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Abstract

A new method is proposed that combines dimension reduction and cluster analysis for

categorical data. A least-squares objective function is formulated that approximates the cluster

by variables cross-tabulation. Individual observations are assigned to clusters in such a way

that the distributions over the categorical variables for the di�erent clusters are optimally

separated. In a uni�ed framework, a brief review of alternative methods is provided and

performance of the methods is appraised by means of a simulation study. The results of

the joint dimension reduction and clustering methods are compared with cluster analysis

based on the full dimensional data. Our results show that the joint dimension reduction and

clustering methods outperform, both with respect to the retrieval of the true underlying cluster

structure and with respect to internal cluster validity measures, full dimensional clustering.

The di�erences increase when more variables are involved and in the presence of noise variables.

1 Introduction

Cluster analysis aims to �nd a meaningful allocation of observations to groups that are similar with

respect to a set of observed variables. Depending on the kind of data, an appropriate similarity

measure is selected and used to allocate observations to clusters of points with high similarity

within a cluster and small similarity between the clusters. To interpret cluster analysis solutions,

the distributions over the variables in the di�erent clusters can be considered. When many variables

are involved, computation of all dissimilarities may become cumbersome. Moreover, interpretation

of the results in terms of (relative) distributions of the variables may not be straightforward.

Dimension reduction and visualization techniques can be used to overcome computational issues
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and at the same time facilitate a more straightforward interpretation of the cluster solutions. In

this paper, we concern ourselves with clustering of high-dimensional categorical data. Existing

dimension reduction and cluster analysis methods are reviewed, and we propose a new method

that jointly yields optimally separated clusters and a low-dimensional approximation of the cluster

by variable associations.

For continuous data, several proposals exist that combine dimension reduction and cluster anal-

ysis. Such combined approaches are typically used because the dimensionality of the data is such

that computational problems arise. One straightforward approach is to �rst apply dimensionality

reduction (e.g., principal component analysis) and then perform cluster analysis on the reduced

space solution. This method is referred to as the tandem approach. Intuitive and straightforward

as this approach may be, it may not yield optimal cluster allocations as the two involved meth-

ods optimize di�erent criteria. For example, in principal component analysis, the objective is to

�nd a small set of linear combinations of the variables that maximize explained variance. Cluster

analysis, on the other hand, aims to �nd similar and dissimilar observations in the data set and

allocate the observations accordingly to clusters. If the clustering of observations occurs in higher

dimensions (i.e., dimensions not included in the principal component analysis solution) those clus-

ters are missed. This problem is well-known (e.g., Vichi & Kiers, 2001) and solutions have been

proposed. In particular, De Soete & Carroll (1994) proposed reduced K-means and Vichi & Kiers

(2001) proposed factorial K-means. Recently, Yamamoto & Hwang (2014) as well as Vichi et al.

(2009) provide a framework exposing the relationship between these methods and showing how

the two can be joined into one objective. The latter paper also covers the case of mixed, that is,

continuous and categorical, variables.

The potential problem of identifying non-existing clusters, or failing to identify existing clus-

ters, in the reduced space has also been used as motivation for joint dimension reduction and

clustering methods for categorical data. In particular, Van Buuren & Heiser (1989) and Hwang et

al. (2006) proposed methods that avoid potential problems associated with the tandem approach

when applied to categorical data. For categorical data is it not obvious that similar problems

do in fact occur. On the other hand, the speci�c nature of categorical data may in fact result

in problems of a di�erent kind. For example, categorical data quanti�cation or scaling, permits

visualization of the data into a metric space. This is not a trivial point: di�erently from interval

data, scaling is the only way to visualize proximities in categorical data analysis. Furthermore,

whereas, in the case of continuous data, the dimensionality of the data typically corresponds to

the dimensionality of the data matrix, this is not necessarily the case for categorical data. If the
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categorical data are coded using indicator (dummy) matrices, the dimensionality of the data and

the dimensionality of the data matrix do not correspond. In this paper, we study the performance

of the tandem approach, joint dimension reduction and cluster analysis methods as well that of

full dimensional clustering of categorical data. In addition, we introduce a new method that joins

simple correspondence analysis and cluster analysis. The visualization of the obtained solution is

straightforward and allows for a standard biplot interpretation.

The contribution of this paper is threefold. First, a new joined correspondence analysis and

cluster analysis method yielding a visualization of the categories, the cluster means as well as the

individual subject coordinates, is presented. Secondly, we provide a comprehensive overview of

existing dimension reduction and clustering methods for categorical variables, and we point out

that di�erent scaling methods can lead to similar cluster solutions whilst yielding di�erent data

visualizations. Moreover, we resolve some issues concerning these methods and propose a new

algorithm for GROUPALS; a method proposed by Van Buuren & Heiser (1989). Thirdly, using

a simulation study and a real data example, we appraise the performance of the joint dimension

reduction and clustering methods as well as that of the tandem approach and full dimensional

clustering of the categorical data. Such a comparative study of the di�erent dimension reduction

and cluster analysis methods does not exist. In a recent review by Iodice D'Enza et al. (2014), the

theoretical relationships between existing methods was captured and illustrated by means of one

empirical example. Similarly, Hwang et al. (2006) compared the results of their method to those

obtained using the method proposed by Van Buuren & Heiser (1989) using one empirical example.

In our simulation study, however, we appraise the performance of all joint dimension reduction and

cluster methods, as well as the tandem approach and full dimensional clustering of the categorical

data, under various, realistic, conditions.

The remainder of this paper is organized as follows. In Section 2, notation and some essential

correspondence analysis formulas are given. Then, in Section 3, the new method is presented.

In Section 4.1, we derive a new algorithm for GROUPALS based on the �rst-order conditions

corresponding to the original problem. Hwang et al. (2006)'s method is shortly presented in Section

4.2 followed by a brief summary of Iodice D'Enza & Palumbo (2013)'s approach. In Section 5, the

performance of all methods is assessed by means of a simulation study based on categorical data

generated according to di�erent underlying pro�les for the di�erent clusters of individuals. We

illustrate the new method by means of a real data set on the preferences of di�erent humor styles

in Section 6. We summarize our �ndings in Section 7.
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2 Correspondence analysis

Correspondence analysis has been invented and reinvented several times (see, e.g., Nishisato, 1980;

Greenacre, 1984) for an historical overview of the method). As a consequence, the method can

be derived and presented in many ways. Here we do not concern ourselves with these issues and

alternate between di�erent rationales. In particular, without providing details on their origins and

interpretations, we use di�erent formulations and properties to simplify our exposition of the new

method.

