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Abstract

The paper considers various extended asymmetric multivariate conditional volatility mod-
els, and derives appropriate regularity conditions and associated asymptotic theory. This en-
ables checking of internal consistency and allows valid statistical inferences to be drawn based
on empirical estimation. For this purpose, we use an underlying vector random coefficient
autoregressive process, for which we show the equivalent representation for the asymmetric
multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum
likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory
volatility model, and discuss the associated asymptotic properties.
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properties.
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1 Introduction

Multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models are fre-

quently used in the analysis of dynamic covariance structure for multiple asset returns of financial

time series (see the survey papers of, among others, Bauwens et al. (2006), McAleer (2005), and

Silvennoinen and Teräsvirta (2009)). One of the most popular multivariate GARCH models is

the BEKK model (see Baba, Engle, Kraft and Kroner (1985) and Engle and Kroner (1995)). The

BEKK model has a positive definite covariance process, and it is easy to verify its stationary

conditions. To reduce the number of parameters, and to show regularity conditions and asymp-

totic properties, the ‘diagonal BEKK’ and ‘scalar BEKK’ models are often used in empirical

analysis. Comte and Lieberman (2003) show the consistency and asymptotic normality of the

quasi-maximum likelihood (QML) estimator under conditions that are difficult to verify.

For accommodating the asymmetric effects in the multivariate framework, McAleer, Hoti and

Chan (2009) consider the vector autoregressive and moving-average (VARMA) process with con-

stant correlations and an asymmetric GARCH extension of the univariate asymmetric model of

Glosten, Jagannathan, and Runkle (GJR) (1992). Taking account of dynamic correlations, Kroner

and Ng (1998) develop the asymmetric BEKK (ABEKK) model. McAleer, Hoti and Chan (2009)

show the consistency and asymptotic normality of the QML estimator of the asymmetric model

with static correlations, but there are no asymptotic results for the ABEKK model.

In addition to asymmetric effects, another popular stylized fact is long-range dependence

in volatility. In univariate conditional volatility models, Baillie, Bollerslev, and Mikkelsen (1996)

developed the fractionally-integrated GARCH (FIGARCH) model, while Bollerslev and Mikkelsen

(1996) suggested the fractionally-integrated exponential GARCH (FIEGARCH) model (see McAleer

and Hafner (2014) and Martinet and McAleer (2016) for reservations regarding exponential GARCH).
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Other studies have used the heterogeneous autoregressive (HAR) model of Corsi (2009), which is

inspired by the heterogeneous ARCH model of Müller et al. (1997), to approximate the hyperbolic

decay rates associated with long memory models.

The first purpose of the paper is to derive the consistency and asymptotic normality of the QML

estimator for the VARMA-ABEKK model. For this purpose, we apply the approach of McAleer

et al. (2008) based on the vector random coefficient autoregressive (RCA) process suggested

by Nicholls and Quinn (1981) (see also Tsay (1987) for an application to conditional volatility

models). The second purpose of the paper is to develop new extended asymmetric long memory

BEKK (ALBEKK) and heterogeneous BEKK models, and to discuss the asymptotic properties

of the associated QML estimators.

The remainder of the paper is organized as follows. Section 2 introduces the VARMA-ABEKK

model, and shows a relationship between a vector RCA process and the conditional covariance

model. Section 3 demonstrates the consistency and asymptotic normality of the QML estimator

for the VARMA-ABEKK model. Section 4 presents the new ALBEKK and HABEKK models for

long memory, and discusses the asymptotic properties of the associated QML estimators. Section

5 gives some concluding remarks. All proofs are given in the Appendix.

2 Asymmetric Multivariate GARCH Models

Let yt be an m × 1 vector, and consider the following asymmetric multivariate GARCH model:

yt = μt + εt, (1)

εt = H
1/2
t ξt, ξt ∼ iid(0, Im), (2)

Ht = W +
r∑

i=1

[
Aiεt−iε

′
t−iA

′
i + Ciηt−iη

′
t−iC

′
i

]
+

s∑
j=1

BsH t−sB
′
s, (3)
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where yt = (y1t, . . . , ymt)′, εt = (ε1t, . . . , εmt)′, ξt = (ξ1t, . . . , ξmt)′, Ai, Bj and Ci (i = 1, . . . , r)

(j = 1, . . . , s) are m-dimensional square matrices, W is an m-dimensional positive definite matrix,

ηt = (n1tε1t, . . . , nmtεmt)′, and nit = 1(εit < 0). For purposes of identification, the restrictions

a11,i ≥ 0, b11,j ≥ 0 and c11,i ≥ 0 are imposed. As the model encompasses the BEKK model of

Engle and Kroner (1995), we will call this the ‘asymmetric BEKK’ (ABEKK) model. If r = s = 1,

the ABEKK specification reduces to the model of Kroner and Ng (1998).

