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Chapter 1

Lung cancer

Incidence and etiology

Lung cancer is the most common cancer type. Worldwide, more than 1.8 million men and 

women were diagnosed with lung cancer in 2012.1, 2 In that year, an estimated 1.6 million 

died of lung cancer, accounting for one-fifth (19%) of all cancer deaths in the world.1

Cigarette smoking is the most important risk factor for lung cancer and accounts for about 

80-90% of the lung cancer cases.3, 4 Besides cigarette smoking, exposure to second-hand 

smoke, air pollution, asbestos, radon gas and certain chemicals such as arsenic, cadmium, 

chromium and nickel also increase the risk of developing lung cancer.3, 5, 6 Genetic inheritance 

factors may play an important role in the individual risk for lung cancer caused by exposure 

to these carcinogens.7, 8

Lung cancer mainly occurs in older people. Almost 70% of the people diagnosed with 

lung cancer are 65 or older. Only 2% of all lung cancer cases are found in people younger 

than 45.9 The median age at time of diagnosis is about 70 years.9, 10 Lung cancer is more 

common in men than women. The male to female age-standardized incidence rates ratio 

is about 60% higher in men.4 This high male to female ratio is mainly due to the higher 

prevalence of cigarette smoking in men than women.11

Survival rates of lung cancer patients vary depending on the stage of the cancer when it is 

diagnosed. The 5-year survival rate for lung cancer is about 15%.4, 12 However, its 5-year 

survival rate may increase up to 49%, when lung cancer is diagnosed at an early stage.9

Types of lung cancer

Lung cancer, also known as carcinoma of the lung, is a malignant lung tumor formed by 

uncontrolled cell growth in the tissues of the lung, usually in the bronchi, the airways of the 

lungs. This growth may spread to a site distant from the lungs and produce metastatic tumors 

in brain, bone, liver, or adrenal glands.4 Primary lung cancers are carcinomas that start in the 

lung and are derived from epithelial cells. These carcinomas are mainly classified by the size 

and appearance of the malignant cells under a microscope. These histological classifications 

are necessary for accurate treatment and prognosis of the different types of lung cancer. The 

two main primary types of lung cancer are non–small cell lung cancer (NSCLC) and small-cell 

lung cancer (SCLC). About 85% of all lung cancers are NSCLC. The three main subtypes of 

NSCLC are adenocarcinoma (40%), squamous cell carcinoma (25%-30%), and large cell 

carcinoma (10%-15%).9 Adenocarcinoma (ADC) starts in glandular epithelial cells, called 

adenomatous cells, which secrete fluids such as mucus. It usually arises in the peripheral 

airways and can spread to other parts of the body. In general, adenocarcinoma grows more 

slowly than the other types of lung cancer. Although it occurs mainly in current and former 

smokers, it is the most common type of lung cancer among non-smokers. Women with 

adenocarcinoma are more frequently non-smokers than men.9, 13, 14
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Squamous cell carcinoma (SCC) originates mostly from squamous cells in the central airways 

(trachea, main, lobar and segmental bronchi), but can also arise in the peripheral airways.4 

Squamous cells are large flat cells that often produce keratin.4 SCC metastasizes later than 

the other types of NSCLC. It is also more strongly correlated to smoking than the other types 

of NSCLC, and is more common in men than in women.13, 14

Large cell carcinoma (LCC) is composed of poorly differentiated large cells without the spe-

cific glandular, squamous or neuroendocrine features of other lung carcinomas.8, 15 LCC can 

arise in any part of the lung, grows quickly and tends to metastasize at an early stage to other 

parts of the body. The prognosis for LCC is unfavorable compared to other types of NSCLC.