Let P denote a qr×qc data matrix with nonnegative elements that sum to 1. That is, 1
′

qrP1qc =

1, where, generically, 1q denotes a q dimensional vector of ones. Correspondence analysis amounts

to the following least-squares approximation problem:

min
A,B

∥∥∥P̃−D
1/2

r AB
′
D1/2

c

∥∥∥2 , (1)

where P̃ = D
−1/2
r

(
P− rc

′
)

D
−1/2
c , r = P1qc , c = P

′
1qr , Dr and Dc are corresponding diagonal

matrices (i.e., Dr1qr= r and Dc1qc = c). The so-called row and column coordinate matrices A

and B are of rank k, where k is the dimensionality of the approximation. By imposing

B
′
DcB = Ik,

a solution can be obtained by using the singular value decomposition

P̃ = UΛV
′
,

where U and V are orthonormal and Λ is a diagonal matrix with, in descending order, the singular

values on its diagonal. By selecting only the �rst k columns of U and V and the corresponding

singular values, a k−dimensional least-squares approximation of P̃ is obtained. The resulting

coordinate matrices are

A = D−1/2r UΛ and B = D−1/2c V,

so that

A
′
DrA = Λ2.

In this formulation, the row-coordinates are referred to as principal coordinates whereas the column

coordinates are standard coordinates. This set of coordinates consitutes a so-called biplot (see,
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e.g., Gower & Hand, 1996) as the inner-product D
1/2
r AB

′
D

1/2
c approximates the data.

If P is obtained from a contingency table, the matrix P̃ is the matrix of standardized residuals

(i.e., the matrix of standardized deviations from the independence model). The biplot coordinates

collected in A and B give a low-dimensional approximation of these standardized residuals.

It is easily veri�ed that the minimization problem (1) is equivalent to maximizing the sum of

squared singular values. That is:

max traceΛ2 = max traceA
′
DrA,= max

∥∥∥D1/2
r A

∥∥∥2 (2)

subject to

B
′
DcB = Ik.

This formulation will prove useful in our later expositions. Note that, from (2) it follows that

the correspondence coordinates can be interpreted as optimal scaling values that, when used as

weights for rows and columns, maximize the variance between rows (columns) whilst minimizing

the variance within a row (column). For a complete exposition of CA derived in this fashion see,

Nishisato (1994).

2.1 Correspondence analysis of more than two categorical variables

For the analysis of more than two variables, several extensions of correspondence analysis exist.

Most extensions amount to applying correspondence analysis to a particularly formatted data ma-

trix. Let Zj denote an n× qj indicator matrix. That is, each row corresponds to an observation,

and the columns represent categories. Observed categories are coded by ones and all other elements

are zero. Consequently, Zj1qj = 1n. Data on several categorical variables can be collected in a

so-called superindicator matrix Z = [Z1, . . . ,Zp]. The most popular extension, multiple correspon-

dence analysis (MCA), amounts to either applying correspondence analysis to the superindicator

matrix Z or to the so-called Burt matrix, that is, the collection of all two-way cross-tabulations

calculated by: B = Z
′
Z.

Another approach, particularly appropriate when there is reason for an asymmetric treatment

of the categorical variables, concerns the analysis of all cross-tabulations of one (set of) categorical

variable(s) with all other categorical variables. In this setting, the cross-tabulations are gathered

in a concatenated table which is subjected to correspondence analysis. Note that, in this way, not

all interactions are coded (and approximated) as the concatenated table represents the association

5



of one (set of) categorical variable(s) with all other categorical variables. It is this extension of CA

that we use in our cluster correspondence analysis approach.

3 Cluster correspondence analysis

Assume we have data of n individuals on p categorical variables gathered in a super indicator

matrix Z of dimensionality n×Q, where Q =
∑p

j=1 qj . We are interested in �nding K clusters of

the n individuals based on the observations on the categorical variables. Cluster membership itself

can also be considered as a categorical variable and this can be coded using an indicator matrix,

say ZK . To consider the association of the clusters with the categorical variables, we can construct

a table cross-tabulating cluster memberships with the categorical variables as F = Z
′

KZ, where ZK

is the n ×K indicator matrix indicating cluster membership. Applying CA to this matrix yields

optimal scaling values for rows (clusters) and columns (categories) in such a way that the between

cluster variance is a maximum. That is, the clusters are optimally separated with respect to the

distributions over the categorical variables.

Using the de�nitions introduced in the previous section, we let

P =
1

np
F,

so that for P− rc′ we get

P−P11
′
P =

1

np

(
F− 1

np
F1n1

′

QF

)
=

1

np

(
Z
′

KZ− 1

n
Z
′

K1n1
′

nZ

)
=

1

np
Z
′

KMZ,

where M = In − 1n1
′

n/n. Furthermore, de�ne a diagonal matrix Dz so that Dz1 = Z
′
1 and let

DK = Z
′

KZK , a diagonal matrix with cluster sizes. The correspondence analysis objective function

(1) for the cluster by variable case, becomes

min
ZK ,G,B

∥∥∥∥ 1
√
p
D
−1/2
K Z

′

KMZD−1/2z − 1

n
√
p
D

1/2
K GB

′
D1/2

z

∥∥∥∥2 . (3)

Upon de�ning

G∗ =
1√
n

D
1/2
K G and B∗ =

1
√
np

D1/2
z B
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we can re-express (3) as

min
ZK ,G∗,B∗

∥∥∥∥ 1
√
p
D
−1/2
K Z

′

KMZD−1/2z −G∗B∗
′
∥∥∥∥2 . (4)

This objective function is minimized subject to B∗
′
B∗= Ik.

To solve this problem, we �rst consider ZK to be known and minimize with respect to G∗ and

B∗. This is a standard matrix approximation problem. The solution can be obtained directly from

the singular value decomposition

1
√
p
D
−1/2
K Z

′

KMZD−1/2z = UΛV
′
, (5)

and by letting

B∗= V and G∗= UΛ. (6)

The appropriately scaled solution for the rows (i.e., the clusters) and columns (i.e., the categories)

thus becomes

B =
√
nqD−1/2z V and G =

√
nD
−1/2
K G∗. (7)

In addition to the low-dimensional matrix approximation involving B and G, we need to determine

the optimal cluster allocation ZK . That is, ZK must be determined in such a way that (1) is a

minimum. As ZK is an indicator matrix this is not a trivial problem. However, recall that the

CA objective function (1) is equivalent to the optimal scaling objective function (2). Hence, (3)

coincides with

max

∥∥∥∥ 1√
n

D
1/2
K G

∥∥∥∥2 = max trace(G
′
DrG) = max traceΛ2. (8)

subject to

B
′
DcB = Ik.

Now, from (5), (6) and (7), it follows that

G =

√
n

p
D−1K Z

′

KMZD
− 1

2
z V. (9)

so that, for �xed V, objective (8), which is equivalent to (3), can be expressed as

max
ZK

φ =

∥∥∥∥ 1
√
p
D
−1/2
K Z

′

KMZD
− 1

2
z V

∥∥∥∥2 .
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This optimization problem is in fact equivalent to a K-means clustering problem. That is, maxi-

mizing φ with respect to ZK , is equivalent to solving the following K-means objective:

min
ZK ,G

φ′ =

∥∥∥∥ 1
√
p
MZD

− 1
2

z V − Z
′

KG

∥∥∥∥2 , (10)

Proof. First of all, note that

φ =

∥∥∥∥ 1
√
p
D
−1/2
K Z

′

KMZD
− 1

2
z V

∥∥∥∥2 = trace
1

p
V
′
D
− 1

2
z Z

′
MZKD−1K Z

′

KMZD
− 1

2
z V. (11)

Next, let

Y =

√
n

p
MZD

− 1
2

z V, (12)

and rewrite the K-means objective (10), as

min
ZK ,G

φ′ = ‖Y − ZKG‖2 .

