6D questionnaire, which 
comprises six questions on health aspects such as physical functioning, pain, vitality, 
social functioning, role limitations and mental health (see Appendix). SF-6D incorpo-
rates 241 health states, which in this chapter are valuated with the algorithm developed 
by Brazier and Roberts (Brazier and Roberts 2004) for which respondents from the UK 
general population were asked to choose between remaining in a state of ill health (as 
defined by the SF-6D) for a certain period of time or a medical intervention that would 
either restore them to perfect health or result in death. The resulting SF-6D HRQoL value 
ranges between 0.345 and 1. 

For our analyses, we restricted the sample to persons aged 25+ and discarded all obser-
vations from which data was missing Table 3‑1 presents descriptive statistics of the data 
used in our analysis.
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Data analyses

The analyses performed in this chapter involved three steps. First, we estimated mortal-
ity rates by age, gender and educational level using the LFS. Second, we estimated the 
HRQoL by age, gender and educational level using POLS. Finally, we combined these 
two outcomes in a lifetable to estimate QALE. We decomposed changes in QALE over 
time and by education into those due to mortality-rate changes and those due to HRQoL 
changes. 

Mortality rates by education
To estimate mortality rates stratified by age, gender and educational level, we con-
structed a panel dataset whereby the annual number of deaths of all persons ever 
interviewed for the LFS is obtained from the death registry and the number of person-
years is estimated as the sum of the number of people surveyed in a particular year and 
the number of survivors from the previous year. A Poisson regression model with the 
number of person-years as offset and the expected number of deaths by age, gender, 
year and educational level as outcome variable was fitted on that dataset. Predictor 
variables were dummy variables indicating educational level and interactions thereof 
with age and calendar year (both as continuous variables). Dummies for each calendar 
year and age were included to control for confounding. In addition, a variable measur-
ing the length of follow-up time in the LFS and an interaction term of follow-up time 
with age were added to the model. This is intended to control for selection effects in the 
LFS registry. Finally, mortality rates estimates were calibrated to be consistent with total 
mortality rates for the Dutch population (see Appendix for further details). 

Table 3‑1: Descriptive statistics of the datasets used

    Men Women Total

LFS 
data

Population aged 25+ 389527 399902 789429

Mean age (years)±SE 47.45±0.006 47.31±0.004 47.38±0.005

Highly educated % 71.2 63.2 67.1

Medium educated % 20.4 25.8 23.1

Low educated % 8.4 11 9.7

POLS 
data

Population aged 25+ 27268 28985 56253

Mean Age (years)±SE 51.41±0.092 50.37±0.091 50.88±0.065

Mean HRQoL)±SE 0.83±0.001 0.8±0.001 0.81±0.001

Highly educated % 59.7 49.7 54.6

Medium educated % 28.8 34.6 31.8

Low educated % 11.5 15.7 13.6

\SE denotes standard error
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HRQoL by education
The SF-6D was modeled as a function of age, gender, year and educational level. We 
have followed recommendations of recent research for modelling the SF-6D outcome 
using beta regression (Basu and Manca 2012, Hunger et al. 2011, Hunger et al. 2012) 
which has alos been used in chapter 2 of this thesis. Furthermore, the unknown non-
linear relationship between HRQoL and age was modelled here using penalised-splines 
(P-splines (Eilers 1996)). These smoothers have excellent numerical properties and have 
been proposed in chapter 2 for modelling the non-linear relationship between HRQoL 
and age.  Furthermore, we also used dummies for education and interactions thereof 
with age and calendar year. 

Quality‑Adjusted Life Expectancy (QALE) and decomposition
QALE is an equivalent of years lived in full health (Murray et al. 2000) and was computed 
in this chapter using the Sullivan method (Sullivan 1971). QALE used model estimates of 
HRQoL and mortality by age, gender, year and educational level:
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where  et,g,a,L  is the number of person-years lived and  et,g,a,l  is the total number of survivors.  

For analysing how QALE varies over time and across different educational levels, we disentangled 
contributions to differences between two QALE estimates into effects of mortality changes and of 
HRQoL changes. For example, we decomposed the estimated QALE difference between years 2001 
and 2011, as well as the QALE difference between low educated and highly educated (and between 
the medium educated and the highly educated), into effects of mortality and of HRQoL. In addition, 
QALE differences at ages 25 and 65, by education and over time were decomposed also by age by 
assessing the contribution of all ages to the observed changes in QALE at a specific age. The age 65 
was chosen based on the fact that, at the moment, this is the official statuary retirement age in 
many European countries. Therefore, it is particularly important to observe changes in population 
health and possible inequalities in health around retirement. 

Because mortality and HRQoL are non-linear functions of age and are therefore non-additive, we 
used a decomposition algorithm that takes this into account (Andreev et al. 2002), (see Appendix).   

Results 

Trends in QALE between 2001 and 2011 

Fout! Verwijzingsbron niet gevonden. indicates that, in 2001-2011, LE and QALE increased for both 
men and women with a greater increase for men than for women. Furthermore, for men and 
women aged 65, the higher the education level, the greater the gain in both LE and QALE. For men 
aged 25, the greatest gain in both LE and QALE was for the medium educated whereas for women 
aged 25, the greatest gain was for the highly educated. Hence, as time progressed, the more highly 
educated Dutch lived not only longer but also in better health than those of lower educational levels 
which indicates that health inequalities by education have widened in 2001-2011. Also, at both ages 
25 and 65, LE increased more than QALE for men, whereas the converse was true for women (with 
the exception of medium educated women). This results in a compression of morbidity for low and 
highly educated women and in an expansion of morbidity for men at all educational levels. 
Furthermore, Fout! Verwijzingsbron niet gevonden. indicates that inequalities in QALE widened 
more than those in mortality as indicated by LE. For example, at age 25, the LE/QALE gap between 
the low and the highly educated widened by approximately 0.45/0.72 for men and by approximately 
0.63/0.84 for women, respectively. At age 65, the LE/QALE gap between the low and the highly 
educated widened by approximately 0.8/0.8 for men and approximately 0.52/0.6 for women, 
respectively. 

(3.1)

where L(a,g,t,e) is the number of person-years lived and l(a,g,t,e) is the total number 
of survivors. 

For analysing how QALE varies over time and across different educational levels, we 
disentangled contributions to differences between two QALE estimates into effects of 
mortality changes and of HRQoL changes. For example, we decomposed the estimated 
QALE difference between years 2001 and 2011, as well as the QALE difference between 
low educated and highly educated (and between the medium educated and the highly 
educated), into effects of mortality and of HRQoL. In addition, QALE differences at ages 
25 and 65, by education and over time were decomposed also by age by assessing the 
contribution of all ages to the observed changes in QALE at a specific age. The age 65 
was chosen based on the fact that, at the moment, this is the official statuary retire-
ment age in many European countries. Therefore, it is particularly important to observe 
changes in population health and possible inequalities in health around retirement.

Because mortality and HRQoL are non-linear functions of age and are therefore non-
additive, we used a decomposition algorithm that takes this into account (Andreev et al. 
2002), (see Appendix).  
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Results

Trends in QALE between 2001 and 2011

Table 3‑2 indicates that, in 2001-2011, LE and QALE increased for both men and women 
with a greater increase for men than for women. Furthermore, for men and women aged 
65, the higher the education level, the greater the gain in both LE and QALE. For men 
aged 25, the greatest gain in both LE and QALE was for the medium educated whereas 
for women aged 25, the greatest gain was for the highly educated. Hence, as time 
progressed, the more highly educated Dutch lived not only longer but also in better 
health than those of lower educational levels which indicates that health inequalities by 
education have widened in 2001-2011. Also, at both ages 25 and 65, LE increased more 
than QALE for men, whereas the converse was true for women (with the exception of 
medium educated women). This results in a compression of morbidity for low and highly 
educated women and in an expansion of morbidity for men at all educational levels. 
Furthermore, Table 3‑2 indicates that inequalities in QALE widened more than those in 
mortality as indicated by LE. For example, at age 25, the LE/QALE gap between the low 
and the highly educated widened by approximately 0.45/0.72 for men and by approxi-
mately 0.63/0.84 for women, respectively. At age 65, the LE/QALE gap between the low 
and the highly educated widened by approximately 0.8/0.8 for men and approximately 
0.52/0.6 for women, respectively.

Table 3‑2: LE and QALE in 2001 and 2011

Gender
Educational 

level
Year

Age 25 Age 65

LE

LE 
gain 

2001-
2011

QALE

QALE 
gain 

2001-
2011

LE

LE 
gain 

2001-
2011

QALE

QALE  
gain  

2001- 
2011

Men
 
 
 
 
 

High
 

2001 53.83 44.08   16.81 13.42

2011 56.71 2.88 46.93 2.85 19.29 2.48 15.59 2.17

Medium
 

2001 50.70 40.82   15.29 12.06

2011 53.92 3.22 43.83 3.01 17.53 2.24 13.97 1.91

Low
 

2001 47.85 36.71   14.08 10.73

2011 50.28 2.43 38.84 2.13 15.76 1.68 12.10 1.37

Women
 
 
 
 
 

High
 

2001 58.75 45.79   21.00 15.66

2011 60.53 1.78 48.43 2.64 22.64 1.64 17.40 1.74

Medium
 

2001 56.82 44.2   20.08 15.12

2011 58.35 1.53 45.77 1.57 21.49 1.41 16.33 1.21

Low
 

2001 53.57 39.51   18.26 13.09

2011 54.72 1.15 41.31 1.80 19.38 1.12 14.23 1.14
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Decomposing gains in QALE over time

Table 3‑3 shows that the observed QALE gains were due not only to diminishing mortal-
ity rates but also to improvements in HRQoL, though the former had a larger impact 
than the latter especially for women aged 25 years, approximately half of the QALE gain 
over the period 2001-2011 was due to HRQoL improvements, whereas at age 65 ap-
proximately one-third of the QALE gain was due to HRQoL improvements. For men, less 
than one-fifth of the QALE gain in 2001-2011 was due to HRQoL improvements at both 
ages 25 and 65, respectively.

Decomposing educational inequalities in QALE

Table 3‑4 indicates that in 2001-2011, the gaps between the low and the highly edu-
cated and between the medium and the highly educated widened for most population 
subgroups (i.e. men and women aged 25 and 65), the exception being medium edu-
cated men aged 25. For example, at age 25, the gap between the low and the highly 
educated, widened by approximately 0.72 healthy years (mortality effect: 0.38; HRQoL 
effect: 0.34) for men and by 0.84 healthy years (mortality effect: 0.57; HRQoL effect: 0.27) 
for women. Similar results are observed for the elderly: at age 65 the gap had widened 
by approximately 0.8 healthy years (mortality effect: 0.64; HRQoL effect: 0.16) for men 
and by approximately 0.6 healthy years (mortality effect: 0.44; HRQoL effect: 0.16) for 
women. These results again indicate that the widening gap in QALE was due to widening 
inequalities in both mortality and HRQoL, with the former apparently contributing more 
than the latter for most subgroups. Nevertheless, the widening inequalities in HRQoL 
were substantial, especially at age 25. For example, for men aged 25 the increase in 
HRQoL inequalities accounted for approximately half of the increase in QALE inequalities, 
whereas for women of the same age the increase in HRQoL inequalities accounted for 
approximately one-third of the increase in QALE inequalities. As a result, inequalities as 
measured by QALE widened even more than inequalities in mortality as measured by LE.

Table 3‑3: Decomposition of QALE gains over the period 2001-2011

Gender
Educational 
level

Age 25 Age 65

QALE gains 
due to 
mortality

QALE gains 
due to 
HRQoL

Total 
QALE 
gains

QALE gains 
due to 
mortality

QALE gains 
due to 
HRQoL

Total 
QALE 
gains

  High 2.29 0.56 2.85 1.97 0.20 2.17

Men Medium 2.55 0.46 3.01 1.76 0.15 1.91

  Low 1.85 0.28 2.13 1.29 0.08 1.37

  High 1.32 1.32 2.64 1.2 0.54 1.74

Women Medium 1.13 0.44 1.57 1.04 0.17 1.21

  Low 0.82 0.98 1.80 0.78 0.36 1.14
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Discussion 

This chapter has shown that, in 2001-2011, both life duration and the number of years 
lived in good health as indicated by QALE increased for the Dutch population. At both 
the ages 25 and 65, respectively, over the investigated period, LE increased more than 
QALE for men, whereas the converse was true for women; therefore in 2001-2011, men 
experienced an expansion of morbidity while women experienced a compression of 
morbidity. Furthermore, for both genders, LE and QALE increased more for the highly 
educated than for the low and medium educated with the exception of medium edu-
cated men. Our decomposition analysis shows that improvements in QALE over time 
were driven mainly by declining mortality rates, though HRQoL improvements were not 
negligible, especially at age 25 and for women. Finally, we found that health inequalities 
by education as indicated by QALE widened for most population subgroups. Most of the 
increase in QALE inequalities was due to widening inequalities in mortality; however, 
widening inequalities in HRQoL caused inequalities as measured by QALE to widen even 
more. 

Our results are in line with the literature that indicates widening health inequalities by 
SES in many European countries including Belgium, Denmark and France but also in 
New Zealand and the US (Van Oyen et al. 2011, Cambois et al. 2001, Bronnum-Hansen 
and Baadsgaard 2008, Bruggink 2009, Crimmins and Saito 2001, Davis et al. 1999). To 
our knowledge, QALE trends by educational level for the Dutch population have not 
been previously reported. However, a chapter investigating trends in disability-free life 
expectancy (DFLE) for the Dutch population by education reported that inequalities in 

Table 3‑4: Decomposition of inequalities in QALE by education (baseline: highly educated) in 2001 and 
2011

Gender
Educational 
level

Year

Age 25 Age 65

Difference 
in QALE 
due to 

mortality

Difference 
in QALE 
due to 
HRQoL

Total 
difference 

in QALE

Difference 
in QALE due 
to mortality

Difference  
in QALE  
due to 
HRQoL

Total 
difference 

in QALE

Men Medium 2001 -2.49 -0.76 -3.25 -1.19 -0.18 -1.37

    2011 -2.23 -0.87 -3.10 -1.39 -0.23 -1.62

  Low 2001 -4.69 -2.68 -7.37 -2.11 -0.57 -2.68

    2011 -5.07 -3.02 -8.09 -2.75 -0.73 -3.48

Women Medium 2001 -1.45 -0.14 -1.59 -0.68 0.14 -0.54

    2011 -1.67 -0.99 -2.66 -0.86 -0.21 -1.07

  Low 2001 -3.78 -2.5 -6.28 -1.95 -0.63 -2.58

    2011 -4.35 -2.77 -7.12 -2.39 -0.79 -3.18
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terms of that health measure were constant in various periods, i.e. between 1997 and 
2000, as well as between 2005 and 2008 (Bruggink 2009). However, various measures 
of health result in different estimates. This is one of the reasons why it is important to 
use an adequate measure of population health. Disability based health measures such 
as disability-free life expectancy (DFLE) focus on measuring physical aspects of health 
and they capture the health status in one dimension (e.g. disabled/not-disabled). On 
the other hand, health-related quality of life (HRQoL) based measures such as quality-
adjusted life expectancy (QALE) have the advantage of measuring multiple aspects 
of health including not only physical domains but also mental and social functioning 
domains. Therefore, such measures are multidimensional; i.e. HRQoL defines a variety 
of health states usually ranging between 0 (death) and 1 (full health). Hence, in our 
view, compared to other health measures such as DFLE, QALE offers a generic multi-
dimensional measure of health and, when possible, should be used for reporting the 
magnitude of health and health inequalities in scientific and lay audiences.

Our findings may be related to changes in health care expenditures and wider societal 
developments such as the economic crisis. Previous research suggested that, in the 
Netherlands, an increase in the healthcare expenditures at the beginning of the investi-
gated period here, i.e. in year 2001, led to increases in life expectancy (Wubulihasimu et 
al. 2015). Another line of research has argued that the global financial recession starting 
in 2008 led to severe cuts in public spending which may have widened inequalities in 
health, (Stuckler et al. 2011, McKee et al. 2012).

The institutionalized population was not included in POLS and was only partially in-
cluded in LFS since persons might have been transiting to, for example, nursing homes 
before death. However, in general, the percentage of the institutionalised Dutch popula-
tion remained constant over the period 2001-2011. Hence, it is unlikely that the exclu-
sion of the institutionalized would have significantly affected the overall QALE trends in 
our chapter.

A second limitation of our chapter is the participation rates in the LFS and POLS data, 
especially because a selection bias associated with underestimating the effect of low 
socio-economic status on poor health was observed (Visscher 1997, Lorant et al. 2007). 
However, as both participation rates were fairly constant in 2001-2011, we would not 
expect this to have significantly affected the reported QALE trends.

This chapter has several noteworthy strengths. Firstly, we estimated both components – 
mortality and health status – disaggregated by SES. This goes beyond studies that solely 
estimated trends in health status or mortality by SES. 
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A second strength of our chapter is the use of QALE as a population health measure. As 
QALE was based on the SF-6D questionnaire which incorporates 241 possible health 
states, QALE is a broader measure of population health than life expectancy or other 
healthy life expectancy measures that are based on binary variables (i.e. disabled or not).

Investigating the underlying causes of the observed health trend inequalities for the 
Dutch population was beyond the scope of our chapter. This is, however, an interesting 
topic that merits further research.

Concluding, our findings that the highly educated tend to live longer and in better 
health than the less educated are especially relevant to the ongoing debates on ex-
tended labour participation for the elderly and on the raising of pension ages. On the 
one hand, as the more highly educated live longer, they place greater demands on pen-
sion resources. On the other hand, as they live a greater number of years in good health, 
they may participate in the labour force for longer. Social policies aimed at raising the 
legal retirement age should be adopted with caution, as not all population subgroups 
make equal demands on pension resources or have the same health status around the 
legal retirement age. Obviously, further research is required before our results can be 
translated into answers to such policy questions. 



Trends in quality adjusted life expectancy (QALE) by educational level 57

 C
ha

pt
er

 3

Appendix

We estimated mortality rates by education in two steps. First, we used the LFS data for 
estimating relative risks by age, calendar year and education level (denoted RR(a,t,e) 
which equals the mortality rate of educational class e, age a, year t divided by the mor-
tality rate of the reference educational class age a, year t ). To estimate RR(a,t,e) we fi tted 
a Poisson regression model with the exposure as off set and the expected number of 
deaths by year, age, education class and calendar year as outcome variable:
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less educated are especially relevant to the ongoing debates on extended labour participation for 
the elderly and on the raising of pension ages. On the one hand, as the more highly educated live 
longer, they place greater demands on pension resources. On the other hand, as they live a greater 
number of years in good health, they may participate in the labour force for longer. Social policies 
aimed at raising the legal retirement age should be adopted with caution, as not all population 
subgroups make equal demands on pension resources or have the same health status around the 
legal retirement age. Obviously, further research is required before our results can be translated into 
answers to such policy questions.  

Appendix 
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class age a, year t ). To estimate RR(a,t,e) we fitted a Poisson regression model with the exposure as 
offset and the expected number of deaths by year, age, education class and calendar year as 
outcome variable: 
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Abstract

The relationship between ageing, health, and healthcare expenditures (HCE) is of central 
importance to academics and public policymakers. Generally, it is observed that with 
advancing age, health deteriorates and HCE increase. This seems to imply that increases 
in life expectancy would strongly increase both the demand for HCE and the number of 
years lived in poor health. Previous research has shown that such straightforward conclu-
sions may be flawed. For example, it has been established that not age but ‘time to death 
(TTD)’ is the main driver of increased HCE at advanced ages. This chapter aims to extend 
this line of research by investigating the relationship between age, TTD, and health, the 
latter being longitudinally measured via a health-related quality of life (HRQoL) ques-
tionnaire. We propose an approach for modelling the HRQoL outcome that accounts 
for both the non-standard nature of this response variable (e.g. bounded, left-skewed, 
heteroscedastic) and the panel structure of the data. Analyses were performed within a 
Bayesian framework. We found that health losses are centred in the final phase of life, 
which indicates that future increases in longevity will not necessary increase life years 
spent in poor health. This may alleviate the consequences of population aging. 
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Introduction

Over the past few decades, developed countries have seen a substantial increase in 
life expectancy (Cutler et al. 2006), which is mainly attributable to decreasing mortality 
rates at advanced ages (Eggleston and Fuchs 2012). As a result, the proportion of elderly 
persons in such countries’ populations has also increased, a demographic phenomenon 
commonly referred to as ‘population ageing’. Much societal, political and scientific 
debate has centred on population ageing, key questions being whether the rapidly 
growing healthcare expenditures (HCE) are affordable, and whether the statutory retire-
ment age should be raised in order to increase labour force participation of the elderly. 
The rationales for, and consequences of, policy decisions in these areas depend on the 
extent to which the increased number of life years (due to increased longevity) would 
be spent in good health.

In general, it is observed that, with advancing age, health deteriorates and healthcare 
use increases (Fryback et al. 2007, Getzen 1992). This implies that increases in life expec-
tancy would increase the number of years lived in poor health, which may limit scope for 
extending working lives and increase healthcare utilization. However, such seemingly 
obvious conclusions may be misleading. For example, several researchers have shown 
that healthcare use is centred in the final phase of life (Seshamani 2004, Seshamani 
2004, Zweifel et al. 2004, Werblow et al. 2007, Wanless 2004). Using large datasets (e.g. 
healthcare insurers’ claims databases or hospitals’ registry data) including information 
on healthcare use of individuals followed until death, age (i.e. time since birth) was 
shown to poorly predict HCE when ‘time to death’ (TTD) was taken into account. This has 
an important implication: population ageing may have only limited impact on future 
HCE growth, since ageing implies the postponement of these expensive final years of 
life (Zweifel et al. 1999, Seshamani 2004, Zweifel et al. 2004). In this chapter, we argue 
that population ageing may have a limited impact not only on future HCE use but also 
on average population health state. For the purposes of the present research, health 
is measured using a health-related quality of life (HRQoL, (Dolan 2000)) questionnaire. 
HRQoL indicates health dimensions including physical health, mental health, and social 
functioning. An important feature of HRQoL is that health states are assigned numerical 
values using preference weights commonly obtained from samples of the general popu-
lation, resulting in a single HRQoL index generally ranging from 0 (dead) to 1 (perfect 
health). 

Previous research has shown that population average HRQoL decreases with age  Heijink 
et al. 2011). This has alos been shown in chpater 2 and 3 of this thesis. We hypothesize 
that the observed relationship between HRQoL and age is largely attributable to a rela-
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tionship between increasing age-specific mortality and the low HRQoL associated with 
the period prior to death. For example, it is reasonable to assume that the population 
average HRQoL at age 80 will be lower than that at age 60, because at age 80 there are 
many more individuals in their final year of life than at age 60. If this hypothesis were 
to be confirmed, there would be important implications for the economics of ageing 
populations, as a strong relationship between TTD and HRQoL indicates that increases 
in longevity go hand in hand with increases in HRQoL as shown in chapters 2 and 3. 
Consequently, this would have important implications for the ongoing political debate 
on raising the official retirement age. 

This chapter aims to test the hypothesis stated in the previous paragraph by investi-
gating the relationship between age, TTD and HRQoL. In doing so, we address several 
important methodological issues that arise due to the non-standard HRQoL response 
and the panel structure of the data; that is, we propose modelling the HRQoL outcome 
using the mixed beta regression and the flexibility of the Bayesian estimation.  Note that 
previous studies that investigated the relationship between TTD and HCE used large 
longitudinal datasets extracted from hospital registries or insurers’ claims databases, 
which do not include HRQoL measures. Generally, HRQoL data is scarcer than HCE data. 
For the main analyses of this chapter, we analysed a longitudinal dataset including 
information on 356 individuals who were followed for 16 years, with a maximum of four 
measurement rounds. 

Modelling the HRQoL outcome can be problematic due to its non-standard distribution: 
that is, bounded (usually defined between 0 and 1) and strongly (left) skewed. Much re-
search on modelling HRQoL relies upon the robustness and computational ease derived 
from the normality assumption (Austin 2002, Pullenayegum et al. 2010, Pullenayegum 
et al. 2012). However, normality and homoscedasticity are unlikely to hold when the 
dependent variable is bounded. Because the domain of the normal distribution (i.e. the 
domain of values for which its density is defined) is unbounded, predictions outside of 
the HRQoL domain, i.e. outside of the interval (0, 1] are possible.  Recent research has 
proposed using a beta distribution when modelling HRQoL data (Basu and Manca 2012, 
Hunger et al. 2011, Hunger et al. 2012). A beta regression approach has been used in 
chpaters 2 and 3 as well which also utilized a particularly attractive feature of the beta 
distribution; that is, its recognition of a relationship between the mean and the variance 
that typically occurs for bounded variables (Kieschnick and McCullough 2003). Whereas a 
normally distributed variable can have any variance, a beta distributed variable with the 
mean close to one of its boundary values has a smaller variance than a beta distributed 
variable with the mean at the midpoint of the interval. Although it is possible to model 
the variance of a normally distributed variable (for example, as a function of explanatory 
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variables), using maximum likelihood approaches, estimating the variance as a func-
tion of the mean is not straightforward. Moreover, modelling HRQoL over time poses 
additional problems, as multiple observations over time for the same individual are cor-
related. A recent chapter proposed using a longitudinal beta regression estimated using 
the maximum likelihood approach for modelling HRQoL over time (Hunger et al. 2012). 
We expand on previous literature by estimating a mixed beta regression model within 
the Bayesian paradigm using Markov chain Monte Carlo (MCMC) methods to model the 
HRQoL data. Due to its flexibility in modelling longitudinal bounded outcomes, this ap-
proach has been recently proposed for modelling longitudinal data defined between 0 
and 1 (Figueroa-Zúñiga 2013); however, to our knowledge this has not yet been used to 
model HRQoL data. 

Our modelling approach is appealing for various reasons. First, we performed main 
analyses on a rather small sample size: 356 individuals followed until death. Unlike 
maximum likelihood approaches, Bayesian estimation enables small sample sizes to 
be accounted for, by employing prior information on model’s parameters. Second, the 
MCMC methods permit great flexibility in specifying complex non-standard models 
that would be more difficult and time-consuming to estimate according to the classi-
cal maximum likelihood approach; for example modelling the heteroscedasticity in a 
natural and straightforward way by estimating the dispersion parameter as a function 
of explanatory variables and possibly of random effects. Another example consists in 
specifying models that assess the impact of different sources of bias (e.g. non-ignorable 
missing data) on the estimated parameters. Such sensitivity analyses will be exempli-
fied in this chapter. Hence, compared to maximum likelihood approaches, the Bayesian 
estimation procedure makes it possible to develop more complex models that are easier 
to implement and estimate. Section 2 presents the data used in this chapter; Section 
3 presents the methods employed to estimate HRQoL as a function of age and TTD; 
Section 4 illustrates the main results and findings of our analyses; finally, Section 5 draws 
conclusions from, and discusses the implications of, our findings.

Data

The data analysed here is from the Dutch Doetinchem Cohort Chapter, which inves-
tigates, using responses to SF-36 health questionnaires at five-year intervals, how 
changes in lifestyle and biological factors affect health aspects including the incidence 
of chronic diseases, physical and cognitive functioning, and health-related quality of life 
(Verschuren et al. 2008). Doetinchem  is a municipality in the east of the Netherlands. 
The institutionalized population is excluded from the cohort. We analysed data from 
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four successive measurement rounds: Round 2 (1993 – 1997) to Round 5 (2008 – 2011) 
which included the HRQoL measurement. This data was linked to Statistics Netherlands’ 
mortality registries in order to identify deceased individuals.  In line with previous re-
search on the relationship between HCE and TTD using samples of deceased individuals, 
for the main analyses of  this chapter we used the subset of deceased individuals (aged 
50+) from the Doetinchem data; that is, approximately 10% of the entire group. There 
are multiple measurements for about half of those who died and for about 30% of those 
who survived. The response rates for the deceased were: 43.34% for Round 2, 63.43% 
for Round 3, 50.17% for Round 4, and 35.05% for Round 5. The cases including missing 
responses were discarded from the dataset used for the main analyses of this chapter. 