The vector form of the covariance matrix is given by:

ht = w +
r∑

i=1

[(Ai ⊗ Ai) + (Ci ⊗ Ci)(N t−i ⊗ N t−i)] ε̃t−i +
s∑

j=1

(Bj ⊗ Bj)ht−j , (4)

where ht = vec(Ht), ε̃t = vec(εtε
′
t), w = vec(W ), N t is a diagonal matrix with diagonal elements

formed from the vector of indicator functions nt = (n1t, . . . , nmt)′, and ⊗ denotes the Kronecker

product. As in Ling and McAleer (2003), we assume:

μt =
p∑

i=1

ΦiL
iyt +

q∑
j=1

ΘjL
jεt, (5)

where Φi and Θj are m×m matrices, the roots of the characteristic polynomials |Im−∑p
i=1 ΦiL

i|

and |Im−∑q
j=1 ΘjL

j | lie outside the unit circle, and L is the lag operator. Given the specification,

yt follows the vector autoregressive moving-average (VARMA) process with the ABEKK structure,

and we will call this the ‘VARMA-ABEKK’ model.

By extending the work of McAleer et al. (2008), we can derive the ABEKK model from a

vector RCA process, as shown in the following proposition.

Proposition 1. (i) Consider the following vector RCA process:

εt =
r∑

i=1

{
Ãit + C̃it

}
εt−i + ζt, ζt ∼ iid(0,Γ), (6)
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where ζt = (ζ1t, . . . , ζmt)′, Γ is a positive definite covariance matrix, and the m × m matrices of

random coefficients Ãit = {aj,l,it} and C̃it = {cj,l,it} satisfy:

Eε,t−1(Ãit) = O, ∀i, t,

Eε,t−1(ãj1,l1,itãl2,j2,it) = aj1,l1al2,j2 (j1, j2, l1, l2 = 1, . . . , k),

Eε,t−1(ãj1,l1,itãl2,j2,js) = 0 if i �= j and/or t �= s, (j1, j2, l1, l2 = 1, . . . , k),

Eε,t−1(C̃it) = O, ∀i, t,

Eε,t−1(c̃j1,l1,itc̃l2,j2,it) =
{

cj1,l1cl2,j2 if εl1,t−1 < 0 and εl2,t−1 < 0
0 otherwise

(j1, j2, l1, l2 = 1, . . . , k),

Eε,t−1(c̃j1,l1,itc̃l2,j2,js) = 0 if i �= j and/or t �= s, (j1, j2, l1, l2 = 1, . . . , k),

and ηt, Ãit and C̃it are mutually independent for all i and t, but C̃it depends on εt. We denote

Eε,t−1 as the expectation conditional on {εt−1, εt−2, . . . }, so that the conditional variance of εt is:

Ht = Eε,t−1(εtε
′
t) =

r∑
i=1

[
Aiεt−iε

′
t−iA

′
i + Ciηt−iη

′
t−iC

′
i

]
+ Γ.

(ii) Consider the infinite-order vector RCA process:

εt =
∞∑
i=1

{
Ã

∗
it + C̃

∗
it

}
εt−i + ζt, (7)

where Ã
∗
it and C̃

∗
it are defined similarly to Ãit and C̃it, respectively. Then the conditional variance

is given by:

Ht =
∞∑
i=1

[
A∗

i εt−iε
′
t−iA

∗′
i + C∗

i ηt−iη
′
t−iC

∗′
i

]
+ Γ, (8)

which is also obtained by the ABEKK model (3), if the roots of the characteristic polynomials

|Im2 −∑s
j=1(Bj ⊗Bj)Lj | lie outside the unit circle. For the case r = s = 1, under the condition

that the roots of |Im2−(B1⊗B1) lie outside the unit circle, the conditional covariance of εt in (7) is

equivalent to (3) if and only if A∗
i = BiA, C∗

i = BiC, and vec(Γ) =
[∑∞

i=0(B
i ⊗ Bi)

]−1 vec(W ).
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For the equivalence of (2) and (7), we can derive the asymptotic theory of the VARMA-ABEKK

model by applying the results in McAleer et al. (2008).

3 Structural and Statistical Properties

Denote the parameter vector λ = (θ′, τ ′)′, θ = (vec(Φ1)′, . . . , vec(Φp)′, vec(Θ1)′, . . . , vec(Θq)′,

τ = (vech(W )′, vec(A1)′, . . . , vec(Ar)′, vec(B1)′, . . . , vec(Bs)′)′, and the true parameter vector

as λ0. We assume that the parameter space Λ is a compact subspace of Euclidean space, such

that λ0 is an interior point in Λ. We do not consider the situation in which the parameter is on

the boundary of the parameter space.