Solving this K-means problem with respect to G yields

G =
(
Z
′

KZK

)−1
Z
′

KY = D−1K Z
′

KY,

which is in accordance with (9). Inserting this into the K-means objective we get

min
ZK ,G

‖Y − ZKG‖2 = traceY
′
Y + traceG

′
DKG− 2 traceG

′
Z
′

KY

= traceY
′
Y + traceY

′
ZKD−1K DKD1

KZK
′
Y − 2 traceY

′
ZKD−1K ZK

′
Y

= traceY
′
Y− traceY

′
ZKD−1K ZK

′
Y.

So, minimizing the K-means objective amounts to maximizing

traceY
′
ZKD−1K ZK

′
Y = n trace

1

p
V
′
D
− 1

2
z Z

′
MZKD−1K Z

′

KMZD
− 1

2
z V. (13)

We see that (11) and (13) are equivalent. Hence, for �xed V, we can �nd a cluster allocation ZK

by applying the K-means algorithm to Y. The resulting cluster allocation ZK yields an improved

(i.e., increased) value for the objective function. Using the new ZK , we repeat the CA step to

update the optimal scaling values for the rows and columns.
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The resulting algorithm for cluster correspondence analysis can be summarized as follows:

1. Generate an initial cluster allocation ZK (e.g., by randomly assigning subjects to clusters).

2. Find cluster and category quanti�cations G and B using (7).

3. Use (12) to construct an initial con�guration for the subjects Y.

4. Find updates for ZK (and G) by applying K-means clustering to Y (using G as initial matrix

of cluster means).

5. Repeat the procedure (i.e. go back to step 2) using ZK for the cluster allocation matrix,

until convergence. That is, until ZK (and hence Y and G) remain constant.

Note that, convergence is guaranteed as the value of the objective function (8) never decreases in

subsequent steps. Obviously, there is no guarantee that the obtained optimum is global. Random

starts can be used to reduce the chances of �nding a local optimum.

The new cluster correspondence analysis method can be seen as a correspondence analysis of

cross-tabulations of cluster memberships by categorical variables. The rows of the data matrix

represent clusters and the obtained row coordinates maximize the between cluster variance. From

(3), it is clear that the solution for rows and columns constitutes a biplot of cluster means and

attributes. Hence, projections of cluster points on attribute vertices provide approximations to the

cluster by attribute associations. The typical CA normalizations do not necessarily lead to similar

spread in the row and column points. Consequently, a joint display of the row and column points

is not very informative. This can be repaired without damaging the biplot property by multiplying

the coordinates of one set by a constant and the other set by the inverse of that constant. In the

context of biplots some proposals exist to deal with such problems (see, e.g., Gower et al., 2010,

2011). Here, we propose to use a constant γ in such a way that the average squared deviation from

the origin is the same in both sets of points. That is, de�ne

Gs = γG and Bs =
1

γ
B, (14)

where

γ =

(
K

Q
traceB′B/ traceG′G

)1/4

,

so that,

1

K
traceGs

′Gs =
1

Q
traceBs

′Bs.
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Plotting these rescaled coordinate matrices rather than the original G and B, facilitates a

directly interpretable visualization of the cluster by attribute associations.

4 Related methods

Cluster correspondence analysis combines dimension reduction with cluster analysis for categorical

data. Other methods exist for such analyses. In particular, GROUPALS (Van Buuren & Heiser,

1989), MCA K-means (Hwang et al., 2006) and iterative factorial clustering of binary variables

(i-FCB; Iodice D'Enza & Palumbo, 2013) all have similar objectives. It is therefore important to

compare the new method with the existing methods both theoretically and empirically. For the

three existing methods, Iodice D'Enza et al. (2014), exposed some theoretical relationships and

illustrated the di�erences using one empirical example. To see how the new method relates to

the existing ones, we brie�y revisit the existing methods. Moreover, we derive a new algorithm

for GROUPALS based on the �rst order conditions corresponding to the problem. The existing

algorithm, proposed by Van Buuren & Heiser (1989) is an alternating least-squares algorithm based

on a "transformation of normalization procedure".

4.1 GROUPALS

Van Buuren & Heiser (1989) formulate as objective function for GROUPALS

min
B,ZK,G

1

p

p∑
j=1

‖ZKG− ZjBj‖2 ,

subject to
q∑

j=1

B
′

jZ
′

jZjBj = Ik.

To �nd the �rst-order conditions we �rst �x ZK and solve for Bj and G by setting up the La-

grangean:

ψ =
1

p

p∑
j=1

trace (ZKG− ZjBj)
′
(ZKG− ZjBj) + traceL

 p∑
j=1

B
′

jDjBj − Ik


= traceG

′
Z
′

KZKG +
1

p

p∑
j=1

traceB
′

jZ
′

jZjBj −
2

p

p∑
j=1

traceG
′
ZK

′
ZjBj + traceL

 p∑
j=1

B
′

jDjBj − Ik


= traceG

′
ZK

′
ZKG+

1

p
− 2

p

p∑
j=1

traceG
′
ZK

′
ZjBj + traceL

 p∑
j=1

B
′

jDjBj − Ik

 ,
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where L is the matrix of Lagrange multipliers. Taking derivatives and equating to zero yields the

�rst order conditions.

For G :

2 traceG
′
ZK

′
ZKdG=

2

p

p∑
j=1

traceB
′

jZ
′

jZKdG

G
′
ZK

′
ZK=

1

p

p∑
j=1

B
′

jZ
′

jZK

G=
1

p

(
ZK

′
ZK

)−1
ZK

′
p∑

j=1

ZjBj .

For Bj :

2

p
traceG

′
ZK

′
ZjdBj = 2 traceLB

′

jDjdBj

1

p
Z
′

jZKG = DjBjL.

Inserting the solution for G we obtain

1

p2
Z
′

jZK

(
ZK

′
ZK

)−1
ZK

′
p∑

j=1

ZjBj = DjBjL.

Note that, as the constraints are symmetric, L is also symmetric. Furthermore, as j = 1, ..., p, we

have p equations. However, de�ning Z = [Z1, . . . ,Zp] and B =
[
B
′

1, . . . ,B
′

p

]′
, the p equations can

be expressed as

1

p2
Z
′
ZK

(
ZK

′
ZK

)−1
ZK

′
ZB = DBL,

where D is a block-diagonal matrix with as diagonal blocks D1, . . . ,Dp. Premultiplying both sides

by D−1/2 we get

1

p2
D−1/2Z

′
ZK

(
ZK

′
ZK

)−1
ZK

′
ZD−1/2D1/2B = D1/2BL.

Without loss of generality we can replace L by its eigendecomposition to get

1

p2
D−1/2Z

′
ZK

(
ZK

′
ZK

)−1
ZK

′
ZD−1/2D1/2B = D1/2BUΛU

′
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so that

1

p2
D−1/2Z

′
ZK

(
ZK

′
ZK

)−1
Z
′

KZD−1/2D1/2BU = D1/2BUΛ.

