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Myelination of parvalbumin interneurons: a parsimonious
locus of pathophysiological convergence in schizophrenia
J Stedehouder and SA Kushner

Schizophrenia is a debilitating psychiatric disorder characterized by positive, negative and cognitive symptoms. Despite more than
a century of research, the neurobiological mechanism underlying schizophrenia remains elusive. White matter abnormalities and
interneuron dysfunction are the most widely replicated cellular neuropathological alterations in patients with schizophrenia.
However, a unifying model incorporating these findings has not yet been established. Here, we propose that myelination of
fast-spiking parvalbumin (PV) interneurons could be an important locus of pathophysiological convergence in schizophrenia.
Myelination of interneurons has been demonstrated across a wide diversity of brain regions and appears highly specific for the PV
interneuron subclass. Given the critical influence of fast-spiking PV interneurons for mediating oscillations in the gamma frequency
range (~30–120 Hz), PV myelination is well positioned to optimize action potential fidelity and metabolic homeostasis. We discuss
this hypothesis with consideration of data from human postmortem studies, in vivo brain imaging and electrophysiology, and
molecular genetics, as well as fundamental and translational studies in rodent models. Together, the parvalbumin interneuron
myelination hypothesis provides a falsifiable model for guiding future studies of schizophrenia pathophysiology.
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Schizophrenia is a chronically debilitating psychiatric disorder with
a lifetime prevalence of ~ 1%.1 Patients with schizophrenia
classically exhibit a constellation of positive, negative and
cognitive symptoms.2 Although many theories have been
proposed, the precise neurobiological mechanism underlying
schizophrenia has remained elusive. The most widely described
models have been the dopamine3 and glutamate hypotheses,4

although in recent years models regarding interneuron
dysfunction5 and myelination abnormalities6 have gained increas-
ing support.
In this Perspective, we hypothesize that previous observations

of interneuron dysfunction and myelination abnormalities in
schizophrenia might converge on the altered myelination of
fast-spiking parvalbumin (PV) interneurons. First, we summarize
the major evidence supporting interneuron dysfunction and
myelination abnormalities in schizophrenia. Next, we summarize
electron microscopy and immunofluorescence studies that con-
vincingly demonstrate interneuron myelination, which frequently
occurs on fast-spiking PV interneurons. Finally, we discuss how
impairments in myelination of PV interneurons could lead to
consequent abnormalities in gamma synchronization and ulti-
mately give rise to the symptoms which define schizophrenia.

PARVALBUMIN INTERNEURON DYSFUNCTION IN
SCHIZOPHRENIA
Deficits in GABAergic signaling have been widely proposed
as a fundamental pathophysiological mechanism underlying
schizophrenia.7 More specifically, several recent lines of evidence
including human postmortem studies, genetics and in vivo
electrophysiological recordings in patients and translational

mouse models have identified fast-spiking PV interneurons as
the major GABAergic cell-type affected in schizophrenia (Table 1).
Expression of GAD67—the predominant gamma-aminobutyric

acid (GABA) synthesizing enzyme—has consistently been found
to be reduced at both the messenger RNA and protein levels in
several brain regions of patients with schizophrenia, a finding
that has been well controlled for confounding factors.8–14

Downregulation of GAD67 messenger RNA has been reported in
~ 30% of dorsolateral prefrontal cortex interneurons15,16 and
entirely undetectable in ~ 50% of PV interneurons.17 Expression
of PV messenger RNA18–20 and protein21 is also reduced in schizo-
phrenia, while the neuronal density of cortical PV interneurons is
unchanged22–25 (but see also ref. 52). Since the expression of both
PV and GAD67 are experience-dependent26—and GAD67 and PV
expression are highly correlated26—their shared downregulation
suggests a functional impairment of fast-spiking interneurons.27