About 10-15% of lung cancers are small-cell lung cancer (SCLC), a neuroendocrine carci-

noma also called “oat-cell carcinoma”. As the name suggests, the neuroendocrine epithelial 

cells of SCLC are extremely small and look like oat grains. SCLC often starts in the larger 

airways, the primary (main) and secondary (lobar) bronchi. It is the most aggressive type of 

lung cancer, grows more quickly than NSCLC and often metastasizes to other parts of the 

body early in the development of the disease.9 Most of the SCLC patients have widespread 

metastasis at the time of diagnosis. SCLC is often associated with paraneoplastic syndromes 

(PNS).9 The 5-year survival for SCLC (6%) is lower than that for NSCLC (21%).9, 10 Nearly 

all cases of SCLC are due to cigarette smoking.4, 9, 16 The incidence of SCLC is increasing in 

women and is now similar to that in men.16

Diagnosis and staging

Lung cancer tumors usually grow silent for many years without causing any signs or symptoms 

in early stages of the disease. About 5-10% of the lung cancer patients are diagnosed when 

still asymptomatic during a physical examination for an unrelated medical problem or after a 

routine chest X-ray with lung cancer in an early stage. Unfortunately, most symptomatic lung 

cancer patients are diagnosed with lung cancer in an advanced stage. The most common 

symptoms of lung cancer, in order of frequency, are cough, dyspnea, weight loss, chest pain, 

hemoptysis, bone pain and fatigue.4 Patients that report such symptoms to a physician often 

receive a routine chest X-ray as the first step of investigation. This chest X-ray may usually 

detect large tumors, but may miss smaller or hidden tumors and does not exclude lung 

cancer.17, 18 Computerized tomographic (CT) scans are able to detect smaller tumors than 

X-ray and also the size, shape and location of the tumor because of the three dimensional 

measurement. For instance, chest X-ray fails to detect almost 80% of CT-detected lung 

tumors of 20 mm or less in diameter.19 Magnetic Resonance Imaging (MRI) is more sensitive 

than CT scanning and may be used when a certain region is difficult to interpret on a CT 

scan. MRI scans are also useful for diagnosis of bone or central nervous system metastases.8 

Positron emission tomography (PET) scans measure the metabolic activity and function of 

the tissues. These scans determine the stage and type of the tumor and are very useful for 

finding metastatic tumors in other parts of the body. The final determination whether a 
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tumor is malignant, and definitive diagnosis of the type of lung cancer can only be made 

by examining of a tissue sample by a pathologist. This tissue sample can be obtained by 

bronchoscopy, sputum cytology, or fine needle aspiration biopsy.4, 9

Lung cancer staging is a system that describes the growth and extent of spread of the cancer 

to other parts of the body. This staging system helps the physician to determine the most 

effective treatment and prognosis of the disease. The TNM classification system is based 

on the primary tumor characteristics (T), regional lymph node involvement (N), and distant 

metastasis status (M) and is established by the International Association for the Study of 

Lung Cancer (IASLC).4, 9, 20 This information is combined to classify patients in five stages, 0 

(in situ), I, II, III or IV. Patients with a higher stage number have a poorer prognosis and lower 

survival rate.20

Lung cancer screening

The purpose of lung cancer screening is to detect lung cancer at an early and still curable 

stage to improve the survival rate of the lung cancer patients. Survival rate improves signifi-

cantly with early detection of the disease, with a respective 5-year survival rate increasing 

from 2%, 7%, 19%, 25%, 36% and 43% for stages IV, IIIB, IIIA, IIB, IIA and IB to 50% for 

stage IA.20 While the overall survival rate remains poor, patients diagnosed with stage I are 

potentially curable.9 Stage I NSCLC patients are usually treated by surgery to remove the can-

cer, sometimes in combination with chemotherapy or radiation therapy. This surgery offers 

the best chance to cure early stage NSCLC patients. Because the lung cancer is diagnosed 

and treated at a localized stage, their 5-year survival rate may increase up to 49%.9 Since 

these patients are usually asymptomatic, only 15% of all diagnoses of lung cancer are from 

stage I.4 In contrast, CT screening detected 48-85% of lung cancers in stage I.17, 21 Therefore 

screening is performed on apparently healthy, asymptomatic people at high risk of lung 

cancer. People at high risk of lung cancer are current smokers and former smokers.

Randomized screening studies

Randomized screening studies for early detection of lung cancer in high-risk individuals are 

ongoing. An overview of the main large-scale lung cancer screening studies is presented in 

Table 1. These studies are comparing low-dose spiral CT screening with chest X-ray or usual 

care. The aim of these lung cancer screening studies is to reduce the lung cancer mortal-

ity with 20-25% by lung cancer detection at an early and still curable stage. Four of the 

eight randomized screening studies have now published their results. Three trials in Europe, 

the DANTE (Detection and Screening of Early Lung Cancer by Novel Imaging Technology 

and Molecular Essays), DLCST (Danish Lung Cancer Screening Trial), and MILD (Multicentric 

Italian Lung Detection) trials, reported no significant reduction in lung cancer mortality.22-26 
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However, these small randomized trials do not have the statistical power to demonstrate a 

reliable clinical outcome.