Hence, letting

B∗ = D1/2BU

we see that B∗ can be obtained by taking the �rst k orthonormal eigenvectors (corresponding to

the k largest eigenvalues) of

1

p2
D−1/2Z

′
ZK

(
ZK

′
ZK

)−1
ZK

′
ZD−1/2. (15)

The appropriately standardized category quanti�cations become

B = D−1/2B∗ (16)

and G is obtained by inserting this into the �rst order condition for G, that is,

G=
1

p

(
ZK

′
ZK

)−1
ZK

′
ZB. (17)

To �nd ZK , recall the original objective function:

min
B,ZK,G

1

p

p∑
j=1

‖ZKG− ZjBj‖2 .

For �xed Bj ,this is equivalent to considering

min
B,ZK,G

∥∥∥∥∥∥1p
p∑

j=1

ZjBj − ZKG

∥∥∥∥∥∥
2

.

Proof.

1

p

p∑
j=1

‖ZKG− ZjBj‖2 = traceG
′
ZK

′
ZKG +

1

p

p∑
j=1

traceB
′

jZ
′

jZjBj −
2

p

p∑
j=1

traceG
′
ZK

′
ZjBj ,

and

∥∥∥∥∥∥1p
p∑

j=1

ZjBj − ZKG

∥∥∥∥∥∥
2

= traceG
′
ZK

′
ZKG +

1

p2
traceB

′
Z
′
ZB− 2

p

p∑
j=1

traceG
′
ZK

′
ZjBj .
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Hence, to �nd ZK we can apply K-means to the "average con�guration": 1
p

∑p
j=1 ZjBj .

Note: It can easily be veri�ed that D1/21 is an eigenvector of (15) corresponding to the eigen-

value 1. Hence, as in CA and MCA, there is a so-called trivial �rst solution. Discarding this

solution can be achieved by centering Z. We can summarize the new GROUPALS algorithm as

follows:

1. Generate an initial cluster allocation ZK (e.g. by randomly assigning subjects to clusters).

2. Use (15), (16) and (17) to obtain B and G.

3. Apply the K-means algorithm to the average con�guration 1
p

∑p
j=1 ZjBj , using G for the

initial cluster means, to update ZK and G.

4. Return to step 2 and repeat until convergence.

4.2 MCA K-means

Hwang et al. (2006) propose a joined multiple correspondence analysis and K-means method that

combines the two objectives using a convex combination. The objective can be formulated as

follows:

min
Y,Bj ,G,ZK

α
1

p

p∑
j=1

‖Y − ZjBj‖2 + (1− α) ‖Y − ZKG‖2 (18)

subject to

Y
′
Y = Ik.

The weight α is user supplied and controls the importance of the MCA and K-means part. Note

that the term 1/p does not appear in Hwang et al. (2006). We have added it here to maintain the

relationship with MCA. This scaling factor ensures that, for α = .5, the MCA and cluster analysis

parts receive equal weights.

It is not di�cult to show that (18) can be solved by

Bj =
(
Z
′

jZj

)−1
Z
′

jY and G =
(
Z
′

KZK

)−1
Z
′

KY

and α1
p

p∑
j=1

Zj

(
Z
′

jZj

)−1
Z
′

j + (1− α)ZK

(
Z
′

KZK

)−1
Z
′

K

Y = YΛ.
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As the cluster membership matrix ZK only appears in the second (i.e., the K-means) part of the

objective function, an algorithm iterating between these equations and the K-means algorithm

applied to Y is proposed. Note that, as α approaches zero, Y is forced towards ZKG. Hence, the

problem converges to the GROUPALS objective with an alternative constraint. (The extreme case

α = 0 itself yields a trivial solution where Y = ZK

(
Z
′

KZK

)−1/2
Ek and G =

(
Z
′

KZK

)−1/2
Ek,

with Ek aK×k matrix consisting of k orthogonal unit vectors). On the other hand, as α approaches

one, the K-means part is virtually ignored and the solution will converge to the tandem approach

solution where K-means is applied to the MCA solution.

Iodice D'Enza et al. (2014) show that, similar to the CA and MCA case, MCA-K-means yields

a so-called trivial solution consisting of a constant vector corresponding to the largest eigenvalue.

This trivial solution can be avoided by centering the indicator matrices. Hence, by replacing the

Zj by MZj for all j = 1, ..., p, where M is the n dimensional centering matrix. Using the centered

data, it can be shown that solving (18) involves the least-squares approximation of

 1
pαD

−1/2
z Z

′
MZD−1/2z

1√
pα(1− α)D

−1/2
z Z

′
MZKD

−1/2
K

1√
pα(1− α)D

−1/2
K Z

′

KMZD−1/2z (1− α) IK

 . (19)

Comparing the lower left block (that is, the last K rows and �rst
∑p

j=1 qj columns) of this

matrix to equation (4), that is, the new cluster correspondence analysis objective, we see that

the new method can be seen as a constrained version of MCA K-means, focusing only on the

associations between clusters and variables rather than also considering all two-way associations

among them.

4.3 i-FCB

Iterative factorial clustering of binary variables (i-FCB) was introduced by Iodice D'Enza &

Palumbo (2013). An extension that allows the analysis of categorical rather than binary vari-

ables was presented in Iodice D'Enza et al. (2014). The i-FCB approach can be formulated as

non-symmetric correspondence analysis (NSCA: Lauro & D'Ambra, 1984; Kroonenberg & Lom-

bardo, 1999) where the dependent (reference) variable is the cluster membership indicator and the

explanatory variables are the p categorical variables. Hence, the category quanti�cations predict

cluster membership. Furthermore, to predict cluster membership using the explanatory (categor-

ical) data, the clusters should be optimally separated. That is, the weighted mean cluster scores

should vary as much as possible. The i-FCB procedure thus considers two objectives: 1) Obtain a
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non-symmetric correspondence analysis solution for the cross-tabulation of the cluster allocation

with the categorical variables. 2) Allocate subjects to clusters in such a way that the variance

between weighted cluster means is as large as possible.

In our notation, the �rst objective becomes:

min
B,G

∥∥∥Z′KMZD−1z −GB
′
∥∥∥2 (20)

s.t. B
′
DzB =nqIk. For �xed ZK the solution can be obtained by �nding the singular value

decomposition

D
1
2

KZ
′

KMZD
− 1

2
z = UΛ1/2V

′
, (21)

and letting

B =
√
nqD−1/2z V and G = D

−1/2
K UΛ1/2 = Z

′

KMZD
− 1

2
z V.. (22)

Using (22), the second objective can be formulated as

max
ZK

φ =
∥∥∥D1/2

K G
∥∥∥2 =

∥∥∥D1/2
K Z

′

KMZD
− 1

2
z V

∥∥∥2 . (23)

In a similar fashion as the derivations in Section 3, this problem can be shown to be equivalent to

the K-means problem:

min
ZK

‖√nqDwMZB− ZKG‖2 , (24)

where Dw = diag (DKZK1), that is, the elements of Dw indicate for each subject, the size of the

cluster to which it belongs.