Morphologically, PV cell inputs onto pyramidal neurons have no
discernible alterations,21 suggesting a primary functional abnorm-
ality of PV interneurons. Consistent with these neuropathological
findings, in vivo positron emission tomography (PET) imaging has
demonstrated widespread alterations of cortical GABA transmis-
sion in schizophrenia, a finding that was most prominent in the
subset of patients who were antipsychotic-naïve.28 Altogether,
these results provide compelling evidence of cortical PV
interneuron dysfunction in schizophrenia.
PV interneurons are essential in generating cortical oscillations

in the gamma range (~30–120 Hz), mediated by synchronized
inhibition of large pyramidal cell ensembles.29,30 Through
rhythmic perisomatic inhibition onto surrounding pyramidal cells,
synchronous ensembles of PV cells evoke high-frequency gamma
oscillations in the cerebral cortex.31–33 Gamma synchrony has
been shown to function critically across a range of cognitive
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functions, including working memory and attention,34 with well-
replicated abnormalities in schizophrenia.5,35 Abnormalities in
other frequency bands such as theta and alpha have also been
reported in schizophrenia, but the neural mechanisms underlying
these frequencies remain less well understood.35

Electroencephalographic studies in schizophrenia have shown a
reduced amplitude and impaired phase locking of gamma band
activity over frontal areas while assessing working memory and
executive functioning tasks.35 Although some studies have
observed concurrent increases in gamma band activity at rest,
this finding has been less well replicated.35 Taken together,
impairments of in vivo gamma oscillations in patients with
schizophrenia are highly consistent with the PV interneuron
abnormalities observed by postmortem histopathology.
The classical onset of schizophrenia occurs within a relatively

narrow window of neurodevelopment, between ~ 18 and 25 years
of age.2 This late adolescent age of onset has often been
attributed to the ongoing functional maturation of the brain
during this neurodevelopmental critical period.2 Specifically in late
adolescence, rates of synaptic pruning and myelination become
asymptotic for which impairments in these processes have been
linked to the disease onset.2 Notably, maturation of gamma band
synchrony also occurs during late adolescence35 which coincides
developmentally with the clinical onset of schizophrenia.1

In addition to in vivo brain imaging, electroencephalographic
recordings and postmortem histopathology, molecular genetic
studies of schizophrenia have also revealed an important
contribution of interneuron dysfunction to the pathophysiology
of schizophrenia. A recent genetic study of copy number variation
has now provided causal evidence for GABAergic dysfunction in
the etiology of schizophrenia.36 In this study, Pocklington et al.
performed a functional gene set analysis for enriched biological
mechanisms using a large schizophrenia case-control dataset
and found that copy number variations were significantly
enriched in cases for genes responsible for inhibitory neurotrans-
mission (in particular the GABAA receptor complex), glutamatergic
neurotransmission, long-term synaptic plasticity and associative
learning. The genetic variant with the highest known risk for
schizophrenia is the 22q11 microdeletion which has a penetrance
of ~ 40%.37,38 Transgenic mouse models have been generated to
investigate the underlying neurobiology conferred by 22q11
microdeletion. Df(16)A mice harboring a 27-gene microdeletion
syntenic to a 1.5 Mb region of human 22q11.2 exhibit similar brain
abnormalities as found in human 22q11 microdeletion carriers,
including cortico-cerebellar, cortico-striatal and cortico-limbic
circuits.39 Moreover, multiple different mouse models of 22q11 micro-
deletion have replicated a cell-type specific impairment in PV inter-
neurons and disrupted local synchrony of neural activity, consistent
with the deficit in gamma oscillations observed in schizophrenia.40–42

Evidence for interneuron dysfunction in schizophrenia has also
been supported by a wide variety of non-genetic rodent models.43

The major examples include pharmacological NMDA receptor
antagonism and neurodevelopmental immunological challenge,
both of which consistently exhibit synaptic and network
abnormalities reminiscent of schizophrenia pathophysiology.
Specifically, these studies have identified electrophysiological
changes in local microcircuit connectivity and synaptic plasticity,
with alterations in excitation/inhibition balance and gamma band
synchronization.
Taken together, the combination of genetic, postmortem, and

in vivo electrophysiological and functional imaging results from
human clinical studies of schizophrenia converge with transla-
tional rodent modeling to identify fast-spiking PV interneuron
dysfunction as a major pathophysiological mechanism underlying
schizophrenia etiology.