The largest study, the NLST (U.S. National Lung Screening Trial) study reported a significant 

lung cancer mortality reduction of 20.3% in high-risk individuals who were screened annu-

ally with low-dose spiral CT (LDCT) compared to those who were screened annually by chest 

X-ray.27, 28 Since this publication, many medical societies have recommended LDCT screening 

of high-risk individuals in reducing lung cancer mortality.29-34 In their recommendations, they 

define high-risk individuals as apparently healthy individuals aged 55-74 years who have a 

smoking history of at least 30-pack years and currently smoke, or have quit smoking within 

the past 15 years, or some modification of these inclusion criteria. Effectiveness in terms 

of survival benefit for LDCT screening of high-risk individuals has been demonstrated by 

the NLST. However, uncertainty remains about the effectiveness of LDCT screening in other 

settings or populations screened than in the NLST trial. Nevertheless, no other interventions, 

besides primary prevention, up to now have shown such reduction in lung cancer mortality.

At present, the NELSON, ITALUNG, LUSI and the UKLS screening studies (Table 1) are still 

ongoing. When data of all randomized screening studies becomes available, a definitive 

conclusion of the effectiveness of LDCT screening can be made.

The NELSON study

The NELSON trial (Nederlands-Leuvens Longkanker Screeningsonderzoek), -Dutch-Belgian 

Lung Cancer Screening trial- is world’s second-largest randomized lung cancer computer to-

mography screening trial and differs from the NLST study by screening interval, referral policy, 

and a control arm wherein individuals receive no screening (usual care).39, 45 The NELSON trial 

started in 2003. The main purpose of the trial was to investigate whether LDCT (low dose CT) 

screening leads to a reduction of lung cancer mortality of at least 25% at 10 years of follow-

up in a high risk population. The second purpose was to estimate the cost-effectiveness 

of lung cancer screening. Participants were recruited between 2003 and 2005 by sending 

questionnaires to 548,489 individuals between 50–75 years of age from population registries 

of 7 public health districts in the Netherlands and population registries of 14 municipalities 

around Leuven in Belgium. Current or former smokers with a smoking history of at least 15 

cigarettes per day for at least 25 years or at least 10 cigarettes per day for at least 30 years 

were included in the trial. Individuals with a bad or moderate self-reported health status, the 

inability to climb two flights of stairs, or a body weight over 140 kilograms were excluded. 

Furthermore, individuals with current or past renal cancer, melanoma or breast cancer and 

lung cancer diagnosed less than 5 years ago or still under treatment were also excluded. A 

total of 15,822 participants were randomized (1:1) to a screen or a control arm. The screen 

arm received computed tomography (CT) screening at baseline (first screening round), one 

year later (second screening round), three years later (third screening round), and five and 

a half years later (fourth screening round), whereas the control arm received no CT screen-
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ing (Figure 1).37, 39, 109 The difference in lung cancer mortality between the screen arm and 

the control group will be determined in 2016. Initial CT screening results were based on 

the lung nodule presence and volume. Screening results were considered positive for (part) 

solid lung nodules with a volume of >500 mm3 (>9.8 mm in diameter) and was considered 

indeterminate for (part) solid lung nodules with a volume of 50 to 500 mm3 (4.6 to 9.8 mm 

in diameter). Participants with an initial indeterminate screening result received a follow-up 

CT scan three months later to classify their final screening test result as negative or positive, 