To solve the i-FCB objectives, the following algorithm is proposed:

1. Generate an initial cluster allocation ZK (e.g., by randomly assigning subjects to clusters).

2. Use (22) to obtain a category quanti�cation matrix B.

3. Calculate subject coordinates Y = DwZB

4. Apply K-means to Y to update the cluster allocation matrix ZK and return to step 2. Repeat

until convergence.

Note that the problems consecutively solved in this problem are not, as was the case in our new

method, equivalent. That is, the NSCA objective used to calculate B (and G) does not correspond

directly to the K-means objective considered for the cluster allocation update. In particular,
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the coordinates/weights for the clusters are orthonormal in the NSCA framework implying the

maximization of G
′
G whereas the K-means objective can be shown to correspond to G

′
DKG.

Moreover, in this algorithm, the K-means procedure is not straightforward as Y depends on ZK

through Dw.

5 Simulation study

An extensive comparative study of the di�erent dimension reduction and cluster analysis methods

does not exist. Hwang et al. (2006) illustrate their MCA K-means method using one empirical data

set and compare the results with those obtained using GROUPALS. Iodice D'Enza et al. (2014)

apply GROUPALS, MCA K-means, i-FCB and the tandem approach to one empirical dataset and

describe the results. Based on these empirical examples it is not possible to draw clear conclu-

sions concerning the methods' performances nor is it possible to relate them to full dimensional

clustering. To overcome these limitations, we propose a simulation study. The objectives of our

simulation study are: 1) Assess to what extent the di�erent methods are able to retrieve existing

cluster structure in the data. 2) Compare the performance of the di�erent methods with respect

to each other. 3) Assess the in�uence of several factors on the performances.

5.1 Data generating process

For interval data, generating high dimensional data based on a low dimensional con�guration is

relatively straightforward (see, e.g., van de Velden & Takane, 2012; van de Velden & Bijmolt,

2006). To generate super indicator matrices corresponding to low dimensional MCA solutions is

less trivial. We resolve this problem by generating super indicator matrices based on predetermined

distributions over the categories. By selecting distributions that assign relatively large probabilities

to certain categories and relatively small ones to others, association structure can be controlled

for. Moreover, using cluster speci�c distributions, cluster structure is readily imposed.

We generate the indicator matrices as follows: For each variable, one category is assigned a

high probability and the remaining categories are chosen with, equal, low probabilities. To achieve

su�cient structure, we choose the high probability categories to be 4 times as likely as the low

probability categories. That is, the high and low probabilities are, respectively, 4/(4 + q − 1) and

1/(4+ q−1), where q denotes the number of categories. For each variable, this pattern, in random

order, is used as distribution from which to draw the zero/one observations and these distributions

are cluster speci�c. Hence, all draws from individuals in the same cluster have the same underlying
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distribution. Noise variables can be generated using a distribution with equal probabilities for all

categories.

5.2 Experimental design

In generating the synthetic data we vary several factor that might e�ect the performance of the

methods. We chose these factors and levels in such a way that "typical" high dimensional categor-

ical data are generated. The following factors and levels considered in the simulation study are:

Number of variables. We consider either 5, 10 or 20 variables. Number of categories per variable.

We �x the number of categories per variable to 2, 5 or 10 categories and also consider a scenario

in which, for each variable, we randomly select the number of categories to be either 2, 5 or 10.

Noise: Presence/Absence of noise variables. For the scenarios with noise, we add, respectively, 2,

4 or 8 noise variables to the 5, 10 and 20 variables scenarios. Cluster size distribution: Two cases

are considered: Equal sized cluster (balanced) versus unequal sized (unbalanced) cluster sizes. For

the unbalanced scenario, the relative cluster sizes are randomly drawn.

For each scenario we simulate 50 data sets of 1000 observations. We analyze each data set

by the following methods: Full dimensional clustering, the tandem approach, GROUPALS, MCA

K-means, i-FCB and our new cluster correspondence analysis method. We only consider four

cluster solutions and, in the (joint) dimension reduction methods, three dimensional solutions.

For the full dimensional clustering we use Gower's coe�cient for dissimilarity (Gower, 1971) and

K-medoids clustering. That is, points are allocated to the closest, in terms of the Gower distance,

most common observed pattern in a cluster. To avoid local minima due to the K-means/medoids

step, we use 100 random starts for all methods.

5.3 Evaluation criteria and analysis

The simulation study allows us to impose cluster structure and hence gauge how well the methods

are able to retrieve the underlying clusters. As the "true" cluster structure is known, we are able to

compare the obtained cluster solutions with the true cluster allocation. For this purpose, we use the

adjusted Rand index (ARI) of Hubert & Arabie (1985). The ARI assesses the similarity between

two cluster solutions, adjusted for chance correspondences between these solutions. The upper limit

of the ARI is one, and indicates perfect agreement. An ARI of zero indicates that the method does

not improve on random assignment, with all positive values indicating an improvement. Negative

ARI values indicate poorer performance than random assignment.
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In practice, the true clustering is unknown. To assess the quality of cluster solutions, several so-

called internal cluster validity measures exist. Of these measures, we consider the average silhouette

width (Rousseeuw, 1987)). The silhouette width for a point i allocated to cluster c, is de�ned as

the average distance of point i with points in the nearest cluster not equal to c, say aic, minus the

average distance of point i with the other points in cluster c, bic. This di�erences is normalized by

dividing it through the larger of these two average distances. Hence, sic = (aic−bic)/max (aic, bic).

By de�nition, the silhouette takes on values between −1 and 1. Higher values indicate a better

separation between the clusters. Negative values are an indication of overlapping clusters. For a

fair assessment and comparison of our results, the silhouette widths are calculated using Gower's

coe�cient for dissimilarity (Gower, 1971) on the original (full dimensional) categorical data.

5.4 Results

The cluster retrieval results for the balanced (i.e., the true clusters all have the same size) data

can be found in Table 1. We see that by increasing the number of variables and categories,

the joint dimension reduction and cluster analysis methods perform better than full dimensional

clustering. Adding noise to the data ampli�es this result as the reduced dimension methods appear

to be una�ected by this. For few (5) variables, i-FCB and the new method have more di�culty

in retrieving the true clusters, however, when 10 or more variables are used, all methods perform

similarly. The results for the unbalanced scenario, Table 2, are comparable. All methods have more

di�culty in retrieving the true clusters than in the balanced case. However, with the exception of

i-FCB, which appears to su�er more from the unbalancedness, the di�erences are small.

Table 3 gives the results for mixed number of categories. We see that, the ARI values for the

mixed cases are close to the average of the non-mixed scenarios.