MYELINATION ABNORMALITIES IN SCHIZOPHRENIA
Independent of PV interneuron alterations, myelination abnorm-
alities have also been extensively implicated in schizophrenia
through both in vivo brain imaging and postmortem assessments
(Table 1). Numerous diffusion tensor imaging studies have been
published for schizophrenia (reviewed in ref. 6), of which the
overwhelming consensus has been the association of schizo-
phrenia with globally decreased fractional anisotropy. Notably, the
decrease in fractional anisotropy appears to become more severe
with increasing age and illness duration.44 Many of the early brain
imaging studies of schizophrenia were performed in cohorts with
extensive histories of psychotropic medication, inpatient hospita-
lization, smoking and medical co-morbidities, which could have a
confounding deleterious influence on white matter integrity.
Thus, an important question has been whether myelination
abnormalities are already present in drug-naïve patients with
first-episode schizophrenia who have never received psychotropic
medication. Recently, several diffusion tensor imaging studies
have been performed in such cohorts,44–58 holding the potential
to directly evaluate these potential confounders. Indeed, across a
range of different methodologies, studies of drug-naïve first-
episode schizophrenia have consistently demonstrated similar,
albeit less severe, myelination abnormalities as observed in chronic
illness. Importantly, these studies confirm that a global impairment
of myelin integrity is already present at the time of the initial clinical
onset of psychotic symptoms in schizophrenia. Accordingly, these
findings support a model by which myelination abnormalities
function critically in the pathophysiology of schizophrenia.
The late adolescent age of onset for schizophrenia closely

overlaps with the maturation of prefrontal cortex myelination.59

The time course of myelination in humans has been elegantly

Table 1. Comparison of interneuron and myelination data for schizophrenia

Interneuron dysfunction Myelination abnormalities

Schizophrenia age of onset Maturation of PV cells2

Emergence of high-frequency oscillations35
Peak of myelination63

Development of frontal gray matter oligodendrocytes135

Postmortem findings PV mRNA and protein decreased18–21

GAD67 mRNA and protein decreased8–14

Transcriptional changes in PV cells150

Abnormal myelin/oligodendrocyte gene expression64–71

Lower oligodendrocyte numbers73–83

Ultrastructural abnormalities89,90

Transcriptional changes in oligodendrocyte lineage cells83

Human in vivo findings Activity-dependent EEG abnormalities5,34,35 a

MRS-based GABA impairments28
Lower FA values on DTI44–58 a

Genetic support CNVs36 GWAS common variants in myelin/oligodendrocyte gene sets92–95

GWAS common variants enriched in mature oligodendrocytes96

Abbreviations: CNV, copy number variation; DTI, diffusion tensor imaging; EEG, electroencephalography; FA, fractional anisotropy; GABA, gamma-
aminobutyric acid; GWAS, genome-wide association study; mRNA, messenger RNA; MRS, magnetic resonance spectroscopy; PV, parvalbumin. aPresent in first-
episode, drug-naïve patients.
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detailed through longitudinal in vivo imaging and postmortem
cross-sectional studies demonstrating rapid early postnatal white
matter development in the first 12 months,60 followed by a slower
but steady increase until late adolescence.61,62 Comparative
mammalian evolutionary studies have demonstrated that humans
exhibit a particularly extended neurodevelopmental time course
of neocortical myelination.63 Although myelination in humans
peaks in late adolescence, for non-human primates and rodents
the peak of myelination occurs significantly earlier in
development.63 Together, the current best evidence demonstrates
that the onset of schizophrenia closely coincides with the peak of
myelination in human brain development.
In addition to the well-replicated finding of in vivo white matter

abnormalities in schizophrenia, postmortem gene expression
analyses have also identified alterations in myelination regulatory
pathways. Several studies have reported a broad reduction in the
expression of genes with demonstrated function in the oligoden-
drocyte lineage.64–71 Using microarray-based transcriptome ana-
lysis with quantitative PCR validation, abnormalities in
oligodendrocyte lineage genes have been found in both frontal
white and gray matter,64,65,68 subcortical regions,66,69 occipital
cortex70 and temporal cortex.71 The alignment between in vivo
brain imaging findings and postmortem gene expression analyses
is highly consistent with a central importance of myelination
abnormalities in schizophrenia pathophysiology. Notably, many of
the same oligodendrocyte and myelination genes found to be
altered in schizophrenia also exhibit consistent increases during
normal brain development precisely during adolescence,72 again
consistent with the association between the late adolescent age of
onset in schizophrenia and the peak of myelination.
Compared with the abundance of brain imaging and gene

expression studies of myelination and oligodendrocytes, post-
mortem stereological analysis of oligodendrocyte lineage cell
types are scarce. From the few studies that have been performed,
stereological quantification of myelinating oligodendrocytes have
revealed widespread reductions in schizophrenia (Table 1).73–83