Table 1. Main large-scale randomized controlled lung cancer screening trials

Trial Initiation
Complete

N Design Screens ♂
%

Age
yrs

Pack
yrs

Quit*
yrs

DANTE23, 24, 35 2001 2,472 LDCT vs. 5 100 60-74 ≥20 <10

Italy 2009 none

NLST27, 28 2002 53,454 LDCT vs. 3 59 55-74 ≥30 <15

USA 2011 CXR

ITALUNG36 2004 3,206 LDCT vs. 4 65 55-69 ≥20 <10

Italy ongoing none

NELSON37-39 2004 15,822 LDCT vs. 5 84 50-75 ≥15a ≤10

Netherlands/ ongoing none

Belgium

DLCST25, 40 2004 4,104 LDCT vs. 5 55 50-70 ≥20 <10

Denmark 2011 none

MILD26 2005 4,099 LDCT vs. 5 66 ≥49 ≥20 <10

Italy 2012 none

LUSI41, 42 2007 4,052 LDCT vs. 5 65 50-69 ≥15a ≤10

Germany ongoing none

UKLS43, 44 2011 4,055 LDCT vs. Pilot 75 50-75 NAb NA

United Kingdom ongoing none study

CXR, chest X-ray; DANTE, Detection and Screening of Early Lung Cancer by Novel Imaging Technology and Molecu-
lar Essays; DLCST, Danish Lung Cancer Screening Trial; ITALUNG, Italian lung study; LDCT, low-dose spiral computed 
tomography; MILD, Multicentric Italian Lung Detection trial; N, patient number; NA, not applicable; NELSON, Dutch-
Belgian Lung Cancer Screening Trial (Dutch acronym); NLST, National Lung Screening Trial; LUSI, German Lung Screen-
ing and Intervention trial; UKLS, UK Lung Screening trial; yrs, years; ♂, male.
*quit smoking; a inclusion criteria ≥ 15 cigarettes per day for 25 years or ≥10 cigarettes per day for 30 years;
b inclusion criteria ≥5% risk of lung cancer in 5 yrs.
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based on nodule volume doubling time (VDT).38, 46 If the nodule had a VDT<400 days, the 

final screening result was considered positive. Participants with a positive screening result 

were referred to a pulmonologist for a diagnostic follow-up. If lung cancer was diagnosed, 

the participant was offered a treatment protocol and went off screening. Participants with 

a negative screening result re-entered the protocol and underwent a second-round CT scan 

12 months later.

From the 7,915 participants of the screen arm 7,582 (95.8%) participants received at least 

one screening. In the first three screening rounds were 493 positive screening results found 

and 200 (40.6%) participants diagnosed with a total of 209 lung cancers.45 The lung cancers 

in the NELSON trial were more frequently detected at an early stage (70.8% stage I) and less 

frequently at an advanced (8.1 % stage IIB-IV) than in other screening trials.38, 39, 45 The defini-

tion of a positive screening result differed considerably between the NLST and the NELSON 

trial. The NLST defined any solid nodule with a diameter ≥4 mm as a positive screening 

result.27, 28 The NELSON trial considered only solid lung nodules with a volume >500 mm3 

(>9.8 mm in diameter) or VDT<400 days as a positive screening result. This policy is more 

stringent than the NLST policy. By using this policy, the positive predictive value was higher 

in the NELSON trial (40.6%) than in the NLST trial (3.6%). Consequently, the percentage of 

false-positive results was substantially lower in the NELSON trial (59.4%) than in the NLST 
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Figure 1. Design of the NELSON Lung Cancer Screening Trial.
Round 1.	� The first round of screening was conducted from April 2004 through December 2006.39

Round 2.	� The second round of screening was conducted from April 2005 through April 2008, 384.3 days on average 
(SD 59.2 days) after the baseline scan.39

Round 3.	� The third round of screening was conducted from January 2007 through October 2010, 733.2 days on aver-
age (SD=71.9 days) after the second-round scan.39

Round 4.	� The fourth round was conducted from November 2009 through March 2012, 942.3 days on average 
(SD=127.4 days) after the third-round scan.109

	 a.	� 7450 participants were invited for screening (7557 of round 1 plus 25 participants who missed screening in 
round 1, minus 70 participants diagnosed with lung cancer in round 1 and minus 62 deceased participants).

	 b.	� 7081 participants were invited for screening (7294 of round 2 minus 55 participants diagnosed with lung 
cancer in round 2 and minus 158 deceased participants).

	 c.	� 6735 participants were invited for screening (6922 of round 3 minus 75 participants diagnosed with lung 
cancer in round 3, minus 27 participants diagnosed with interval cancer and minus 85 deceased partici-
pants).
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trial (96.4%).27, 39, 45 Lung cancer mortality results of the NELSON trial are upcoming. The first 

results on mortality reduction after 10-year follow-up are expected in 2016.