The average silhouette values for the di�erent scenarios are presented in Tables 4 through 6. We

see that, in general, values are close to zero indicating not well separated clusters. The in�uence

of the number of categories on the average silhouette width is rather large and consistent for all

methods, with few categories yielding much better results. Although adding noise did not appear

to a�ect cluster allocation for the reduced dimension methods much, it does lead to a drop in the

silhouette values for all methods. Apparently, individuals are correctly classi�ed even though the

clusters are less clearly separated.
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Balanced

no noise

p = 5 p = 10 p = 20
Method qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10
Full dim. clust. .35 .33 .19 .60 .53 .25 .86 .69 .34

Tandem .28 .31 .17 .58 .59 .39 .87 .86 .68

MCA K-means .28 .30 .17 .57 .59 .39 .85 .83 .66

i-FCB .22 .12 .05 .58 .59 .40 .87 .86 .68

GROUPALS .29 .23 .17 .58 .59 .40 .87 .86 .68

Cluster CA .26 .13 .05 .57 .59 .38 .87 .86 .68

noise

p = 5 p = 10 p = 20
Method qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10
Full dim. clust. .23 .25 .14 .43 .41 .19 .72 .57 .27

Tandem .25 .28 .13 .55 .58 .35 .86 .85 .65

MCA K-means .25 .28 .13 .54 .57 .35 .84 .82 .65

i-FCB .25 .12 .05 .59 .59 .37 .87 .86 .66

GROUPALS .27 .22 .14 .59 .58 .37 .87 .85 .66

Cluster CA .25 .13 .05 .57 .58 .35 .87 .85 .65

Table 1: Average Adjusted Rand index (ARI) for simulated data using four equal sized clusters.
The considered factors are: number of variables (5, 10, 20); number of categories per variable
(2, 5, 10); presence/absence of noise variables.

Unbalanced

no noise

p = 5 p = 10 p = 20
Method qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10
Full dim. clust. .34 .39 .27 .60 .48 .25 .89 .51 .28

Tandem .25 .26 .15 .48 .49 .28 .81 .82 .53

MCA K-means .25 .24 .15 .46 .45 .28 .74 .64 .47

i-FCB .19 .13 .04 .38 .37 .24 .59 .56 .40

GROUPALS .25 .18 .13 .46 .50 .29 .80 .82 .54

Cluster CA .24 .15 .06 .45 .47 .30 .78 .82 .52

noise

p = 5 p = 10 p = 20
Method qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10 qj = 2 qj = 5 qj = 10
Full dim. clust. .21 .22 .20 .34 .34 .19 .50 .43 .21

Tandem .24 .23 .12 .44 .47 .25 .77 .79 .47

MCA K-means .23 .23 .12 .42 .44 .24 .72 .65 .44

i-FCB .20 .13 .04 .39 .36 .21 .56 .55 .37

GROUPALS .22 .19 .13 .44 .48 .25 .78 .80 .48

Cluster CA .21 .15 .06 .45 .48 .23 .77 .78 .45

Table 2: Average Adjusted Rand index (ARI) for simulated data using clusters with di�erent
sizes. The considered factors are: number of variables (5, 10, 20); number of categories per variable
(2, 5, 10); presence/absence of noise variables.

5.5 Conclusions of the simulation study

The simulation study shows that dimension reduction improves clustering of high dimensional

categorical data. There is no clear winner among the joint methods and the tandem approach also

performs quite well. Note that, in our simulation study, the true dimensionality was not controlled

for explicitly. Moreover, we did not consider scenarios involving so-called masking variables, that

is, variables that "hide" cluster structure in the �rst dimensions. For categorical data, it is not

trivial how to generate such data in a fair and general way.
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no noise

Balanced Unalanced

Method p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

Full dim. clust. .29 .50 .69 .34 .50 .50

Tandem .25 .51 .81 .22 .41 .74

MCA K-means .25 .50 .81 .22 .39 .65

i-FCB .11 .52 .82 .13 .32 .52

GROUPALS .16 .52 .81 .13 .41 .74

Cluster CA .10 .50 .81 .12 .42 .72

noise

Balanced Unalanced

Method p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

Full dim. clust. .22 .37 .55 .21 .30 .40

Tandem .23 .49 .80 .19 .37 .69

MCA K-means .22 .49 .79 .19 .36 .62

i-FCB .11 .51 .81 .10 .31 .51

GROUPALS .16 .50 .80 .14 .39 .70

Cluster CA .11 .49 .81 .12 .42 .69

Table 3: Average Adjusted Rand index (ARI) for simulated data. The considered factors are:
balanced groups and unbalanced groups ; presence/absence of noise variables.; number of variables
(5, 10, 20) and a mixed distribution of categories per variable.

Balanced

no noise

p = 5 p = 10 p = 20
Method pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10
Full dim. clust. .40 .14 .06 .29 .11 .04 .28 .10 .03

Tandem .39 .14 .06 .29 .12 .05 .28 .11 .04

MCA K-means .39 .14 .06 .29 .12 .05 .28 .11 .04

i-FCB .40 .20 .10 .29 .12 .05 .28 .11 .04

GROUPALS .41 .17 .07 .29 .12 .05 .28 .11 .04

Cluster CA .41 .20 .09 .29 .12 .05 .28 .11 .04

noise

p = 5 p = 10 p = 20
Method pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10
Full dim. clust. .24 .08 .04 .17 .06 .02 .18 .06 .01

Tandem .25 .09 .04 .19 .08 .03 .20 .08 .03

MCA K-means .25 .09 .04 .19 .08 .03 .19 .07 .03

i-FCB .27 .14 .07 .20 .08 .03 .20 .08 .03

GROUPALS .27 .12 .05 .20 .08 .03 .20 .08 .03

Cluster CA .27 .14 .06 .20 .08 .03 .20 .08 .03

Table 4: Average silhouette index for simulated data using four equal sized clusters. The con-
sidered factors are: number of variables (5, 10, 20); number of categories per variable (2, 5, 10);
presence/absence of noise variables.
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Unbalanced

no noise

p = 5 p = 10 p = 20
Method pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10
Full dim. clust. .43 .14 .06 .28 .09 .03 .28 .06 .02

Tandem .40 .13 .06 .27 .10 .04 .27 .11 .03

MCA K-means .40 .12 .06 .26 .10 .04 .24 .08 .03

i-FCB .40 .20 .10 .26 .10 .04 .21 .08 .03

GROUPALS .41 .18 .07 .27 .11 .04 .27 .11 .04

Cluster CA .42 .20 .09 .27 .11 .04 .26 .11 .04

noise

p = 5 p = 10 p = 20
Method pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10 pj = 2 pj = 5 pj = 10
Full dim. clust. .25 .07 .04 .15 .05 .02 .12 .04 .01

Tandem .25 .09 .04 .17 .07 .03 .18 .07 .02

MCA K-means .25 .09 .04 .16 .07 .03 .16 .06 .02

i-FCB .27 .14 .07 .17 .07 .03 .14 .06 .02

GROUPALS .27 .12 .05 .18 .07 .03 .18 .07 .02

Cluster CA .28 .14 .07 .18 .08 .03 .18 .07 .02

Table 5: Average silhouette index for simulated data using clusters with di�erent sizes. The
considered factors are: number of variables (5, 10, 20); number of categories per variable (2, 5, 10);
presence/absence of noise variables.