Reductions in oligodendrocyte numbers have been shown in the
white and gray matter of BA9,73–76,83 white and gray matter of
BA10,77,78 posterior hippocampal subregion CA4,79 internal
capsule,80 nucleus basalis81 and anterior thalamic nucleus.82 In
contrast, oligodendrocyte numbers appear unchanged within the
substantia nigra,84 callosal genu85 and subgenual cingulum.85

Furthermore, one study failed to find differences in oligoden-
drocyte number within any subregion of the hippocampus.86

In addition, a few studies have reported seemingly paradoxical
increases in the number of myelinating oligodendrocytes in
frontal white matter87 and basolateral amygdala.88 Although
caution is warranted given the limited number of studies and
differences in methodology, the emerging picture is one of small
but consistent reductions of myelinating oligodendrocytes in
schizophrenia (~14% reduction73–82). However, an important
unanswered question is whether the observed reduction of
myelinating oligodendrocytes is cell-type specific or also extends
to other less differentiated cell types within the oligodendrocyte
lineage.
A recent study is the first to report a stereological analysis of

oligodendrocyte precursors cells (OPCs),83 also known as
neuron-glial antigen 2 (NG2) cells due to their abundant
expression of the NG2 protein. The number of frontal white
matter OPCs were unchanged while the total population of
oligodendrocyte lineage cells was reduced, thereby suggesting
that the reduction in oligodendrocyte lineage cells occurs
predominantly in more differentiated cell types. Furthermore,
oligodendrocyte lineage-specific transcriptome analysis and
immunohistochemical labeling independently suggested an
impairment of OPC differentiation towards mature oligodendro-
cytes. Given that OPCs are the exclusive progenitor cell population
of myelinating oligodendrocytes, more knowledge of the

regulation and function of OPCs in schizophrenia would
better clarify whether the observed reductions in myelinating
oligodendrocytes are a consequence of abnormalities that have
occurred upstream in the myelination lineage or the consequence
of a downstream cell-type specific loss of myelinating
oligodendrocytes.
Two studies have examined myelination at the ultrastructural

level in schizophrenia. The major findings involved myelinated
axons and oligodendrocytes, in frontal cortex white and gray
matter.89,90 The observed pathological features included altera-
tions in the morphology of the myelin sheath and the frequency
of axonal degeneration within morphologically intact myelin
segments. Notably, the effect sizes were larger in gray matter
compared with white matter regions.89,90

With regard to in vivo and postmortem findings, the possibility
remains that the observed myelination abnormalities in schizo-
phrenia could result from primary and/or secondary disturbances
of neuronal signaling.91 Therefore, genetic studies provide a
unique opportunity to investigate etiological mechanisms of
schizophrenia while avoiding the potential confounds of anti-
psychotic medication and secondary disease effects. Notably,
recent studies have shown using genome-wide association study
(GWAS) data that myelination/oligodendrocyte gene sets are
significantly associated with both the risk of schizophrenia92–94

and the severity of deficits in white matter integrity.95 Moreover,
the most recent GWAS results for schizophrenia exhibited
a significant enrichment of genes expressed in mature
oligodendrocytes,96 together suggesting a convergence of com-
mon variant risk on myelination.
Although important questions remain unanswered, GWAS

results implicating myelination as an etiological mechanism,
in vivo imaging demonstrating well-replicated myelination
abnormalities, human postmortem histopathology showing
replicated decreases in the number and ultrastructure of
oligodendrocytes, and gene profiling studies demonstrating
replicated changes in oligodendrocyte expression, together
provide compelling support for myelination as a major patho-
physiological mechanism of schizophrenia.

MYELINATION OF PARVALBUMIN INTERNEURONS
An increasing number of studies has revealed the unexpectedly
extensive myelination of GABAergic interneurons (Table 2),
predominantly fast-spiking PV basket cells (Table 3), in cortical
gray matter and other regions throughout the brain.97–123