In the Doetinchem Cohort Chapter, health-related quality of life (HRQoL) is measured 
using the SF-6D questionnaire, which is an abbreviated version of the SF-36 health ques-
tionnaire. SF-6D has six health dimensions (i.e. questions), each with four to six levels. 
These questions monitor: physical functioning (6 levels), role limitations (4 levels), social 
functioning (5 levels), pain (6 levels), mental health (5 levels) and vitality (5 levels). (See 
Appendix A1 for a full description of the SF-6D questionnaire). A health state as defined 
by the SF-6D is obtained by selecting one statement from each dimension, starting 
with physical functioning and ending with vitality. In this way, 18000 different health 
states can be defined. For example, the state 111111 indicates perfect health, as the 
best (healthiest) answer was provided for each health dimension. In health economics, 
it is common to choose a smaller set of representative health states and use various 
techniques to attach utility values to those indicating individual preferences for them. 
In this case, we used the valuation algorithm developed by Brazier and Roberts (Brazier 
et al. 2002). With this algorithm utility values were attached to 249 selected states by 
using the standard gamble (SG) technique, whereby 611 respondents from the UK 
general population were asked to choose between remaining in an ill state (one of the 
249 selected states) for a period of time or a medical intervention which would either 
restore them to perfect health or result in death. Each respondent was asked to value 
six health states. Consequently, this algorithm attaches a weight ranging between 0 
(dead) and 1(full health) to each health state. In our sample, the observed SF-6D ranges 
between 0.388 and 1 (full health). For our purposes, TTD is defined as the time between 
the observed SF-6D measurement and death. In our sample, TTD ranges from less than 
one month to 193 months (approximately 16  years), while age ranges from 50 to 81 
years. At baseline measurement the maximum observed age was 66 years; at the end 
of follow-up the maximum observed age was 81. Table 4‑1 compares descriptive statis-
tics of deceased individuals aged 50+ with those of survivors aged 50+. Note that for 
survivors, TTD is not observed within the observation time, i.e. TTD is censored. Table 
4‑1 indicates that, average TTD was significantly larger, and mean age at death slightly 
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larger, for women than for men. However, for both men and women the mean age at 
death is lower than that reported for the entire Dutch population between 1993 and 
2011 (Statistics Netherlands. 2011). This is due to the observed follow-up time; obvi-
ously, if the follow-up had been longer, we would have observed more deaths at older 
ages. Table 4‑1 also shows that the mean SF-6D utility value is smaller for the deceased 
than for the survivors, the difference being approximately 0.02 for men and 0.03 for 
women. Moreover, mean SF-6D HRQoL values are larger for men than for women, which 
are consistent with previous findings (Heijink et al. 2011). In addition, Table 4‑1 indicates 
that the percentage of observations having an SF-6D value of 1 (full health) was gener-
ally small, lower for deceased than for survivors, and lower for women than for men.

Figure 4-1 shows how mean SF-6D HRQoL varies with age for both deceased and survi-
vors and that, at most ages, it is lower for the former. The relationship is approximately 
linear for deceased and survivors, the greater wiggliness of the pattern for deceased 
being due to a substantially smaller sample size for that group. Furthermore, Figure 4-2 
shows that the HRQoL distribution of deceased is more skewed and has greater varia-
tion than that of survivors.

Table 4‑1: Descriptive statistics of the complete-case Doetinchem sample for those aged 50+

    Deceased Survivors

men

Number 221 1746

mean HRQoL± S.E. 
1 0.78 ±0.005 0.80 ±0.001

mean age (years)± S.E. 67.8 ±0.482 66.3±0.183

mean TTD (years) ± S.E. 4.7±0.241 4.8±0.084
2

% one HRQoL measurement 56 31

% two HRQoL measurements 27 28

% three HRQoL measurements 17 33

% four HRQoL measurements 0 8

% full health 2.2 2.5

women
 

Number 135 1924

mean HRQoL± S.E. 0.74 ±0.007 0.77 ±0.001

mean age (years)± S.E. 68.6±0.620 66.4±0.179

mean TTD (years)± S.E. 5.8 ±0.346 5.3±0.089

% one HRQoL measurements 62 34

% two HRQoL measurements 27 31

% three HRQoL measurements 10 30

% four HRQoL measurements 1 5

% full health 0.9 1.3

1 S.E represents the standard error. 
2 For survivors, TTD is censored as it is not observed within the observation time.  
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Methods

We propose using a linear mixed model assuming a beta distribution for modelling 
the HRQoL outcome variable (i.e. a mixed beta regression, (Figueroa-Zúñiga 2013)) to 
handle the skewed and bounded nature of the HRQoL distribution and to properly 
model the correlation between and within subjects over time. In the present chapter 
this model is estimated using the Bayesian paradigm and the Markov chain Monte Carlo 
(MCMC) sampling methods available in WinBUGS (Spiegelhalter et al. 2003). In what fol-
lows, we present the main model which is the mixed beta regression model with model 
specification, prior specifications as well as robusteness to prior specifications in the 
Bayesian estimation. Furthemore, we present model extensions that account for various 
sources of uncertinity caused by ignoring the missing data or the sample of survivors 
(i.e. ignoring the TTD censoring) in the main analyses. 

Bayesian mixed beta regression model

The probability density function of a variable y following a beta density described by 
the location/mean parameter μ(0<μ<1) and precision parameter φ(φ>0) is given by:
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. In this context, 

φ is interpreted as a precision parameter because, for each fixed value of the mean 
μ, 1+φ is inversely proportional to the variance of y. If y has the above beta density, 
then y~Beta(μφ,(1−μ)φ). The beta distribution is defined on the open interval (0,1); 
therefore, for fitting a beta model, the observed values of 1 in the SF-6D index need to 
be transformed. Because in our dataset only 1.8% of the SF-6D measurements attained 
the maximum value of 1, we opted to transform the boundary point from 1 to 0.99, 
(Smithson and Verkuilen 2006, Verkuilen and Smithson 2012). An alternative approach 
for situations in which HRQoL values of 1 are more frequent is to use a two-part model in 
which one part models the probability mass at 1 and the other models the HRQoL using 
beta regression. Such an approach has been developed for beta regression models by 
Ospina and Ferrari (Ospina 2010).

In a beta regression framework, μ is modelled using a regression structure; that is, as 
a function of various explanatory variables, whereas the precision parameter can be 
either assumed to be constant over observations (Ferrari 2004, Smithson and Verkuilen 
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2006) or modelled using a regression structure (Smithson and Verkuilen 2006). In this 
chapter, we model parameters μ and φ using separate regression structures. A known 
issue when modelling any bounded variable is the presence of heteroscedasticity. As 
stated above, for bounded outcomes typically the variance changes with the mean, the 
variance of the beta distribution is determined by both μ and φ. Hence by modelling 
these two parameters as functions of explanatory variables we can explicitly address 
heteroscedasticity when modelling HRQoL. Because μ and φ do not restrict each other, 
they can be modelled separately.

Let us define a longitudinal design where i=1,...,n, observations being clustered within 
j=1,...,m subjects. Also, let yij denote HRQoL for observation i and subject j, and let 
yij~Beta(μijφij,(1−μij)φij). In order to model changes in the individual trajectories over 
time, individually varying intercept and slopes are used when modelling μij and φij. There-
fore, for each parameter, each individual will be assigned two random effects: one for the 
intercept and another for the observation time of the SF-6D measurement, which in this 
case is the HRQoL measurement round, which takes values 1, 2, 3 and 4. The longitudinal 
trajectory for μij is given by equation (2), while that for φij is given by equation (3). 

G(μij(tij))=X(tij)T
ijβ+Rijδ+bj0+bj1×tij (4.2)

H(φij(tij))=P(tij)T
ijα+Mijγ+cj0+cj1×tij (4.3)

where β and a are vectors of fixed effects with corresponding time-varying design 
matrices Xij

T(tij) and Pij
T(tij); δ and γ denote vectors of time-invariant covariates with 

corresponding design matrices Rij and Mij; bj and Cj denote vectors of subject-specific 
random effects for individual j, with Bj0 (or Cj0, respectively) denoting the random ef-
fects for the intercepts and bjl (or cjl, respectively) denoting the random effects for the 
observation time tij. Furthermore, G and H denote the logit and the log link functions 
that map the intervals (0,1) and (0,∞) onto the real line. 

Specification of prior distributions 

In order to complete the Bayesian representation, prior distributions need to be specified 
for all unknown parameters. For this purpose we considered a standard mixed effects 
model; hence we used the guidelines defined in Gelman & Hill (Gelman, A. and Hill, J. 2007) 
for specifying normal prior distributions with very large variances for the fixed-effects pa-
rameters; that is, α~N(0,100), β~N(0,100),δ~N(0,100) and γ~N(0,100), which indicates 
that we expect these fixed effects coefficients to be in the range (−100,100). Furthermore, 
in a typical mixed model random, effects are assumed to be normally distributed: 
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where D  and Σ  denote the variance-covariance matrices of the random effects; 2
1σ  and 2

2σ  (or 2
1τ  

and 2
2τ , respectively) are the variances for j0b  and j1b  (or j0c  and j1c , respectively) or the between-

subject variances and the within-subject variances, respectively; 2112 σσρ  (and 2112 ττθ , respectively) 

denotes the covariance between j0b  and j1b  (or between j0c  and j1c , respectively); and 12ρ  (or 12θ , 

respectively) denotes their correlations. Here, for computational reasons, we modelled the variance-
covariance matrices D  and Σ  using a Wishart prior distribution, for example,  dfΩ,Wishart~D , 
where Ω  is a scale matrix and df  represent the degree of freedom; we used an identity matrix prior 
for Ω  and we set the degrees of freedom to 3 (one more than the dimension of Ω ) in order to 
induce a uniform prior on the correlation. 

In Section 3.3, using the above prior specifications, we select the model that produces the best 
short-term predictions of HRQoL data. Note that in the above formulation the precision parameter 
φ  was modelled using a regression structure; however, in the next section, for illustrative purposes, 
φ is also be considered constant over observations. For those situations, we specify a prior 

distribution of the form 21/Uφ   with  p0,U~U , with p  large (p=100, for example), which was 
shown to be less informative than the commonly used inverse gamma prior distribution for the 
precision parameter (Gelman, A. and Hill, J. 2007). Section 3.4 considers model robustness to prior 
specifications.   
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To explore the relationship between HRQoL and TTD we developed two mixed beta regression 
models: one including the variables age, gender and TTD, the other including only the variables age 
and gender. This chapter refers to these models as ‘the TTD model’ and ‘the age-specific model’, 
respectively. From the model specifications we deliberately excluded disease indicators. This is 
because both age and TTD can be regarded as proxy variables that ‘borrow’ their explanatory power 
in a statistical model from other determinants of HRQoL, of which diseases processes are the most 
important. The more adjustments for various diseases made in the statistical analysis, the less the 
variables age and TTD are expected to matter. For this reason, we also excluded socio-economic 
status variables from the model specification because it has been shown, for example, that 
education is a good predictor of mortality (Cutler et al. 2006, Lleras-Muney 2005).  

Our selection of models was based on a minimum loss of Bayesian Deviance Information Criterion 
(DIC, (Spiegelhalter et al. 2002)). Model specification was investigated in two steps. First, we 

(4.4)

45 
 

used the guidelines defined in Gelman & Hill (Gelman, A. and Hill, J. 2007) for specifying normal prior 
distributions with very large variances for the fixed-effects parameters; that is,  0,100N~α , 

 0,100N~β ,  0,100N~δ  and  0,100N~γ , which indicates that we expect these fixed effects 

coefficients to be in the range  100,100 . Furthermore, in a typical mixed model random, effects 
are assumed to be normally distributed:  

    























 2
22112

2112
2
1

j1j0j σσσρ
σσρσ

,
0
0

ΝD0,Ν~Τβ,ββ  (4.4) 

    























 2
22112

2112
2
1

j1j0 τττθ
ττθτ

,
0
0

NΣ0,N~Tc,cjc  (4.5) 

where D  and Σ  denote the variance-covariance matrices of the random effects; 2
1σ  and 2

2σ  (or 2
1τ  

and 2
2τ , respectively) are the variances for j0b  and j1b  (or j0c  and j1c , respectively) or the between-

subject variances and the within-subject variances, respectively; 2112 σσρ  (and 2112 ττθ , respectively) 

denotes the covariance between j0b  and j1b  (or between j0c  and j1c , respectively); and 12ρ  (or 12θ , 

respectively) denotes their correlations. Here, for computational reasons, we modelled the variance-
covariance matrices D  and Σ  using a Wishart prior distribution, for example,  dfΩ,Wishart~D , 
where Ω  is a scale matrix and df  represent the degree of freedom; we used an identity matrix prior 
for Ω  and we set the degrees of freedom to 3 (one more than the dimension of Ω ) in order to 
induce a uniform prior on the correlation. 

In Section 3.3, using the above prior specifications, we select the model that produces the best 
short-term predictions of HRQoL data. Note that in the above formulation the precision parameter 
φ  was modelled using a regression structure; however, in the next section, for illustrative purposes, 
φ is also be considered constant over observations. For those situations, we specify a prior 

distribution of the form 21/Uφ   with  p0,U~U , with p  large (p=100, for example), which was 
shown to be less informative than the commonly used inverse gamma prior distribution for the 
precision parameter (Gelman, A. and Hill, J. 2007). Section 3.4 considers model robustness to prior 
specifications.   

Model specification  

To explore the relationship between HRQoL and TTD we developed two mixed beta regression 
models: one including the variables age, gender and TTD, the other including only the variables age 
and gender. This chapter refers to these models as ‘the TTD model’ and ‘the age-specific model’, 
respectively. From the model specifications we deliberately excluded disease indicators. This is 
because both age and TTD can be regarded as proxy variables that ‘borrow’ their explanatory power 
in a statistical model from other determinants of HRQoL, of which diseases processes are the most 
important. The more adjustments for various diseases made in the statistical analysis, the less the 
variables age and TTD are expected to matter. For this reason, we also excluded socio-economic 
status variables from the model specification because it has been shown, for example, that 
education is a good predictor of mortality (Cutler et al. 2006, Lleras-Muney 2005).  

Our selection of models was based on a minimum loss of Bayesian Deviance Information Criterion 
(DIC, (Spiegelhalter et al. 2002)). Model specification was investigated in two steps. First, we 

(4.5)

where D and Σ denote the variance-covariance matrices of the random effects; σ1
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2 and τ2
2, respectively) are the variances for bj0 and bj1 (or cj0 and cj1, respec-

tively) or the between-subject variances and the within-subject variances, respectively; 
ρ12σ1σ2 (and θ12τ1τ2, respectively) denotes the covariance between bj0 and bj1 (or be-
tween cj0 and cj1, respectively); and ρ12 (or θ12, respectively) denotes their correlations. 
Here, for computational reasons, we modelled the variance-covariance matrices D and 
Σ using a Wishart prior distribution, for example, D~Wishart(Ω,df), where Ω is a scale 
matrix and df represent the degree of freedom; we used an identity matrix prior for Ω 
and we set the degrees of freedom to 3 (one more than the dimension of Ω) in order to 
induce a uniform prior on the correlation.

In Section 3.3, using the above prior specifications, we select the model that produces 
the best short-term predictions of HRQoL data. Note that in the above formulation the 
precision parameter φ was modelled using a regression structure; however, in the next 
section, for illustrative purposes, φ is also be considered constant over observations. 
For those situations, we specify a prior distribution of the form φ=1/U2 with U~U(0,p), 
with P large (p=100, for example), which was shown to be less informative than the 
commonly used inverse gamma prior distribution for the precision parameter (Gelman, 
A. and Hill, J. 2007). Section 3.4 considers model robustness to prior specifications.  

Model specification 

To explore the relationship between HRQoL and TTD we developed two mixed beta 
regression models: one including the variables age, gender and TTD, the other including 
only the variables age and gender. This chapter refers to these models as ‘the TTD model’ 
and ‘the age-specific model’, respectively. From the model specifications we deliber-
ately excluded disease indicators. This is because both age and TTD can be regarded as 
proxy variables that ‘borrow’ their explanatory power in a statistical model from other 
determinants of HRQoL, of which diseases processes are the most important. The more 
adjustments for various diseases made in the statistical analysis, the less the variables 
age and TTD are expected to matter. For this reason, we also excluded socio-economic 
status variables from the model specification because it has been shown, for example, 
that education is a good predictor of mortality (Cutler et al. 2006, Lleras-Muney 2005). 
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Our selection of models was based on a minimum loss of Bayesian Deviance Information 
Criterion (DIC, (Spiegelhalter et al. 2002)). Model specification was investigated in two 
steps. First, we considered the mixed beta regression for the location parameter μij and 
a common precision parameter  φ for each observation yij. Second, we considered the 
mixed beta regression for the location parameter μij and a different precision param-
eter for each observation; hence, at this step we also modelled φ using a regression 
structure. Table 4‑2 and Table 4‑3 present model selection results for the age-specific 
model and for the TTD model, respectively. For both models, DIC values indicate that 
adding random effects substantially improves the model fit. Furthermore, modelling the 
precision parameter using a regression structure reduces DIC by about 278 units in the 
age-specific model and 190 units in the TTD model. For the model specification of μ 
and φ, we fitted models that used terms such as age2, TTD2 and various interactions 
between the variables age, gender and TTD. However, DIC values indicated that such 
specifications would not improve the model fit: DIC reductions of less than 5 units were 
not considered significant/relevant (Spiegelhalter et al. 2002). Hence, we opted for the 
simpler model specification in those situations. 

The final age-specific model is described by model specification number (10) in Table 
4‑2 and the final TTD model is showed by model specification number 12 in Table 4-3. 
For the remainder of this chapter, these models will be referred to as ‘baseline models’.

Table 4‑2: Model selection for the age-specific model

Model Nr.
logit(μi(j)) φi(j) DIC

Model 
selection 
for μi(j)

(1) δ0+δ1gi+β1ai φ=1/U2,U~U(0,100) -820

(2) δ0+δ1gi+β1ai+β2ai×gi φ=1/U2,U~U(0,100) -822

(3) δ0+δ1gi+β1ai+β2ai
2 φ=1/U2,U~U(0,100) -822

(4) δ0+δ1gi+β1ai+bj0 φ=1/U2,U~U(0,100) -1051

(5) δ0+δ1gi+β1ai+bj0+bj1×tij φ=1/U2,U~U(0,100) -1114

Model 
selection for 
φi(j)

(6) δ0+δ1gi+β1ai+bj0+bj1×tij log(φi)=γ0+α1ai -1145

(7) δ0+δ1gi+β1ai+bj0+bj1×tij log(φi)=γ0++γ1gi+α1ai -1146

(8) δ0+δ1gi+β1ai+bj0+bj1×tij log(φi)=γ0+α1ai+α3ai×gi -1140

(9) δ0+δ1gi+β1ai+bj0+bj1×tij log(φij)=γ0+α1ai+cj0 -1201

(10) δ0+δ1gi+β1ai+bj0+bj1×tij log(φij)=γ0+α1ai+cj0+cj1×tij -1335

*a denotes age, g denotes gender and t denotes measurement time (or measurement round). 
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The developed models were estimated using Markov Chain Monte Carlo (MCMC) simu-
lation methods implemented in WinBUGS. In our MCMC simulation, for each model, we 
used 30 000 iterations with a burn-in of 5000 iterations and three chains with different 
starting values. Furthermore, all the necessary diagnostic tests for assessing conver-
gence – e.g. autocorrelation, trace and history – were performed and desirable results 
were observed in the chains (i.e., the chain for each parameter was stationary and uncor-
related). Moreover, convergence was assessed using Gelman and Rubin’s convergence 
diagnostic (Gelman and Rubin 1992) for the three chains that had different starting 
values. For brevity, detailed numerical results of the above procedures are not shown. 

In the Appendix we compare the above models with equivalent specifications under 
the normality assumption; that is, the linear mixed effects model and the simple 
linear model, which were estimated using WinBUGS assuming non-informative prior 
distributions. Often, researchers attempt to address some of the issues surrounding 
bounded outcomes by transforming the dependent variable. A common approach 
uses the normal distribution for estimation after performing a logistic transformation 
on the dependent variable. While this transformation removes the problem of obtain-
ing expected values outside of permissible bounds, it also assumes that the variance 
would be stabilized, which can be of concern given that other distributional models 
such as beta and simplex distributions imply that this transformation will not stabilize 
the variance. That said, in the present chapter we considered also estimating the linear 

Table 4‑3: Model selection for the TTD model

Model Nr. logit(μi(j)) φi(j) DIC

Model 
selection 
for μi(j)

(1) δ0+δ1gi+β1TTDi φ=1/U2,U~U(0,100) -823

(2) δ0+δ1gi+β1ai+β2TTDi φ=1/U2,U~U(0,100) -823

(3) δ0+δ1gi+β1ai+β2TTDi+β3ai×gi φ=1/U2,U~U(0,100) -826

(4) δ0+δ1gi+β1ai+β2TTDi+β3a×TTDi φ=1/U2,U~U(0,100) -825

(5) δ0+δ1gi+β1ai+β2TTDi+β3TTDi
2 φ=1/U2,U~U(0,100) -827

(6) δ0+δ1gi+β1ai+β2TTDi+bj0 φ=1/U2,U~U(0,100) -1061

(7) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij φ=1/U2,U~U(0,100) -1125

Model 
selection 
for φi(j)

(8) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij log(φi)=γ0+α1TTDi -1156

(9) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij log(φi)=γ0+α1ai -1157

(10) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij log(φi)=γ0+α1TTDi+α2ai -1158

(11) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij log(φij)=γ0+α1TTDi+cj0 -1289

(12) δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij log(φij)=γ0+α1TTDi+cj0+cj1×tij -1310

*a denotes age, g denotes gender and t denotes measurement time (or measurement round).
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model and the linear mixed effects model after logistic transformation of the HRQoL 
data. All of these models estimated under the normality assumption were compared 
with the mixed beta regression in terms of their predictive capacity as indicated by DIC. 
Furthermore, QQ plot comparisons were investigated. DIC indicated that the mixed beta 
regression offers a more flexible model, which predicts the atypical HRQoL outcome 
better than all the models that assume a normal distribution (including those estimated 
on the transformed data). 

Robustness to prior specifications 

In our developed model specifications we considered standard prior distributions for 
a linear mixed effects model; that is, normal distributions with large variances for the 
fixed effects parameters and multivariate normal distributions for the random effects. 
However, the impact of the scale choice under the normal model may not be neglected, 
especially when measurements present outliers. In such situations, a t-distribution 
may be more appropriate. Compared to the normal distribution, the t-distribution 
has heavier tails and may be more suitable for producing values that fall far from its 
mean. For testing the robustness of the normal prior specifications in our models, we 
modelled all the fixed effects parameters using a t-distribution; for example, we used 
β~t(μβ,τβ,dfβ), where μβ denotes the location parameter, τβ is the precision parameter 
and dfβ are the degrees of freedom. For specifying prior distributions for μβ, τβ and 
dfβ, we used the guidelines defined in Gelman and Hill (Gelman, A. and Hill, J. 2007); 
hence, we used a normal distribution with large variance for the location parameter, 
i.e. μβ~N(0,100), for the precision parameter we used a prior distribution of the form 
τβ=1/U2 with U~U(0,100) and for the degrees of freedom we used dfβ=1/df_inv with 
df_inv~U(0,.5). Similar specifications were used for the other fixed effects a, δ and γ. 
Furthermore, we also modelled the random effects using a multivariate t-distribution as 
specified above, with the distinction that we used a Wishart prior distribution for mod-
elling the variance-covariance matrix. Table 4‑4 compares DIC results of models under 
these different prior specifications. Based on the DIC values illustrated in Table 4‑4, we 
note that prior specifications using the t-distribution do not seem to produce better 
models than those using the normal distribution (differences of 3-4 DIC units between 
models using t-distributed priors and those using normal distributed priors),. Hence, we 
opted to use the normal and multivariate normal distributions for specifying priors for 
the unknown parameters in our models. 
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Model extensions for multiple bias adjustments

We performed sensitivity analyses for assessing the uncertainty caused by various 
sources of bias, including non-ignorable missing data and censoring. These various 
sources of bias were investigated thoroughly as suggested by Professor Greenland 
(Greenland 2005) by extending the baseline models with sub-models that include the 
bias parameters. Such extensions can be incorporated straightforwardly by performing 
a full Bayesian analysis as in (Greenland 2009).  In our analysis we model both separately 
and concomitantly three potential sources of bias: that due to non-ignorable missing 
response data, that due to censoring, and that due to small sample size. Note that when 
performing these sensitivity analyses, we used different samples of our dataset:

To model the selection bias due to missing response data, we used the entire sample of 
deceased individuals aged 50+; that is, all individuals that did or did not respond to the 
HRQoL questionnaire. This sample includes 453 individuals (and 1142 observations). Of 
these individuals, 75% had at least one missing measurement and about 21% had all 
HRQoL measurements missing. 

To model the selection bias due to censoring, we used the sample of deceased and 
survivors aged 65+, consisting of 1158 survivors and 156 deceased (and a total of 2165 
observations). We disregarded the cases with missing response data. Using the sample 
of individuals aged 65+ instead of those aged 50+ was necessary in this situation in 
order to achieve model convergence in WinBUGS. Due to increased model complexity 
and additional data, even in this situation model results were obtained after running 
one such model for approximately 20 hours.

Table 4‑4: DIC for models with different prior specifications

  Priors for Priors for

Model fixed  random DIC

   effects Effects

 logit(μij)=δ0+δ1gi+β1ai+bj0+bj1×tij

 log(φij)=γ0+α1ai+cj0+cj1×tij

Normal 
distribution

Multivariate
 normal distribution

-1335

t-distribution
 Multivariate
 normal distribution

-1339

t-distribution
Multivariate
 t-distribution

-1332

logit(μij)=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

 log(φij)=γ0+α1TTDi+cj0+cj1×tij

Normal 
distribution

Multivariate 
normal distribution

 -1310

t-distribution
 Multivariate
 normal distribution

 -1313

t-distribution
Multivariate 
t-distribution

 -1311
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To model the selection bias due to both missing response data and censoring, we used 
the sample of deceased and survivors aged 65+, including all individuals that did or 
did not respond to the HRQoL questionnaire. This sample includes 2020 individuals 
(and 3803 observations), of which 1761 were survivors and 259 deceased. For deceased 
and survivors, approximately 60% and 53% of individuals had at least one HRQoL 
measurement missing, while about 40% and 34% had all HRQoL measurements missing, 
respectively. 

For brevity, we present the model developments in detail for each of the above-described 
situations for the TTD model (the age-specific model being obtained by excluding the 
TTD variable from the model specification). 

Selection bias due to missing response data

The results obtained with the baseline models are valid under the missing at random 
(MAR) assumption for the HRQoL response.  While testing for the underlying missing-
data mechanism is impossible with the data at hand, a non-ignorable missing-data 
mechanism or departures from MAR assumption may introduce bias into the analyses. 
In fact, it has been observed that, in general, sicker individuals tend not to respond 
to questionnaires (Ibrahim and Molenberghs 2009). Therefore, it may well be that the 
HRQoL missingness depends on the unobserved HRQoL values, which suggests a non-
ignorable missing data mechanism (i.e. missing not at random (MNAR)). To investigate 
the extent to which the conclusions of our chapter would be affected by a potential 
non-ignorable missing data mechanism, we have adopted the full probability modelling 
approach (Mason et al. 2012).

Let us partition the HRQoL response denoted by yij(for subject j, observation i) into 
observed yij

obs and missing values yij
miss , i.e. yij=(yij

obs,yij
miss). Furthermore, let m=mij 

denote a missing data indicator such that:
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The results obtained with the baseline models are valid under the missing at random (MAR) 
assumption for the HRQoL response.  While testing for the underlying missing-data mechanism is 
impossible with the data at hand, a non-ignorable missing-data mechanism or departures from MAR 
assumption may introduce bias into the analyses. In fact, it has been observed that, in general, sicker 
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a non-ignorable missing data mechanism (i.e. missing not at random (MNAR)). To investigate the 
extent to which the conclusions of our chapter would be affected by a potential non-ignorable 
missing data mechanism, we have adopted the full probability modelling approach (Mason et al. 
2012). 

