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Dynamic and Hierarchical Genome Organization

The different organization levels of genomes bridge several orders of magnitude concerning space and
time. How all of these organization levels connect to processes like gene regulation, replication,
embryogeneses, or cancer development is still unclear?
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Dynamic and Hierarchical Genome Organization

The different organization levels of genomes bridge several orders of magnitude concerning space and
time. How all of these organization levels connect to processes like gene regulation, replication,
embryogeneses, or cancer development is still unclear?
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The Complexity of Cytogenetic Diagnostics

The process of cytogenetic analysis requires proper patient and sample analysis

as well asa comprehensive evaluation of the results.
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The Complexity of Cytogenetic Diagnostics

The process of cytogenetic analysis requires proper patient and sample analysis

as well asa comprehensive evaluation of the results.




WE KNOW THAT WE HARDLY KNOW ANYTHING

Approaching the
Three-Dimensional Organization
of the Human Genome

Structural-, Scaling- and Dynamic-Properties
in the Simulation of
Interphase Chromosomes and Cell Nuclei

Long-Range Correlations in Complete Genomes
In Vivo Quantification of the Chromatin Distribution

Construct Conversions in Simultaneous Co-Transfections
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Nucleus:

-> Nuclear organization: chromosome arrangement, morphology?
-> Nuclear Code: information content, regulation, variability?

Chromosome:

-> Chromosome organization: loops, loop aggregates, extension?
-> Chromosome code: information content, regulation, variability?
Chromatin:

-> Chromatin fiber organization: prevalence, variation, dynamics?
-> Chromatin code: coding, regulation, modification?
Nucleosome:

-> Nucleosome organization: tail position, mobility, modification?
-> Histon code: coding, regulation, modification?

DNA Sequence:

-> DNA local structure: bending, melting, stability, modification?
-> General sequence organization: coding, regulating and the rest?
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Chromatin Conformation and Higher-Order Topologies

It becomes increasingly clearer, that the chromatin conformation is a random organization of nucleosomes,
which depending on external or modification conditions has different condensation degrees, with a
prevalence for the 30nm fiber with ~6nucleosomes per 11nm. This seems to make loops which further

cluster to form aggregates more or less rosette-like which then constitute the chromosome.

A-C: Voet &Vo;t D: Reznik et al.
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Integral Models of Cell Nuclear Organization

Already Rabl and Boveri were aware of the obvious fact that the organization of genomes has to be
consistent from the sequence level to the morphology of the whole cell nucleus. Although they might be
different in detail their common seem is recursive folding and clustering thereof with variation/

A, B: Pienta & Coffey; C: Alberts ef al.; D: Belmont & Bruce

modification and dynamics accounting for different nuclear states and function.
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Integral Models of Cell Nuclear Organization

The biggest advantage of integral models is the again obvious and simple fact, that they allow the validation
from the consistency of different levels of organization from the other levels. Thus, e.g. the so called :
Interchromosmal Domain Model can be ruled out by simple volumenous thought...

RW/GL-Model MLS-Model

loop size\3Mbp-5Mbp

D: courtesy S. Dietzel; E: courtesy D. Zink

backbone attachment

oints
(non DNA) P rosette size: 1-2Mbp
diameter: 400 to 800 nm
(according to interphase
ideogram bands)
Linker between rosettes consists
of DNA (126 kbp)

(in contrast to backbone)

A: courtesy K. Richter; B: courtesy K. Greulich-Bode
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Architecture of the Prader-Willi Region

Fluorescence in situ hybridization with various protocols of small probes within the Prader-Willi region
combined with spectral precision distance confocal laser scanning microscopy and comparison with large-scale
computer simulations shows a Multi-Loop Subcompartiment organization of the Prader-Willi region.
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.

a &
§ ¢c
C D

h2 h3 h4 h5

RP23-201H14 h1

Distal V

!HI T IR AR O \

h7 h8 h9

a
—

—
©
o
[0}
o
c

Distal V

Proximal V
-~ »