For each λ ∈ Λ, we make the following assumptions.

Assumption 1. All the roots of:∣∣∣∣∣∣Im2 −
r∑

i=1

[(Ai ⊗ Ai) + (Ci ⊗ Ci)(N t ⊗ N t)]Li −
s∑

j=1

(Bj ⊗ Bj)Lj

∣∣∣∣∣∣ = 0

are outside the unit circle. Moreover, Im2 − ∑r
i=1 [(Ai ⊗ Ai) + (Ci ⊗ Ci)(N t ⊗ N t)] Li and

∑s
j=1(Bj ⊗ Bj)Lj are left coprime, and satisfy other identifiability conditions given in Ling and

McAleer (2003).

Assumption 2. For the vector RCA process (7), the distribution of ζt is symmetric. For the

vector of second moments, ζ̃t = vec
(
ζtζ

′
t

)
, we assume E(ζ̃t) = γ = vec(Γ) and Γζ̃ ζ̃′ is posi-

tive definite, where Γζ̃ζ̃′ = E

[(
ζ̃t − γ

)(
ζ̃t − γ

)′]
. For the fourth moments of Ãit and C̃it, we

assume:

E|ã∗j1,l1,itã
∗
j2,l2,itã

∗
j3,l3,itã

∗
j3,l3,it| < ∞,

E|c̃∗j1,l1,itc̃
∗
j2,l2,itc̃

∗
j3,l3,itc̃

∗
j3,l3,it| < ∞ (j1, j2, j3, j4, l1, l2, l3, l4 = 1, . . . ,m),
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respectively. Moreover, all the roots of:

∣∣∣∣∣Im4 −
∞∑
i=1

E
[(

Ã
∗2
it ⊗ Ã

∗2
it

)
+
(
C̃

∗2
it ⊗ C̃

∗2
it

)]∣∣∣∣∣ = 0,

are outside the unit circle.

Assumption 3. The function ht is such that, ∀λ ∈ Λ and ∀λ0 ∈ Λ, ht,λ = ht,λ0 almost surely

(a.s.), if and only if λ = λ0.

Note that Assumption 3 is an identifiability condition, analogous to Assumption A4 of Jeantheau

(1998). The structural properties of the model are developed and the analytical forms of the reg-

ularity conditions are derived in Proposition 2 and Theorem 1, respectively.

Proposition 2. Under Assumptions 1 and 2, the VARMA-ABEKK model based on the vector

RCA process (7) possesses an 
y,t-measurable second-order stationary solution {yt, εt,ht}, where


y,t is a σ-field generated by {yk : k ≤ t}. Define an m2(s + r) × 1 vector as vt = (0, . . . , 0, ε̃′t −

ω′, 0, . . . , 0)′, with the sunbector consisting of the (m2s + 1)th to m2(s + 1)th columns as ε̃t − ω,

where ω = vec(Ω). The solution ht has the following causal representation:

ht = ω + C ′
∞∑

j=1

(
j∏

i=1

Ψt+1−i

)
vt−i, a.s.,

where C = [Im2 Om×m(s−1)]′, which is an ms × m matrix, and:

Ψt =
(

Ψ11 Ψ†
12,t

Om2r×m2s Ψ22

)
, Ψ11 =

(
B†

1 · · · B†
s−1 B†

s

Im2(s−1) Om2(s−1)×m2

)
,

Ψ12,t =
(

A†
1t · · · A†

rt

Om2(s−1)×m2r

)
, Ψ22 =

(
Om2×m2r

Im2(r−1) Om2(r−1)×m2

)
,

with B†
i = (Bi ⊗ Bi), A†

it = (Ai ⊗ Ai) + (Ci ⊗ Ci)(N t+1−i ⊗ N t+1−i), and N t is the m × m

diagonal matrix with the diagonal elements of (1(ε1t < 0), . . . ,1(εmt < 0)).
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Theorem 1. (i) Under Assumptions 1 and 2 for the VARMA-ABEKK model without assuming

the vector RCA structure, if ρ
[
E
(
Ψ⊗l

t

)]
< 1, with l being a strictly positive integer, then the

2lth moments of {yt, εt} are finite, where ρ(A) denotes the largest modulus of the eigenvalues of

a matrix A, Ψt is defined as in Proposition 2, and A⊗l is the Kronecker product of the l matrices

A.