More than 6,600 serum samples of the NELSON trial were collected at baseline. For the stud-

ies described in this thesis we used serum samples from cases and controls of the screen arm.

Biomarkers

There is a medical need for additional biomarkers for early detection of lung cancer, as CT 

screening leaves 15-52% of cases undetected.17, 21 CT screening has also other limitations. 

First, CT screening has a high rate of false-positive results due to the high prevalence of 

benign pulmonary nodules. This results in unnecessary follow-up CT scans, additional tests, 

biopsies or even surgery. In the NLST, 24% of benign patients underwent an unnecessary 

surgical procedure (thoracotomy, thoracoscopy, or mediastinoscopy).27 Secondly, these inva-

sive follow-up procedures are costly and may harm patients.30, 47 Alternatively, false-negative 

and indeterminate results may harm patients due to the delayed diagnosis and treatment of 

lung cancer.

Biomarkers in blood could be a non-invasive, cost-effective tool to stratify individuals at high 

risk of lung cancer (pre-cancer) who would benefit from CT screening. These biomarkers 

may be used for early diagnosis, optimal treatment selection, and prognosis of the disease. 

They may not only reduce the number of unnecessary invasive procedures, but may also lead 

to the earlier resection of malignant nodules which will substantially improve the prognosis 

of the patient. Unfortunately, there is still no clinically relevant blood biomarker available for 

lung cancer although various groups have proposed proteins, mostly in panels of antigens 

or autoantibodies. In searching for a clinically relevant biomarker for lung cancer it is vital 

to understand the biological processes of lung cancer. Lung cancer cells have defects in 

their regulatory processes that maintain normal cell proliferation and homeostasis. Critical 

changes in their cell physiology lead to cancer growth. Lung cancer cells are insensitive to 

growth-inhibitory signals and show escape from apoptosis, unlimited replication, sustained 

angiogenesis, tissue invasion and metastasis.48 Transformation from a normal to a malignant 

lung epithelial cell arises after a series of genetic and epigenetic changes, eventually leading 

to invasive lung cancer by clonal expansion.49 The molecular composition of lung cancer 

is complex and heterogeneous, which leads to variable biological, histological and clinical 

presentations. Various oncogenes, tumor suppressor genes, signaling pathway components, 

and other cellular processes are involved in the molecular pathogenesis of lung cancer.4, 50 

These cellular processes can lead to the mutation or overexpression of various proteins that 

may be released into body fluids. Therefore, identification of these lung cancer associated 

proteins in body fluids as potential biomarkers is a potential way to search for molecules 

that can detect lung cancer at an early stage, resulting in more optimal treatment and better 



16

prognosis of lung cancer at that early stage. Serum or plasma is considered the most optimal 

body fluid for this biomarker discovery because of its minimal invasive and easily accessible 

source.

Lung cancer associated proteins

Lung cancer is often associated with the differential expression of several proteins. These dif-

ferentially expressed proteins may be potential biomarkers for lung cancer. Table 2 represents 

a selection of lung cancer associated proteins as potential blood-based biomarkers for lung 

cancer that have been described in literature.

The well-known and clinically available lung cancer protein biomarkers in serum are carcino-

embryonic antigen (CEA), CYFRA 21-1 (cytokeratine 19 fragment), neuron-specific enolase 

(NSE), progastrin-releasing peptide (ProGRP), and squamous cell carcinoma antigen (SCCA). 

Although these proteins are elevated in serum of a fraction of lung cancer patients, they are 

not sensitive or specific enough to detect lung cancer, or to have enough value as biomarker 

for the diagnosis of asymptomatic patients with lung cancer.61, 62 Only biomarkers with a 

sensitivity of at least 95% and specificity of at least 95% are considered to have diagnostic 

value for early detection of lung cancer. Therefore, these protein biomarkers are not recom-

mended for the diagnosis of lung cancer.