Myelination of cortical GABAergic basket cells was first reported
over 30 years ago in the cat visual cortex by electron
microscopy.98–100 In non-human primates, GABAergic axons in
layers III–V are myelinated in sensorimotor106–108 and temporal102

cortices, a finding that had already been hinted at several years
earlier.105 Myelinated GABAergic interneurons were subsequently
identified in the cat superior colliculus,118 as well as in the red
nucleus110 and hypoglossal nucleus109 of the monkey. Although
the relative distribution of myelination across interneuron
subtypes has not yet been quantitatively determined, a consistent
qualitative observation has been that a high proportion of the
GABA-labeled terminals of myelinated axons exhibit localized
somatic targeting suggestive of basket cells.106 Moreover, direct
ultrastructural evidence for basket cell myelination has also been
demonstrated in visual cortex of cat98,99 and rat.112

Basket cells have been reported to be myelinated in occipital112

and somatosensory114 cortex of the rat. PV-immunoreactive
myelinated neurons have been identified in the rat entorh-
inal cortex,119 hippocampus122 and striatum.123 In the rat
entorhinal cortex, myelinated PV axons were found extensively
across all cortical layers, interspersed with unmyelinated axonal
segments.119 Furthermore, myelinated GABAergic neurons have
been identified in the rodent hippocampus,111,117 thalamus113,120
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and inferior colliculus,121 although these studies were performed
largely without interneuron subtype-specific labeling. However in
one notable exception, myelinated rat hippocampal GABAergic
neurons were confirmed as PV interneurons.117 Moreover, the vast
majority of septohippocampal PV, but not cholinergic, fibers are
myelinated.115,116,124

Recently, a combinatorial study using array tomography and
fluorescence microscopy found a large abundance of myelinated
PV axons in adult mouse somatosensory cortex.125 Here, the
authors found that 25–50% of all cortical myelinated axons are
GABAergic, and that nearly all of these are PV-expressing
interneurons, a finding that has been independently observed in
the adolescent mouse visual cortex.97 Notably, although myelin
thickness was similar between GABAergic and non-GABAergic
axons, myelinated GABAergic axons had a higher average g-ratio
(ratio between the inner axonal diameter and the outer diameter
of the myelin sheath), shorter internode length, and shorter nodes
of Ranvier than non-GABAergic axons.125

Few studies have reported attempts to examine myelination of
interneurons in human cortex. Myelination of PV cells in the
human hippocampus103 and claustrum104 has been confirmed by
electron microscopy. Furthermore, myelinated GABAergic102

interneurons have been incidentally observed in the human
frontal cortex, including with PV subtype specification.101 Thus,
although sparsely documented, PV interneuron myelination
appears to be widespread throughout the brain and evolutionarily
conserved among mammals. More detailed and comprehensive
studies are required to quantify the relative proportion of
myelinated PV interneurons, their developmental time course
of myelination compared to pyramidal neurons, subcellular
distribution of segmental myelination, and brain region distribu-
tion, as well as the functional neurophysiological implications of
interneuron myelination.
Notably, we have not found any report demonstrating

myelination of cortical somatostatin or neuropeptide Y interneur-
ons, despite numerous electron microscopic studies in a variety of
mammalian species,126–129 thereby suggesting a high specificity
for the PV subclass of GABAergic interneurons. In contrast, non-PV
interneuron myelination has been sporadically reported in
subcortical regions, for example, in sparse small-diameter axons
of the rat internal capsule130 and in the cat claustrum.131 This
suggests that at least within the cerebral cortex, PV cells are the
predominant myelinated interneuron subtype while in subcortical

brain regions the cell-type distribution of myelinated interneurons
may be less strict.
Recently, it has been shown that PV interneurons establish

direct functional soma-targeted contacts with OPCs in cortical
layer V.132 Synaptic input from local GABAergic interneurons has
been shown to dynamically regulate OPC differentiation to
oligodendrocytes.133 OPCs receive strong GABAergic synaptic
input from PV, and to a lesser extent from non-PV, interneurons.132

Notably, the peak neurodevelopmental period of interneuron-OPC
connectivity (P10-P14) would thus position interneuron myelina-
tion precisely in the window following the initial onset of
GABAergic burst firing, but before maturation of high-frequency
gamma oscillations.134 This also closely aligns with the timing of
human frontal cortex oligodendrocyte development which
plateaus in early adulthood and is highly distinct from white
matter development in which oligodendrocytes have already
reached their maximum number by ~ 5 years of age.135 Moreover,
in further contrast to white matter, frontal cortex gray matter
exhibits a substantial turnover of oligodendrocytes and myelin
that persists throughout adulthood.135 Analogously, rodent
studies have demonstrated that OPCs exhibit important distinc-
tions in their physiology, proliferation and differentiation between
gray and white matter in rodents.136 Therefore, regional differ-
ences in human OPCs are also not unlikely.
Interestingly, direct contacts of interneurons onto OPCs137 are