Let us partition the HRQoL response denoted by 
ijy (for subject j, observation i) into observed obs

ijy  

and missing values miss
ijy  , i.e.  miss

ij
obs
ijij y,yy  . Furthermore, let ijmm   denote a missing data 

indicator such that: 






missingy1,

observedy0,
m

ij

ij
ij  (4.6) 

Under MAR, estimating the missing response miss
ijy  is equivalent to posterior predictions from the 

model fitted to the data including the complete cases only. To model the MNAR mechanism, we 
extended the TTD baseline model (as indicated in Section 3.3) with a sub-model for the missingness 
mechanism that relates the probability of non-response, denoted by ip , to both observed and 
unobserved variables in the dataset:  

 ii pBernoul l i~m  
   ii4i3i32i ysTTD*βg*δa*βδplogit   

(4.7) 

where s  denotes the function that links the model that analyses the response data to the non-
response sub-model. The function s indicates how the distribution of the response among 
respondents relates to that among those that did not respond to the HRQoL questionnaire. 
Therefore, s  quantifies the influence of the HRQoL outcome on the non-response. When 0s   the 
outcome is said to be MAR, indicating that the distribution of the missing data would be similar to 

(4.6)

Under MAR, estimating the missing response yij
miss is equivalent to posterior predictions 

from the model fitted to the data including the complete cases only. To model the MNAR 
mechanism, we extended the TTD baseline model (as indicated in Section 3.3) with a 
sub-model for the missingness mechanism that relates the probability of non-response, 
denoted by pi, to both observed and unobserved variables in the dataset: 

observed
missing
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mi~Bernoulli(pi)
logit(pi)=δ2+β3*ai+δ3*gi+β4*TTDi+s(yi)

(4.7)

where s denotes the function that links the model that analyses the response data to the 
non-response sub-model. The function s indicates how the distribution of the response 
among respondents relates to that among those that did not respond to the HRQoL 
questionnaire. Therefore, s quantifies the influence of the HRQoL outcome on the non-
response. When s=0 the outcome is said to be MAR, indicating that the distribution of 
the missing data would be similar to that of the complete case data, whereas when, the 
outcome is said to be MNAR, indicating that two distributions would be different. We 
refer to s as to ‘the selection bias function’. Obviously, many choices can be made for 
s. Some argue that, in the absence of prior knowledge, a linear relationship between 
the probability of missingness and the response may be assumed (Mason et al. 2012). 
Others indicate that since missing data is often more frequent among the sicker, a 
non-linear form for s may be more appropriate. Here, we use the non-linear function 
of the form s(yi)=ηlog(yi), as proposed in (Scharfstein et al. 2003), with η denoting the 
selection bias parameter. The parameter η is interpreted as the log odds ratio of missing-
ness between subjects who differ by one unit of log(y)i. Hence, η<0 (>0), indicates that, 
compared to respondents, the distribution of the response among those who did not 
respond to the HRQoL questionnaire is heavily weighted towards the high values of y. 
Note that other parameterizations may be considered to reflect the nonlinearity, e.g. 
polynomial functions. When fitting the above models, we used non-informative priors 
for the fixed effects parameters. i.e. δ2,δ3,β3,β4,η~N(0,40). 

Selection bias due to censoring

The baseline models were fitted on the dataset for the deceased who ignores the subset 
of survivors and, therefore, ignores the bias possibly introduced by ignoring the cen-
sored nature of the TTD variable. Estimation of a model with censored regression may 
be approached as an estimation problem with missing data, as described in (Roderick 
J. A. Little 1992). In other words, censored values can be treated as missing. Here, we 
treated the censored TTD values as missing and we extended the baseline models with 
a sub-model that imputes the missing TTD values. Similarly to response missing, we 
adopted a full probabilistic Bayesian approach. We extended the baseline TTD model 
in such a way as to account for non-ignorable censoring; that is, for missing TTD that is 
MNAR, assuming that the TTD missingness depends on other observed covariates but 
also potentially on the unobserved TTD itself. The baseline model was extended with a 
sub-model for imputing the missing values of the TTD covariate.

We assume TTDi~Normal(ωi,ζ). Here we can either assume vague priors for ωi,ζ, or 
build a regression model relating TTD to other covariates such as age and gender and 
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assume vague priors only for the variance parameter ζ. Since mortality depends on age 
and gender, we modelled ωi as a function of age and gender: 

ωi=δ4+β5*ai+δ5*gi (4.8)

and we used vague priors for the variance parameter ζ=1/U2,U~U(0,100) and for the 
parameters δ4,δ5, β5~N(0,100).

Sub-model for the TTD missingness mechanism 

Let Censi denote a censoring indicator, such that:

49 
 

that of the complete case data, whereas when, the outcome is said to be MNAR, indicating that two 
distributions would be different. We refer to s  as to ‘the selection bias function’. Obviously, many 
choices can be made for s . Some argue that, in the absence of prior knowledge, a linear relationship 
between the probability of missingness and the response may be assumed (Mason et al. 2012). 
Others indicate that since missing data is often more frequent among the sicker, a non-linear form 
for s  may be more appropriate. Here, we use the non-linear function of the form    ii yηlogys  , as 
proposed in (Scharfstein et al. 2003), with η  denoting the selection bias parameter. The parameter 
η  is interpreted as the log odds ratio of missingness between subjects who differ by one unit of 

 iylog . Hence, 0)0(η  , indicates that, compared to respondents, the distribution of the 
response among those who did not respond to the HRQoL questionnaire is heavily weighted towards 
the high values of y . Note that other parameterizations may be considered to reflect the 
nonlinearity, e.g. polynomial functions. When fitting the above models, we used non-informative 
priors for the fixed effects parameters. i.e. ,δ2 ,δ3 ,3 ,4 η  0,40N~ .  

Selection bias due to censoring 

The baseline models were fitted on the dataset for the deceased who ignores the subset of survivors 
and, therefore, ignores the bias possibly introduced by ignoring the censored nature of the TTD 
variable. Estimation of a model with censored regression may be approached as an estimation 
problem with missing data, as described in (Roderick J. A. Little 1992). In other words, censored 
values can be treated as missing. Here, we treated the censored TTD values as missing and we 
extended the baseline models with a sub-model that imputes the missing TTD values. Similarly to 
response missing, we adopted a full probabilistic Bayesian approach. We extended the baseline TTD 
model in such a way as to account for non-ignorable censoring; that is, for missing TTD that is MNAR, 
assuming that the TTD missingness depends on other observed covariates but also potentially on the 
unobserved TTD itself. The baseline model was extended with a sub-model for imputing the missing 
values of the TTD covariate. 

We assume  ζ,ωNormal~TTD ii . Here we can either assume vague priors for ζ,ωi , or build a 
regression model relating TTD to other covariates such as age and gender and assume vague priors 
only for the variance parameter ζ . Since mortality depends on age and gender, we modelled iω  as a 
function of age and gender:  

i5i54i g*δa*βδω   (4.8) 
and we used vague priors for the variance parameter ,1/Uζ 2  0,100U~U  and for the parameters 

4δ , 5δ , 5β  0,100N~ . 

Sub-model for the TTD missingness mechanism  

 Let iCens  denote a censoring indicator, such that: 






censoredy0,
observedy1,

Cens
ij

ij
i  (4.9) 

 
 ii qBernoull i~Cens  (4.10) 

(4.9)

Censi~Bernoulli(qi)

logit(qi)=δ6+β6*ai+δ7*gi+Q(TTDi)
(4.10)

where qi denotes the probability of observing TTD and Q indicates the selection bias 
function that links the missing TTD (i.e. the censoring mechanism) with the analysis 
model. Here, we assume a linear function for Q, i.e. Q(TTDi)=β7*TTDi. Nevertheless, 
other forms (e.g. nonlinear functions) may be investigated. However, a model with ad-
ditional complexities would be troublesome to estimate in this case. Note that, when 
β7=0, the missing TTD covariate is MAR while for β7≠0, the missing covariate is MNAR. 
We used vague priors for the parameters δ6,δ7,β6, β7,~N(0,40).

Informative priors

A recent chapter that investigated the relationship between TTD and HRQoL reported 
some model parameter estimates that can be used in this analysis in the form of informa-
tive priors as shown in chapter 5 of this thesis. In particular, coefficient estimates of age 
(β1)and TTD (β2)for the location parameters were reported from both an age-specific 
and a TTD model. It should be noted that the above chapter used a larger dataset (i.e. 
about 1600 individuals) that was cross-sectional. Furthermore, that chapter reports 
lower variance for the age coefficient than for the TTD coefficient, providing a more 
informative prior for the age coefficient. Therefore, although we performed analyses 
that incorporated these informative priors, the results should be treated with caution. 

The following priors were used as reported in chapter 5: for the age-specific 
model, we used the prior β1~N(−0.008,0.0012) and for the TTD model we used the 



Health losses at the end of life. A Bayesian mixed beta regression. 77

 C
ha

pt
er

 4

priorsβ1~N(−0.008,0.00182) for the age coefficient and β2~N(0.06,0.03162) for the 
TTD coefficient, respectively. 

Multiple bias adjustments were estimated by combining the models described in Sec-
tions (a), (b), and (c). For example, a joint model that accounts for uncertainty caused by 
ignoring the informative missing data mechanism and by ignoring the TTD censoring 
mechanism was developed by combining the baseline model specification and the sub-
models from Sections (a) and (b).

Results

This section is structured in two parts. The first part presents results of the baseline mod-
els. The second part present results that show to what extent the findings indicated by 
the baseline models are robust to various sources of bias such as non-ignorable missing 
data and censoring. 

Baseline models

Table 4‑5 displays the mean posterior estimates together with 95% equal-tailed credible 
intervals of all parameters (except the random-effects parameters) from the age-specific 
and the TTD models. Note that the estimates of the location parameter μ are on the logit 
scale, whereas those of the precision parameter φ are on the log scale. Table 4‑4 also 
presents the Monte Carlo (MC) error, which measures the accuracy of our simulations, 
each estimated parameter having an MC error of less than 5%, as previously suggested 
in the literature (Spiegelhalter et al. 2003).

For the coefficients that model the location parameter μ, the negative age coefficient 
β1 indicates that mean HRQoL decreases with age in both the age-specific and the TTD 
model. Although in both models the 95% credible interval for β1 includes 0, the absolute 
value of the coefficient estimate in the TTD model is approximately 80% less than the 
value in the age-specific model. In other words, when TTD is included in the model, the 
strength of the age effect on mean HRQoL decreases considerably and becomes nearly 
negligible. Furthermore, the positive TTD coefficient β2 indicates that the greater TTD is, 
the higher mean HRQoL becomes.

For the coefficients that model the precision parameter φ, the negative age coefficient 
α1 in the age-specific model indicates that, for fixed values of μ, HRQoL variance in-
creases with advancing age. By contrast, in the TTD model the positive TTD coefficient 
α1 indicates that the greater the time to death is, the lower the HRQoL variance becomes. 
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With respect to the random intercepts and random slopes, for both μ and φ, similar 
variances of the intercepts (σ1

2 and τ1
2) and the slopes (σ2

2 and τ2
2) were observed in 

the age-specific model and the TTD model, respectively. Moreover, for both models, the 
correlation between the intercepts and the slopes has similar negative values. 

To further explore the effect of TTD on HRQoL, we compare the mean HRQoL predic-
tions from the age-specific and the TTD model. Our modelling approach enables us to 
obtain two types of HRQoL predictions; that is, predictions for individuals included in 
the dataset (which use both the fixed effects coefficients and the individual specific 
random effects) and predictions for new or average individuals (which use only the fixed 
effect coefficients). Note that, in fact, given the logit transformation, predictions for 
new individuals are not the same as average predictions or predictions for the average 
individual.

Figure 4-3 shows estimated mean HRQoL for all ages 50+ from the age-specific model, 
the TTD model with TTD fixed at 1 month, and the TTD model with TTD fixed at 16 years. 
We chose these values to cover the entire observed range of TTD in our dataset. We 
note that, for both men and women, when controlling for TTD, age has a nearly negli-

Table 4‑5: Posterior parameter estimates with 95% credible intervals

Posterior mean 
estimates

Age-specific model TTD model

mean
95% credible 

interval MC error mean
95% credible 

interval MC error

δ0 (intercept) 1.280 1.206 1.354 0.00017 1.284 1.211 1.356 0.00029

β1(age) -0.009 -0.018 0.0002 0.00018 -0.002 -0.012 0.009 0.00004

δ1 (gender)
0=men, 1=women -0.201 -0.350 -0.052 0.00319 -0.229 -0.377 -0.082 0.00055

β2(TTD) - - - - 0.019 0.010 0.036 0.00001

γ0 (intercept) 3.887 3.539 4.277 0.00002 3.828 3.503 4.190 0.00190

a1 (age) -0.027 -0.070 0.015 0.00032 - - - -

α1(TTD) - - - - 0.060 -0.024 0.132 0.00003

σ1
2 0.323 0.247 0.409 0.00107 0.307 0.234 0.390 0.00023

ρ12σ1σ2 -0.017 -0.061 0.027 0.00009 -0.029 -0.074 0.016 0.00017

σ2
2 0.075 0.046 0.116 0.00016 0.076 0.047 0.116 0.00012

τ1
2 0.636 0.182 1.360 0.00010 0.559 0.156 1.236 0.00428

θ12τ1
2τ2

2 -0.096 -0.461 0.208 0.00007 -0.083 -0.432 0.200 0.00211

τ2
2 0.354 0.105 0.882 0.00242 0.326 0.101 0.813 0.00271

ρ12 -0.109 -0.374 0.174 0.00115 -0.187 -0.451 0.103 0.00109

θ12 -0.188 -0.727 0.498 0.00222   -0.176 -0.734 0.516  0.00425
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gible impact on predicting mean HRQoL. Indeed, in the TTD model, when TTD is fixed, 
mean HRQoL decreases by only approximately 0.01 between the ages of 50 and 80. On 
the other hand, when TTD decreases from 16 years to one month, the mean HRQoL 
decreases by approximately 0.07. Furthermore, in accordance with previous research 
findings, Figure 4-3 illustrates that women have a lower mean HRQoL than men.

We further focus on both types of HRQoL predictions from the TTD model: those for the 

average individuals (i.e. new individuals) and new predictions for individuals in the data-
set. The upper three graphs in Figure 4-4 show HRQoL trajectories before death for three 
individuals, including prediction intervals. The leftmost of these three graphs shows 
predictions for an average individual (a new individual) aged 80 at death, whereas the 
other two graphs include new predictions at one month before death for two subjects 
selected for having similar ages of death. Figure 4-4 (top-left) shows that mean HRQoL 
for a typical man who dies at age 80 decreases from 0.83 [0.79, 0.87] at 193 months 
before death to 0.77 [0.73, 0.81] at one month before death. Figure 4-4 (top: middle and 
right) presents different mean HRQoL predictions for the two selected individuals in the 
dataset who die at ages 80 and 75, respectively. Figure 4-4 shows that, although they are 
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Figure 4‑3: Mean HRQoL predictions from the age-specific and the TTD model (predictions for all ages 
50+ when TTD is fixed at 1 and 193 months (mth) respectively
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of the same gender and die at similar ages, the two selected individuals have quite dif-
ferent HRQoL trajectories over time. Although decreasing mean HRQoL with decreasing 
TTD is evident in all cases, the slope is different for each individual whom is to be expected 
in a random intercept and random slope model. Furthermore, as these are new predic-
tions for the individuals in the dataset use not only the fixed effects but also the random 
effects, they exhibit larger variance than those for the average individuals. In Figure 4-4 
(bottom), for each subject we investigated changes in the posterior HRQoL distribution 
as death approaches. Note that the HRQoL distribution is determined not only by the 
mean parameter but also by the precision parameter φ; hence, we used the mean values 
of both μ and φ to obtain the HRQoL distribution (i.e. HRQoL~Beta(μφ,(1−μ)φ)). We 
compared the HRQoL distribution at the first observation time (for the subjects in our 
dataset) or at 193 months before death (for an average individual) with the estimated 
HRQoL distribution at one month before death. Figure 4-4 (bottom) shows that the de-
crease in mean HRQoL as death approaches is associated with important changes in the 
HRQoL distribution, which becomes increasingly left-shifted and shows substantially 
increased variation (reflected by decreased skewness and kurtosis). Hence, these results 
suggest that the lower the mean HRQoL, the greater the uncertainty. 

Robustness to bias adjustments

Table 4‑6 shows results for the age and TTD coefficients, obtained by accounting for 
various sources of bias, with those from the baseline model. In general, we observe 
that, compared to the baseline model, in the scenarios accounting for various sources of 
bias, the uncertainty of the main estimates for both the age and the TTD coefficients in-
creases. The mean TTD estimate increases from 0.019[0.010, 0.036] in the baseline model 
to 0.052 [0.018, 0.086] in the model that accounts for bias caused by non-informative 
missing response and censoring. Nevertheless, in general, for most of the sensitivity 
analyses, the mean age-coefficient estimate decreases by about 50% when the TTD 
variable is included in the model. Due to small variance in the informative priors used, 
coefficient estimates from models that use these informative priors are more precise, 
especially those for age. Therefore, when estimating the age coefficient, the informa-
tion provided by the prior dominates that provided by the dataset. For these reasons, 
in those situations the age coefficient decreases by about 20% when TTD is included in 
the model specification. 

We conclude that in various scenarios that account for multiple sources of bias such as 
missing response and censoring, the relationship between age and HRQoL becomes 
less evident when TTD is included in the model specification. Therefore, the different 
sensitivity analyses conducted here indicate that, although greater uncertainty around 
the mean estimates is observed when accounting for various sources of bias, the main 
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conclusions of these analyses do not change. On the contrary, accounting for missing 
responses in the HRQoL data and for censoring of the TTD variable results in stronger 
evidence in favour of the TTD. 

Discussion And Conclusions

This research suggests that HRQoL and TTD are strongly related and that HRQoL mainly 
depends on proximity to death rather than age. Our findings indicate that when TTD 
is included in the model specification, the effect of age on HRQoL becomes negligible. 
Hence, HRQoL losses induced by decreasing TTD are substantially larger than those 
induced by increasing age. Furthermore, these results were found robust to various 
sources of bias such as non-ignorable missing data, TTD censoring or small sample 
size. Our finding that TTD explains health losses better than age does is consistent with 
previous research showing that TTD explains healthcare expenditures (HCE) better than 
age does (Seshamani 2004, Seshamani 2004, Zweifel et al. 2004, Werblow et al. 2007); 
hence, to some extent our results were to be expected. Similarly to analyses of HCE, the 

Table 4‑6: Model estimates accounting for various sources of bias

β1(coefficient age) β2(coefficient TTD)

Age model TTD model TTD model

Model  Mean
95% credible 

interval Mean
95% credible 

interval Mean
95% credible 

interval

Baseline model a -0.009 -0.018 0.0002 -0.002 -0.012 0.009 0.019 0.010 0.036

Model adjusting for 
selection bias due to 
missing response data b

-0.011 -0.024 -0.001 -0.006 -0.017 0.005 0.028 0.011 0.045

Model adjusting for 
selection bias due to 
censoring c

-0.020 -0.027 -0.013 -0.011 -0.021 0.000 0.032 0.006 0.059

Models using  informative 
priors a

-0.008 -0.010 -0.006 -0.007 -0.010 -0.006 0.018 0.005 0.024

Models adjusting for 
selection bias due to 
missing response  and 
censoring d

-0.042 -0.051 -0.033 -0.021 -0.037 -0.006 0.052 0.018 0.086

Models adjusting for 
selection bias due 
to missing response  
and censoring using 
informative priors d

-0.010 -0.011 -0.008 -0.008 -0.010 -0.006 0.051 0.038 0.066

a models fitted to the sample of deceased aged 50+ discarding missing HRQoL response
b models fitted to the sample of deceased aged 50+ including the missing HRQoL response
c models fitted to the sample of survivors and deceased aged 65+ discarding the missing HRQoL response
d models fitted to the sample of survivors and deceased aged 65+ including the missing HRQoL response
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relationship between HRQoL and TTD can be used to improve forecasts of population 
health (van Baal and Wong 2012a), building on projections of future life expectancy 
(Oeppen and Vaupel 2002).

This chapter also contributes to the available methodologies for modelling HRQoL by 
building on recent research that has proposed beta regression for modelling the non-
standard HRQoL data. We have demonstrated that the mixed beta regression estimated 
using the MCMC methods is useful in modelling longitudinal SF-6D HRQoL data. Com-
pared to methods that use the normal distribution assumption, our approach yielded 
models with better predictive capabilities and enabled us to draw more precise conclu-
sions when investigating the relationship between HRQoL and TTD. It should be noted 
that the HRQoL index is frequently used as an important element in cost-effectiveness 
analysis of clinical trial data. The approach proposed here may be employed in such 
settings; the Bayesian estimation could prove useful, especially given the relatively small 
sample sizes of such clinical trial data and the possibility of incorporating informative 
priors. Bayesian MCMC methods have been proposed for modelling the cost element 
over time in a cost-effectiveness analysis (Cooper et al. 2007). Other, non-Bayesian ap-
proaches previously proposed for modelling end-of-life costs are also interesting for 
modelling end-of-life HRQoL. For example, (Chan and Wang 2010) propose an approach 
for estimating end-of-life medical costs by including a systematic change point for the 
slope in the period preceding death. They exemplified that method with Medicare data 
in which complete trajectories of healthcare use were known. Their method is relevant 
to situations in which similar databases are available for HRQoL. To encourage economic 
evaluation modelers to use the mixed beta regression model for modelling HRQoL over 
time, we provide the WinBUGS code for some of our models in the Appendix.

This chapter has several limitations. Perhaps its major limitation is in relation to the 
dataset used for performing the main analyses. First, the ultimate sample of deceased 
individuals used in the main analyses of this chapter was relatively small and consisted 
of rather young individuals (whose mean age at death was lower than that reported by 
Statistics Netherlands). This may explain why, although – in terms of HRQoL losses – TTD 
has a considerably larger impact than age, those losses are rather small. We hypothesize 
that a follow-up observed for longer may show a larger effect of TTD on HRQoL. The 
effect of TTD can be expected to be stronger at more advanced ages, when a far greater 
number of people are close to death and experience poor health states. Despite this ap-
parent limitation of our dataset, which would normally diminish the strength of the TTD 
effect on HRQoL, these two variables were found to be strongly related. That said, future 
research using larger longitudinal datasets with longer follow-up is recommended. 
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Second, the main analysis presented above was performed only on the sample of de-
ceased individuals, which constituted approximately 10% of all the available data. This is 
in line with previous research chaptering the relationship between HCE and TTD (Zweifel 
et al. 1999, Seshamani 2004, Seshamani 2004). However, in doing so a large portion of 
our dataset was excluded from the main analyses presented above. To confirm the TTD 
effect on HRQoL, we performed the same analysis on the sample of both deceased and 
survivors aged 65+. In this way we assessed the uncertainty caused by ignoring the 
censored nature of the TTD variable. In other words, we explicitly modelled the selec-
tion bias due to censoring by treating the TTD variable as a covariate with missing data. 
Note that, in a different context, survival analysis techniques have been developed to 
accommodate for censoring (Chan and Wang 2010). However, in this context, treating 
censoring as a covariate with missing data is more applicable to our current Bayesian 
model. We found that the parameter of selection bias due to censoring was significant 
and had important implications for most model’ estimates; nevertheless, in this case, the 
main conclusions regarding the relationship between age, TTD and HRQoL remained 
unchanged.   Third, the dataset did not include institutionalized individuals. Unfortu-
nately, information on the percentage of the Dutch population institutionalized prior to 
death was not available. However, as the closer individuals come to death, the stronger 
HRQoL and TTD are related, we suspect that if very ill individuals were to be taken into 
account, the effect of TTD on HRQoL would become even larger. However, individuals 
who are very close to death and have a low HRQoL are unlikely to be included in any 
survey, whether they are institutionalized or not.

Fourth, about half of individuals responded to only one measurement round, result-
ing in data imbalance. However, similarly to all random effect models, the mixed beta 
regression model accommodates to any degree of imbalance in the data. Furthermore 
between 35% and 65% of the HRQoL data was missing in the sample for deceased 
individuals aged 50+ used for the main analyses of this chapter. We have performed 
sensitivity analyses in order to account for the selection bias caused by ignoring the 
missing data mechanism. We found that the selection bias parameter was significant 
and negative, suggesting that the HRQoL response is MNAR and that the distribution 
among those who did not respond to the HRQoL questionnaire is more weighted to-
wards the low values of HRQoL. Furthermore, these sensitivity analyses provided stron-
ger evidence that TTD is more important than age; this is to be expected, since subjects 
in poorer health are closer to death and tend not to respond to health questionnaires. 

Finally, in this chapter we used the SF-6D HRQoL index, which was observed to lie 
between 0.388 and 1. Fryback et al. have shown that for a national survey sample of 
non-institutionalized adults, both the range and the mean of several HRQoL indices (e.g. 
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HUI2, HUI3, EQ-5D, and SF-6D) differ significantly (Fryback et al. 2007): the minimum 
observed range for HRQoL was -0.34 (for HUI3) to 0.3 (for the SF-6D). These range dis-
crepancies between various HRQoL indices suggest that our results may be sensitive to 
the HRQoL instrument used. For example, given that some HRQoL instruments (e.g. HUI, 
EQ-5D) have a larger range than SF-6D, which was used in our chapter, we suspect that 
the TTD effect would be even larger if the former instruments were to be used instead of 
the SF-6D. More generally, even though we used a multidimensional measure of health 
to quantify health losses, our findings cannot be generalized to all domains of health. 
Furthermore, for some consequences of population ageing it may be worthwhile to 
investigate the influence of TTD on specific health domains. 

The present chapter also has several noteworthy strengths. First, although small, the 
longitudinal dataset enabled us to account for possible HRQoL trends for at least half of 
those deceased, while analysing the relationship between HRQoL and TTD, which is why 
such an analysis should be preferred to a cross-sectional one.

Second, due to the non-standard nature of the HRQoL distribution, improper modelling 
techniques may lead to invalid results when modelling the relationship between age, 
TTD and HRQoL. An important strength of this chapter is the use of a mixed beta re-
gression estimated under the Bayesian paradigm for modelling the longitudinal HRQoL 
data. This approach allows the error term to be straightforwardly modelled as a function 
of various explanatory variables.  In other words, heteroscedasticity, a common issue for 
any bounded outcome, can be explicitly addressed in a natural way. Here we modelled 
both parameters that describe the variance of the beta distribution, i.e. the location 
and the precision parameter, as functions of explanatory variables such as age or TTD. 
Plots of the residuals against TTD and other covariates indicated that heteroscedasticity 
was not a problem in our models. Another advantage of our approach is the possibil-
ity of estimating complex models that account for the uncertainty caused by various 
potential sources of bias such as non-ignorable missing data and TTD censoring. Note 
that in another context, for handling irregular distributions and a ceiling effect, other 
non-Bayesian estimations for semiparametric extensions of generalized linear models 
(GLM) have been previously proposed (Luo and Tsai 2012, Chan 2013). 

The model we proposed here can be extended in various ways. For example, one can 
use non-linear terms such as splines to model the relationship between some of the 
explanatory variables (e.g. age) and HRQoL. Given the approximately linear patterns 
observed in our data, this was not the case in the present chapter; however, this can 
be easily implemented using WinBUGS. Furthermore, in this chapter the number of 
measurements that attained the maximum observed value of 1 was approximately 1.9%; 
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hence, we opted to transform the boundary point at 1 to a slightly smaller value (Smith-
son and Verkuilen 2006). We conducted sensitivity analyses to investigate to what extent 
the chosen cut-off point would affect our findings. For this purpose, we ran models with 
the cut-off fixed at 0.9 and 0.999. We found that moving the cut-off point to these values 
does not seem to have a strong impact on the results, although this is probably due to 
the small number of observations that were assigned the cut-off value in the present 
dataset. Note that this aspect may have more serious consequences, especially when 
a larger number of observations are subject to cut-off. In that case, a two-part model 
specification may be more appropriate (Mullahy 1986).” Another notable advantage 
of the Bayesian approach is the possibility of including informative prior distributions, 
which would enable analysts to incorporate multiple sources of evidence in a single 
model. This is potentially important when HRQoL data from multiple trials is available. 
Using coefficient estimates from chapter 5, we have exemplified the use of informative 
priors in our analyses. 