(ii) Under Assumptions 1 and 2 for the VARMA-ABEKK model based on the vector RCA process

(7), if ρ
[
E
(
Ψ⊗l

t

)]
< 1, with l being a strictly positive integer, and if 2lth moments of ζt are

finite, then the 2lth moments of {yt, εt} are finite.

Given these structural properties, the statistical properties of the model are established in

Theorems 2–4, with sufficient multivariate log-moment conditions for consistency in Theorem 2,

sufficient second-order moment conditions for consistency in Theorem 3, and sufficient conditions

for asymptotic normality in Theorem 4.

The QMLE of the parameters in the model (1)–(3) are obtained by maximizing, conditional

on the true (yt,ht), the following log-likelihood function:

LT (λ) =
1
T

T∑
t=1

lt(λ), (9)

lt(λ) = −1
2
(
log |Ht| + εH−1

t ε′
)
,

where lt(λ) takes the form of the Gaussian log-likelihood function, so that the QMLE is given as:

λ̂ = argmax
λ∈Λ

LT (λ).

Maximization of (9) leads to the following consistency result.

Theorem 2. Denote λ̂ as the QMLE of λ. Under Conditions C1–C6 in the Appendix, λ̂→p λ.
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An alternative proof of consistency of the QMLE based on second moments is to verify the

sufficient conditions of Theorem 4.1.1 in Amemiya (1985), as demonstrated for the VARMA-

GARCH model in Ling and McAleer (2003).

Theorem 3. Denote λ̂ as the QMLE of λ0. Under Conditions D1–D6 in the Appendix, λ̂→p λ0.

Given the consistency of λ̂, the following theorem provides sufficient conditions for asymptotic

normality.

Theorem 4. Let yt be generated by VARMA-ABEKK model, based on the vector RCA process

(7). Given the consistency of λ̂ for λ0, under Conditions E1–E3 in the Appendix, it can be shown

that:

√
T
(
λ̂ − λ0

)
d→N

(
0,Σ−1

0 ΩλΣ−1
0

)
.

4 Multivariate Long Memory Asymmetric Conditional Volatility

Models

In this section, we develop a new long memory ABEKK model as follows. Using the notation in

Proposition 2, we can write equation (4) as:

ht = w +
r∑

i=1

A†
i ε̃t−i +

s∑
j=1

B†
jht−j = w + A†(L)ε̃t + B†(L)ht.

For simplicity, we assume Ci = O so that A†
it = A†

i . Upon rearranging the terms, it follows that:

[
Im2 − A†(L) − B†(L)

]
ε̃t = w + [Im2 − B†(L)]νt,

where νt = ε̃t − ht, so that Eε,t−1(νt) = 0. Following Bollerslev (1986) and Engle and Kroner

(1995), we can interpret the volatility equation of the ABEKK model as a VARMA(max(r, s), r)

8



model for ε̃t. As a multivariate extension of the integrated GARCH model of Engle and Bollerslev

(1986), we can set Im2 − A†(L) − B†(L) =
(
Im2 − A‡(L)

)
[(1 − L)Im2 ] to obtain:

(
Im2 − A‡

t(L)
)

[(1 − L)Im2 ] ε̃t = w + [Im2 − B†(L)]νt.

By using the fractional differencing operator of a diagonal matrix, defined by:

D(L) = Dε(L) ⊗ Dε(L), Dε(L) =

⎛
⎜⎝

(1 − L)d1 O
. . .

O (1 − L)dm

⎞
⎟⎠ ,

where |dj | < 1/4 (j = 1, . . . ,m), we obtain a multivariate extension of the fractionally-integrated

GARCH (FIGARCH) model of Baillie, Bollerslev, and Mikkelsen (1996) as:

(
Im2 − A‡(L)

)
D(L)ε̃t = w + [Im2 − B†(L)]νt,

which has an alternative form:

ht = w +
[
Im −

{
Im2 − A‡(L)

}
D(L)

]
ε̃t + B†(L)ht,

to produce the long memory BEKK specification:

H t = W +
[
εtε

′
t − Dε(L)εtε

′
tDε(L)

]
+

r∑
i=1

AiDε(L)εt−iε
′
t−iDε(L)A′

i +
s∑

j=1

BsH t−sB
′
s.

By extending the above result, we can develop the asymmetric long memory BEKK (ALBEKK)

model (1), (2) and:

H t = W +
[
εtε

′
t − Dε(L)εtε

′
tDε(L)

]
+

r∑
i=1

AiDε(L)εt−iε
′
t−iDε(L)A′

i

+
r∑

i=1

CiDε(L)ηt−iη
′
t−iDε(L)C ′

i +
s∑

j=1

BsH t−sB
′
s. (10)

The following proposition shows the equivalence of the ALBEKK representation (10) and the

infinite-order vector RCA process.
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Proposition 3. Consider the infinite-order vector RCA process defined by (7) for εt. The con-

ditional variance of εt given by (8) is also obtained from the ALBEKK model (10) if the roots of

the characteristic polynomials, |Im2 −∑s
j=1(Bj ⊗ Bj)Lj |, lie outside the unit circle.