only locally distributed, reaching a typical maximum distance of
50–70 μm,132 which is highly similar to the estimate for the
maximal length of OPC processes. An interesting question remains
why interneurons have such a restricted spatial localization of
their connectivity onto OPCs, since PV cells establish synaptic
contacts with pyramidal cells across a distance approximately six
times larger.138 One possibility is that OPCs utilize reciprocal
synaptic input to regulate their proliferative drive. Alternatively, it
may be that myelination preferentially occurs on proximal axonal
segments, in close apposition to the observed localization of OPCs
and allowing for rapid differentiation to oligodendrocytes with
enhanced myelination plasticity.

POTENTIAL FUNCTIONS OF INTERNEURON MYELINATION
PV interneurons function to synchronize pyramidal cell ensembles,
and thereby generate high-frequency oscillations.139 Since cortical
PV axonal arborization is widely ramified and distributed over

Table 2. Studies reporting myelination of GABAergic interneurons

Study Species Brain region Technique Conclusion

Somogyi et al.100 Cat Visual cortex Electron microscopy Presence of single myelinated GAD+ cells
Mize et al.118 Cat Superior colliculus Electron microscopy Presence of myelinated GABAergic neurons
Ong et al.102 Human Frontal cortex Electron microscopy Presence of several myelinated GAT-1 axons
Ong et al.102 Monkey Temporal cortex Electron microscopy Presence of several myelinated GAT-1 axons
Hendry et al.106 Monkey Sensory-motor cortex Electron microscopy Presence of several myelinated layers III–V

GABAergic neurons
DeFelipe et al.107 Monkey Somatosensory cortex Electron microscopy; [3H]GABA tracing Presence of several myelinated GABAergic neurons
DeFelipe et al.108 Monkey Sensorymotor cortex Electron microscopy Presence of several myelinated Layers III–V

GABAergic neurons
Takasu et al.109 Monkey Hypoglossal nucleus Electron microscopy Presence of several myelinated GABAergic neurons
Ralston et al.110 Monkey Red nucleus Electron microscopy Presence of several myelinated GABAergic neurons
Jinno et al.111 Rat Hippocampus Single cell tracing; immunofluorescence Presence of several myelinated GABAergic

projection neurons
De Biasi et al.113 Rat Thalamus Electron microscopy Presence of a few myelinated GABAergic axons
Conti et al.114 Rat Cortex Electron microscopy Presence of several myelinated GAT-2 positive

axons
Roberts et al.121 Rat Inferior colliculus Electron microscopy Presence of several myelinated GABAergic neurons
Sawyer et al.120 Rat Thalamus Electron microscopy; light microscopy Presence of several myelinated GABAergic neurons

Abbreviations: GABA, gamma-aminobutyric acid; GAD, glutamic acid decarboxylase; GAT, GABA transporter.
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distances of up to 300 μm,138 there might be considerable
benefits of myelination for optimizing the fidelity of fast action
potential transmission. Indeed, computational modeling has
suggested a unique contribution of (interneuron) conductance
delays in the dynamics of gamma frequency oscillations.140

Evidence exists that nodes of Ranvier begin forming before the
onset of myelination,117 a mechanism specific for GABAergic
neurons, which enhances axonal conduction of action potentials
without myelin. Thus, in addition to simply increasing the speed of
action potential propagation, myelin could function to ensure the
integrity of precisely timed action potentials, as has been
proposed for myelinated excitatory axons.141 Myelin plasticity
would then have the potential to support the local synchroniza-
tion of action potentials necessary for generating high-frequency
oscillations.142 Indeed, myelinated axons exhibit both higher
conduction velocities and enhanced long-range coherence.143

Although non-PV cortical interneuron subtypes (e.g., somatostatin,
VIP) exhibit synaptic connectivity across similar distances,138 their
lack of influence in maintaining high-frequency oscillations is
consistent with their absence of myelination. Furthermore, the
activity-dependence of myelination144 might permit dynamically
regulated influences on the fidelity of fast action potential
transmission and high-frequency oscillations.
Furthermore, myelin could provide metabolic and trophic

support for energetically costly PV cells. PV cell characteristics,
including high-frequency spiking and rapid action potential
kinetics, require a particularly high energy utilization through
predominantly mitochondrial oxidative phosphorylation.145