I
RP23-201H14 h1 h2h3 h4 h5

h10

h6 h7 h8 h9




3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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3D Archticture & Function of the IgH Locus

Fluorescence in situ hybridization of the IgH locus combined with spectral precision distance epifluorescence
microscopy, analytical trilateration and comparison with computer simulations shows again a Multi-Loop
Subcompartiment organization of the IgH locus with functional relevant distances.
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“Synoptic’ 3D Architecture of Various Loci

A history “synoptic” comparison of the spatial distance mapping from their original background and aim,

FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.
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“Synoptic” 3D Architecture of Various Loci

A history “synoptic” comparison of the spatial distance mapping from their original background and aim,
FISH methodological protocols, via microscopic imaging and restoration analysis procedures, to their
interpretation, reveals that with time Multi-Loop Subcompartment models are fovoured.
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From Fiber Topology to Nuclear Morphology

Chromosome territories form in the RW/GL and the MLS model. However, only the MLS model leads
distinct subcompartments and low chromosome and subcompartment overlap. Best agreement is reached
for an MLS model with 80 to 120 kbp loops and linkers in nuclei with 8 to 10 zm diameter.

The simulated nuclear morphology reflects the chromosome fiber topology of different models in detail.

rendering

electron microscopy

electron microscopy territory
painting

confocal microscopy
100x objective, theoretic resolution

confocal microscopy
63x objective, real resolution

confocal microscopy
territory painting

A: MLS in 6 ym nucleus
I: 63 kbp loops, 63 kbp linkers
II: 63 kbp loops, 252 kbp linkers
IIT: 126 kbp loops, 252 kbp linkers

B: MLS in 8 ym nucleus
I: 126 kbp loops, 126 kbp linkers
II: 84 kbp loops, 126 kbp linkers

C: MLS in 10 gm nucleus
126 kbp loops, 126 kbp linker,
not totally relaxed

D: RW/GL in 12 ym nucleus
5 Mbp loops
not totally relaxed

Homologous Chromosome Paintif ' intensity / density
3 5 7 9 11 13 15 17 19 U
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Fine Morphology of Nuclei

High resolution rendering and simulated electron microscopy including territory painting reveal not only
again the model details but also that any location in the nucleus is accessible to biological molecules <15 nm
in diameter and that even the Extended Interchromosomal Domain hypothesis is oversimplified.
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Scaling of the Chromatin Fiber Topology

The spatial-distance and exact yard-stick dimension distinguish between the simulated models in detail.The

MLS model shows a globular and fine-structured multi scaling behaviour due to the loops froming rosettes.

This agrees with DNA fragmentation by Carbon ion irradiation and the appearance of fine-structured multi-
scaling long-range correlations found in the sequential organization of genomes.
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Scaling of the Chromatin Morphology & Distribution

The local (inverse-) mass dimension distribution distinguishs between the models in detail and show also a
multi-scaling behaviour with globular feature for the MLS model like the scaling of the fiber topology. With
the mass dimension as function of intensity separates very well between different nuclei in vivo.

Consequently, the chromatin morphology is causally and quantitatively connected to the fiber topology.

inverse-) mass dimension distribution

o
o
@

parameterized
chromatin fiber

o
o
>

mass

freqency [*10 "]

/\empty ,
space %0% 10 15 20
weighted local dimension weighted local dimenison

< - . D oca-w Of Normalized mass Dioca-w Of normalized inverse-mass

grid sizes Ig

inverse
mass

density
distribution

log of the number of boxes [AU]
box-counting dimension

1.0 1.5 2.0 25 3.0 0. 100 150 200 250
log of box size [pixel] threshold [AU]



Quantified TSA induced Morpholoy Changes

Trichostatin A induced histone acetylation can be quantified by in vivo H2A-GFP confocal images and
image correlation spectroscopy (iFCS), which is a scaling analysis, and reveals the opening of chromatin,
and thus reorganization changes on scales from 0.2 to ~1um, consistent with MLS models.

t=0 TSA t=4h no TSA t=8h

Fluorescence
G1/0 S G2




Quantified TSA induced Morpholoy Changes

Trichostatin A induced histone acetylation can be quantified by in vivo H2A-GFP confocal images and
image correlation spectroscopy (iFCS), which is a scaling analysis, and reveals the opening of chromatin,
and thus reorganization changes on scales from 0.2 to ~1um, consistent with MLS models.