The proof is a straightforward extension of the proof of Proposition 1.

To prove consistency and asymptotic normality of the QML estimator for the ALBEKK model,

we need to derive a causal representation, as in Proposition 2:

ht = ω + C ′
∞∑

j=1

Ψ†
t+1−ivt−i, a.s.,

where Ψ†
t+1−i are defined by Dε(L) in addition to the matrices in Proposition 2. Derivation of

the exact conditions for consistency and asymptotic normality of ALBEKK will be considered in

future work.

As an alternative approach for empirical analysis, we may extend the approximation of long-

range dependence in volatility processes by using the heterogeneous autoregressive (HAR) model

of Corsi (200) and heterogeneous ARCH model of Müller et al. (1997). Assume t denotes time

on a daily basis, and consider the mean of the residuals for the past h days as:

(εt−1)h = h−1(εt−1 + · · · + εt−h).

Then we can obtain the weekly (h = 5) and monthly (h = 22) means of the past εt as (εt−1)5 and

(εt−1)22, so as to define
(
ηt−1

)
5

and
(
ηt−1

)
22

, to obtain the heterogeneous ABEKK (HABEKK)

model as:

H t = W + Adεt−1ε
′
t−1A

′
d + Aw (εt−1)5 (εt−1)

′
5 A′

w + Am (εt−1)22 (εt−1)
′
22 A′

m

+ Cdηt−1η
′
t−1C

′
d + Cw

(
ηt−1

)
5

(
ηt−1

)′
5
C ′

w + Cm

(
ηt−1

)
22

(
ηt−1

)′
22

C ′
m

+ BH t−1B
′.

10



Since the HABEKK model is a special case of ABEKK(22,1), we can apply Theorems 2–4 for the

consistency and asymptotic normality of the associated QML estimator.

5 Concluding Remarks

This paper considered alternative versions of the vector ARMA and asymmetric BEKK GARCH,

or VARMA-ABEKK, models as extensions of the widely-used univariate asymmetric (or threshold)

GJR model of Glosten et al. (1992). We showed the equivalence of the ABEKK specification and

the infinite-order random coefficient autoregressive process, and established the unique, strictly

stationary and ergodic solution of the model, its causal expansion, and convenient sufficient condi-

tions for the existence of moments. We derived sufficient conditions for consistency and asymptotic

normality of the associated QML estimator. We also developed asymmetric long memory BEKK

and heterogeneous BEKK models for capturing long-range dependence in the volatility matrix,

and discussed the asymptotic properties of the QML estimators.
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Appendix

Proof of Proposition 1

Under the assumptions of Proposition 1, the VRCA process (6) gives

{
Eε,t−1

(
εtε

′
t

)}
j1,j2

=

{
Eε,t−1

(
r∑

i=1

r∑
n=1

Ãitεt−iεt−nÃ
′
nt

)}
+

{
Eε,t−1

(
r∑

i=1

r∑
n=1

C̃itεt−iεt−nC̃
′
nt

)}
+ γj1,j2

=
r∑

i=1

r∑
n=1

m∑
l1=1

m∑
l2=1

(
εt−iε

′
t−m

)
l1,l2

Eε,t−1 (ãj1,l1,itãl2,j2,mt)

+
r∑

i=1

r∑
n=1

m∑
l1=1

m∑
l2=1

(
εt−iε

′
t−m

)
l1,l2

Eε,t−1 (c̃j1,l1,itc̃l2,j2,mt) + γj1,j2

=
r∑

i=1

m∑
l1=1

m∑
l2=1

[(
εt−iε

′
t−i

)
l1,l2

aj1,l1,ial2,j2,i +
(
ηt−iη

′
t−i

)
l1,l2

cj1,l1,icl2,j2,i

]
+ γj1,j2,

which is equivalent to the matrix given in Proposition 1(i).