This chapter has two important implications. In terms of method, this chapter showed 
that mixed beta regression models and Bayesian estimation provide flexibility in model-
ling longitudinal HRQoL data. From a policy perspective, our results may have important 
implications for policies aimed at dealing with population ageing. This research repre-
sents a first step in showing that increases in life expectancy may not necessarily translate 
into additional years lived in poor health, as health losses are postponed towards the 
end of life (Fries 1980). This suggests that the demand for health care may increase less 
markedly than would otherwise be expected. Furthermore, if health losses are mainly 
concentrated in the final phase of life, linking retirement age to life expectancy seems to 
be a viable policy option. Hence, better projections of future population health continue 
to be highly important from both a scientific and a societal perspective. 

In summary, using HRQoL as a measurement of health, we found that health losses are 
centred in the final phase of life. This has important implications for projecting future 
population health, as well as for policies aimed at reducing the societal consequences 
of ageing populations.
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Appendices

A1: The SF-6D questionnaire 

Table 4‑7: The domains of the SF-6D questionnaire, source (Brazier, Roberts, et al., 2002)

Level
Physical 
functioning

Role limitations
Social 
Functioning

Pain Mental Health Vitality

1 Your health 
does not limit 
you in vigorous 
activities

You have no 
problem with 
your work or 
other regular 
daily activities as 
a result of your 
physical health 
or any emotional 
problems

Your health 
limits your 
social 
activities 
none of the 
time

You have no pain You feel 
tense or 
downhearted 
and low none 
of the time

You have 
a lot of 
energy all 
of the time

2 Your health 
limits you a 
little in vigorous 
activities

You are limited in 
the kind of work or 
other regular daily 
activities as a result 
of your physical 
health

Your health 
limits your 
social 
activities a 
little of the 
time

You have pain 
but it does not 
interfere with your 
normal work (both 
outside of home 
and housework) a 
little bit

You feel 
tense or 
downhearted 
and low a 
little of the 
time

You have 
a lot of 
energy 
most of the 
time

3 Your health 
limits you a 
lot in vigorous 
activities

You accomplish 
less than you 
would like as a 
result of emotional 
problems

Your health 
limits your 
social 
activities 
some of the 
time

You have pain 
but it does not 
interfere with your 
normal work (both 
outside of home 
and housework) 
moderately

You feel 
tense or 
downhearted 
and low some 
of the time

You have 
a lot of 
energy 
some of 
the time

4 Your health 
limits you a little 
in bathing and 
dressing 

You are limited in 
the kind of work 
or other regular 
daily activities as 
a result of your 
physical health 
and accomplish 
less than you 
would like as a 
result of emotional 
problems

Your health 
limits your 
social 
activities 
most of the 
time

You have pain 
but it does not 
interfere with your 
normal work (both 
outside of home 
and housework) 
quite a bit

You feel 
tense or 
downhearted 
and low most 
of the time

You have 
a lot of 
energy a 
little of the 
time

5 Your health 
limits you a lot 
in bathing and 
dressing

Your health 
limits your 
social 
activities all 
of the time

You have pain 
but it does not 
interfere with your 
normal work (both 
outside of home 
and housework) 
extremly

You feel 
tense or 
downhearted 
and low all of 
the time

You have 
a lot of 
energy 
none of the 
time



88  Chapter 4

A2: Comparison of mixed beta with linear mixed effects and linear model

Table 4‑8 compares DIC for the models used in this chapter with the linear model and the 
linear mixed effects model, which are based on the normal distribution assumption. For 
comparative purposes, in this chapter we also considered linear and linear mixed effects 
models that use the logistic transformation of the HRQoL outcome under the normal 
distribution assumption. For comparative purposes, we estimated all of these models 
using WinBUGS, although these models can also be estimated using the classical maxi-
mum-likelihood-based approach and software such as R or STATA. In fact, running these 
models with non-informative priors in WinBUGS gave similar estimates as the R functions 
lm() and lme() for the linear model and for the linear mixed effects model, respectively. As 
these models use the normal distribution assumption, φ is not the precision parameter 
but the parameter that models the standard deviation often known as σ. Although, in the 
Bayesian context, σ can be modelled using a regression structure, for comparison with 
more typical approaches available in other statistical software we did not perform such 
analyses here (for example, this cannot be done with the packages available in R).  Table 
4‑8 indicates that our approach resulted in substantially smaller DIC than models based on 
normality distribution assumption, including models that use logistic transformation of 
the HRQoL data. Table 4‑8 compares the QQ plot of the TTD models referred to above. We 
observe that, compared to the QQ plots for the linear mixed effect model and for the linear 
model, the QQ plot for the mixed beta model displays an almost straight line. Moreover, 
although they are inferior in terms of their predictive capacity, the linear model and the 
linear mixed effects model that use the transformed HRQoL data display QQ plots similar 
to those of the mixed beta model.  It should be noted that for Figure 4-5 we used the mean 
of the estimated residuals as obtained from WinBUGS. 
Table 4-9 compares posterior estimates of these models for the fixed effects coefficients 
of the location parameter. We observe that, in all models, the 95% credible interval for 
the age coefficients (β1) includes 0 and that the absolute value of the age coefficient (β1) 
decreases considerably when including TTD in the estimation. Table 4‑9 shows that, by 
accounting for TTD, the age coefficient decreases by approximately 78% in the mixed 
beta regression approach, 88% in the linear model and 91% in the linear mixed effects 
model. The models using transformed data indicate that by accounting for TTD, the age 
coefficient decreases by approximately 70% in the linear mixed effects model and 75% 
in the linear model.
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Table 4‑8: DIC values

Nr Model Model specification DIC

Age-
specific 
model

(1) yij~N(μi,φ)
μij=δ0+δ1gi+β1ai

 φ=1/U2,U~U(0,100) -770

(2) yij~N(μi,φ)
logit(μij)=δ0+δ1gi+β1ai

 φ=1/U2,U~U(0,100) -771

(3) yij~N(μij,φ)
μij=δ0+δ1gi+β1ai+bj0+bj1×tij

φ=1/U2,U~U(0,100) -1179

(4) yij~N(μij,φ)
logit(μij)=δ0+δ1gi+β1ai+bj0+bj1×tij

φ=1/U2,U~U(0,100) -1197

(5) yij~Beta(μijφij,(1−μij)φij)
logit(μij)=δ0+δ1gi+β1ai+bj0+bj1×tij

 log(φij)=γ0+α1ai+cj0+cj1×tij -1350

TTD 
model

(6) yij~N(μi,φ)
μij=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

φ=1/U2,U~U(0,100) -776

(7) yij~N(μi,φ)
logit(μij)=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

φ=1/U2,U~U(0,100) -776

(8) yij~N(μij,φ)
μij=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

φ=1/U2,U~U(0,100) -1185

(9) yij~N(μij,φ)
logit(μij)=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

 φ=1/U2,U~U(0,100) -1203

(10) yij~Beta(μijφij,(1−μij)φij)
logit(μij)=δ0+δ1gi+β1ai+β2TTDi+bj0+bj1×tij

 log(φij)=γ0+α1TTDi+cj0+cj1×tij -1310

* a denotes calendar age. g denotes gender and t denotes observation time. 

 
Figure 4‑5: QQ Plots for various models
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Table 4‑9: Comparison of posterior estimates for the fixed effects coefficients

Model Coefficient

Age-specific model TTD model

mean
95% credible 

interval
MC error mean

95% credible 
interval

MC error

Linear model            

 δ0 (intercept) 0.767 0.757 0.777 0.00003 0.767 0.757 0.777 0.00002

 δ1 (gender) -0.035 -0.056 -0.014 0.00006 -0,037 -0,058 0,016 0.00006

 β1(age) -0.0005 -0.0021 0.0008 0.00004 -0.00006 -0.0015 0,0014 0.00004

 β2(TTD) - - - - 0,0024 0,00084 0,0048 0.000006

Linear mixed 
effects 

 δ0 (intercept) 0,768 0,754 0,783 0,00006 0,769 0,754 0,784 0.00005

 δ1 (gender) -0,04 0,07 0,01 0,00012 -0,42 -0,07 0,01 0.0001

 β1(age) -0,00098 -0,003 0,001 0,000008 -0,00009 -0,002 0,002 0.000009

 β2(TTD)  -  -  - -  0,0036 0,0048 0,0006 1E-07

Linear model 
with logit 
transformation            

 δ0 (intercept) 1.198 1.142 1.256 0.00017 1.2 1.144 1.258 0.000017

 δ1 (gender) -0.199 -0.313 -0.083 0.0003 0.210 -0.326 -0.095 0.00003

 β1(age) -0.004 -0.012 0.004 0.00002 -0.001 -0.010 0.004 0.00002

 β2(TTD) - - - - 0.0192 0.0048 0.0336 0.00006

Linear mixed 
effects model 
with logit 
transformation            

 δ0 (intercept) 1.295 1.22 1.371 0.0004 1.301 1.227 1.376 0.0002

 δ1 (gender) -0.208 -0.360 -0.057 0.0008 -0.223 -0.374 0.073 0.0006

 β1(age) -0.01 -0.012 0.00005 0.00005 -0.003 -0.014 0.004 0.0006

 β2(TTD) - - - - 0.020 0.006 0.036 0.0004

Mixed beta

 δ0 (intercept) 1.280 1.206 1.354 0.00017 1.284 1.211 1.356 0.00029

 δ1 (gender) -0.201 -0.350 -0.052 0.00319 -0.229 -0.377 -0.082 0.00055

 β2(age) -0.009 -0.018 0.0002 0.00018 -0.002 -0.012 0.009 0.00004

 β2(TTD) - - - - 0.019 0.010 0.036 0.00001
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Abstract

This chapter explores the implications of the relation between quality of life (QoL) and 
time to death (TTD) for economic evaluations of preventive interventions. By using 
health survey data on QoL for the general Dutch population linked to the mortality 
registry, we quantify the magnitude of this relationship. For addressing specific features 
of the non-standard QoL distribution such as boundness, skewness and heteroscedas-
ticity, we modeled QoL using a generalized additive model for location, scale and shape 
(GAMLSS) with a beta inflated outcome distribution. Our empirical results indicate that 
QoL decreases when approaching death suggesting that there is a strong relationship 
between TTD and QoL. Predictions of different regression models revealed that ignoring 
this relationship results in an underestimation of the QALY gains for preventive inter-
ventions. The underestimation ranged between 3% and 7% and depended on age, the 
number of years gained from the intervention and the discount rate used.
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Introduction

Modelling techniques are frequently applied in economic evaluations of life prolonging 
preventive interventions in order to estimate the effects of these interventions in terms 
of quality-adjusted life years (QALYs) gains. Examples of such preventive interventions 
are smoking cessation (Hoogenveen et al. 2008), weight loss (van Baal et al. 2008), 
screening (Heijnsdijk et al. 2012), vaccination (de Kok et al. 2009), medical treatment 
of risk factors (Mihaylova et al. 2006). By using modelling, an intermediate effect (for 
instance: weight loss, newly detected cases through screening, number of smokers quit-
ted) is connected to causally related events (such as the incidence of diseases and/or 
death) that cannot be observed within the trial period of the intervention because the 
follow-up period is often too short (Buxton et al. 1997). Although modelling is a power-
ful tool to estimate the benefits of preventive interventions by synthetizing evidence 
from different sources, caution must be taken in estimating QALYs gained when preven-
tive interventions are assumed to extend length of life. In that case, it is important to 
go beyond quality of life (QoL) losses due to the disease of interest. If an intervention 
adds years to the life of an individual, he/she becomes exposed to other diseases that 
may also result in quality of life losses. Recent research illustrates the relevance of this 
issue as the estimated health benefits of prostate cancer screening depended crucially 
on QoL in life years gained (Heijnsdijk et al. 2012). In that chapter, the authors assumed 
various utility values such as 1, 0.95 and 0.93 in life years gained. These different utility 
values resulted in 72, 56 and 6 QALYs gained, respectively, in a population of 1000 men 
aged 55+ at time of screening. However, these values can be considered high given that 
the added life years as a result of prostate cancer screening are spent at an older age. 
For instance, Fryback and colleagues showed that, an average American man in the age 
range 55-64 has a mean EQ-5D utility of 0.86, a mean HUI3 utility of 0.78 and a mean 
SF-6D index of 0.79 (Fryback et al. 2007) . If these values were used in the analyses by 
Heijnsdijk et al. it is likely that prostate cancer screening would result in QALYs lost rather 
than QALYs gained. Therefore, it matters which assumptions are made regarding the 
quality of life people will experience during life years gained.

Many economic evaluations of life prolonging interventions choose to ignore the impact 
of competing diseases on quality of life altogether and account only for the QoL losses 
due to the disease under chapter (de Kok et al. 2009). The implicit assumption then is 
that if an intervention prolongs life of individuals, they experience perfect health in all 
gained years. In other words, the absence of the disease under study translates into per-
fect health. However, to assume that, for example, a woman whose death is postponed 
due to HPV vaccination (de Kok et al. 2009) will experience no quality of life losses in 
added life years and hence remains in perfect health until death is unrealistic. Indeed, 
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empirical studies generally found quality of life to decrease with age (Fryback et al. 2007, 
Heijink et al. 2011, Fryback and Laurence 1997). Some economic evaluations incorporate 
these empirical findings in their models and assume that QoL in life years gained equals 
the age-specific mean in the population (Anonychuk et al. 2009, Schousboe et al. 2011, 
Tosteson et al. 2008). Although this method may lead to more realistic estimates of QALY 
gains of preventive interventions, we argue that estimates can be improved by making 
use of the relation between QoL and time to death (TTD).

TTD has been investigated mainly in relation to health care expenditures (HCE) (Zweifel 
et al. 1999, Seshamani 2004, Seshamani 2004, Zweifel et al. 2004, Werblow et al. 2007, 
Wanless 2004, Polder et al. 2006, Stearns and Norton 2004)) but recently also with dis-
ability (Klijs et al. 2011). The first and probably most influential chapter on TTD and HCE 
was published by Zweifel and colleagues (Zweifel et al. 1999). This chapter analysed 
the relationship between age and HCE using Swiss sick fund data, and found that the 
magnitude of HCE is explained to a greater extent by TTD rather than age. Therefore, 
higher average health care costs at higher ages are mainly caused by the fact that more 
people die at higher ages and the period before dying is associated with high healthcare 
use. This implies that an increase in life expectancy postpones the expensive last period 
of life, which suggested that aging of the population per se might have a more limited 
impact on HCE than generally believed. More importantly, it has been highlighted that 
cost-effectiveness analyses overestimate the costs and consequently the incremental 
cost-effectiveness ratio (ICER) of life prolonging preventive interventions when the 
relation between TTD and HCE is not explicitly modelled (Gandjour and Lauterbach 
2005). Although the impact of TTD on QoL has never been studied before, many studies 
showed that QoL is a good predictor for survival in persons with a chronic disease (Fan 
et al. 2002). Furthermore, in the general population it was found that a lower QoL is 
associated with a higher mortality risk (Kaplan et al. 2007).

The aim of this chapter is to a) quantify the relation between QoL and TTD in the gen-
eral population and b) show the relevance of this relation for the economic evaluation 
of preventive interventions. We hypothesize that a part of the decrease in QoL of the 
elderly is the result of higher mortality risks of the elderly, which are accompanied by 
lower QoL values. Previous research has shown that population average QoL decreases 
with age (Fryback et al. 2007). We argue that the observed relationship between QoL 
and age is in fact a relationship between increasing age-specific mortality and low 
QoL associated with the period close to death. For example, population average QoL 
at age 80 may be lower than that at age 60 because there are many more individuals 
in their last year of life at age 80 than at age 60. Preventive interventions postponing 
death therefore to some extent also postpone the losses in QoL. Hence, modelling QoL 
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values exclusively depending on age will suggest that life years gained by a preventive 
intervention are spent in poorer health than actually will be the case. In other words, 
if QoL values correlate with mortality and depend strongly on TTD, postponement of 
death will result in postponement of QoL losses and only the last years of life will be 
spend in poor health. We hypothesize that not accounting for this mechanism will result 
in an underestimation of QALY gains of preventive interventions. As a consequence, this 
leads to an overestimation of the cost-effectiveness ratio. Here, we will demonstrate this 
empirically and compare our proposed approach (i.e., projecting age-specific QoL esti-
mates stratified by TTD for all years from the intervention until death) with the best used 
technique up to date in the practice of economic evaluations (i.e. using age-specific QoL 
estimates in life years gained). 

Our empirical results confirmed that ignoring the relation between QoL and TTD results 
in an underestimation of QALYs gained for preventive interventions that extend life. The 
level of this underestimation ranges between 3% and 7% and depends mostly on the 
discount rate used but also on variables such as age and the number of years gained due 
to a preventive intervention. 

Methods 

Data 

The present chapter was based on the Permanent Survey of Living Conditions (POLS: Per‑
manent Onderzoek Leef Situatie) for years 2001-2008 that was linked to mortality registry. 
POLS is an on-going yearly cross-sectional survey. It started in 1981 and is coordinated 
by Statistics Netherlands. The survey is sampled on records from a centralized municipal 
registry, and does not include the institutionalized population. The POLS health survey 
monitors developments in lifestyle, health, medical consumption, preventive behaviour, 
and well-being in the Netherlands and starting from 2001 it includes the SF-12 question-
naire. The Health Module of the survey is collected both in a face-to-face interview and a 
written questionnaire. The interviewer visits the participants at home, asks for informed 
consent, conducts an interview and leaves a written (drop-off ) questionnaire that in-
cludes the SF-12 questionnaire. Not everyone who completed the interview returned 
the written questionnaire, so approximately 20-25% of the SF-12 items were missing. 
We analysed a complete data set obtained by deleting the records corresponding to the 
missing fields of the SF-12. The SF-6D was derived from the SF-12 using the algorithm 
developed by (Brazier and Roberts 2004). QoL scores such as the SF-6D are widely used 
in clinical trials and cost-effectiveness analysis for measuring QALYs (Drummond et al. 
2005).  
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The POLS sample used in this chapter includes individuals from years 2001-2008 who 
were linked to the mortality registry and were followed-up for approximately 10 years, i.e. 
for the period 2001-2010. In the POLS data, for each individual in 2001-2008 there is only 
one measurement of the SF-12. We used a POLS sample of individuals aged 50+. Table 5‑1 
below presents descriptive statistics of the POLS dataset. Within the POLS survey, for ages 
50+, in 2001-2010, 1633 persons (952 men and 681 women) have deceased and 17664 in-
dividuals (8726 men and 8938 women) have survived. From the deceased, 426 (45%) men 
and 264 (38.7%) women died within three years of the measurement. For the deceased, 
TTD will be defined as the length of time from the SF-12 measurement until death. Table 
5‑1 shows that both mean TTD and mean age at death is larger for women than for men. 
This is consistent with the observation knowledge that Dutch women have lower mortal-
ity rates than the Dutch men (Statistics Netherlands. 2011). Furthermore, Table 5‑1 shows 
that the mean SF-6D QoL is lower for the group of deceased compared to that of survivors: 
we observe differences of approximately 0.06 for men and 0.09 for women. In addition, 
Table 5‑1 shows that the percentage of individuals that were assigned a utility value of 1 
(indicating perfect health) is larger for the groups than have in general higher QoL scores, 
i.e. for the survivors compared to the deceased and for men compared to women.

The relation between QoL and mortality is usually investigated with survival analysis 
with QoL entered as a predictor variable (Kaplan et al. 2007). Since in that case the 
outcome is mortality, it would not be possible to produce QoL estimates stratified by 
TTD. Therefore, in this chapter, regression models will be fitted using the SF-6D QoL as 
an outcome variable and age, gender, TTD and interactions between these variables 
as predictor variables. In the model specification we will deliberately exclude disease 
indicators. This is because just as age, TTD is a proxy variable that borrows its explana-
tory power in a statistical model from different determinants of QoL of which diseases 
processes are the most important ones. The more adjustments for various diseases used 
in the statistical analysis, the less the variables age and TTD are expected to matter. 

Table 5‑1: Descriptive statistics of the POLS dataset

Mean ± S.E. Men Women Both

Number deceased 952 681 1633

Number survivors 8726 8938 17664

SF‑6D QoL deceased 0.76±0.01 0.70±0.01 0.74±0.007

SF‑6D QoL survivors 0.82±0.002 0.79±0.002 0.8±0.002

Mean TTD (months) 44.6±1.7 47.8±2 46±1.33

Mean age at death(years) 71.6±0.6 73±0.7 72.2±0.46 

% deceased in full health 5.7% 3% 4.5%

% survivors in full health 8.9% 5.4% 7.2%
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QoL scores are typically difficult to model due to the non-standard nature of their distri-
bution. Major concerns when modelling QoL are: (a) QoL values are bounded (generally 
defined between 0 and 1); (b) the QoL distribution is strongly negative (left) skewed; 
(c) the distribution is heteroscedastic, i.e. the constant variance assumption is violated 
because it has been shown that QoL variance usually increases as mean QoL decreases 
(Basu and Manca 2012). For addressing these problems when modelling QoL, various 
approaches have been proposed in the literature including the classical Tobit model 
and robust variants of the classical Tobit models such as symmetrically least squares 
models and censored least absolute deviations models (CLAD) (Austin 2002). However, a 
simulation chapter that compared the performance of these models with ordinary least 
squares (OLS) in terms of bias and confidence intervals found that both Tobit and its ro-
bust variants models were biased and recommend the use of OLS with robust standard 
errors for modelling the QoL scores (Pullenayegum et al. 2010). Furthermore, more recent 
studies found that beta regression models outperform OLS in terms of fit and efficiency 
when modelling both cross-sectional QoL data (Hunger et al. 2011) and longitudinal 
QoL data (Hunger et al. 2012). In fact, due to its flexibility in modelling highly skewed 
data, statisticians proposed the use of beta regression for modelling distributions with 
similar characteristics as the QoL scores (Kieschnick and McCullough 2003). Because 
beta regression is defined in the open interval (0,1) and the QoL data has measured 
utilities at one we used a beta inflated distribution at one  (Ospina 2010) in which the 
inflation parameter models the probability mass at one. The estimation of this model 
was facilitated by using the GAMLSS approach (R. A. Rigby, et al. 2010, Stasinopoulos 
and Rigby 2007, Rigby and Stasinopoulos 2005, Rigby and Stasinopoulos 2010). A major 
advantage of GAMLSS models is that they allow modelling not only the mean or location 
parameter but also the parameter involving the dispersion of the QoL distribution thus 
offering an explicit and natural way for modelling the heteroscedasticity in the QoL data.

Generalized Additive Models for Location, Scale and Shape (GAMLSS)

Because the SF-6D index is a continuous variable defined on the interval (0, 1] we used 
the beta inflated at one BEINF1 distribution assumption to model the QoL using the 
GAMLSS approach (R. A. Rigby, et al. 2010, Stasinopoulos and Rigby 2007, Rigby and 
Stasinopoulos 2005, Rigby and Stasinopoulos 2010). BEINF1 is a special case of the class 
of inflated models. The word inflation is used to indicate that the probability mass is 
exceeded at the boundary of a certain parametric distribution; in this case, that of the 
beta distribution. Inflation can be associated with any parametric distribution. Therefore, 
BEINF1 is a mixture of a continuous beta distribution defined on the interval (0,1) and a 
degenerate distribution, which gives non-negative probabilities at 1. BEINF1 is defined 
by three parameters: the location parameter denoted by μ, the dispersion  parameter 
denoted by σ and the parameter that models the probability mass at one denoted by ν. 
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This approach is in fact similar with a two part model in which the first part is modelled 
through the inflation parameter νand the second part is modelled through parameters 
μ and σ with a beta distribution. Generally, various shapes of the beta distribution can 
be obtained for various values of the parameters μ and σ. Using the parameterization 
implemented in GAMLSS, the probability density function of a BEINF1(μ,σ,ν) is: 

 (5.1)

where p is the probability mass at 1 and represents the probability of observing 1 and 
f(yμ,σ) is the beta distribution defined by:
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where p  is the probability mass at 1 and represents the probability of observing 1 and  σμ,yf is the 

beta distribution defined by: 
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where the relation between the parameters (μ,σ)and (α,β) is given by 
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  and    μ1μσYVar 2  . Therefore, the inflation parameter influences the mean while 

the variance is described by the dispersion and the mean parameters. Note that the variance is not 
determined solely by the dispersion parameter; also the mean parameter has an influence. 

   
Model selection  

Model selection in GAMLSS has been performed by minimizing the generalized Akaike information 
criterion (GAIC) for different penalties:   #dfθl2GAIC  , where  θl2  is the fitted 
deviance, df denotes the total degrees of freedom and #  is the penalty for each degree of freedom 
used in the model. For example, when 2# , the original Akaike information criterion (AIC) is 
obtained and when  log(n)#  with n denoting the sample size, the Schwarz Bayesian information 
Criterion (SBC) is obtained. As the original AIC may be too generous and the SBC may be too 
restrictive with respect to the number of optimal parameters selected in a model, we have selected 
our models using GAIC with various penalties, e.g. 5;42;2.5;3;3.# . We developed two separate 
models: one model that includes variables age, gender and TTD and another model that includes 
only variables age and gender. Throughout this chapter, the first model will be called the TTD 
approach while the latter model will be named the age-specific approach. The TTD model is 
described by equations (5.3)-(5.5) and the age-specific model is shown by equations (5.6)-(5.8), 
respectively. For the model specification of each parameter, we fitted models that used terms such 
as 2age , 2TTD  and various interactions between variables age, gender and TTD. However, in terms 

of GAIC, only the model that included 2TTD  for the mean parameter appeared to be superior; all the 
other models were equivalent with the models illustrated here. For brevity of exposition, we did not 
present these results here.  

  2
1413121110 TTDαTTDαgenderαageααμlogit   (5.3) 

  TTDββσlog 1110   (5.4) 

  genderδδνlog 1110   (5.5) 

and the age-specific model is: 
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 and Var[Y]=σ2μ(1−μ). Therefore, the inflation 

parameter influences the mean while the variance is described by the dispersion and 
the mean parameters. Note that the variance is not determined solely by the dispersion 
parameter; also the mean parameter has an influence.   

Model selection 

Model selection in GAMLSS has been performed by minimizing the generalized Akaike 
information criterion (GAIC) for different penalties: GAIC=−2×l(θ)+df×#, where −2×l(θ) 
is the fitted deviance, df denotes the total degrees of freedom and # is the penalty for 
each degree of freedom used in the model. For example, when #=2, the original Akaike 
information criterion (AIC) is obtained and when  #=log(n) with n denoting the sample 
size, the Schwarz Bayesian information Criterion (SBC) is obtained. As the original AIC 
may be too generous and the SBC may be too restrictive with respect to the number of 
optimal parameters selected in a model, we have selected our models using GAIC with 
various penalties, e.g. #=2; 2.5; 3; 3.5; 4. We developed two separate models: one model 
that includes variables age, gender and TTD and another model that includes only vari-
ables age and gender. Throughout this chapter, the first model will be called the TTD ap-
proach while the latter model will be named the age-specific approach. The TTD model 
is described by equations (5.3)-(5.5) and the age-specific model is shown by equations 
(5.6)-(5.8), respectively. For the model specification of each parameter, we fitted models 
that used terms such as age2, TTD2 and various interactions between variables age, 

fY(y|μ,σ, ν)=
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gender and TTD. However, in terms of GAIC, only the model that included TTD2 for the 
mean parameter appeared to be superior; all the other models were equivalent with the 
models illustrated here. For brevity of exposition, we did not present these results here. 

logit(μ)=α10+α11age+α12gender+α13TTD+α14TTD2 (5.3)
log (σ)=β10+β11TTD (5.4)
log(ν)=δ10+δ11gender (5.5)

and the age-specific model is:

logit (μ)=α20+α21age+α22gender (5.6)
log (σ)=β20+β21age (5.7)
log (ν)=δ20+δ21gender (5.8)

Prevention, QoL and TTD

In order to assess the relevance of TTD when evaluating life prolonging preventive inter-
ventions we calculated QALYs gained of a hypothetical preventive intervention in differ-
ent scenarios. In each scenario we calculated incremental QALY gains using predictions 
from the TTD model and compared these to incremental QALY gains using predictions 
from the age-specific model. 