Counting Nucleosomes In Vivo

Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal
laser scanning imaging reveals not only the free unbound histone component but also the concentration in
absolute numbers of bound histones. Thus, the absolute concentration distribution of histones can be determined
and reveals again the typical expected distribution of aggregated chromatin loops.
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Diffusion of Particles in the Nucleus

Due to the volume and spatial relation ships in the nucleus typical particles reach almost any location in the
nucleus by moderately obstructed diffusion: a 10 nm particle moves 1 to 2 gm within 10 ms.

The structural influence on the obstruction degree is random for Alexa 568 as function of the chromatin
distribution visualized by H2A CFP in vivo and measured by fluorescence correlation spectroscopy (FCS)
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DNA Fragment Distribution after Ione-Irradiation

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin

fiber and the RW/GL and MLS models differ largely.
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DNA Fragment Distribution after Ione-Irradiation

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin
fiber and the RW/GL and MLS models differ largely.
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DNA Fragment Distribution after Ione-Irradiation ;

The length distribution of DNA fragments after irradiation with e. g. C or Ca with an inhomogeneous
spatial double strand breackage probability depends on the detailed folding topology of the chromatin
fiber and the RW/GL and MLS models differ largely.
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DNA Sequence Organization

Determination of the concentration fluctuation function C(/) and its local slope the correlation
coefficient (/) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi-
scaling, and iii) fine-structure features, which all are connected to all levels of genome organization and
especially also the three-dimensional genome architecture.
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Long-Range Correlations in DNA Sequences

Determination of the concentration fluctuation function C(/) and its local slope the correlation
coefficient J(I) show that genomes show characteristic long-range correlations up to 103 bp, i.e. in
principle over their complete length. Beyond, the show a specific multi-scaling behaveour, as well as a
characteristic fine-structure. All correlates with the 3D-architecture of genomes.
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Long-Range Correlations in DNA Sequences

Determination of the concentration fluctuation function C(/) and its local slope the correlation
coefficient J(I) show that genomes show characteristic long-range correlations up to 103 bp, i.e. in
principle over their complete length. Beyond, the show a specific multi-scaling behaveour, as well as a
characteristic fine-structure. All correlates with the 3D-architecture of genomes.
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Sequence Organization and Phylogeny

The concentration fluctuation function C(l) and its local slope the correlation coefficient J(/)
characteristic long-range fine-structured multi-scaling behaveour, which is specy specific. Tree
construction thus leads to characteristic groups, which are similar to those suggested by classic

phylogenetic trees. Thus, the sequence organization represents evolutionary lines.
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Sequence Organization and Phylogeny

The concentration fluctuation function C(/) and its local slope the correlation coefficient &(1)
characteristic long-range fine-structured multi-scaling behaveour, which is specy specific. Tree
construction thus leads to characteristic groups, which are similar to those suggested by classic

phylogenetic trees. Thus, the sequence organization represents evolutionary lines.
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Systems Biological Result Integration via the
GLOBE 3D Genome Platform

All results will be integrated using our GLOBE 3D Genome Platform, established for analysis, manipulatiog
and understanding of multi-dimensional complex genome wide data. Thus in reiterative cycles betwecg
experiments and simulations a systems biological/medical genome model will be achieved,
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Conclusion

Only the MLS model leads to chromosome territories with subcompartments agreeing
qualitatively and quantitatively with experiments.

Comparison between simulated and experimental spatial distances between genetic
markers favours and MLS model with 80 to 120 kbp loops and linkers.

The sequential organization of genomes is characterized by fine-structured multi-scaling
long-range correlations, which are specie specific and tightly connected to the three-
dimensional organization of genomes. On large-scales again an MLS model is favoured.
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The 3D Architecture and Dynamics
of the
Immunoglobin Heavy-Chain and other Loci
and its

Functional Implications for Genome Organization

Knoch, T. A., Murre, C. & Grosveld, F. G.