no noise

Balanced Unalanced

Method p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

Full dim. clust. .16 .11 .10 .18 .10 .06

Tandem .14 .11 .11 .14 .09 .10

MCA K-means .14 .10 .11 .14 .08 .09

i-FCB .21 .11 .11 .21 .09 .08

GROUPALS .17 .11 .11 .19 .09 .10

Cluster CA .19 .11 .11 .20 .10 .10

noise

Balanced Unalanced

Method p = 5 p = 10 p = 20 p = 5 p = 10 p = 20

Full dim. clust. .10 .07 .06 .11 .05 .04

Tandem .09 .07 .08 .09 .06 .07

MCA K-means .09 .07 .08 .09 .06 .06

i-FCB .15 .08 .08 .15 .06 .05

GROUPALS .12 .08 .08 .13 .06 .07

Cluster CA .14 .08 .08 .14 .07 .07

Table 6: Average silhouette index for simulated data. The considered factors are: balanced groups
(top of the table) and unbalanced groups (bottom of the table); presence/absence of noise variables.;
number of variables (5, 10, 20) and a mixed distribution of categories per variable.
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6 Application

We apply our method to the results of a personality test, the Humor Styles Questionnaire, proposed

by Martin et al. (2003). This questionnaire has been developed to measure four independent ways

in which people express and appreciate humor: a�liative, de�ned as the benign uses of humor to

enhance one's relationships with others; self-enhancing, indicating uses of humor to enhance the

self; aggressive, the use of humor to enhance the self at the expense of others; self-defeating the

use of humor to enhance relationships at the expense of oneself. The questionnaire consists of 32

statements rated from 1 to 5 according to the respondents' level of agreement. The number of

respondents is n = 993. The 32 statements and corresponding labels are reported in Table 7.

Martin et al. (2003) used the questionnaire to construct the humor styles. Here, we analyze the

data from a di�erent perspective: Can we distinguish clusters of individuals with similar humor

pro�les? We apply the new cluster CA method to the data and use a two dimensional, three cluster

solution. The solution depicting clusters and attributes is displayed in Figure 1. Using equation

(12) we can project individual subject points into this CA map and thus visualize the variability

within and between clusters. Figure 2 gives the corresponding map.

In CA, the origin depicts the average pro�le and all other points depict deviations from this

average pro�le. The two dimensional displays, depicts two clearly separated clusters and one

central cluster. To interpret the solution we consider individual attributes (i.e., a statement and

category combination) and the positions of the cluster mean points relative to these. Note that, in

cluster CA, the solotion for cluster means and category quanti�cations constitute a biplot. Hence,

these projections can be used to retrieve the observed values (see also Greenacre, 1993, on the

biplot interpretation of correspondence analysis, in particular, on how to reconstruct the original

data entries from a biplot).

From the two dimensional plot it is clear that cluster 1 appears to be associated with extreme

categories (i.e., 1s or 5s) for the statements concerning self-defeating humor and self-enhancing

humor. People in this group use humor to deal with bad situations (self-enhancing humor) and do

so at their own expense. On the other side of the spectrum we �nd a cluster of individuals (cluster

3 in Figure 1) indicating a preference for a�liative humor. They show disagreement on statements

concerning not laughing with others (and, agreement on "laughing with close friends"). The

individuals in this cluster also indicate more than average disagreement concerning the statements

regarding the use of humor to enhance the self. Furthermore, individuals in this cluster do not

appreciate self-defeating humor. Finally, the cluster closest to the center of the plot (i.e., cluster
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Label Statement Humor style Original
question code

AF1 I usually don't laugh or joke around much with other people. A�liative humor Q1

AF2 I don't have to work very hard at making other people laugh, A�liative humor Q5
I seem to be a naturally humorous person.

AF3 I rarely make other people laugh by telling funny stories about myself. A�liative humor Q9

AF4 I laugh and joke a lot with my closest friends. A�liative humor Q13

AF5 I usually don't like to tell jokes or amuse people. A�liative humor Q17

AF6 I enjoy making people laugh. A�liative humor Q21

AF7 I don't often joke around with my friends. A�liative humor Q25

AF8 I usually can't think of witty things to say when I'm with other people. A�liative humor Q29

SE1 If I am feeling depressed, I can usually cheer myself up with humor. Self-enhancing humor Q2

SE2 Even when I'm by myself, I'm often amused by the absurdities of life. Self-enhancing humor Q6

SE3 If I am feeling upset or unhappy, I usually try to think of something Self-enhancing humor Q10
funny about the situation to make myself feel better.

SE4 My humorous outlook on life keeps me from Self-enhancing humor Q14
getting overly upset or depressed about things.

SE5 If I'm by myself and I'm feeling unhappy, I make an e�ort to think of Self-enhancing humor Q18
something funny to cheer myself up.

SE6 If I am feeling sad or upset, I usually lose my sense of humor. Self-enhancing humor Q22

SE7 It is my experience that thinking about some amusing aspect Self-enhancing humor Q26
of a situation is often a very e�ective way of coping with problems.

SE8 I don't need to be with other people to feel amused Self-enhancing humor Q30
I can usually �nd things to laugh about even when I'm by myself.

AG1 If someone makes a mistake, I will often tease them about it. Aggressive humor Q3

AG2 People are never o�ended or hurt by my sense of humor. Aggressive humor Q7

AG3 When telling jokes or saying funny things, I am usually not very Aggressive humor Q11
concerned about how other people are taking it.

AG4 I do not like it when people use humor as a way Aggressive humor Q15
of criticizing or putting someone down.

AG5 Sometimes I think of something that is so funny Aggressive humor Q19
that I can't stop myself from saying it,
even if it is not appropriate for the situation.

AG6 I never participate in laughing at others even if all my friends are doing it. Aggressive humor Q23

AG7 If I don't like someone, I often use humor or teasing to put them down. Aggressive humor Q27

AG8 Even if something is really funny to me, Aggressive humor Q31
I will not laugh or joke about it if someone will be o�ended.

SD1 I let people laugh at me or make fun at my expense more than I should. Self-defeating humor Q4

SD2 I will often get carried away in putting myself down Self-defeating humor Q8
if it makes my family or friends laugh.

SD3 I often try to make people like or accept me more by saying something Self-defeating humor Q12
funny about my own weaknesses, blunders, or faults.

SD4 I don't often say funny things to put myself down. Self-defeating humor Q16

SD5 I often go overboard in putting myself down when Self-defeating humor Q20
I am making jokes or trying to be funny.

SD6 When I am with friends or family, I often seem to be the one that Self-defeating humor Q24
other people make fun of or joke about.

SD7 If I am having problems or feeling unhappy, Self-defeating humor Q28
I often cover it up by joking around,
so that even my closest friends don't know how I really feel.

SD8 Letting others laugh at me is my way of keeping Self-defeating humor Q32
my friends and family in good spirits.

Table 7: Humor Styles Questionnaire: Each statement is rated from 1 (strongly disagree), to 5
(strongly agree); for each statement, the corresponding humor style and original question number
is reported

2 in Figure 1) does not show extreme agreement/disagreement concerning any statement. People

in this cluster exhibit preferences that are closely aligned with the average preferences. For these

data this corresponds to agreement levels close to the center of the scale for most statements.