For example,  we assume that a person has undergone a preventive intervention at age 
i and assuming that without the intervention he/she would have died at age x while 
with intervention death occurred at age y. Hence, y-x represents the life years gained 
due to the preventive intervention. The incremental QALY gains due to the intervention 
calculated using QoL predictions from the age-specific model are:
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where g  denotes gender.  

If we use the TTD approach, the incremental QALY gained from the intervention becomes:  
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From (5.9) and (5.10) we observe an important distinction between the two approaches: the 
approach including TTD involves a projection of the QoL utility from the start of intervention until 
death whereas the comparison method uses only the QoL weights in the life years added due to the 
intervention. 

In order to assess the impact of TTD on the incremental QALYs gained due to a preventive 
intervention we compute the percentage change of  TTDg,y,x,i ,ΔQALY  relative to  gy,x,i ,ΔQALY :  
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Results  

Fout! Verwijzingsbron niet gevonden. presents the regression parameter coefficients of the 
developed GAMLSS models. As indicated, we used a beta inflated distribution for modelling the 
relationship between the QoL outcome and TTD which is described by three parameters. Fout! 
Verwijzingsbron niet gevonden. presents the regression coefficients of each of these parameters. 
The coefficients are presented on the scale of the link functions used: logit, logit and log. Although 
the use of these link functions in generalized linear models impedes straightforward interpretation 
of the regression coefficients, we can still analyze the sign of these regression coefficients. The 
location parameter μ  can be thought as similar to the mean parameter in linear regression. By 
examining the coefficients ofμ , we observe that variables age and gender were significant in both 
the age-specific and the TTD model. The negative sign of the age effect suggests that an increase of 
age triggers a decrease in the predictedμ . The sign of the TTD coefficient for μ  suggests that QoL 
decreases when approaching death. The negative sign of the TTD squared coefficient implies that 
the impact of TTD on QoL becomes stronger if one is closer to death (as values of TTD approach 0). 

(5.9)
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From (5.9) and (5.10) we observe an important distinction between the two approaches: 
the approach including TTD involves a projection of the QoL utility from the start of 
intervention until death whereas the comparison method uses only the QoL weights in 
the life years added due to the intervention.

In order to assess the impact of TTD on the incremental QALYs gained due to a preven-
tive intervention we compute the percentage change of ∆QALY(i,x,y,g,TTD) relative to 
∆QALY(i,x,y,g): 

64 
 

Prevention, QoL and TTD 

In order to assess the relevance of TTD when evaluating life prolonging preventive interventions we 
calculated QALYs gained of a hypothetical preventive intervention in different scenarios. In each 
scenario we calculated incremental QALY gains using predictions from the TTD model and compared 
these to incremental QALY gains using predictions from the age-specific model.  

For example,  we assume that a person has undergone a preventive intervention at age i and 
assuming that without the intervention he/she would have died at age x while with intervention 
death occurred at age y. Hence, y-x represents the life years gained due to the preventive 
intervention. The incremental QALY gains due to the intervention calculated using QoL predictions 
from the age-specific model are: 

          












1y

xj

1x

ij

1y

ij
gj,ageQoLgj,ageQoLgj,ageQoLgy,x,i ,ΔQALY  (5.9) 

where g  denotes gender.  

If we use the TTD approach, the incremental QALY gained from the intervention becomes:  

       








1x

ij

1y

ij
jxTTDg,j,ageQoLjyTTDg,j,ageQoLTTDg,y,x,i ,ΔQALY  (5.10) 

From (5.9) and (5.10) we observe an important distinction between the two approaches: the 
approach including TTD involves a projection of the QoL utility from the start of intervention until 
death whereas the comparison method uses only the QoL weights in the life years added due to the 
intervention. 

In order to assess the impact of TTD on the incremental QALYs gained due to a preventive 
intervention we compute the percentage change of  TTDg,y,x,i ,ΔQALY  relative to  gy,x,i ,ΔQALY :  

   
  100

gy,x,i ,ΔQALY
gy,x,i ,ΔQALYTTDg,y,x,i ,ΔQALY

eQALY_chang% 


Δ  (5.11) 

 

Results  

Fout! Verwijzingsbron niet gevonden. presents the regression parameter coefficients of the 
developed GAMLSS models. As indicated, we used a beta inflated distribution for modelling the 
relationship between the QoL outcome and TTD which is described by three parameters. Fout! 
Verwijzingsbron niet gevonden. presents the regression coefficients of each of these parameters. 
The coefficients are presented on the scale of the link functions used: logit, logit and log. Although 
the use of these link functions in generalized linear models impedes straightforward interpretation 
of the regression coefficients, we can still analyze the sign of these regression coefficients. The 
location parameter μ  can be thought as similar to the mean parameter in linear regression. By 
examining the coefficients ofμ , we observe that variables age and gender were significant in both 
the age-specific and the TTD model. The negative sign of the age effect suggests that an increase of 
age triggers a decrease in the predictedμ . The sign of the TTD coefficient for μ  suggests that QoL 
decreases when approaching death. The negative sign of the TTD squared coefficient implies that 
the impact of TTD on QoL becomes stronger if one is closer to death (as values of TTD approach 0). 

(5.11)

Results 

Table 5‑2 presents the regression parameter coefficients of the developed GAMLSS 
models. As indicated, we used a beta inflated distribution for modelling the relationship 
between the QoL outcome and TTD which is described by three parameters. Table 5‑2 
presents the regression coefficients of each of these parameters. The coefficients are 
presented on the scale of the link functions used: logit, logit and log. Although the use 
of these link functions in generalized linear models impedes straightforward interpreta-
tion of the regression coefficients, we can still analyze the sign of these regression coef-
ficients. The location parameter μ can be thought as similar to the mean parameter in 
linear regression. By examining the coefficients of μ, we observe that variables age and 
gender were significant in both the age-specific and the TTD model. The negative sign 

Table 5‑2: Parameter’s coefficients from the age-specific model and from the TTD model

Age-specific model TTD model

Model 
parameter

Variable Coefficient S.E. Coefficient S.E.

logit  (µ) constant          1.912* 0.138        1.757* 0.14

  age        -0.008* 0.001 -0.008* 0.0018

  gender (men=1, 
women=0)

       -0.231* 0.034 -0.241* 0.0346

  TTD - -  0.005* 0.0022

  TTD²  - -  -0.000019 0.00002

logit  (Φ) constant         -0.638* 0.166     -0.753* 0.042

  age -0.002 0.002 -  - 

  ttd -  -  -0.001 0.0007

log (ν) constant        -0.212* 0.363    -0.212* 0.363

  gender (men=1, 
women=0)

      -0.686* 0.266    -0.686* 0.2667
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of the age effect suggests that an increase of age triggers a decrease in the predicted 
μ. The sign of the TTD coefficient for μ suggests that QoL decreases when approaching 
death. The negative sign of the TTD squared coefficient implies that the impact of TTD 
on QoL becomes stronger if one is closer to death (as values of TTD approach 0). The 
interpretation of the coefficients of the precision parameter is more difficult since both 
parameters, μ and φ, determine the variance of the outcome distribution. The coef-
ficients of the inflation parameter μ can be considered similar to the part of a two part 
model that models the probability mass at 1. The regression coefficients of ν indicates 
that, compared with men; women have a lower probability of being assigned a QoL 
utility value of one. Please note that all the results presented in this section are based on 
the sample of deceased. 

For investigating the effects of the relationship between QoL and TTD on estimating 
QALYs gained due to preventive interventions, we will compare QoL predictions from 
the age-specific model with those from the TTD model. In Figure 5-1, we predicted 
mean QoL values when TTD was fixed at approximately the maximum observed TTD in 
our dataset, i.e. at 10 years before death and close to the minimum observed TTD, at 1 
year before death. This enabled us to investigate the entire range of QoL predictions by 
proximity to death and to compare these predictions with those from the age-specific 
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Figure 5‑1: Mean QoL predictions from the age-specific regression model and from the TTD regression 
model for men and women (predictions for 1 year before death and for 10 years before death)
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model. As expected, in all 3 situations, the estimated mean QoL decreases with age. 
Moreover, for all ages 50+, the predicted mean QoL at 1 year before death is lower than 
the one at 10 years before death and the predicted mean QoL from the age-specific 
model lies between the other two predictions from the TTD model. 

An advantage of using GAMLSS is that by having estimated each parameter of the 
BEINF1 distribution we can look at the entire QoL distribution for various ages and 
values of TTD. Figure 5-2 shows that especially TTD but also age plays an important role 
in determining the shape and variation of the QoL distribution. Substantial changes in 
the QoL distribution with TTD have been noted: regardless of age and gender, skewness 
increased with approximately 0.3 between 1 and 10 years before death. Moreover, for 
both men and women, between 1 and 10 years from death, kurtosis decreased with 
approximately 0.2 for most ages. Furthermore, although not easily observed by a visual 
inspection, for fixed times to death, changes in the QoL distributions have been noticed 
with age: skweness increases with approximately 0.2 between age 50 and age 90 while 
kurtosis decreases with approximately 0.1 between these ages. These results indicate 
that, lower mean QoL values are associated with QoL distributions that have more varia-
tion showed by an increase in skewness and a decrease in kurtosis. In other words, lower 
mean QoL values have higher uncertainty than higher mean QoL values have.  

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Men − age 50

Estimated QoL

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Men − age 70

Estimated QoL

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Men − age 90

Estimated QoL

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Women − age 50

Estimated QoL

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Women − age 70

Estimated QoL

D
en

si
ty

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Women − age 90

Estimated QoL

D
en

si
ty

Figure 5‑2: The estimated QoL distribution for various ages using the TTD model at 1 year before death 
(black line) and the TTD model at 10 years before death (grey line). The vertical lines represent the esti-

mated mean QoL corresponding to the 2 situations.
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For Figure 5-3 let us assume that a hypothetical woman had a screening intervention 
at age 70 years and that she was diagnosed with breast cancer. Further, we assume she 
received early treatment and she lived until the age of 85 years. Had she not undergone 
the screening, she would have discovered the cancer later and she would have lived 
only until the age of 80 years. Therefore, due to the screening intervention she gained 5 
life years. Figure 5-3 shows the estimated mean QoL with and without the intervention 
using the age-specific approach (left) and the the TTD approach (right). Assuming that 
the preventive intervention was not performed and that in this case death would have 
occurred at age 80, at this age of death the estimated mean QoL from the age-specific 
model was 0.7  and from the TTD model was 0.66, respectively. On the other hand, with 
intervention, when death would have occurred at age 85; the age model estimated a QoL 
of 0.69 whereas the TTD estimated a QoL of 0.66. This example shows that the effect of TTD 
is stronger when closer to death as QoL decreases strongly in the period preceding death. 
When calculating QALYs gained due to the hypothetical intervention, QALYs calculation 
using QoL predictions from the age-specific model involves only QoL utilities in the life 
years gained. On the contrary, QALYs calculation using QoL predictions from the TTD 
model incorporates QoL utilities in all the years from the intervention until death. There-
fore, as opposed to the age-specific approach, the TTD approach projects the QoL weight 
from the intervention until death. In the example illustrated above, QALYs gained using 
the age-specific approach were 3.47 and those gained using the TTD model were 3.62. 
The relative change suggests that QALYs gained were underestimated with 4.3% when 
the relation between TTD and QoL was left out. When computing these values, we ignored 
the discounting rate. For example, a discount rate of 1.5% (as applied in the Netherlands) 
yields an underestimation of 4.8%. Furthermore, a discount rate of 3.5% (as applied in the 
UK) and of 5% results in an underestimation of 5.7% and of 6.4%, respectively. Therefore, 
if the relation between QoL and TTD is ignored, the higher the discount rate, the higher 
the underestimation of QALYs gained. Hence, for this example, depending on the discount 
rate used, QALYs underestimation ranges between 4.3% and 6.4%. 

Predicted QoL at the baseline age in the example, i.e. at age 70, is higher for the TTD 
model as TTD values in the example are higher than observed in the data at age 70. 
As indicated by table 1, the average TTD for all ages is about 4 years. Moreover, at age 
70, the mean TTD in our data was approximately 6 years. Hence, in Figure 5-3 (left), the 
estimated QoL value from the age-specific model (0.72) at age 70 takes into account this 
average TTD value available in our data. On the other hand, in Figure 5-3 (right) the TTD 
model predicts mean QoL counting back 10 years before death. Consequently, when 
compared with the age-specific approach, the estimated mean QoL value predicted 
from the TTD model (0.75) is and should be larger because the TTD model predicts for a 
TTD value that is larger than the average observed in our dataset.
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Furthermore, we have investigated the changes in the level of the QALYs gained un-
derestimation by exploring various potentially influential factors such as: discount rate, 
gender, age, and number of years gained from the preventive intervention. We found 
that QALYs underestimation increases with age, number of life years gained due to a 
preventive intervention and with the discount rate used. Furthermore, it is worth noting 
that the underestimation tends to be slightly higher for women than for men (differ-
ences of approximately 1%). We found that, depending on the above mentioned factors, 
the QALYs gained underestimation due to a preventive intervention ranges between 
3% and 7%. Note that, larger underestimation than 7% could be attained for higher 
discount rates than 5%. 

Discussion

In this chapter, we showed that QoL is related to TTD and that this relationship has 
important implications when estimating QALYs gained of life prolonging preventive 
interventions. In order to quantify the effect of this relationship when estimating QALYs 
gains, we compared QALYs gained calculated using average age-specific QoL estimates 
stratified by TTD in the life years following a preventive intervention up until death with 
QALY gains using QoL estimates stratified by age only.

Our empirical findings illustrate that ignoring the relation between TTD and QoL results 
in QALYs underestimation compared with the case in which age-specific QoL weights 
would be used. This underestimation increases with advancing age and with the dis-
count rate used. Similar results were observed for both genders with a slight tendency 
of a higher underestimation for women than for men. Hence, the results reveal that, 
depending on age, gender, number of years gained from a preventive intervention and 
the discount rate, QALY gains underestimation in economic evaluations of preventive 
interventions ranges between approximately 3% and approximately 7%, respectively. 
Because most modelling studies model effects of interventions through shifts of survival 
curves, we also investigated how QALYs gains would be underestimated in that case. We 
did that by decreasing mortality rates for the general Dutch population with varying 
percentages for ages 50 to 80. Here, we found the same results: depending on age at 
which life years were gained, and the discount rate used, the shift in the survival curves 
resulted in an underestimation of QALYs gained that ranges between 3.5% and 6% when 
information on mortality is not used for estimating QoL weights in life years gained. 

Taken all together, our results indicate that ignoring the relationship between QoL 
and TTD when estimating the health gains in economic evaluations of life prolonging 
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preventive interventions results in an overestimation of the ICER in these economic 
evaluations with about 3% to 7%. For interventions that results in an ICER estimate 
close to the threshold this might be a relevant difference. For example, applying a QALYs 
underestimation of 3-7% to an estimated ICER of 20000 Euro/QALY calculated using the 
age-specific QoL weights results in an ICER estimated between 19400 and 18700 cost/
QALYs. 

Because proximity to death acts as a proxy variable for all kind of disease processes and 
disabilities that decrease QoL, the approach we proposed can be applied broadly to any 
life prolonging intervention. However, we chose to illustrate the effects that the relation-
ship between QoL and TTD has on the estimation of QALYs gained due to preventive 
intervention because of the dataset we had at our disposal, i.e. we used data from the 
general Dutch population. As preventive interventions are targeted at the general pub-
lic, this dataset was suitable to draw conclusions about preventive type of interventions, 
in particular when evaluating primary prevention type of interventions which prevent 
disease onset. In secondary or tertiary prevention, the patient may not be cured and 
may suffer from other disease related QoL losses. The approach we proposed can be 
easily implemented to other life prolonging interventions with appropriate datasets 
available. Because, all models used in economic evaluations of life prolonging interven-
tions predict survival, all these modelling studies could potentially exploit the relation 
between QoL and TTD to improve their QALYs estimation.  

To our knowledge, this was the first attempt to use the relation between QoL and TTD. 
However, several studies indicate that QoL is a good predictor for mortality the general 
populations (Fan et al. 2002, Kaplan et al. 2007). For example, researchers have shown 
that for the Canadian population the effect of QoL on mortality was strong and signifi-
cant: an increase of one unit in QoL caused a decrease in the mortality risk with about 
53% (Kaplan et al. 2007). TTD has been previously studied in relation to other measures 
of health such as health care costs (Gandjour and Lauterbach 2005). It has been found 
that cost-effectiveness analyses overestimate the incremental cost-effectiveness ratio 
(ICER) of preventive interventions when the relation between TTD and HCE is not explic-
itly modelled (Gandjour and Lauterbach 2005, Gandjour and Lauterbach 2005, van Baal 
et al. 2011). Our research shows evidence of ICERs for preventive interventions being 
overestimated (thus leading to relatively unfavourable ICERs) also when the relation 
between TTD and QoL is ignored. 

Our chapter has a number of limitations. First, in our empirical analysis we used a cross-
sectional data; therefore, for each individual, in the period 2001-2008 there is only one 
measurement of the SF-12. The main advantage of using such a cross-sectional dataset 
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was the sample size. However, only one SF-12 measurement was available for each per-
son in the data. Future research using longitudinal datasets is encouraged, as it would 
allow accounting not only for the variation between subjects but also for variation over 
time within subjects. 

Second, we only used the complete case data by deleting the records corresponding to 
the missing items of the SF-12. This could have biased our results. Still, in chapter 5 we 
observed that for this dataset QoL in the imputed data was similar with that from the 
complete case data. 

Third, a limitation of the POLS data is that it does not include the institutionalized 
population. However, probably, persons that are very close to death and have a low 
QoL would not be in a survey whether they are institutionalized or not. Nevertheless, 
because the relation between QoL and TTD is stronger when one is closer to death, we 
suspect that, if accounting for the institutionalized population, the effect of TTD on QoL 
would become even larger resulting in an even larger QALYs gain underestimation.

Fourth, in our analysis we did not account for other factors, such as the use of future 
technologies that may affect the health gains of preventive measures. However, with 
our dataset it is impossible to control for these factors. More importantly, if these other 
factors are expected to be important when assessing the health gains of a particular 
intervention, these should be explicitly modelled by (for instance, by extending the 
number of states in a Markov model). Our QoL estimates stratified by age and TTD 
should be used in a similar fashion by modellers as ‘other cause’ mortality rates. Just as 
any model used to estimate the consequences of a life prolonging intervention includes 
an ‘other causes’ mortality our estimates could be used to estimate QoL losses due to 
‘other causes’.

Finally, we used in this chapter the SF-6D derived from the SF-12; the observed range of 
the SF-6D was from 0.345 to 1. Fryback and colleagues showed that for a national survey 
sample of non-institutionalized adults, both the range and the mean of a number of QoL 
indices (e.g. HUI2, HUI3, EQ-5D, SF-6D derived from the SF-36) differ significantly (Fry-
back et al. 2007). For example, the minimum observed value for the EQ-5D was −0.11 
while for the HUI3 was −0.34 and for the SF-6D (derived from SF-36) was 0.3. The range 
discrepancies between various QoL indices suggest that our results may be sensitive 
to the QoL instrument used. For example, given the larger range of EQ-5D and of HUI 
compared to SF-6D, we suspect that the QALYs gain underestimation would be higher 
when the former instruments would be used compared to the SF-6D. 
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This chapter has a number of strengths. First, all models used in economic evaluations 
of life prolonging interventions predict survival and use a lifetime horizon which makes 
it easy to calculate TTD; therefore, our proposed approach could be easily applied to 
other interventions and populations of interest. Importantly, the empirical results pre-
sented in this chapter can be used in the practice of economic evaluations of preventive 
interventions. Our QoL estimates stratified by age and TTD should be used in a similar 
fashion by modellers as ‘other cause’ mortality rates. Just as any model used to estimate 
the consequences of a life prolonging intervention includes an ‘other causes’ mortality 
our estimates could be used to estimate QoL losses due to ‘other causes’.

Second, in order to address the methodological challenges associated with modelling 
the QoL utility, we used GAMLSS with BEINF1 assumption for the response variable. 
In particular, GAMLSS accounted for specific features of the QoL distribution such as 
boundness, skewness and heteroscedasticity. One advantage of our modelling ap-
proach is that it allowed us to directly model the variance of the QoL distribution. Our 
empirical results indicated important changes in the QoL distribution for various ages 
and times until death. A similar modelling approach would have not been possible with 
more traditional regression models like generalized additive models (GAM) or ordinary 
least squares (OLS).

This research has important implications for the practice of economic evaluations of 
life prolonging preventive interventions. This chapter brings upfront the issue of esti-
mating QALYs gained due to life prolonging preventive interventions. In the practice of 
economic evaluations, the lack of standards regarding the estimation of QALYs gained 
due to life prolonging interventions results in ad-hoc choices. Nevertheless, these 
choices may have a high impact on the final outcome of economic evaluations. In order 
to realistically estimate the health benefits in cost-effectiveness studies, the economic 
evaluations analysts need to account for quality of life losses caused by competing risks 
in added years. We propose to use QoL utilities stratified by age, gender and proximity to 
death when estimating QALYs gained in economic evaluations of life prolonging preven-
tive interventions. This approach can be easily incorporated in the standard practice of 
economics evaluations for preventive interventions. The use of this approach will result 
in more accurate ICERs for life prolonging preventive interventions and; therefore, will 
contribute to assist decision makers in making better decisions.
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Abstract

Patient-reported outcome measures (PROMs) such as the EuroQol-5 dimensions (EQ-5D) 
questionnaires are important in health economics, especially for generating evidence to 
support reimbursement decisions. When these measures are not available from clinical 
studies, usually they are predicted or ‘mapped’ from other measures such as disease-
specific ones. For this purpose, two classes of methods have been proposed and these 
can be distinguished by whether the dependent variable is the EQ-5D utility or the 
probability that a respondent selects a particular level for each question: (i) utility map-
ping methods (OLS, Tobit, linear mixed effects (LME), beta regression (BM), finite mixture 
regression (FMM)) (ii) response mapping methods (multinomial logit (MNL), Bayesian 
Networks (BNs)). The aim of this study is to perform a comparison of these methods. 
Answers on a disease-specific questionnaire and the EQ-5D were collected in two trials 
(N1=5157/N2=366) which were separately used for fitting and validating the models. 
We found that FMM fitted the EQ-5D data better than the other methods. Although, the 
differences in the metrics of out-of-sample prediction accuracy among all the methods 
was small, on average errors were lowest for FMM (MAE=0.187 and MAE=0.176 for the 
two trials). Furthermore, out-of-sample performance depended largely on whether the 
sample population used to develop the models included a high number of respondents 
in poor health. Concluding, for generating external predictions, with the present data-
sets, none of the existing mapping methods strongly outperformed the others on the 
entire range of the EQ-5D utility; however, on average FMM produced slightly smaller 
errors.   
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Introduction

Patient-reported outcome measures (PROMs) which include health-related quality of 
life (HRQoL) instruments have a number of applications in health care decision making, 
ranging from being used as indicators of hospital performance (Devlin et al. 2010), to 
measuring and describing population health status  (Parrish 2010) and capturing the 
effect of alternative health treatments on patient’s morbidity and mortality (Brazier et 
al. 1999).  Here we will refer to the context in which PROMs are used for evaluating the 
impact of alternative treatments on patients’ health; therefore, contributing in generat-
ing evidence for supporting reimbursement decisions of medical technologies.  

PROMs have certain classifications. Depending on whether the valuation method used 
to derive their summary value or index score is consistent with economic theory, these 
outcomes can be preference-based measures (PBM) or non-preference-based measures 
(NPBM). PBM refer to the fact that each patient’s score incorporates values that reflect 
the preferences of the general public. A further distinction relates to generic versus 
disease-specific depending on whether PROMs evaluate general HRQoL or disease-
specific aspects of health. For supporting resource allocation decisions, PROMs need to 
be preference-based and generic as only these provide a common ground for comparing 
health outcomes across various clinical studies. However, often such outcomes are not in-
cluded in clinical studies instead disease-specific ones are. In such situations, a common 
solution accepted is to develop a model for ‘mapping’ or predicting the generic HRQoL 
from another disease-specific measure using a dataset that includes both of these mea-
sures for developing a model that can be further used to predict generic HRQoL at the 
patient level when this data is unavailable. Therefore, the choice of the mapping model is 
of critical importance as it can potentially affect the reimbursement decisions. 

One of the most commonly used preference-based generic HRQoL is EuroQoL-5D (EQ-
5D) developed by the EuroQol Group (www.euroqol.org); this has been indicated as 
the instrument of choice by the National Institute for Health Care and Excellence (NICE) 
to support reimbursement decisions. EQ-5D consists of five dimensions of health that 
describe the current health states of patients: mobility, self-care, usual activity, pain/dis-
comfort, anxiety/depression. Each of these dimensions is measured with one item and 
respondents have to respond on a three-point scale (no, some or extreme problems), 
hence 243 (35) health states can be identified by a five-digit number. The key character-
istic of the EQ-5D instrument is that it enables each health state to be converted into a 
single summary value by applying a formula that attaches a score on each of the levels 
in each dimension. This formula is obtained through a valuation process performed us-
ing samples from the general populations.  
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Societal preferences values for each of the EQ-5D health states have been obtained using 
sample populations of many countries including the UK (Dolan 1997), the Netherlands 
(Lamers et al. 2006) and the US (Shaw et al. 2005). The most widespread used tariff is that 
of the UK and this will also be employed in the present chapter. An important guide to 
the developed value sets is presented in (EuroQol Group 2007) and useful indications 
regarding the international comparison tariffs can be found in (Norman et al. 2009). 
Most of these surveys estimated the EQ-5D index score in two steps. First, by using a 
representative sample population for each country, the time trade-off method was used 
to elicit preferences for 42 out of 243 EQ-5D health states. Second, regression methods 
were used for estimating values for the remaining EQ-5D health states. In this way, all 
EQ-5D health states are described with a single summary index score usually ranging 
from bellow 0 (for patients reporting severe problems in all five dimensions) to 1 (full 
health). In the UK, the score ranges from -0.595 and 1. Due to its widespread use and also 
because it is the recommended instrument by NICE, the majority of mapping studies 
focused on predicting EQ-5D either from other generic HRQoL instruments (Franks et 
al. 2003, Fryback et al. 1997, Gray et al. 2006, Sullivan and Ghushchyan 2006) or from 
disease-specific ones (Versteegh et al. 2012, Arnold et al. 2015). This chapter focuses on 
mapping a disease-specific measure onto EQ-5D. 

Two main categories of methods have been proposed in the literature for predicting EQ-
5D data from other disease-specific measures. These can be distinguished by whether 
the dependent variable is the utility score or the probability that a respondent selects 
a particular level for each question, i.e. researchers proposed using either utility score 
mapping also known as direct mapping (Franks et al. 2003, Fryback et al. 1997, O’Brien 
et al. 2003, Versteegh et al. 2012) or probability mapping also labeled indirect mapping 
(Longworth et al. 2014, Le and Doctor 2011, Gray et al. 2006). Because the utility tariff is 
applied after the mapping model is estimated, compared to utility mapping, probability 
mapping has the advantage of being easily accommodated to tariffs for various countries. 