Gamma band synchrony, closely linked to cognition, is highly
sensitive to metabolic disruption. Furthermore, compared with
pyramidal cells, PV cells exhibit high densities of mitochondria and
expression of cytochrome c and cytochrome c oxidase, proteins
crucial for the electron transport chain. Moreover, PV cell-specific
disruption of cytochrome oxidase assembly leads to changes in PV
cell intrinsic excitability, afferent synaptic input, and gamma/theta
oscillations, as well as schizophrenia-related behavioral impair-
ments in sensory gating and social behavior.146

During gamma oscillations, peak oxygen consumption
approaches the demand observed during seizures and mitochon-
drial oxidative capacity operates near its functional limit.145

Metabolic and trophic support conferred by myelination147,148

might therefore allow PV axons to optimize their energy
utilization. Consistent with the importance of myelination in
regulating axonal energy metabolism is the considerable dis-
crepancy of mitochondria content (30-fold) in myelinated versus
unmyelinated axons.149 Myelin has been proposed to regulate
axonal energy metabolism via the monocarboxylate transporter 1
channel.147,148 Furthermore, the high-peak oxygen consumption
of PV cells during gamma band synchrony could require the
additional lactate provided by oligodendrocytes.
Taken together, the electrophysiological dynamics of fast-

spiking PV interneurons, their dense branching onto pyramidal
neurons requiring finely tuned temporally synchronized inhibition,
and their high-energy consumption are likely interdependent
mechanisms governed by PV interneuron myelination.

IMPLICATIONS FOR SCHIZOPHRENIA
Both interneuron dysfunction and myelination abnormalities have
been independently proposed as important contributors to the
underlying pathophysiology of schizophrenia. These mechanisms
have each amassed convincing support from postmortem
histopathology, in vivo imaging and electrophysiology, genetics
and neurodevelopment (Table 1). However, neither hypothesis is
capable of accounting for the full set of clinical research findings
in schizophrenia. In contrast, interneuron myelination brings
together both of these models, explains a more comprehensiveTa
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portion of the existing data, and offers a well-defined
falsifiable model.
Impairments of PV interneuron myelination could directly

contribute to schizophrenia through several mechanisms.
Impaired action potential fidelity, energy restrictions during
highly-demanding cognitive tasks, aberrant axonal branching
and a higher occurrence of ectopic action potentials could each
independently, or in combination, disrupt inhibitory network
function. Such changes to PV interneurons would likely result in
abnormalities of local gamma synchronization, with a potential
further impact on the integrity of long-range thalamocortical and
cortico-striatal circuits, and striatal dopamine signaling, ultimately
giving rise to schizophrenia symptoms.
In this Perspective, we have proposed the novel hypothesis that

altered myelination of PV interneurons might function promi-
nently in the pathophysiology of schizophrenia. However, many
questions remain to be answered. At what point during
development does interneuron myelination occur and to what
extent does this coincide with the clinical symptoms of schizo-
phrenia? Does interneuron myelination vary across brain
regions? Is cortical interneuron myelination truly reserved for
fast-spiking PV interneurons, or are non-fast-spiking interneurons
(e.g., somatostatin, VIP) myelinated as well? How does the
plasticity of PV interneuron myelination compare with that of
glutamatergic axons? And perhaps most importantly, to what
extent might PV interneuron myelination represent an etiological
pathophysiology and therapeutic target for schizophrenia?
Future studies to examine the parvalbumin interneuron

myelination hypothesis could be approached through a variety
of methods. In particular, the most important experiments would
include: (a) detailed histological assessments of subtype-specific
interneuron axonal myelination in postmortem brain tissue from
patients with schizophrenia, (b) corresponding functional studies
in rodent models of schizophrenia to directly assess the causality
of alterations in parvalbumin interneuron myelination on beha-
vioral and electrophysiological phenotypes, (c) electrophysiologi-
cal studies of rodent models with temporally-controlled and
cell-type specific disruption of myelination and (d) functional
genomic studies on the effect of schizophrenia risk variants on
(interneuron) myelination, for example, by utilizing human
induced pluripotent stem cells or genetically modified mice.
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