It is straightforward to derive equation (8) from the result of (i). From the vector representation

of the variance equation of the ABEKK model (4), if the roots of
∣∣∣Im2 −∑s

j=1(Bj ⊗ Bj)Lj
∣∣∣ lie

outside the unit circle, we obtain

ht = γ +

⎡
⎣Im2 −

s∑
j=1

(Bj ⊗ Bj)Lj

⎤
⎦
−1

r∑
i=1

[
(Ai ⊗ Ai)Li + (Ci ⊗ Ci)Li(N t ⊗ N t)

]
ε̃t

= γ +
∞∑
i=1

[
(Ái ⊗ Ái) + (Ći ⊗ Ći)(N t−i ⊗ N t−i)

]
έt−i

where γ =
[
Im2 −∑s

j=1(Bj ⊗ Bj)
]−1

w. Therefore, we establish the equivalence between (8) and

the variance equation of ABEKK by setting γ = vec(Γ), Ái = A∗
i , and Ći = C∗

i . For r = s = 1,

we obtain the condition straightforwardly by substituting past H t recursively in equation (3). �
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Proof of Proposition 2

Let y†
t = (y′

t, . . . ,y′
t−p+1)

′. It is straightforward to show that:

y†
t = Φ†y†

t−1 + Θ†ε†t =
∞∑
i=0

(
Φ†
)i

Θ†ε†t−i,

where ε†t = (ε′t, . . . , ε′t−q)′, and

Φ† =
(

Φ1 · · · Φp−1 Φp

Im(p−1) Om(p−1)×m

)
, Θ† =

(
I Θ1 · · · Θq

Om(p−1)×m(q+1)

)
.

For the vector RCA process (7), which has the conditional covariance (3), we obtain:

E(εt) = 0, V (εt) = Ω, Cov(εt1 , εt2) = O (t1 �= t2),

where

vec(Ω) =

⎛
⎝Im2 −

r∑
i=1

(Ai ⊗ Ai) −
r∑

i=1

(Ci ⊗ Ci)E(N t ⊗ N t) −
s∑

j=1

(Bj ⊗ Bj)

⎞
⎠

−1

vec(W ).

Note that the diagonal elements of the matrix E(N t ⊗ N t) are E(1(εl1,t < 0)) or E(1(εl1,t <

0)1(εl2,t < 0)) (l1, l2 = 1, . . . ,m), with finite values. By Assumption 1, Ω exists. Since εt satisfies

the conditions of the white noise process, y†
t is second-order stationary, as is yt.

Let xt = (h′
t, . . . ,h′

t−s+1, ε̃
′
t, . . . , ε̃′t−r+1)′−(ιs+r⊗ω), where ω = vec(Ω), and ιl is l×1 vector

of ones. It is straightforward to show that:

xt = Ψtxt−1 + vt = vt +
∞∑

j=1

(
j∏

i=1

Ψt+1−i

)
vt−i,

where Ψt and vt are defined in Proposition 2. Note that ht = ω + C ′xt. Since vt consists of zero

and (ε̃t −ω), we consider the variance of ε̃t. By Assumptions 1 and 2, and Proposition 1, we can
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show that E(ε̃t) = ω, and the conditional covariance matrix of ε̃t is given by:

Eε,t−1

[
(ε̃t − ω) (ε̃t − ω)′

]
= Γζ̃ ζ̃′ +

∞∑
i=1

(A∗
i ⊗ A∗

i ) (ε̃t−i − ω) (ε̃t−i − ω)′ (A∗
i ⊗ A∗

i )
′ (11)

+
∞∑
i=1

[(
Γ ⊗ (A∗

i εt−iε
′
t−iA

∗′
i )
)

+ (Im ⊗ A∗
i )Eε,t−1

[
vec(εt−iζ�

′)vec(εt−iζ�
′)′
]
(A∗′

i ⊗ Im)

+(A∗
i ⊗ Im)Eε,t−1

[
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′] (Im ⊗ A∗′
i ) +

(
(A∗

i εt−iε
′
t−iA

∗′
i ) ⊗ Γ

)]
+

∞∑
i=1

(C∗
i N t−i ⊗ N t−iC

∗
i ) (ε̃t−i − ω) (ε̃t−i − ω)′ (C∗

i N t−i ⊗ C∗
i N t−i)′

+
∞∑
i=1

[(
Γ ⊗ (C∗

i N t−iεt−iε
′
t−iN t−iC

∗′
i )
)

+ (Im ⊗ C∗
i N t−i)Eε,t−1

[
vec(εt−iζ�

′)vec(εt−iζ�
′)′
]
(N t−iC

∗′
i ⊗ Im)

+ (C∗
i N t−i ⊗ Im)Eε,t−1

[
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′] (Im ⊗ N t−iC
∗′
i )

+
(
(C∗

i N t−iεt−iε
′
t−iN t−iC

∗′
i ) ⊗ Γ

)]
.