The EQ-5D utility data presents certain non-standard features which are a result of its 
bounded nature, i.e. such data typically has mass points at boundaries (in this case at 
one), is skewed, exhibits discontinuity (e.g. between 0.883 and 1) and is heteroscedastic 
given that the variance will approach zero as the mean approaches either boundary point 
(Kieschnick and McCullough 2003). Due to these characteristics, there is no commonly 
standard accepted utility mapping method. However, compared to response mapping, 
previous research indicates that utility mapping is by far the most frequently used ap-
proach (Dakin 2013). This chapter showed that about 80% of the mapping studies used 
the ordinary least square method (OLS, (Franks et al. 2003, Fryback et al. 1997, O’Brien 
et al. 2003, Versteegh et al. 2012)), often compared with Tobit like models such as the 



Predicting patient-reported outcomes from disease-specific questionnares 113

 C
ha

pt
er

 6

classical Tobit model (Austin 2002) or censored least absolute deviation models (CLAD, 
(Sullivan and Ghushchyan 2006)). Furthermore, for modeling the probability mass at one, 
hurdle models were sometimes used (Mullahy 1986). Given the longitudinal structure of 
the clinical studies that include PROMs, random effects or linear mixed effects models 
(LME) have also been proposed (Soini et al. 2012). Previous research has pointed out that 
the above methods which are based on the normal distribution assumption are likely 
to result in biased and inconsistent estimates of the mapping coefficients, in predictive 
values that may be outside of the domain, and generally in poor prediction performance 
(Basu and Manca 2012, Mortimer and Segal 2008). To address these issues more complex 
model specifications have been recently proposed, e.g. finite mixture models (FMM). 
Some found FMM to be superior when compared to OLS and Tobit models in mapping 
exercises (Hernandez Alava et al. 2012, Hernandez Alava et al. 2014, Coca Perraillon et 
al. 2015) while others indicated they did not show improvements when compared to 
multinomial logistic model (Kent et al. 2015). Furthermore, it has been shown that beta 
regression models (BM) offer superior predictive performance when compared to OLS 
and Tobit like models (Khan and Morris 2014). 

To avoid modeling directly the non-standard EQ-5D utility distribution, others proposed 
probability mapping by predicting the instruments’ response questions rather than its 
utility score (Le and Doctor 2011, Gray et al. 2006, Conigliani et al. 2015) and apply the 
utility tariff to the estimated probabilities. For example, Gray and colleagues employed 
a series of multinomial logit (MNL) regressions to estimate the probability that a respon-
dent selects a particular severity level from each EQ-5D question and then applied the 
UK tariff to these probabilities (Gray et al. 2006). More complex methods have been 
proposed for response mapping, e.g. Lee and Doctor used Bayesian Networks (BNs) for 
predicting the probability of each response level of the five EQ-5D domains obtained 
from a Bayesian updating process and found that the BNs mapping model was superior 
in terms of predictive accuracy when compared to the MNL model but also to OLS or 
CLAD. The superior predictive performance of BNs has also been confirmed in (Bor-
chani et al. 2012). To account for both the likely dependence between the EQ-5D item 
responses at the patient level and the fact that the EQ-5D item responses are naturally 
ordered, recently ordered probit models have been highlighted in a mapping exercise 
that predicts the EQ-5D from another preference based measure (Conigliani et al. 2015).

This chapter will consider two issues. First, the promising mapping approaches, e.g. FMM, 
beta regression models and BNs have only been compared separately to the commonly 
used mapping methods such as OLS and Tobit like models; therefore, it is still unclear 
which of these approaches predicts better the EQ-5D data. This can only be established 
by performing an extensive comparison among the above mentioned methods; to our 
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knowledge, this has not yet been conducted. Therefore, the aim of this chapter is to com-
pare (i) utility mapping methods: OLS, Tobit models, LME, BM and FMM with (ii) response 
mapping methods: MNL and BNs. Second, because of data unavailability, a common issue 
when validating mapping models is that such models are not sufficiently tested for their 
out-of-sample prediction performance. Many of the above studies have shown that the 
proposed mapping models perform well within their validation sample taken from the 
same sample population but often these models remain untested for their performance 
in other populations. In this chapter, we will use two longitudinal clinical studies that 
include both a disease-specific questionnaire and the EQ-5D. We will use interchangeably 
the data from one trial to fit the model and the data from the other one to validate it for 
its out-of-sample performance. The disease-specific questionnaire considered here is the 
chronic obstructive pulmonary disease questionnaire (CCQ); an instrument developed 
for measuring health status in chronic obstructive pulmonary disease (COPD) patients. 
CCQ includes ten questions monitoring general health dimensions and also questions 
specific for COPD (e.g. about coughing). For mapping the CCQ onto EQ-5D, a model has 
been recently developed using OLS and Tobit methods (Boland et al. 2015). 

This chapter is organized as follows. Section 2 describes the data used in the present 
chapter. Section 3 presents an overview of the methods used for developing the map-
ping model. Section 4 illustrates the main results and findings of our analyses. Finally, 
Section 5 draws conclusions and discusses the most salient points. 

Data

This chapter uses data coming from two different randomized clinical trials: the RECODE 
trial (n=6516 observations and 1086 individuals), a two-year, cluster randomized con-
trolled trial recruited from general practice and the GO-AHEAD (n=382 observations 
and 166 individuals) trial, a 3 month, multi-center randomized trial with 166 patients 
hospitalized for COPD exacerbation. Patients included in these trials completed both 
the CCQ and the EQ-5D questionnaire at six and three time points, respectively. About 
20% and 4% of observations were missing in the RECODE and GO-AHEAD trial; in order 
to perform our analyses we have discarded the observations including missing data.  

Figure 6-1 describes the distributions of each of the five EQ-5D responses and shows 
that a small number of observations have an EQ-5D response equal to three (this is cor-
responding to the ‘extreme problems’ scale). Figure 6-2 shows the derived EQ-5D utility 
for both the RECODE and the GO-AHEAD trial and indicates features usually observed for 
this data as indicated in the literature (Boland et al. 2015), i.e. the EQ-5D score has some 
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mass at one (i.e. full health), is bimodal and discontinuous as it has no mass between 
0.883 and 1. A simple visual inspection indicates that both the response distributions 
and the utility scores are different in RECODE compared to GO-AHAED suggesting worse 
health states for patients in GO-AHAED than for those in RECODE which is to be ex-
pected since all patients in GO-AHEAD were hospitalized for a COPD exacerbation. Table 
6‑1 illustrates descriptive statistics of the EQ-5D scores in the two trials confirming the 
difference in patient’s health as indicated by EQ-5D.  For example, about 23% of patients 
in GO-AHEAD and about 15% in RECODE had a utility score less than 0.5, respectively. 
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Figure 6‑1 Distribution of responses across the five EQ-5D domains for the RECODE trial (top) and for GO-
AHEAD trial (bottom)

Table 6‑1: Descriptive statistics for EQ-5D utility scores in RECODE and GO-AHEAD

 
RECODE
(n=5157)

GO-AHEAD
(n=366)

Mean 0.706 0.615

Minimum -0.594 -0.594

Maximum 1 1

EQ-5D<0.25 (%) 13.0 15.6

0.25<=EQ-5D<0.5 (%) 2.5 7.7

0.5<=EQ-5D<0.75 (%) 31.7 44.3

0.75<=EQ-5D<=0.883 (%) 27.3 20.4

EQ-5D=1 (%) 25.5 12
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CCQ is an instrument used to measure HRQoL for patients diagnosed with COPD; this 
questionnaire includes ten questions and meaures aspects of health on three domains, 
i.e. symptoms, functional and mental state. Respondents are asked to respond on each 
item (question) on a seven point scale resulting in 282 million possible health states. 
Response options for questions 1-6 are: never/hardly ever/a few times/several times/
many times/a great many times/almost all the time whereas response options for ques-
tions 7-10 are: not limitted at all/very slightly limited/slightly limited/ moderate limited/
very limited/extremly limited/totally limited or unable to do. Therefore, the scale of each 
CCQ question ranges from the best health state (0) to the worst health state (6). Figure 
6-3 illustrates the CCQ questions frequencies as indicated in the RECODE and GO-AHAED 
trial. In concordance with responses observed in the EQ-5D questionnaire, we observe 
that patients in the GO-AHEAD trial give responses that suggest a worse health state 
compared to those in RECODE. 
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Figure 6‑2: Distribution of EQ-5D utility scores for the RECODE trial (left) and for GO-AHEAD trial (right)
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Methods 

In what follows, we will briefly present the various mapping methods used for predicting 
either the EQ-5D score (i.e. utility score mapping) or the EQ-5D response (i.e. response 
mapping). Here we will not consider the problem of verifying what sets of covariates is 
preferable or what is the optimal functional form of these covariates; rather we focus on 
comparing the various methods from a general point of view. For enhancing compara-
bility between methods, in regression models, we opt for modelling EQ-5D as a function 
of the ten CCQ domains and we excluded interaction terms between the CCQ domains 
while in the BNs we developed a graph separately for each EQ-5D question together 
with the CCQ variables. Furthermore, for ease of estimation using response mapping, we 
have collapsed the seven-point response scale of each CCQ question onto a three-point 
scale by combining the response options one and two, three and four, and five, six and 
seven as in (Boland et al. 2015). Therefore, in all the models developed, CCQ variables 
have been entered as dummy variables with three levels. 

Utility mapping methods

Ordinary Least Squares (OLS)
Mainly due to its ease of use, OLS is frequently used for modelling the EQ-5D data. 
Therefore, any extensive comparison between various EQ-5D mapping methods must 
include an OLS model:

yi=xi
Tβ+εi, εi~N(0,σ2) (6.1)

where yi is the EQ-5D tariff score for individual i, β is a vector of coefficients and xi
T is 

a row vector of covariates; here these covariates are represented by the ten CCQ ques-
tions. OLS assumes that the errors are identical, independent and normally distributed. 

Linear mixed effects model (LME)
Generally, observations in clinical trial data are collected on multiple time points for 
patients; therefore, each patient will have multiple measurements. For addressing these 
data features we will use a linear mixed effects model (LME). Such a model contains two 
parts, a fixed and a random effects part: the fixed effects have the same interpretation 
as in the linear regression whereas the random effects are interpreted as how a subset 
of regression parameters for example, for the j-th subject deviates from those in the 
population. A flexible model specification for a mixed effects model consists in a random 
intercept and random slope model allowing each individual to have a different trajec-
tory over time:
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yij=xi
Tβ+bi0+bi1tij+εi, bi ~N(0,D), εi~(0,σ2) (6.2)

where yij is the EQ-5D tariff score for individual i at time point j;   bi=(bi0,bi1) denoting 
the vector of random effects for each subject i. The random effects are assumed to be 
normally distributed with mean zero and variance-covariance matrix D and are assumed 
independent of the error terms εi.  This model enables obtaining both marginal predic-
tions (i.e. for the average individual) and new predictions for individuals in the dataset. 
Note that, for out-of-sample prediction, LME marginal estimates need to be used. 

Tobit model
For dealing with the bounded nature of the utility score outcome, Tobit like models 
including the classical Tobit model (Austin 2002) or censored least absolute deviations 
(CLAD), (Sullivan and Ghushchyan 2006, Wijeysundera et al. 2011) were proposed previ-
ously for mapping the EQ-5D utility. However, Tobit-type models are intended to be 
used in a manner more applicable to censored dependent variables and this clearly is 
not the case with the EQ-5D tariffs. Here we will consider the classical Tobit model. In the 
Tobit model the independent variable y is assumed right censored at one:

yi
*=xi

Tβ+εi, εi~N(0,σ2) (6.3)
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where yi
* is assumed a latent (‘unobserved’) variable.  Similar to OLS, the classic Tobit 

model also assumes that the errors are normally distributed. Previous studies have 
shown that the classical Tobit model performs poorly for departures from normality or 
in the presence of heteroscedasticity (Maddala 1983, Greene 2000).  

Beta regression model (BM)
Since the EQ-5D utility is defined between 0.5 and 1, it therefore, exceeds the definition 
interval for the beta regression model (BM), i.e. (0,1). Hence, certain steps are required 
before fitting a beta regression model. First, we used a transformation of the form 
yi

*=(yi−a)/(b−a)where a is the minimum utility, b is the maximum utility and yi is the 
observed EQ-5D utility. In this way the transformed EQ-5D utility will be defined on the 
closed interval between 0 and 1, i.e. yi

*ϵ[0,1]. Note that only one observation was actu-
ally equal to 0, we took a slightly larger value than 0 for that observation (0.0000001). 
Nevertheless, the transformed EQ-5D data had about 25% and 12% of observations 
equal to one in RECODE and GO-AHEAD trial, respectively. Second, we developed a BM 
using a two-part model specification (Mullahy 1986). The first part models the probabil-
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ity that an individual has an EQ-5D utility of one using a logistic regression. The second 
part, applied the beta regression model to EQ-5D data defined between zero and one. 
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where 1π  is the probability of observing 1;  φμ,yf  denotes the beta density parametrized by the 

location/mean parameter  1μ0μ   and precision parameter  0φφ  :  
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interpreted as a precision parameter because, for each fixed value of the mean μ , φ1  is inversely 
proportional to the variance of y . Hence, this model is defined by three parameters; we will model 

each of these parameters, i.e.  1πφ,μ,  as functions of the ten CCQ domains using the link functions 

logit, log, log respectively. Such models have been implemented using maximum likelihood 
techniques by (Ospina 2010) in the GAMLSS package in R (Stasinopoulos and Rigby 2007, Rigby and 
Stasinopoulos 2010). 

The expected value of the estimated transformed EQ-5D utility data will be calculated as follows: 
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(6.7) 

For assessing model performance and comparing this model with the other approaches, the 
expected value indicated in (6.7) was back-transformed to the original scale of the EQ-5D data.  

Finite mixture models (FMM) 

A finite mixture model (FMM) assumes that the probability density generating the observed 
outcome is a combination of K different densities: 

(6.5)

where π1 is the probability of observing 1; f(yμ,φ) denotes the beta density param-
etrized by the location/mean parameter μ(0<μ<1) and precision parameter φ(φ>0): 
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Since the EQ-5D utility is defined between 0.5 and 1, it therefore, exceeds the definition interval for 
the beta regression model (BM), i.e. (0,1). Hence, certain steps are required before fitting a beta 
regression model. First, we used a transformation of the form    ab/ayy i

*
i  where a is the 

minimum utility, b is the maximum utility and iy  is the observed EQ-5D utility. In this way the 

transformed EQ-5D utility will be defined on the closed interval between 0 and 1, i.e.  0,1y*
i  . 

Note that only one observation was actually equal to 0, we took a slightly larger value than 0 for that 
observation (0.0000001). Nevertheless, the transformed EQ-5D data had about 25% and 12% of 
observations equal to one in RECODE and GO-AHEAD trial, respectively. Second, we developed a BM 
using a two-part model specification (Mullahy 1986). The first part models the probability that an 
individual has an EQ-5D utility of one using a logistic regression. The second part, applied the beta 
regression model to EQ-5D data defined between zero and one.  
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where 1π  is the probability of observing 1;  φμ,yf  denotes the beta density parametrized by the 

location/mean parameter  1μ0μ   and precision parameter  0φφ  :  
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 . In this context, φ  is 

interpreted as a precision parameter because, for each fixed value of the mean μ , φ1  is inversely 
proportional to the variance of y . Hence, this model is defined by three parameters; we will model 

each of these parameters, i.e.  1πφ,μ,  as functions of the ten CCQ domains using the link functions 

logit, log, log respectively. Such models have been implemented using maximum likelihood 
techniques by (Ospina 2010) in the GAMLSS package in R (Stasinopoulos and Rigby 2007, Rigby and 
Stasinopoulos 2010). 

The expected value of the estimated transformed EQ-5D utility data will be calculated as follows: 
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For assessing model performance and comparing this model with the other approaches, the 
expected value indicated in (6.7) was back-transformed to the original scale of the EQ-5D data.  

Finite mixture models (FMM) 

A finite mixture model (FMM) assumes that the probability density generating the observed 
outcome is a combination of K different densities: 

. In this context, 

φ is interpreted as a precision parameter because, for each fixed value of the mean μ, 
1+φ is inversely proportional to the variance of y. Hence, this model is defined by three 
parameters; we will model each of these parameters, i.e. (μ,φ,π1) as functions of the ten 
CCQ domains using the link functions logit, log, log respectively. Such models have been 
implemented using maximum likelihood techniques by (Ospina 2010) in the GAMLSS 
package in R (Stasinopoulos and Rigby 2007, Rigby and Stasinopoulos 2010).

The expected value of the estimated transformed EQ-5D utility data will be calculated 
as follows:
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For assessing model performance and comparing this model with the other approaches, 
the expected value indicated in (6.7) was back-transformed to the original scale of the 
EQ-5D data. 

Finite mixture models (FMM)
A finite mixture model (FMM) assumes that the probability density generating the ob-
served outcome is a combination of K different densities:
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where jp  are nonnegative quantities that sum to one, 1p0 j  ,  


K

1j
j 1p , jp  are mixing 

proportions or weights and jf  are component densities of the mixture, K  denotes the number of 

components or classes,  jμ  denotes the mean for each component and 2
jσ  denotes the variance for 

each component. Therefore, each density in the mixture is characterized by its own mean and 
variance. In a FMM, densities can be discrete or continuous or combinations of the two. 
Furthermore, in a FMM, probabilities jp  can either be considered constant (equal for each 

observation) or can be modelled separately as a function of explanatory variables. In the FMM 
specifications considered here:  

 jμ  with j
T
ij βxμ   were estimated as linear functions of the ten CCQ questions; 

 2
jσ  were estimated as constants for each component k (i.e. equal for each observation and 

component) 
 jp  were estimated as functions of the ten CCQ questions using multinomial logistic 

regressions 

In what follows we will consider various FMM where densities will be considered either 
combinations of densities of continuous variables or combinations of densities of continuous and 
discrete variables. The number of classes included in the mixture models was chosen by means of a 
two-fold cross-validation. We sampled observations regardless of their patient ID and we evaluated 
the cross-validations by using the smallest prediction error criterion. For brevity these results are not 
shown here; however, it is worth mentioning that we considered up to five classes and, we found 
that mixture densities with two classes fitted better the EQ-5D utility data than mixtures with more 
components. Therefore, we developed the following mixture models: a Gaussian mixture model 
(GMM) containing two classes of normal distributions, inflated Gaussian mixture model (IGMM) 
including three classes: two classes of normal distributions and one class with a fixed value at one 
for modelling the mass at one and beta mixture models (BMM) containing two classes of beta 
distributions. These models were fitted in R using the packages flexmix (Grün and Zeileis 2012) and 
betareg (Grün et al. 2012).  

(a) Gaussian mixture model (GMM) 

For addressing the bimodality observed in the EQ-5D utility data, a FMM with two classes of normal 
distributions was used: 

     22i221i11i σ,μyφp1σ,μyφpyf   (6.9) 

where 1p  and 2p  denote the probability that an observation belongs to class 1 and class 2, 

respectively.   1,2j,σ,μyφ jjij   denote univariate Gaussian distributions with mean j
T
ij βxμ   and 

variance 2
jσ . Therefore, a total of 35 parameters were estimated with this model.   

(b) Inflated Gaussian mixture model (IGMM)  

(6.8)

where pj are nonnegative quantities that sum to one, 0<pj≤1, 

78 
 

   


K

1j
jjijji σ,μyfpyf  (6.8) 

where jp  are nonnegative quantities that sum to one, 1p0 j  ,  


K

1j
j 1p , jp  are mixing 

proportions or weights and jf  are component densities of the mixture, K  denotes the number of 

components or classes,  jμ  denotes the mean for each component and 2
jσ  denotes the variance for 

each component. Therefore, each density in the mixture is characterized by its own mean and 
variance. In a FMM, densities can be discrete or continuous or combinations of the two. 
Furthermore, in a FMM, probabilities jp  can either be considered constant (equal for each 

observation) or can be modelled separately as a function of explanatory variables. In the FMM 
specifications considered here:  

 jμ  with j
T
ij βxμ   were estimated as linear functions of the ten CCQ questions; 

 2
jσ  were estimated as constants for each component k (i.e. equal for each observation and 

component) 
 jp  were estimated as functions of the ten CCQ questions using multinomial logistic 

regressions 

In what follows we will consider various FMM where densities will be considered either 
combinations of densities of continuous variables or combinations of densities of continuous and 
discrete variables. The number of classes included in the mixture models was chosen by means of a 
two-fold cross-validation. We sampled observations regardless of their patient ID and we evaluated 
the cross-validations by using the smallest prediction error criterion. For brevity these results are not 
shown here; however, it is worth mentioning that we considered up to five classes and, we found 
that mixture densities with two classes fitted better the EQ-5D utility data than mixtures with more 
components. Therefore, we developed the following mixture models: a Gaussian mixture model 
(GMM) containing two classes of normal distributions, inflated Gaussian mixture model (IGMM) 
including three classes: two classes of normal distributions and one class with a fixed value at one 
for modelling the mass at one and beta mixture models (BMM) containing two classes of beta 
distributions. These models were fitted in R using the packages flexmix (Grün and Zeileis 2012) and 
betareg (Grün et al. 2012).  

(a) Gaussian mixture model (GMM) 

For addressing the bimodality observed in the EQ-5D utility data, a FMM with two classes of normal 
distributions was used: 

     22i221i11i σ,μyφp1σ,μyφpyf   (6.9) 

where 1p  and 2p  denote the probability that an observation belongs to class 1 and class 2, 

respectively.   1,2j,σ,μyφ jjij   denote univariate Gaussian distributions with mean j
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ij βxμ   and 

variance 2
jσ . Therefore, a total of 35 parameters were estimated with this model.   

(b) Inflated Gaussian mixture model (IGMM)  

, pj are mixing pro-

portions or weights and fj are component densities of the mixture, K denotes the number 
of components or classes, μj denotes the mean for each component and σ2j denotes the 
variance for each component. Therefore, each density in the mixture is characterized by 
its own mean and variance. In a FMM, densities can be discrete or continuous or combina-
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tions of the two. Furthermore, in a FMM, probabilities pj can either be considered constant 
(equal for each observation) or can be modelled separately as a function of explanatory 
variables. In the FMM specifications considered here: 

· μj with μj=xi
Tβj were estimated as linear functions of the ten CCQ questions;

· σj
2 were estimated as constants for each component k (i.e. equal for each observa-

tion and component)
· pj were estimated as functions of the ten CCQ questions using multinomial logistic 

regressions

In what follows we will consider various FMM where densities will be considered ei-
ther combinations of densities of continuous variables or combinations of densities 
of continuous and discrete variables. The number of classes included in the mixture 
models was chosen by means of a two-fold cross-validation. We sampled observations 
regardless of their patient ID and we evaluated the cross-validations by using the small-
est prediction error criterion. For brevity these results are not shown here; however, it 
is worth mentioning that we considered up to five classes and, we found that mixture 
densities with two classes fitted better the EQ-5D utility data than mixtures with more 
components. Therefore, we developed the following mixture models: a Gaussian mixture 
model (GMM) containing two classes of normal distributions, inflated Gaussian mixture 
model (IGMM) including three classes: two classes of normal distributions and one class 
with a fixed value at one for modelling the mass at one and beta mixture models (BMM) 
containing two classes of beta distributions. These models were fitted in R using the 
packages flexmix (Grün and Zeileis 2012) and betareg (Grün et al. 2012). 

(a) Gaussian mixture model (GMM)

For addressing the bimodality observed in the EQ-5D utility data, a FMM with two classes 
of normal distributions was used:

f(yi)=p1φ1(yi|μ1,σ1)+p2φ2(yi|μ2,σ2) (6.9)

where p1 and p2 denote the probability that an observation belongs to class 1 and class 
2, respectively. φj(yi|μj,σj),j=1,2 denote univariate Gaussian distributions with mean 
μj=xi

Tβj and variance σj
2. Therefore, a total of 35 parameters were estimated with this 

model.  
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(b) Inflated Gaussian mixture model (IGMM) 

In order to address the discontinuity observed between the EQ-5D values of 0.883 and 1, 
a special mixture model with three classes where one class has a mean with a fixed value 
at one and the other two follow a Normal distribution was developed: 

f(yi)=p1φ(yi|μ1,σ1)+p2φ(yi|μ2,σ2)+(1−p1−p2)φ(yi|1,σ3) (6.10)

where p1 denotes the probability that an observation belongs to class one, p2 denotes 
the probability that the entity belongs to class 2 and (1−p1−p2) denotes the probability 
of observing one. In order to estimate this FMM, we implemented a flexmix driver (the 
code for this driver is included in the Appendix). Compared to the model denoted by 
equation (9), this model will estimate 11 more parameters resulting in a total of 46 
parameters. 

(c) Beta mixture models (BMM)

Similar to the beta model illustrated in section 3.1.4, we used a two-part model specifi-
cation for developing a model which includes a mixture of beta distributions instead of 
one beta distribution for the second part. 
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where 1π  denotes the probability of observing an EQ-5D utility equal to one, 1p and 1p1  denote 
the probability that an observation belongs to class one and two of the mixture model, respectively; 

 11i φ,μyB , 1,2j  denote univariate beta distributions with mean j
T
ij βxμ   and variance  
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. This model will estimate a total of 46 parameters.   

(d) Predictions with FMM 

In this chapter two types of predictions with FMM will be generated: in-sample and out-of-sample 
predictions. To obtain in-sample predictions with FMM, the EQ-5D data was estimated as the sum of 
the predictions for each component weighted by the probability of falling into a cluster given the 
observed EQ-5D data and the covariates ix . To generate out-of-sample predictions with FMM, we 
estimated two types of predictions. First, unobserved EQ-5D data was estimated as the sum of the 
predictions for each component weighted by the estimated mixing probabilities given the covariates 

ix . We refer to this type of predictions as to the ‘weighted average (WA)’ predictions. Second, 
unobserved EQ-5D data was assigned to a class based on the maximum of the estimated mixture 
probabilities given ix  and then the predicted EQ-5D was the prediction corresponding to the 
assigned class; we refer to this type of prediction as to ‘maximum probability clustering (MPC)’.   

Response mapping methods 

Response mapping involves predicting the probability levels of each EQ-5D question. However, for 
comparing these approaches with score based mapping methods, the predicted probabilities need 
to be converted into EQ-5D scores by applying the EQ-5D tariffs. For converting the estimated EQ-5D 
probabilities into the EQ-5D scores we will use the Expected-Utility (EU) method and the Most-Likely 
Probability (MP) approach as proposed in (Le and Doctor 2011). In the EU method, the EQ-5D utility 
is obtained by taking the expectation of the estimated probabilities and the associated utilities for 

(6.11)

where π1 denotes the probability of observing an EQ-5D utility equal to one, p1and 1−p1 

denote the probability that an observation belongs to class one and two of the mixture 
model, respectively; B(yi|μj,φj), j=1,2 denote univariate beta distributions with mean 

μj=xi
Tβj and variance 
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predictions. To obtain in-sample predictions with FMM, the EQ-5D data was estimated as the sum of 
the predictions for each component weighted by the probability of falling into a cluster given the 
observed EQ-5D data and the covariates ix . To generate out-of-sample predictions with FMM, we 
estimated two types of predictions. First, unobserved EQ-5D data was estimated as the sum of the 
predictions for each component weighted by the estimated mixing probabilities given the covariates 

ix . We refer to this type of predictions as to the ‘weighted average (WA)’ predictions. Second, 
unobserved EQ-5D data was assigned to a class based on the maximum of the estimated mixture 
probabilities given ix  and then the predicted EQ-5D was the prediction corresponding to the 
assigned class; we refer to this type of prediction as to ‘maximum probability clustering (MPC)’.   

Response mapping methods 

Response mapping involves predicting the probability levels of each EQ-5D question. However, for 
comparing these approaches with score based mapping methods, the predicted probabilities need 
to be converted into EQ-5D scores by applying the EQ-5D tariffs. For converting the estimated EQ-5D 
probabilities into the EQ-5D scores we will use the Expected-Utility (EU) method and the Most-Likely 
Probability (MP) approach as proposed in (Le and Doctor 2011). In the EU method, the EQ-5D utility 
is obtained by taking the expectation of the estimated probabilities and the associated utilities for 

. 