The 22nd Wilhelm Bernhard Workshop, Hotel Riga, Riga, Latvia,
25th - 30th August, 2011.

Abstract

The general 3D architecture of the immunoglobin heavy-chain (Igh) and other loci was determined by a novel
interdisciplinary combination of high-resolution FISH and high-resolution epifluorescence spectral distance
microscopy with analytical analysis, computer simulations, as well as trilateration (Cell 133, 265-279, 2008).
The Igh locus is organized into distinct regions that contain multiple variable (Vy), diversity (Dy), joining (Jg)
and constant (Cy) coding elements. Determination of distance distributions between genomic markers across the
entire locus showed that the Igh locus is organized into compartments consisting of small loops separated by
linkers with in detail dynamic functional relevance: Vy, Dy, Jg, and Cy elements showed striking conformational
changes involving Vy and Dy-Jy elements during early B cell development, culminating in a merger and
juxtaposition of the entire repertoire of Vy regions to the Dy elements in pro-B cells allowing long-range
genomic interactions with relatively high frequency. This is in agreement with our recent study of the Prader-
Willi/Angelmann region using a similar approach (Differentiation 76, 66-82, 2008) and in agreement with the
Multi-Loop-Subcompartment (MLS) model of chromosome organization predicting 60-150 kbp loop aggregates
separated by a similar linker (Knoch, ISBN 3-00-009959-X, 2002). With a new technology we are also able to
proof, that this holds for other loci as well. Synopsis with previous spatial distance measurement studies and
combination with sequence correlation analysis of the DNA sequence, fine-structure multi-scaling analysis of
the chromatin fiber topology or in vivo morphology of entire cell nuclei, electron microscopy of chromosome
spreading studies and even the diffusion behaviour within the cell nucleus, are all suggesting such an MLS
architecture. This framework reveals a consistent picture of genome organization joining structural and
dynamical aspects ranging from the DNA sequence to the entire nuclear morphology level with functional
aspects of gene location and regulation. Many previously contradictory viewpoints are resolved by this
framework as well. Consequently, the determination of the general 3D architecture of the Igh and other loci has
beyond its major functional relevance, huge implications for the understanding of the entire genome
understanding in a holistic system-biological manner.
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Keywords:

Genome, genomics, genome organization, genome architecture, structural sequencing, architectural sequencing,
systems genomics, coevolution, holistic genetics, genome mechanics, genome statistical mechanics, genomic
uncertainty principle, genome function, genetics, gene regulation, replication, transcription, repair, homologous



recombination, simultaneous co-transfection, cell division, mitosis, metaphase, interphase, cell nucleus, nuclear
structure, nuclear organization, chromatin density distribution, nuclear morphology, chromosome territories,
subchromosomal domains, chromatin loop aggregates, chromatin rosettes, chromatin loops, chromatin fibre,
chromatin density, persistence length, spatial distance measurement, histones, H1.0, H2A, H2B, H3, H4,
mH2A1.2, DNA sequence, complete sequenced genomes, molecular transport, obstructed diffusion, anomalous
diffusion, percolation, long-range correlations, fractal analysis, scaling analysis, exact yard-stick dimension,
box-counting dimension, lacunarity dimension, local nuclear dimension, nuclear diffuseness, parallel super
computing, grid computing, volunteer computing, Brownian Dynamics, Monte Carlo, fluorescence in situ
hybridization, chromatin cross-linking, chromosome conformation capture (3C), selective high-resolution high-
throughput chromosome interaction capture (T2C), confocal laser scanning microscopy, fluorescence correlation
spectroscopy, super resolution microscopy, spatial precision distance microscopy, auto-fluorescent proteins,
CFP, GFP, YFP, DsRed, fusion protein, in vivo labelling, information browser, visual data base access, holistic
viewing system, integrative data management, extreme visualization, three-dimensional virtual environment,
virtual paper tool.
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