Note that Eε,t−1

(
vec(εt−iζ�

′)vec(εt−iζ�
′)′
)

and Eε,t−1

(
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′) consist of elements

of (Γ ⊗ εt−iε
′
t−i). By equation (11), the unconditional covariance matrix of the second moments

of εt is given by:

vec
(
E
[
(ε̃t − ω) (ε̃t − ω)′

])
=

(
Im4 −

∞∑
i=1

E
[(

Ã
∗2
it ⊗ Ã

∗2
it

)
+
(
C̃

∗2
it ⊗ C̃

∗2
it

)])−1

× vec

(
Γζ̃ ζ̃′ +

∞∑
i=1

[(
Γ ⊗ (A∗

i ΩA∗′
i )
)

+
(
(A∗

i ΩA∗′
i ) ⊗ Γ

)
(12)

+ (Im ⊗ A∗
i )E

[
vec(εt−iζ�

′)vec(εt−iζ�
′)′
]
(A∗′

i ⊗ Im)

+(A∗
i ⊗ Im)E

[
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′] (Im ⊗ A∗′
i )
]

+
∞∑
i=1

[(
Γ ⊗ (C∗

i E(N tΩN t)C∗′
i )
)

+
(
(C∗

i E(N tΩN t)C∗′
i ) ⊗ Γ

)
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+ E
(
(Im ⊗ C∗

i N t)E
[
vec(εt−iζ�

′)vec(εt−iζ�
′)′
]
(N tC

∗′
i ⊗ Im)

)
+E

(
(C∗

i N t ⊗ Im)E
[
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′] (Im ⊗ N tC
∗′
i )
)]

.

By Assumption 2, the inverse on the right-hand side of (12) exists, and Γζ̃ζ̃′ is positive def-

inite. By Assumption 1 and Proposition 1, we can show that the matrices comprising the

second and third infinite sums in (12) are positive definite, and all elements take finite val-

ues. Note that, E
(
vec(εt−iζ�

′)vec(εt−iζ�
′)′
)

and E
(
vec(ζ�ε′t−i)vec(ζ�ε

′
t−i)

′) consist of elements

of (Γ⊗Ω). By Assumptions 1 and 2, and by Proposition 1, we can show that all the elements of

E
[
(ε̃t − ω) (ε̃t − ω)′

]
are finite, and the matrix is positive definite.

Corresponding to the above causal representation, define:

x́t = vt +
T∑

j=1

(
j∏

i=1

Ψt+1−i

)
vt−i,

and let el = (0, . . . , 0, 1, 0, . . . , 0)′, which is an m(r + s) × 1 vector, and 1 appears in the lth

position. Denote the lth element of
(∏j

i=1 Ψt+1−i

)
vt−i by st:

st = e′
l

(
j∏

i=1

Ψt+1−i

)
vt−i.

By Assumption 1, E|st| < ∞ if and only if E|e′lvt| < ∞, which we can show by applying Hölder’s

inequality:

E|e′lvt| ≤
[
e′lE

(
vtv

′
t

)
el

]1/2
,

which we can show by the above result that E (ε̃tε̃
′
t) is positive definite, corresponding to the

fourth moment of εt. By Assumption 1, we can show E|st| → 0 as T → ∞. Therefore, each

component of x́t convergences almost surely (a.s.) as T → ∞, as does ht. Hence, there exists an


t-measurable second-order solution εt to (4).
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To show uniqueness, let ε̆t be another 
t-measurable second-order stationary solution to (4).

Propositions 1 and 2 suffice to apply Corollary 2.2.2 of Nicholls and Quinn (1982) to show the

uniqueness of εt. Thus, x̆t = Ψtx̆t−1+vt, where x̆t = (h̆
′
t, . . . , h̆

′
t−s+1, ε̃

′
t, . . . , ε̃′t−r+1)′−(ιs+r⊗ω).

Let ut = xt − x̆t to obtain ut =
(∏j

i=1 Ψt+1−i

)
ut−i. By Assumption 1 and Hölder’s inequality,

we obtain:

E|e′lut| ≤
[
e′lE

(
utu

′
t

)
el

]1/2 → 0 as T → ∞,

since vec (E (utu
′
t)) = E

[(∏j
i=1 Ψt+1−i

)
⊗
(∏j

i=1 Ψt+1−i

)]
vec
(
E
(
ut−iu

′
t−i

))
. Hence, the solu-

tion is unique. As ht = ω + C ′xt, it follows the unique causal representation is given by:

ht = ω + C′
∞∑

j=1

(
j∏

i=1

Ψt+1−i

)
vt−i, a.s. �

Proof of Theorem 1

For the first part, using the results on finite moments in Tweedie (1988), Lemma A.3 in Ling

and McAleer (2003), and Lemma 1 in McAleer et al. (2008), Hölder’s inequality implies that

Eπ1||εt||2 <
(
Eπ1||εt||2l

)1/l
< ∞, where π1 are the stationary distributions of {εt}. Furthermore,

Eπ2||yt||2 < ∞ by the proof of Proposition 2. Thus, {yt, εt} is a secondary stationary solution of

(4). Moreover, the solution {yt, εt} is unique and ergodic by Proposition 2. Therefore, {yt, εt}

satisfying model (4) has finite 2lth moment. For the second part, it is straightforward from the

first part. �

Proof of Theorem 2

It is sufficient to verify the following conditions for consistency in Jeantheau (1998).