The interpretation given above is based on the visualization in Figure 1. To help with the inter-

pretation of clusters it is useful to identify attributes that deviate the most from the independence

condition. The three plots on the left side of Figure 3 (i.e. 3a, 3c, and 3e) show for each cluster

the twenty attributes with the highest standardized residuals (positive or negative). A positive

(negative) residual means that the attribute has an above (below) average frequency within the
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cluster. Figure 3 clearly con�rms the graphical depiction of Figure 1. We see that for cluster

1, agreement is high for the statements concerning the self-defeating and self-enhancing humor

styles. (Note that some items indicate disagreement, however those items, for example SD4, are

phrased reversely). Cluster 3 is characterized by respondents with an a�liative humor style, as

the group is mostly characterized by strong agreement on sentences (AF1, AF5, AF7, AF4, AF6,

AF8), with AF1 and AF4 being on a reverse scale. This group also indicates disagreement with

several of the self-defeating and self-enhancing humor styles. Finally, in cluster 2, respondents are

less pronounced in their levels of agreement with the various humor styles. Instead, they tend to

show medium levels of agreement on many attributes.

We compare the results of cluster CA with those of the other methods described in the paper.

A true clustering is not known so we can only consider similarity of the low dimensional con�gu-

rations and the di�erent cluster partitions. Concerning the similarity of the con�gurations, Table

9 gives the congruency coe�cients (Borg & Groenen, 2005, pp. 437-440) between the attribute

con�gurations. We see that the cluster CA solution is similar to the con�guration obtained using

GROUPALS. Also, similarity with the Tandem approach (i.e., the two dimensional MCA solution)

is high. For these data, it appears that MCA K-means yields a less similar con�guration.

To compare the di�erent cluster partitions we use the adjusted Rand index (ARI). We consider

the results of all methods including full dimensional clustering where, as before in the simulation

study, we use Gower dissimilarities and K-medoids clustering. The results are in Table 10. Again

we see that the cluster CA solution is similar to the GROUPALS solution (.88), and, to a lesser

degree, the tandem and MCA K-means solutions (.84 and .83, respectively). Both full dimensional

clustering and i-FCB yield rather di�erent cluster partitions. Full dimensional clustering in partic-

ular yields a solution that is quite di�erent with ARI values around .18 for all comparisons. These

di�erences are also apparent when comparing the cluster size distributions in Table 8.

Similarity and dissimilarity of the methods with respect to each other does not indicate which

method is better. However, based on the simulation study, the joint dimension methods are

expected to perform better than the full dimensional clustering solution. This expectation is

con�rmed when considering the average silhouette width. Rounded to two decimals, this is for all

dimension reduction and clustering methods .07 whereas the value for full dimensional clustering

equals .03.

Such �ndings are also evident from the two dimensional maps in Figure 1. In Figure 3, the 20

largest (in absolute value) standardized residuals per attribute are depicted for the three clusters

obtained using cluster CA (the three �gures on the left) and full dimensional clustering (the three
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�gures on the right). The clusters of the full dimensional solution have been ordered in such a way

that they match the cluster size order of cluster CA. This side by side comparison, clearly illustrates

that the clusters obtained using the new method are easier to interpret than those obtained using

the full dimensional cluster results.

1 2 3
fullDim .27 .43 .30
Tandem .18 .45 .37
MCAk .18 .46 .36
iFCB .27 .38 .35

Groupals .18 .45 .37
CAclus .18 .43 .39

Table 8: Relative cluster size distributions: clusters are ordered to match the Cluster CA solution
order

Tandem MCA K-means i-FCB GROUPALS
Tandem
MCA K-means .78
i-FCB .95 .77
GROUPALS .97 .79 .95
Cluster CA .86 .68 .90 .90

Table 9: Two-by-two congruency index of the low-dimensional attribute con�gurations as produced
by the methods

Full dim. clust. Tandem MCA K-means i-FCB GROUPALS
Full dim. clust.
Tandem .17
MCA K-means .17 .95
i-FCB .16 .60 .58
GROUPALS .17 .91 .91 .57
Cluster CA .18 .84 .83 .59 .88

Table 10: Adjusted Rand indices between the di�erent partitions

7 Conclusions

This paper proposes a new method that combines cluster analysis and correspondence analysis.

The new method can be seen as correspondence analysis of a cluster by variable association table

and yields, in addition to a low-dimensional approximation depicting clusters and attributes, a

cluster partitioning of individuals based on the pro�les over the categorical variables. We showed

how the new method relates to existing methods for joint dimension reduction and clustering of

categorical data. Using a simulation study, we assessed the performances of the methods. Upon the
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Figure 1: Cluster Correspondence analysis biplot. Scaling as de�ned in equation (14). Attribute
labels correspond to the labels in Table 7 with category numbers added. Cluster means are labelled
C1 through C3.

results of our simulation study we can state that categorical data clustering bene�ts from dimension

reduction. That is, with respect to retrieval of true underlying cluster structure, joint dimension

reduction and clustering methods outperform full dimensional clustering for high dimensional.

Among the joint dimension reduction and clustering methods, di�erences were relatively small

both with respect to cluster retrieval and internal cluster validity. This is not surprising because

data coding and centering were the same for all the considered methods. However, there are some

important points in favor of the new method. First, when cluster sizes are not equal, the i-FCB

method has an higher failure rate than the other methods. Secondly, although it is possible in

MCA K-means to obtain and plot individual subject points, the coordinates of these subject points

are not insightful as they are in�uenced by the (user selected) weights assigned to the MCA and

K-means part of the objective. With respect to these weights it should be noted that, in this paper,

we only considered equal weights. It is not clear which criteria to use to tune this parameter but

results are dependent on that choice.

For continuous (interval) data, Vichi & Kiers (2001) showed that a so-called tandem approach
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Figure 2: Cluster Correspondence analysis biplot with projected subject points. Scaling as de�ned
in equation (14). Attribute labels correspond to the labels in Table 7 with category numbers added.
Cluster 1 points are represented by `+', cluster 2 points by `◦' and cluster 3 points by `4'.

in which clustering is performed after dimension reduction, could be problematic. In our simulation

study, we did not �nd evidence for this in the categorical variable case. Unlike the simulation study

designed by Vichi & Kiers (2001), we did not consider scenarios in which so-called masking variables

were used to hide cluster structure in the reduced space. It could be the case that scenarios can

be constructed were the tandem approach does su�er from the sequential analysis.

Our simulation clearly demonstrated that for high dimensional categorical data dimension re-

duction improves the clustering results. In presence of noise variables (i.e., variables unrelated to

the cluster structure) the di�erence increased. Possible reasons for this failure of full dimensional

clustering versus joint dimension reduction approaches, are the fact that the true dimensionality of

the data is typically not equal to the size of the data table and that the exaggerated dimensionality

of the data table contains noise that is �ltered out in the joint dimension reduction methods.
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(b) Full dim. cluster: Cluster 1
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(c) Cluster CA: Cluster 2
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(d) Full dim. cluster: Cluster 2
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(e) Cluster CA: Cluster 3
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(f) Full dim. cluster: Cluster 3

Figure 3: Top 20's of the largest standardized residuals per cluster (with complete distributions in
small subplots) for Cluster CA (left) and full dimensional clustering (right)
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