This model will estimate a total of 46 parameters.  
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(d) Predictions with FMM

In this chapter two types of predictions with FMM will be generated: in-sample and out-
of-sample predictions. To obtain in-sample predictions with FMM, the EQ-5D data was 
estimated as the sum of the predictions for each component weighted by the probability 
of falling into a cluster given the observed EQ-5D data and the covariates xi. To generate 
out-of-sample predictions with FMM, we estimated two types of predictions. First, un-
observed EQ-5D data was estimated as the sum of the predictions for each component 
weighted by the estimated mixing probabilities given the covariates xi. We refer to this 
type of predictions as to the ‘weighted average (WA)’ predictions. Second, unobserved 
EQ-5D data was assigned to a class based on the maximum of the estimated mixture 
probabilities given xi and then the predicted EQ-5D was the prediction corresponding 
to the assigned class; we refer to this type of prediction as to ‘maximum probability 
clustering (MPC)’.  

Response mapping methods

Response mapping involves predicting the probability levels of each EQ-5D question. 
However, for comparing these approaches with score based mapping methods, the 
predicted probabilities need to be converted into EQ-5D scores by applying the EQ-5D 
tariffs. For converting the estimated EQ-5D probabilities into the EQ-5D scores we will 
use the Expected-Utility (EU) method and the Most-Likely Probability (MP) approach 
as proposed in (Le and Doctor 2011). In the EU method, the EQ-5D utility is obtained 
by taking the expectation of the estimated probabilities and the associated utilities for 
each EQ-5D domain in part. In the MP method, the maximum estimated probability 
for each EQ-5D domain is assigned with the corresponding utility. Details about these 
methods are provided in (Le and Doctor 2011). 

Multinomial logistic regression (MNL)
Let yil be the EQ-5D response for individual i to dimension l (l=1,…,5) and let βrl be the 
vector of coefficients for level r (r=1, 2, 3). The probability of observing outcome r for 
each individual i in each dimension l is: 
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where, for identification purposes, for each EQ-5D dimension 0βrl  . Therefore, the remaining 

coefficients 3l2l β,β  represent changes relative to 1yil  .  

Bayesian networks (BNs)  

BNs are a form of graphical models with focus on structure discovery, i.e. determining an optimal 
graphical structure from the observed data. Compared to regression methodologies, in the BNs 
framework there is no need for a distinction between response or outcome variables and 
explanatory variables, depending on the situation, any variable can be considered as outcome or 
explanatory variable. Recall that within a regression framework the covariates are assumed 
independent of each other while a BNs model enables to explicitly model relationships between all 
covariates and is therefore intuitively more reasonable than regression analysis. 

BNs belong to the graphical models structures known as directed acyclic graphs (DAG) and enable an 
effective representation of the joint probability distribution over a set of variables. A structure of a 
DAG is represented by two sets: the set of nodes which represents random variables and the set of 
edges which indicates potential statistical dependencies between variables. In particular, an edge 
form a node iX  to another node jX  indicates that iX  influences jX  with iX  being referred to as a 

parent of jX  (which is referred to as the child node). An extension of these relationships includes the 

set of descendants or ancestor which represent the set of nodes that can be reached through a 
direct path from the child node (the parents of the parents of the child node). A BN model is based 
on the conditional independence relationships between the variables i.e. each variable is conditional 
independent of its ancestors given its parents. This property is necessary for potentially reducing 
drastically the number of parameters that are needed to estimate the joint probability distribution. 
BNs were developed for both continuous and discrete variables; in what follows we will only cover 
discrete BNs.  With a set of only discrete variables iX , i=1,..,n, the joint probability distribution is 
factorized as follows: 

    


n

1i
iin1 XPaXP,...XXP , 

(6.13) 
where  iXPa  denotes the set of parents of node iX .  

(6.12)

where, for identification purposes, for each EQ-5D dimensionβ=01l. Therefore, the re-
maining coefficients β2l,β3l represent changes relative to y=1il. 
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Bayesian networks (BNs) 
BNs are a form of graphical models with focus on structure discovery, i.e. determining 
an optimal graphical structure from the observed data. Compared to regression meth-
odologies, in the BNs framework there is no need for a distinction between response or 
outcome variables and explanatory variables, depending on the situation, any variable 
can be considered as outcome or explanatory variable. Recall that within a regression 
framework the covariates are assumed independent of each other while a BNs model 
enables to explicitly model relationships between all covariates and is therefore intui-
tively more reasonable than regression analysis.

BNs belong to the graphical models structures known as directed acyclic graphs (DAG) 
and enable an effective representation of the joint probability distribution over a set 
of variables. A structure of a DAG is represented by two sets: the set of nodes which 
represents random variables and the set of edges which indicates potential statistical 
dependencies between variables. In particular, an edge form a node Xi to another node 
Xj indicates that Xi influences Xj with Xi being referred to as a parent of Xj (which is 
referred to as the child node). An extension of these relationships includes the set of 
descendants or ancestor which represent the set of nodes that can be reached through 
a direct path from the child node (the parents of the parents of the child node). A BN 
model is based on the conditional independence relationships between the variables 
i.e. each variable is conditional independent of its ancestors given its parents. This 
property is necessary for potentially reducing drastically the number of parameters that 
are needed to estimate the joint probability distribution. BNs were developed for both 
continuous and discrete variables; in what follows we will only cover discrete BNs.  With 
a set of only discrete variables Xi, i=1,..,n, the joint probability distribution is factorized 
as follows:
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n
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iin1 XPaXP,...XXP , 

(6.13) 
where  iXPa  denotes the set of parents of node iX .  

(6.13)

where Pa(Xi)denotes the set of parents of node Xi. 

Both the structure of the BNs and their parameters can be learned from available data. 
As such, these graphical models are widely used in many areas e.g. statistics, machine 
learning and artificial intelligence with many methods being developed for learning the 
structure and the corresponding parameters. 

Structure learning was performed here using both constraint-based methods (Spirtes 
et al. 2001) as in (Le and Doctor 2011) but also score-based methods such a greedy 
search algorithms (Bouckaert 1995). For most of the constrained-based methods the 
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BNs’ structure is searched starting with a saturated graph which is fully connected. 
Subsequently, edges between nodes are removed if independence tests, e.g. χ2 tests are 
rejected with various levels of significance. The constraint-based methods used were PC 
(after its authors Peter and Clark (Spirtes et al. 2000)) and grow-shrink algorithms (GS, 
(Margaritis 2003)). 

Greedy search methods assess the BN structure using goodness of fit measures such 
as the Bayesian Information Criterion (BIC). With these methods the search starts with 
an empty graph and then edges between two variables are added, deleted or reversed 
until no score improvements can be achieved. In this way, the BN structure with the best 
score (i.e. best fit) is selected. Examples of algorithms included in this category and used 
here include hill climbing and tabu search (Bouckaert 1995).  

For learning the structure of the BN, we used the bnlearn package available in R (Scutari 
2010). For ease of computation, we developed five separate BNs models, each including 
the ten CCQ questions and one EQ-5D domain. Because various methods result in differ-
ent BNs structures, we selected the optimal BNs structure by means of a two-fold cross-
validation analysis in which the model that resulted in the smallest prediction error for 
the EQ-5D question was selected. A description of the finally learnt BNs structure for 
each EQ-5D domain is illustrated in the Appendix. After the BNs structure was learned, 
the corresponding conditional probability parameters were estimated from the data by 
means of a Bayesian estimation in which each child was estimated as a function of its 
parents using a logistic regression model. 

Once the structures and parameters of the BNs were learned, they were used to estimate 
the probabilities of the response levels for each EQ-5D domain; this process is called ‘proba-
bilistic inference’ and requires the use of special algorithms that need to be used in this 
updating process. We used an algorithm for exact inference called ‘junction tree’ (Nagarajan 
et al. 2013) which has been implemented in package gRain in R. An overview of BNs and 
their implementation and potential use in R can be found in (Nagarajan et al. 2013).   

Comparison between different models  

Because the aim of the mapping is to predict EQ-5D at the patient level when these data 
are unavailable, the accuracy of the prediction is a key aspect of the performance of vari-
ous mapping methodologies. Note that, all of the presented models will be compared 
in terms of their estimated utility scores. For assessing the quality of the forecast in a 
mapping model, it has been recommended (Longworth and Rowen 2011) that the mean 
absolute error (MAE) and the mean square error (MSE) between the estimated and the 
observed utilities should always be reported. Note that, compared to MAE, MSE is more 
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sensitive to outliers and large changes. These measures will be used for both within 
sample validation and out-of-sample validation. Furthermore, to assess in-sample model 
fit, we will also report R2 which indicates the percentage of explained variance by the 
models. The two trials analysed here differ in sample size and in the extent of observa-
tions in poor health. Due to these differences, we will present measures of validation for 
each trial separately instead of averages between the two. 

Results

In-sample validation

Table 6‑2 shows in-sample prediction errors of all fitted models for both the RECODE and 
GO-AHEAD trials as indicated by MAE, MSE and R2. Table 6‑2 indicates that generally, 
utility mapping methods result in better in-sample performance than response mapping 
approaches, i.e. lower MAE and MSE and higher R2. Furthermore, the models trained with 
GO-AHEAD trial resulted in smaller errors than those trained with RECODE. This may be due 
to the inclusion of more individuals in poor health in GO-AHEAD compared to RECODE. 

Among the utility mapping methods, FMM fitted the EQ-5D utility data best while Tobit 
and OLS models provided the worst fit to the EQ-5D data regardless of which trial data 
was used to develop the models. Compared to the other approaches, all FMM appear 
superior in fitting the EQ-5D utility data with the IGMM having the smallest errors. The 
errors of the LME and BM were in-between FMM; and, Tobit and OLS. 

Among the response mapping methods, MNL and BNs fitted relatively similar the RE-
CODE data but MNL fitted better the GO-AHEAD sample. However, for both of these 
response mapping methods, compared to MP, EU provided better accuracy.   

For Table 6‑3, we have calculated MAE and MSE for various EQ-5D intervals. Table 6‑3 shows 
that IGMM and GMM strongly outperformed the other methods on all EQ-5D intervals.  

Figure 6-4 presents observed versus predicted values for the GO-AHEAD trial suggesting 
that in general FMM provide superior fit compared to the other approaches. Figure 6-5 
illustrates the fitted distributions for the GO-AHEAD trial indicating once more that the 
FMM fit the EQ-5D data substantially better than the other approaches. Similar results 
for RECODE trial are enclosed in Appendix. 
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Out-of-sample validation 

Table 6‑4 shows the out-of-sample measures of predictive performance, i.e. MAE and 
MSE for models trained with RECODE and validated with GO-AHEAD and for the reverse 
situation, i.e. for models trained with GO-AHEAD and validated with RECODE. 

Table 6‑4 shows that, in general, regardless of whether the models were trained on RECODE 
or GO-AHEAD, when used for predicting external data, the prediction errors produced with 
utility mapping methods are similar to those produced with response mapping methods. 
While compared to the other methods investigated, the FMM fitted the EQ-5D utility data 
substantially better, when used for out-of-sample prediction, they showed only modest 
improvements. Furthermore, not all FMM developed here showed better prediction perfor-
mance than the other methods. In fact, in this case, the out-of-sample prediction error of the 
FMM depended largely on whether the dataset used to train the models included more or 
less individuals in poor health. Our results showed that FMM performed better when models 
were trained using a datasets that included a larger number of individuals in poor health. 

When the models were developed for RECODE and validated with GO-AHEAD (see Table 
6‑4), MAE showed that, among the utility mapping methods, on average, the prediction 
error is smallest for beta mixture models (BMM), especially for BMM with maximum 
probability clustering (MPC). Furthermore, MAE indicates that BNs with the maximum 
probability (MP) and LME are the second best approaches. 

Table 6‑4: Out-of-sample validation

 Fitted/
Predicted RECODE(N=5157)/GO-AHEAD(N=366)

a
GO-AHEAD(N=366)/RECODE(N=5157) 

b

Mapping       
method Model Min Max Mean MAE MSE Min Max Mean MAE MSE

Utility 
mapping

OLS 0.045 0.874 0.514 0.206 0.066 0.033 1.001 0.755 0.181 0.067

LME 0.211 0.829 0.558 0.196 0.058 0.047 0.970 0.739 0.180 0.065

Tobit 0.044 1.000 0.537 0.203 0.065 0.034 1.000 0.803 0.185 0.074

BM 0.032 0.871 0.509 0.209 0.067 -0.381 0.966 0.770 0.181 0.069

GMM (MPC) -0.074 0.903 0.593 0.204 0.085 -0.192 0.976 0.812 0.187 0.079

GMM (WA) 0.100 0.863 0.520 0.213 0.067 0.072 0.965 0.773 0.176 0.067

IGMM (MPC) -0.061 1.000 0.606 0.199 0.082 -0.197 1.000 0.828 0.187 0.084

IGMM (WA) 0.142 0.888 0.521 0.216 0.067 0.142 0.975 0.79 0.178 0.069

BMM (MPC) -0.103 0.918 0.677 0.187 0.073 -0.334 0.954 0.778 0.181 0.073

BMM (WA) 0.270 0.895 0.595 0.191 0.056 0.012 0.948 0.737 0.179 0.063

Response    
mapping

MNL (EU) 0.000 0.856 0.499 0.214 0.071 -0.192 0.930 0.751 0.181 0.068

MNL (MP) -0.074 1.000 0.619 0.205 0.079 -0.323 1.000 0.829 0.193 0.088

BN(EU) 0.158 0.833 0.518 0.209 0.065 0.242 0.869 0.730 0.178 0.063

BN(MP) -0.056 1.000 0.652 0.195 0.071 0.015 1.000 0.753 0.269 0.138

a models fitted and predicted with RECODE and predicted with GO-AHEAD  trial ; b models fitted with GO-
AHEAD and predicted to RECODE trial
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When models were developed with GO-AHEAD and validated with RECODE, MAE indi-
cates that, on average GMMs are superior to both the other utility mapping as well as 
response mapping methods. Furthermore, BNs resulted in very similar errors to these. In 
fact, compared to utility mapping, response mapping methods (i.e. MNL and BNs) seem 
to benefit more if the dataset used to develop such models includes a large number of 
respondents in good health. 

In general, we found that WA and EU were superior to MPC and MP. One explanation for 
this may be because the misclassification error is more present for individuals in poor 
health as that observed sample size is the smallest in both trials.
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Figure 6‑4: Observed versus predicted EQ-5D scores for GO-AHEAD trial
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Table 6-5 shows that there is not one single method that predicts the EQ-5D data better 
than the others on all EQ-5D intervals. Furthermore, we observe that regardless of the 
trial data used to learn the model, BNs tend to perform better when EQ-5D is defined 
between 0.25 and 0.75 while FMM perform better for individuals that are in good health 
(i.e. when EQ-5D>0.75). Regarding those that are in the poorest health (i.e. EQ-5D<0.25) 
all methods result in substantially higher errors than those for the other intervals.  
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Figure 6‑5: Fitted distributions for the GO-AHEAD trial
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Discussion And Conclusions

This chapter aimed to predict the most often used preference-based PROMs, the EQ-
5D from the CCQ, a questionnaire including ten questions specific for COPD patients. 
For this purpose, we presented an extensive comparison among previously proposed 
mapping approaches including the commonly used mapping models such as OLS, LME, 
Tobit model and MNL as well as some of the new and promising approaches such as BNs 
and FMM. Furthermore, these methods are classified into utility mapping methods and 
response mapping. Therefore, this chapter compared eight model classes and a total of 
14 models. The focus here was on out-of-sample prediction by using two independent 
trial datasets that differ in sample size and the extent of which they included individuals 
in poor health. 

Various conclusions regarding the performance of the investigated methods can be 
drawn from this chapter:
· In general, regardless of the dataset used to develop the models, utility score map-

ping methods fitted the EQ-5D data better than response mapping approaches. 
Clearly, as shown by the in-sample prediction errors, the FMM provided the best fit 
to the EQ-5D data. The second best method was LME while the other utility mapping 
such as OLS, Tobit and Beta regression resulted in similar results with the response 
mapping methods (i.e. MNL and BNs)

· Out-of-sample performance of the different methods depended on whether the 
EQ-5D data included a large number of participants in poor and/or good health. In 
general, models trained on a dataset that included a larger number of respondents 
in poor health resulted in smaller out-of-sample prediction errors

· For both trials considered here, FMM provided the smallest out-of-sample prediction 
errors. However, compared to the other approaches, the improvements obtained 
with these models were rather modest. This was mainly because the misclassification 
error for FMM was larger for those respondents in poor health. 

· BNs resulted in similar prediction errors with FMM when the models were trained on 
the dataset that had more respondents in poor health.  

· In general, response mapping appeared more appropriate when using a dataset with 
more respondents in poor health while FMM resulted in more accurate predictions 
for the reverse situation

· Regardless of the dataset used, none of the methods outperformed the other ap-
proaches on the entire range of EQ-5D data, with errors being substantially larger for 
individuals in the poorest heath (i.e. when EQ-5D<0.25). 
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Similar to previous research (Longworth et al. 2014, Versteegh et al. 2012), we found 
that all the mapping methods investigated over-predicted the EQ-5D at the bad health 
states: both utility mapping methods such as OLS, Tobit, LME, BM, FMM and the response 
mapping such as MNL and BNs had substantially higher errors for EQ-5D intervals lower 
than 0.5. In addition, we found that BNs tend to perform better in predicting the EQ-
5D data in the middle of the EQ-5D interval (i.e. 0.25<EQ-5D<0.75) while FMM tend to 
perform better when EQ-5D≥0.75. 

There is conflicting evidence from previous research regarding the prediction perfor-
mance of FMM when modeling the EQ-5D data. While some showed that Gaussian 
mixture models outperform methods such as OLS and Tobit (Hernandez Alava et al. 
2012, Hernandez Alava et al. 2014, Coca Perraillon et al. 2015), others showed that they 
did not demonstrate superior predictive accuracy compared to MNL when applied to 
external datasets (Kent et al. 2015). In addition, previous research indicated that FMM 
may be particularly useful for populations in good health (Coca Perraillon et al. 2015). 
Our findings are to some extent in line with this in that we found FMM to be on average 
superior to the other mapping methods but that was mainly due to their better accuracy 
for individuals that were in good health. 

Furthermore, we found that, BM models performed better than OLS, Tobit, MNL and BNs 
but only in-sample and not out-of-sample. With respect to their in-sample performance 
our results are similar to previous findings that indicated BM to be superior to OLS and 
Tobit models when used in mapping exercises (Khan and Morris 2014). 

Our finding that MNL did not necessarily perform better than OLS especially when these 
were developed using a dataset with a small number of respondents in poor health is 
similar to what others showed (Longworth et al. 2014, Brazier et al. 2010). Furthermore, 
previous research illustrated that BNs are superior to OLS, Tobit and MNL (Le and Doctor 
2011, Borchani et al. 2012). To some extent, our results are in line with this since we 
found that BNs, especially BNs using the EU method, produced predictions with better 
accuracy than OLS, LME, Tobit, BM, MNL; and similar errors as FMM, when the model was 
trained on the dataset that included more respondents in poor health. Therefore, re-
sponse mapping methods, particularly BNs, may be suitable when the mapping models 
are developed using populations in poorer health. Further research investigating this 
would be worthwhile. 

There are a number of areas in which the work reported here could be extended. First, 
the methods are compared using point by point error estimates such as MAE and MSE 
and the uncertainty surrounding the compared methods was not reported here. It has 
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been suggested that reporting mean errors such as MAE and MSE may not be ideal since 
for providing suitable measures of uncertainty predictions should be probabilistic, i.e. 
they should take the form of probability distributions over future quantities (Dawid 
1984). Such an approach would be more suitable to a Bayesian estimation and may 
be worthwhile for future research. Second, the aim here was to compare the existing 
mapping methods especially when used to predict external EQ-5D data; therefore, we 
did not consider the problem of verifying what sets of covariates is preferable or what is 
the optimal functional form of these covariates. This issue may be considered in future 
research. 

The main advantage of this chapter is with respect to the availability of two distinct 
trial datasets that differed in their sample size and EQ-5D distributions. This enabled 
to investigate the performance of various methods in external dataset and to test their 
robustness to various EQ-5D distributions. In this way, more insights regarding the per-
formance of the currently existing mapping methodologies with different datasets can 
be gained. Furthermore, although the variety of methods investigated here was tested 
in the context of a mapping exercise, our results may be useful for other health care 
applications that use EQ-5D data (e.g. for monitoring population health as shown in 
chapters 2, 3 and 4).   

Concluding, this research shows that, when used for external EQ-5D predictions, none of 
the currently existing mapping methodologies produces the most accurate predictions 
for the entire range of the EQ-5D data regardless of the sample population used to train 
the model. A number of recommendations follow from this research. First, FMM may 
be suitable when the sample population used to develop the mapping model includes 
a large number of respondents in good health as the misclassification rate is lower in 
that situation. Second, response mapping, particularly Bayesian Networks (BNs) may be 
suitable when the sample population used to train the model includes a large number 
of individuals in poor health. The current chapter represents a first step in providing an 
extensive comparison of the currently existing mapping methodologies and identifying 
their differences when used with various datasets.  Obviously, translating our results into 
definite answers regarding the suitability of the current mapping methods for disease-
specific questionnaires in general requires further research.  Therefore, an important 
recommendation that follows from this chapter is to test the performance of the above 
methods using other disease-specific questionnaires. 
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Appendices

A1: The structure of the Bayesian Models
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A2: Observed versus fitted EQ-5D scores for RECODE trial
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Figure 6‑7: Fitted distributions for the RECODE trial
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Figure 6‑8: Observed versus predicted EQ-5D scores for RECODE trial
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A3: R code for the driver extending the flexmix package for fitting the Inflated 
Gaussian mixture model (IGMM)
library(“flexmix”)
setClass(“FLXMRmgglm”, representation(mean = “numeric”, sigma = “ANY”), contains=”FLXMRglm”)

FLXMRmgglm <‑ function(formula = . ~ ., mean, sigma = NULL, ...) {
    new(“FLXMRmgglm”, FLXMRglm(formula, family = “gaussian”, ...),
        name = paste(“FLXMRmgglm”, “gaussian”, sep =”:”), mean = mean, sigma = sigma)
}
setMethod(“FLXgetModelmatrix”, signature (model =”FLXMRmgglm”),function (model, data, formula, 
lhs=TRUE, ...)
    {
        model <‑ callNextMethod (model, data, formula, lhs)
        if (attr (terms (model@fullformula), “intercept”) == 0)
            stop (“please include an intercept”)
        model
    })
setMethod (“FLXremoveComponent”, signature(model = “FLXMRmgglm”), function (model, nok, ...)
    {
        if (1 %in% nok) as(model, “FLXMRglm”) else model
    })
setMethod(“FLXmstep”, signature (model = “FLXMRmgglm”), function (model, weights, components, ...)
    {
        coef <‑ c(model@mean, rep(0, ncol(model@x) ‑ 1)) 
        names(coef) <‑ colnames(model@x)
        sigma <‑ if (is.null(model@sigma)) sqrt(mean(weights[, 1] * (model@y ‑ model@mean)^2)/mean(weights[, 1]))
                 else model@sigma
        comp.1 <‑ with(list(coef = coef, sigma = sigma, df = sum(is.null(model@sigma)), offset = NULL,
                            family = model@family), eval(model@defineComponent))
        c(list(comp.1),
          FLXmstep(as(model, “FLXMRglm”), weights[, ‑1, drop = FALSE],
                    components[‑1]))
    })
### model fit

Model <- FLXMRmgglm(mean = 1, sigma = 0.0001)

mod_rec<-flexmix(qol~CCQ_1+CCQ_2+CCQ_3+CCQ_4+CCQ_5+CCQ_6+CCQ_7+CCQ_8+CCQ_9
+CCQ_10,concomitant=FLXmultinom(~CCQ_1+CCQ_2+CCQ_3+CCQ_4+CCQ_5+CCQ_6+CCQ_7 
CCQ_8+CCQ_9+CCQ_10), k = 3, data =data,model = Model, control = list(minprior = 0, iter.max = 100))
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Findings Of This Thesis

The aim of this dissertation was to investigate changes in population health, to explore 
a mechanism that can explain these changes and to assess their consequences and 
implications for economic evaluations of health care interventions. In doing so, several 
methodological challenges associated with modelling HRQoL data were addressed. 

The following sections present a discussion of our main findings and answer the re-
search questions posed in the introduction. The research questions can be grouped in 
the following themes: changes in population health, the relationship between HRQoL 
and time to death (TTD), and methodological considerations when modelling HRQoL 
data.   

Changes in population health

In an aging society, it is important to establish whether increases in life expectancy are 
accompanied by concomitant improvements in health. The results presented in chap-
ters 2 and 3 showed that Dutch people are not only tending to live longer than they 
previously did but also enjoy a higher quality of life than before. In addition, our results 
indicate that, although the overall trend is found in all population groups, the higher 
educated gain more in length and quality of life than the lower educated, thus widening 
the socio-economic gap in health. 

The empirical results presented in chapter 2 showed that the health of the Dutch popula-
tion as measured by quality-adjusted life expectancy (QALE) has improved in the period 
2001 to 2008. This suggests that, for the Dutch population, the observed declines in 
mortality rates over recent periods were accompanied by concomitant improvements in 
HRQoL at all ages. For example from 2001 to 2008, QALE for a man/woman aged 20 years 
increased by 2.3/1.9 healthy years, of which 0.6/0.8 was due to HRQoL improvements. 

Chapter 3 showed that in the period 2001 to 2011, both life expectancy (LE) and QALE 
have increased more for highly educated individuals compared to low and medium 
educated individuals. For example, in 2001, at age 25, the absolute QALE difference be-
tween the low and the highly educated was 7.4 healthy years (36.7 vs. 44.1) for men and 
6.3 healthy years (39.5 vs. 45.8) for women. By 2011, the QALE difference had increased 
to 8.1 healthy years (38.8 vs. 46.9) for men and to 7.1 healthy years (41.3 vs. 48.4) for 
women. Similar inequalities in health have been observed at older ages. Therefore, our 
results show that, at least in the Netherlands, in recent periods, population health as 
measured by QALE has improved in all groups, but, nonetheless, QALE inequalities have 
widened, even more so than inequalities in life expectancy alone. 



142 General discussion

The relationship between HRQoL and TTD

In this thesis the relationship between HRQoL and TTD has been investigated in two 
contexts. First, in the context of population aging, we investigated whether the relation-
ship between HRQoL and TTD may explain the observed changes in population health 
by age. Second, in the context of economic evaluations, we explored the potential con-
sequences and implications of the relationship between HRQoL and TTD for economic 
evaluations of life prolonging interventions. In other words, we investigated how the 
relationship between HRQoL and TTD can be exploited to improve estimates of QALY 
gains in economic evaluations of life prolonging interventions. These two issues have 
been studied in chapters 4 and 5, respectively. 

Applying statistical methods to a dataset for the Dutch population, chapter 4 showed 
that the observed relationship between health as measured by HRQoL and age can be 
explained to a large extent by the relationship between HRQoL and TTD. Our empirical 
results indicate that when TTD is accounted for, the effect of age on HRQoL becomes 
negligible. Hence, HRQoL losses induced by decreasing TTD are substantially larger than 
those induced by increasing age. These findings suggest that further increases in life 
expectancy will not necessarily result in more years spent in poor health. Therefore, to a 
large extent, this mechanism is aligned with the observed health improvements for the 
Dutch population, as indicated in chapters 2 and 3 of this thesis.    