C1. Λ is compact.

C2. ∀λ ∈ Λ, the model admits a unique strictly stationary and ergodic solution yt.
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C3. There exists a deterministic constant c > 0 such that, ∀t and ∀λ ∈ Λ, |Ht| > c.

C4. Assumption 3.

C5. yt and H t are continuous functions of the parameter λ.

C6. Eλ0 | log(Ht)| < ∞, ∀λ0 ∈ Λ.

Under Proposition 2, (4) admits a unique strictly stationary and ergodic solution of yt (C2).

Furthermore, the model is identifiable under Assumption 3 (C4). Note that the determinant of

the conditional covariance matrix is strictly positive, by the structure of the BEKK representation

(3) for all t. Hence, there exists a constant c > 0 such that |Eε,t−1(εtε
′
t)| > c ∀t and ∀λ ∈ Λ,

where Λ is a compact subspace of Euclidean space (C1 and C3). By the square integrability of εt,

Eλ0(vech(H t,λ)) < ∞, which establishes C6 (for details, see Comte and Lieberman, 2003, p.67).

Under Assumption 1, C6, and the structure (4)–(5), yt and H t are continuous functions of the

parameter λ (C5). �

Proof of Theorem 3

It is sufficient to verify the following conditions in Theorem 4.1.1 in Amemiya (1985).

D1. Λ is compact.

D2. LT (λ) is continuous in λ ∈ Λ for yt and is a measurable function of yt ∀λ ∈ Λ.

D3. T−1LT (λ) converges to a non-stochastic function L(λ) in probability uniformly in λ ∈ Λ as

T → ∞, and L(λ) attains a unique global maximum at λ0.

Condition D1 is equivalent to C1 and D2 follows from C5, so D1 and D2 are satisfied under

Theorem 2. To verify D3, it is convenient to introduce the unobserved process, {ε∗t ,H∗
t } : t =

0,±1,±2, . . . }. Define the unobserved log-likelihood function conditional on the infinite past
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observations:

L∗
T (λ) =

1
T

T∑
t=1

l∗t (λ),

l∗t (λ) = −1
2
(
log |H∗

t | + ε∗′t H∗−1
t ε∗t

)
.

Lemmas 4.2, 4.4 and 4.6 in Ling and McAleer (2003), and condition C3, imply that L(λ) exists

for all λ ∈ Λ, supλ∈Λ |LT ∗ (λ) − L(λ)| = op(1), L(λ) has a unique maximum at λ0, and |LT ∗

(λ) − LT (λ)| = op(1). Thus,

sup
λ∈Λ

|LT (λ) − L(λ)| ≤ sup
λ∈Λ

|L∗
T (λ) − L(λ)| + sup

λ∈Λ
|L∗

T (λ) − LT (λ)| = op(1).

Therefore, LT (λ) →p L(λ) uniformly in Λ (D3). �

Proof of Theorem 4

Given the consistency of λ̂ for λ0 in Theorems 2 and 3, it is sufficient to verify the following

conditions of Theorem 4.1.3 in Amemiya (1985):

E1. ∂2LT /∂λ∂λ exists and is continuous in an open, convex neighborhood of λ0.

E2. T−1(∂2LT /∂λ∂λ′)||λT
converges to a finite nonsingular matrix Σ0 = E

[
T−1(∂2LT /∂λ∂λ′)||λT

]
in probability for any sequence λT , such that λ̂ →p λ0.

E3. T−1/2(∂LT /∂λ)||λ0 →d N(0,Ωλ), where Ωλ = limE
[
T−1(∂LT /∂λ)||λ0 × (∂LT /∂λ′)||λ0

]
.

By Theorems 2 and 3, λ̂ is consistent for λ0. It follows from the conditions in Theorem 2

that ∂2LT /∂λ∂λ exists and is continuous in Λ. Lemma 5.4 in Ling and McAleer (2003) can be

used to verify that conditions E1 and E2 hold. Under the existence of fourth moments of ζt in

Assumption 2, using the central limit theorem of Stout (1974), and the Cramér-Wold device, it

follows that

T−1/2
T∑

t=1

∂lt
∂λ

d→N(0,Ωλ),

where Ωλ is positive definite (E3). �
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