Chapter 5 showed that the relationship between HRQoL and TTD has important implica-
tions for estimating gains in Quality Adjusted Life Years (QALYs) in economic evaluations 
of life prolonging interventions. The fact that HRQoL depends strongly on TTD and that 
health losses are centred in the last phase of life can be used in estimating QALYs gained 
due to life prolonging interventions. That is because interventions that extend life, to 
a large extent postpone the HRQoL losses towards the end of life. Hence, not all years 
gained due to a life prolonging intervention may be spent in poor health, but mainly the 
last years of life. In chapter 5 we found that ignoring the relation between HRQoL and 
TTD would result in an underestimation of QALY gains due to life prolonging interven-
tions and, consequently, to an overestimation of the cost-effectiveness ratio compared 
to the situation in which this relationship is adequately accounted for. We found that the 
level of this underestimation of QALY gains ranges between 3% and 7% and depends 
mostly on the discount rate used. 

Statistical modelling of HRQoL data

Due to its non-standard distribution (bounded, skewed, heteroskedastic and with 
discontinuity points) modelling HRQoL may be complicated. Therefore, careful consid-
eration needs to be taken when modelling the various HRQoL instruments. In this thesis 
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we modelled two generic preference-based HRQoL indices: the SF-6D (derived from the 
SF-12 and SF-36) and the EQ-5D, respectively. To some extent, each chapter of this thesis 
posed the question which methods should be used for modelling the HRQoL data. 

Chapters 2, 3 and 5 modelled cross-sectional SF-6D data using beta regression applied 
within a generalized additive models for location, scale and shape (GAMLSS) framework. 
This approach enabled modelling both parameters of the beta distribution (i.e. loca-
tion and precision) as function of explanatory variables, therefore allowing to address 
some of the issues associated with modelling HRQoL data such as heteroscedatisicty. To 
model longitudinal SF-6D data, chapter 4 used a mixed beta regression and highlighted 
the benefits of using the Bayesian estimation. Chapter 6 compared a large number of 
currently used methodologies for modelling EQ-5D data. 

The results showed in chapters 2, 3 and 5 indicate that GAMLSS and beta distribution 
are suitable for modelling cross-sectional SF-6D data. The results presented in Chapter 
4 showed that mixed beta regression and Bayesian estimation is appropriate for model-
ling longitudinal HRQoL data. Our findings showed that the beta distribution enabled 
fitting the non-standard SF-6D outcome while Bayesian estimation allowed estimating 
complex models that would otherwise be more difficult to estimate. For example, Bayes-
ian estimation permits to make use of prior information. Furthermore, with a Bayesian 
approach it was possible to straightforwardly account for various sources of bias specific 
to HRQoL data in observational studies, such as non-ignorable missing data. Note that, 
although the benefits of using Bayesian estimation were highlighted here in a case 
study that modelled the longitudinal SF-6D outcome, they apply largely to other HRQoL 
instruments such as the EQ-5D and to situations in which HRQoL data may be cross-
sectional rather than longitudinal.  

Chapter 6 compared a large number of existing methods for developing a prediction 
model that allows mapping EQ-5D outcome from a disease specific-questionnaire. By 
using a dataset that included both the EQ-5D and a disease-specific questionnaire, a 
model was developed that can be used in future studies to predict generic HRQoL at the 
patient level when this data is unavailable. The findings from this chapter showed that, 
compared to the other existing methods currently in use for modelling EQ-5D data such 
as OLS, Tobit, beta regression, multinomial logit models and Bayesian networks, finite 
mixture models (FMM) appear to fit best the EQ-5D data. However, we found that, when 
used for out-of-sample prediction, these methods showed only slight improvements 
compared to the other considered approaches. Our empirical results indicated that, 
when used for external predictions, none of the investigated methods outperforms the 
others on all EQ-5D intervals. 
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Synthesis Of Findings

Various connections between the results obtained in the chapters of this thesis can be 
established. First, it is interesting to investigate to what extent the relationship between 
HRQoL and TTD (as shown in chapter 4) can be used to estimate the changes in popula-
tion health as measured by QALE over recent calendar periods in the Netherlands (as 
shown in chapters 2 and 3). We calculated that about 90% and 70% of the QALE gain in 
males and females aged 20, respectively (as highlighted in chapter 2) can be explained 
by using the relationship between HRQoL and TTD as shown in chapter 4. Furthermore, 
we found that in this QALE gain, about 50% and 25% was due to HRQoL improvements 
for men and women, respectively. Therefore, to a large extent, the results obtained in 
the descriptive studies illustrated in chapters 2 and 3 can be deduced by using solely the 
mechanism presented in chapter 4.    

Second, chapters 4 and 5 investigated the relationship between HRQoL and TTD using 
different datasets. Therefore, it is interesting to observe whether the results from these 
two studies are consistent. The model developed in Chapter 4 showed that the TTD 
coefficient was 0.019 [0.010, 0.036] while that developed in Chapter 5 indicated that the 
TTD coefficient estimate was 0.06 [0.012, 0.108]. Note that in Chapter 4 we performed a 
Bayesian analysis for investigating the relationship between HRQoL and TTD. In doing 
so, the results of the TTD coefficient from chapter 5 have been used in the form of prior 
information in the Bayesian analysis performed in chapter 4; the combined results for 
the TTD coefficient was 0.018 [0.005,0.024]. Therefore, we conclude that, the results 
reported in chapter 5 did not appear to influence much those obtained in chapter 4. 

Limitations

Each chapter of this thesis includes a specific list of limitations. We will not repeat those 
here. Instead, we will highlight several general limitations. First, it has been acknowl-
edged that all chapters of this thesis used datasets containing information about Dutch 
individuals. Therefore, the empirical results presented here are particularly relevant for 
the Netherlands. While clearly the results illustrating descriptive changes in population 
health as indicated in chapters 2 and 3 are relevant for the Dutch population only, the 
mechanism describing the relationship between HRQoL, age and TTD can be generalized 
to other populations as well. It is likely that a similar relationship between HRQoL and 
TTD will be observed in other European countries as well. In fact, a similar mechanism 
has been demonstrated for healthcare expenditures using data sets from Switzerland 
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(Zweifel et al. 1999), the United Kingdom (Seshamani 2004, van Baal and Wong 2012a, 
Seshamani and Gray 2004) and the Netherlands (van Baal and Wong 2012a). 

Second, for investigating changes in population health, most of the chapters of this dis-
sertation (chapters 2-5) use the SF-6D HRQoL instrument. Note that SF-6D scores range 
between 0.345 and 1. Therefore, when compared to other HRQoL instruments such as 
EQ-5D or HUI, which typically exceed the boundaries of the interval defined between 
zero and one, it is more difficult to detect small changes in health with SF-6D. It is pos-
sible that if HRQoL instruments defined on a wider range would have been used instead 
of the SF-6D (e.g. EQ-5D), larger health changes over time and by age would have been 
observed. Therefore, due to these range discrepancies between various HRQoL indices, 
the empirical results presented here may be sensitive to the HRQoL instrument used. 

Implications And Future Research

The presented results in this dissertation are relevant from both a theoretical and a 
practical point of view and can be useful to researchers, policy makers and to improve 
the methodology of economic evaluations of health technologies.

We hope that the insights of this thesis will inspire other researchers in the field of 
health economics to conduct further investigations in some of the areas covered in this 
thesis. For example, investigating changes in population health and the mechanism of 
the relationship between TTD and HRQoL using empirical datasets relevant for other 
populations besides that of the Netherlands would be worth pursuing. The proposed 
approach may be adapted to any life prolonging interventions also in different popula-
tions (e.g. diseased populations or populations of a specific socio-economic group) if 
data is available to estimate the impact of TTD on HRQoL. That is because TTD can be 
viewed as a proxy variable for diseases and processes that increase mortality risk and 
that are not explicitly modelled in an economic evaluation. By using TTD when estimat-
ing QALY gains due to an intervention that extends life, we implicitly account for these 
other unobserved diseases in the added years of life. Such an adjustment is possible as 
all modelling studies of life prolonging interventions include information on mortality. 
In doing so, using other HRQoL measures defined on wider intervals, for example EQ-5D 
or HUI, would lead to better insight into the role of choice of HRQoL instrument. 

From a policy perspective, our results can be considered important in the context 
of population aging. Our finding that Dutch people live longer lives in better health 
indicate that, in recent periods in the Netherlands, there has been a compression of mor-
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bidity (Fries 2000, Fries 2002). This may be important in alleviating the consequences 
of population aging in various contexts. One example refers to the ongoing debates 
regarding extended labour-force participation by the elderly and raising of the pension 
age. According to a press release made by Statistics Netherlands, in the Netherlands, 
the Dutch government decision to raise the current retirement age from 65 years to 
67 years (which should be the case in 2022) will reduce the number of pensioners by 
half a million by 2025 (Statistics Netherlands 2014). The same document reports that 
from 2022 onwards the entitlement age for state old-age pension in the Netherlands 
will be linked to the increase in life expectancy. However, these social policies alone 
may be insufficient for reducing the financial burden induced by population aging if 
individuals chose to cease work due to ill-health. Previous research showed that health 
is the main determinant of labour supplyof older workers. For example, Lindeboom, in 
a comprehensive review, argued that a number of studies indicated that poor health is 
the main cause of labour force exit among older workers (Lindeboom 2012). Therefore, 
the results from chapters 2 and 3, showing that in recent periods the health of the Dutch 
population has improved, are useful for informing reforms targeted at systematically 
increasing the official retirement age in the Netherlands. Nonetheless, in chapter 3 it 
was argued that such restructuring should acknowledge the differences in health be-
tween socio-economic groups. Chapter 3 showed that health inequalities favouring the 
higher educated exist at all ages. However, such differences are rarely acknowledged by 
policy makers. In our view efforts should be made in diminishing health inequalities and 
perhaps in studying the possibility of making the retirement age flexible by allowing for 
differential retirement age by educational or socio-economic status (De Waegenaere et 
al. 2014, Bovenberg et al. 2006). 

In chapter 4 it has been shown that health losses are concentrated in the last phase of 
life. This confirmed the results obtained in the descriptive studies presented in chapters 
2 and 3. They imply that in the Netherlands there is a compression of morbidity. These re-
sults may also be important in explaining the demand for healthcare. Given that in many 
OECD countries aging accelerates, there are fears that HCE may drastically increase. Our 
results indicating that health losses are centred in the last phase of life suggest that this 
may not necessarily be the case. This finding is in line with previous research showing 
that similar to health losses, the demand for health care use is concentrated in the last 
phase of life because individual HCE can be better explained by TTD than age (Zweifel et 
al. 1999, Seshamani 2004, Zweifel et al. 2004, Werblow et al. 2007). This is to be expected 
since both age and TTD act as proxies for morbidity and disability which are the real 
drivers of individual HCE. Note that the majority of studies investigating the effect of 
TTD on HCE used individual level data but aimed at informing healthcare use at the 
macro level. For example, using individual level data, several studies have shown that if 
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life expectancy increases, excluding TTD from the analyses results in an overestimation 
of macro-level HCE (Polder et al. 2006, Stearns and Norton 2004). However, these results 
were subject to critique as they did not account for the difference in determinants of 
individual health care use and macro HCE (Getzen 1992, Getzen 2000). Using macro-
level HCE data and accounting for growth factors by unidentified causes (e.g. medical 
technology advances), it has been shown that, including TTD in forecast models does 
not lower future HCE projections (van Baal and Wong 2012b). Similar to future HCE pro-
jections, TTD may be used for projecting future population health, e.g. for forecasting 
QALE. Note that unlike for healthcare costs, the disctinction between micro and macro 
HRQoL is not relevant when forecasting population QALE. 

In our view, by stimulating the compression of morbidity, to some extent, the conse-
quences of population aging may be alleviated. Examples of such economic benefits 
include the fact that people may be able to remain in the labour force for longer and 
that individual HCE may increase less markedly. Given that nowadays morbidity is es-
pecially driven by the presence of chronic diseases (e.g. diabetes, cancer), governments 
may seek to enforce programs that enable the postponement of onset of these chronic 
diseases though strategies such as screening and prevention. 

The evidence provided in this thesis illustrates two issues with implications for the 
practice of economic evaluations. First, chapter 5 showed that, compared to the situa-
tion in which age- and gender-specific HRQoL would be used, ignoring the relationship 
between HRQoL and TTD results in an underestimation of QALY gains (and consequently 
an overestimation of the ICER) due to life prolonging interventions. This is in line with 
previous research chaptering the relationship between other health measures such as 
healthcare expenditures (HCE) and TTD, and its implications for life prolonging preven-
tive interventions. It has been shown that ignoring the effect of TTD on HCE would result 
in an overestimation of the costs (and consequently of the ICER) in those economic 
evaluations (Gandjour and Lauterbach 2005). With respect to the estimation of QALY 
gains due to life prolonging interventions, our results highlight that the assumption 
made regarding HRQoL in life years gained due to these interventions has a direct 
impact on the final cost-effectiveness results. Nevertheless, often economic evaluation 
analysts assume that the absence of the disease under investigation equals people 
being in full health. The lack of standards and guidelines regarding the estimation of 
HRQoL in life years gained due to life prolonging interventions leaves room for such 
unrealistic assumptions in the daily practice of economic evaluations. In our view, a set 
of guidelines for including the effect of competing risks in the added years of life due 
to life prolonging interventions is required. The approach illustrated in this thesis, i.e. 
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using HRQoL stratified by age, gender and TTD in life years gained due to life prolonging 
interventions, can be used to assist such guidelines.

Second, in practical economic evaluations, methodological recommendations regard-
ing HRQoL can be useful, for example, for developing prediction or ‘mapping’ models. In 
this context, using inappropriate methodologies for modelling EQ-5D (or other HRQoL) 
data can have a significant impact on the final outcomes of an economic evaluation. 
Regarding the methods used to model HRQoL data, our findings indicate that there is 
no all-purpose best method. For example, certain methods may be more suitable for 
modelling SF-6D than EQ-5D data. This highlights the need for a clear, case by case jus-
tification of methodological choices in this context. Furthermore, analysts may consider 
whether the purpose of the model is to explain or to predict HRQoL data. In addition, 
when developing HRQoL models, analysts should be aware of and preferably account 
for the various sources of bias which may occur, e.g. selection bias due to missing data. 

Concluding, this thesis explored a wide range of quantitative approaches for monitoring 
changes in population health while emphasising how these changes may be used to 
improve health estimates in economic evaluations of life prolonging interventions. All in 
all, we hope that this thesis contributes to the health economics literature by enabling a 
better understanding of the consequences of aging on population health, by improving 
the methodology of economic evaluations, and by highlighting a number of statistical 
methods for modelling HRQoL data in various contexts.
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Nowadays, across the world people are living longer than previous generations did. 
The proportion of elderly in the total population has also increased, a demographic 
phenomenon commonly referred as population aging. Currently, people aged 60 and 
older make up over 11 per cent of the global population.  It is expected that by 2050, 
this number will double to about 22 per cent. These changes in the structure of their 
populations pose new challenges and require nations to be equipped with the right set 
of economic policies. In that context, extensive societal, political and scientific debates 
have been associated with population ageing. Important examples include debates 
on the affordability of growing healthcare expenditures (HCE), and those on raising 
the statutory retirement age in order to increase labour force participation of elderly. 
The rationale for and exact consequences of policy decisions in these areas crucially 
depend on the extent to which the increases in life expectancy are accompanied by 
concomitant increases in life years spent in good health. Therefore, monitoring the level 
of population health and its changes over time and by population subgroups is a key 
component for determining whether: (a) policy changes associated with population 
aging are necessary and (b) if necessary, these policy changes will have the desired 
societal effects. The aim of this thesis was to investigate changes in population health 
and the way in which these changes may be included in economic evaluations. In doing 
so, health-related quality of life (HRQoL) was used as a measure of population health. 
Estimating population health using HRQoL is challenging because of the non-standard 
distribution (bounded, skewed, heteroskedastic and with discontinuity points) of the 
HRQoL outcome. To some extent, each chapter of this thesis posed the question which 
methods should be used for modelling the HRQoL data. Therefore, this thesis, investi-
gates various statistical methods for modelling different types of HRQoL data.

In Chapters 2 and 3 we studied changes in the health (as measured by HRQoL) of 
the Dutch population, in the period between 2001 and 2008, for various population 
subgroups. We found that Dutch people are not only tending to live longer than they 
previously did but are also living more healthily. In addition, Chapter 3 showed that, 
although this seems to be the case for all population subgroups, compared to the lower 
educated, the higher educated Dutch people profited most in terms of longevity and 
years in good health. In other words, between 2001 and 2008 health has improved for all 
population groups in the Netherlands, but more for the highly educated. This indicates 
that health inequalities by education widened for the Dutch population. Our finding 
that Dutch people live longer lives in better health indicates that, in recent periods in 
the Netherlands, there has been a compression of morbidity. This is important in assess-
ing the consequences of population aging in various contexts. One example refers to 
the ongoing debates regarding extended labour-force participation of the elderly and 
raising the pension age. 
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It has been documented that, with advancing age, health deteriorates and healthcare 
expenditures (HCE) increase. This could imply that increases in life expectancy increase 
the number of years lived in poor health, which may limit the scope for extending 
working lives and increase HCE. However, such seemingly obvious conclusions may 
be misleading. It has been extensively shown that healthcare utilization is centred in 
the final years of life and, therefore, population aging may have limited effect on future 
healthcare use. That is because time to death (TTD) is a stronger predictor of HCE than 
age is. In explaining the observed changes in population health as indicated in Chapters 
2 and 3, this thesis explores a mechanism that investigates the relationship between 
HRQoL and TTD. Chapter 4 showed that the observed relationship between health as 
measured by HRQoL and age can be explained to a large extend by the relationship 
between HRQoL and TTD. Similar to HCE, we found that when TTD is accounted for, the 
effect of age on HRQoL becomes negligible. Hence, HRQoL losses induced by decreas-
ing TTD are substantially larger than those induced by increasing age. The fact that we 
found health losses to be centred in the last years of life has important implications for 
the challenges commonly related to population aging. Indeed, these results suggest 
that further increases in life expectancy will not necessarily result in more years spent 
in poor health. 

Using a different dataset, Chapter 5 confirmed that the observed changes in HRQoL 
by age can be explained by the relationship between HRQoL and TTD. Furthermore, 
we found that this relationship has important implications for estimating health gains 
in economic evaluations of life prolonging interventions. That is because interventions 
that extend life, to a large extent postpone HRQoL losses towards the end of life. Hence, 
not all years gained due to a life prolonging intervention are spent in poor health, but 
mainly the last years of life. The empirical results presented in Chapter 5 showed that 
ignoring the relationship between HRQoL and TTD results in an underestimation of the 
health gains of preventive interventions that extend life. 

Throughout this thesis, we applied various statistical methods for modelling HRQoL util-
ity data, in particular we modelled two utility scores: the SF-6D and the EQ-5D. Chapters 
2, 3 and 5 showed that for modelling the cross-sectional SF-6D data, a beta regression 
applied within a generalized additive model for location, scale and shape (GAMLSS) 
provides a flexible approach.  Chapter 4 showed that, mixed beta regression and the 
Bayesian estimation is attractive for modelling longitudinal SF-6D data. Our findings 
indicate that a beta distribution enabled fitting the non-standard SF-6D outcome, while 
Bayesian estimation allowed estimating complex models. Hence, it was possible to 
straightforwardly account for various sources of bias specific to observational studies 
and HRQoL data, such as non-ignorable missing data and censoring. 
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Although compulsory for performing an economic evaluation, in practice, information 
on HRQoL data such as EQ-5D data is often not available. In Chapter 6, a number of 
statistical methods (i.e. OLS, Tobit, beta regression, multinomial logit models and Bayes-
ian networks, finite mixture models) were compared for estimating EQ-5D scores when 
this data is absent. Hence, we developed prediction models that allow predicting EQ-5D 
data for patients using other aspects of their health (i.e. a disease specific-questionnaire). 
Our findings showed that finite mixture models fitted the EQ-5D data best. However, for 
out-of-sample prediction, none of the investigated methods outperformed the others 
on the entire EQ-5D domain. 

In this thesis we attempted to contribute to the health economics literature in various 
ways. From a policy perspective, it enables to better understand the consequences of 
aging on population health while illustrating important issues for the practice of eco-
nomic evaluation particularly for improving the methodology of economic evaluations. 
While addressing these topics, a number of statistical methods for modelling HRQoL 
data in various contexts were highlighted. 
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De levensverwachting is in veel landen de afgelopen decennia flink gestegen. Het 
aandeel ouderen in de wereld is mede daardoor toegenomen, een demografisch feno-
meen wat ook wel vergrijzing wordt genoemd. Wereldwijd is de proportie personen 
boven de 60 jaar momenteel 11 procent en naar verwachting is dit percentage in 2050 
verdubbeld. Deze veranderingen in de structuur van de bevolking zorgen voor nieuwe 
uitdagingen in economisch beleid. Belangrijke uitdagingen in veel landen betreffen de 
betaalbaarheid van de alsmaar groeiende uitgaven aan de gezondheidszorg en het ver-
hogen van de pensioensleeftijd zodat ouderen langer onderdeel kunnen uitmaken van 
de beroepsbevolking. De consequenties van politieke beslissingen op deze gebieden 
hangen voor een belangrijk deel af van de mate in hoeverre langer leven gepaard gaat 
met een goede gezondheid. Daarom is het van belang om de volksgezondheid en de 
veranderingen daarin over de tijd in kaart te brengen. Het doel van dit proefschrift is 
om veranderingen in de gezondheid van de Nederlandse bevolking in kaart te brengen 
en te onderzoeken of deze veranderingen relevant zijn voor economische evaluaties. 
Hierbij is gezondheidsgerelateerde kwaliteit van leven (health related quality of life 
HRQoL) gebruikt als meetinstrument voor de gezondheid van de populatie. Daarnaast 
is in dit proefschrift de vraag gesteld welke methoden gebruikt moeten worden voor 
het modelleren van HRQoL data. Dit proefschrift onderzoekt dan ook verschillende 
statistische methoden voor het modelleren van verschillende typen HRQoL data. 

In hoofdstuk 2 en 3 hebben we veranderingen in gezondheid geschat van de Neder-
landse bevolking, tussen 2001 en 2008, voor verschillende subgroepen van de bevolking. 
We zagen dat Nederlanders niet alleen langer leven dan vroeger, maar ook  in een betere 
kwaliteit van leven. Ondanks dat dit het geval lijkt voor alle subgroepen in de bevolk-
ing, laat hoofdstuk 3 zien dat in vergelijking tot de laagopgeleiden, de hoogopgeleide 
Nederlanders hiervan het meest profiteren. In andere woorden, tussen 2001 en 2008 is 
de gezondheid van alle bevolkingsgroepen in Nederland verbeterd, maar deze is meer 
verbeterd voor de hoogopgeleiden. Dit betekent dat ongelijkheden in gezondheid naar 
opleiding groter zijn geworden in Nederland. Onze bevinding dat Nederlanders langer 
leven in betere kwaliteit van leven, indiceert ook dat er in Nederland in de afgelopen 
periode een compressie van morbiditeit heeft plaatsgevonden. Dit is van belang bij het 
bepalen van de consequenties van vergrijzing in verschillende contexten. 

Vele studies hebben reeds laten zien dat naarmate mensen ouder worden, de gezond-
heid achteruit gaat en het gebruik van zorg toeneemt. Dit suggereert dat langer leven 
niet noodzakelijkerwijs leidt tot langer werken maar vooral tot extra zorgvraag. Echter, 
zulke schijnbaar duidelijke conclusies kunnen misleidend zijn. Zo heeft bijvoorbeeld 
ander onderzoek laten zien dat het gebruik van gezondheidszorg gecentreerd is in de 
jaren voorafgaand aan de dood en dat daarom een ouder wordende bevolking een 
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gelimiteerd effect heeft op toekomstig zorggebruik. Dit komt doordat de tijd tot dood 
(TTD) een sterkere voorspeller is voor zorggebruik dan leeftijd. Om de geobserveerde 
veranderingen in de volksgezondheid te verklaren zoals deze zijn uiteengezet in 
hoofdstuk 2 en 3, onderzoekt dit proefschrift een mechanisme tussen HRQoL en TTD. 
Hoofdstuk 4 laat zien dat de geobserveerde relatie tussen gezondheid, zoals gemeten 
door HRQoL en leeftijd voor een groot deel verklaard kan worden door de relatie tussen 
HRQoL en TTD. Net als bij de gezondheidsuitgaven hebben we aangetoond dat wanneer 
er rekening wordt gehouden met TTD, het effect van leeftijd op HRQoL verwaarloosbaar 
wordt: HRQoL verliezen veroorzaakt door verlaging in TTD zijn aanzienlijk hoger dan 
de verliezen veroorzaakt door een verhoogde leeftijd. Deze resultaten suggereren 
dat een verdere stijging van de levensverwachting niet per se resulteert in meer jaren 
gespendeerd in slechte gezondheid. Hoofdstuk 5 laat zien dat wanneer een andere 
dataset werd gebruikt, de geobserveerde veranderingen in HRQoL door leeftijd, ook 
het resultaat zijn van een sterke relatie tussen HRQoL en TTD. Daarnaast zagen we dat 
deze relatie belangrijke implicaties heeft voor het schatten van gezondheidswinst in 
economische evaluaties van levensverlengende interventies. Dit komt doordat deze 
levensverlengende interventies voor een groot gedeelte de HRQoL verliezen uitstellen 
naar het einde van het leven. Daarom worden niet alle jaren die gewonnen worden door 
levensverlengende interventies, gespendeerd in slechte gezondheid. De empirische 
resultaten die in hoofdstuk 5 gepresenteerd worden, laten zien dat het negeren van de 
relatie tussen HRQoL en TTD resulteert in een onderschatting van de gezondheidswinst 
van preventieve levensverlengende interventies. 

In dit proefschrift zijn verschillende statistische methoden toegepast om HRQoL utilit-
eiten te modelleren waarbij voornamelijk de utiliteitsscores van de SF-6D en de EQ-5D 
gemodelleerd werden. Hoofdstuk 2, 3 en 5 lieten zien dat een beta regressie toegepast 
in een gegeneraliseerd additief model voor locatie, schaal en vorm (GAMLSS) een flexi-
bele benadering was voor het modelleren van cross-sectionele SF-6D data. Hoofdstuk 4 
liet zien dat voor het modelleren van longitudinale SF-6D data een Bayesiaanse schat-
tingsmethode het meest aantrekkelijk was. Onze bevindingen indiceren dat een beta 
distributie ervoor heeft gezorgd dat de niet normale SF-6D uitkomst gemodelleerd kon 
worden, terwijl de Bayesiaanse schatting ervoor zorgt dat complexe modellen geschat 
kunnen worden. Op deze manier was het mogelijk om op een directe manier te cor-
rigeren voor verschillende bronnen van bias specifiek voor observationele studies en 
HRQoL data, zoals non-ignorable missende data en censoring.  

Alhoewel voor economische evaluaties HRQoL data zoals de EQ-5D benodigd zijn, is 
in de praktijk dit type data vaak niet beschikbaar. In hoofdstuk 6 worden verschillende 
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statistische methoden (i.e. OLS, Tobit, beta regressie, multinomiale logit modellen and 
Bayesiaanse netwerken, finite mixture modellen) vergeleken om EQ-5D utiliteiten te 
schatten wanneer deze data niet aanwezig is. In dit hoofdstuk manier hebben we pre-
dictiemodellen ontwikkeld voor patiënten door gebruik te maken van andere aspecten 
van de gezondheid op basis van ziekte specifieke vragenlijsten. Onze bevindingen 
toonden aan dat de finite mixture modellen, het beste bij onze data pasten. Echter, voor 
voorspellingen buiten de sample was er geen model dat beter presteerde dan de andere 
modellen voor het gehele EQ-5D domein. 

In dit proefschrift hebben we geprobeerd om op verschillende manieren bij te dragen 
aan de gezondheidseconomische literatuur. Vanuit een beleidsperspectief draagt 
dit proefschrift bij aan een beter begrip van de gevolgen van ouder worden voor de 
volksgezondheid terwijl belangrijke zaken ten aanzien van de praktijk van econo-
mische evaluaties geïllustreerd worden, in het bijzonder door het verbeteren van de 
methodologie van economische evaluaties. Terwijl deze verschillende thema’s aan bod 
komen, wordt er tegelijkertijd dieper ingegaan op de statistische methoden voor het 
modelleren van HRQoL data.
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