Lung tumor cells may secrete or release small amounts of various tumor-associated proteins 

in an early stage of lung cancer. Detection of these lung cancer associated proteins in bio-

logical samples is proposed for the early diagnosis, prognosis and optimal treatment of lung 

cancer. However, the large dynamic range of other proteins in a complex biological blood 

sample , which extends over 10 orders of magnitude, and the high-abundance of albumin 

(55%) in serum or plasma is a major problem to detect these low-abundant proteins by mass 

spectrometry.63 Depletion of high-abundant proteins or targeted enrichment of lung cancer 

associated proteins are the main strategies to overcome this problem and to enhance the 

detection of these low-abundant proteins. New DNA-based aptamers have been developed 

that contain chemically modified nucleotides which bind with high affinity to different low-

abundant proteins. Ostroff et al. used an aptamer-based proteomic assay in a multi-center 

case-control study of 291 NSCLC cases and 1035 non-matched smoking controls.57 They de-

veloped a panel of twelve highly differential proteins (cadherin-1, CD30 ligand, endostatin, 

HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES) that was 

able to distinguish 213 NSCLC cases (62% stage I-II) from 772 controls with 91% sensitivity 

and 84% specificity. This panel was tested on a validation set consisting of 78 NSCLC cases 

(63% stage I-II) and 263 controls, including patients with COPD and benign nodules. In this 

validation set, a similar sensitivity of 89% at a similar specificity of 83%, and a relatively 

high AUC of 0.90 was found. The reason that this panel is not clincally implemented might 

be because this sensitivity and specificity is still too low for clinicians. For clinical utility a 
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sensitivity and specificity of at least 95% is mostly acceptable (personal communication 

with a pulmonologist). Li et al. used immunoaffinity columns for the tandem depletion of 

high-abundant proteins. They developed and validated a 13-protein blood-based classifier 

using multiple-reaction-monitoring mass spectrometry (MRM-MS) in a retrospective study 

consisting of 52 NSCLC and 52 benign controls. Their classifier distinguished benign from 

early-stage (IA) NSCLC nodules with a relatively high sensitivity of 90% sensitivity, but quite 

low specificity of 27%.

Unfortunately, the methods in Table 2 were not able to offer overall sensitivity and specificity 

of at least 95% to reliably discriminate lung cancer patients from controls. Sensitivity and 

specificity were even lower for early stage lung cancer. In addition, most of the proposed lung 

cancer proteins were not validated between lung cancer cases and controls well-matched 

for smoking-habit, which is the most relevant group for screening purposes. None of the 

proteins in Table 2 are currently in use as a clinically relevant biomarker for the early detection 

of lung cancer.

Immunological biomarkers

The presence of tumor cells can activate the immune system to respond to tumor-specific an-

tigens or to tumor-associated antigens.64, 65 Tumor-specific antigens (TSA) are only expressed 

in tumor cells, whereas tumor-associated antigens (TAA) are expressed differently by tumor 

cells and normal cells. The immune system not only protects the host against the develop-

ment of primary tumors but may also, strangely enough, promote development of primary 

tumors. This process, also known as cancer immuno-editing, consists of three phases: elimi-

nation, equilibration, and escape. Immunosurveillance occurs during the elimination phase, 

whereas the immune system recognizes tumor cells as foreign cells and eliminates many of 

them. Tumor cells that survive this phase enter into the equilibrium phase. In the equilibrium 

phase variants of the tumor cells are saved or mutated to tumor cell variants with increased 

resistance to immune attack. This equilibrium phase is assumed to be the longest of the 

three phases and may continue for several years. The tumor cell variants start to grow in an 

uncontrolled manner and eventually will be detected in the escape phase.66, 67 These tumor 

cells express tumor-associated antigens (TAAs) that distinguish them from normal cells. Most 

of the TAAs are overexpressed, mutated, misfolded or aberrantly degraded in such a way 

that they initiate an autoreactive immune response.64, 68, 69 Post-translational modifications 

(PTMs) of TAAs, such as acetylation, glycosylation, oxidation, phosphorylation and proteolytic 

cleavage, could contribute to an immune response by creating a neo-epitope or by improving 

self-epitope presentation and affinity to the major histocompatibility complex (MHC) or the 

T-cell receptor.64, 68, 70 Identification of tumor-associated antigens and autoantibodies to these 

antigens provide an opportunity for early detection of lung cancer.71
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Antibodies as biomarker

Autoantibodies to tumor-associated antigens (TAAs) are potential biomarkers for early detec-

tion of lung cancer. First, autoantibodies can be detectable in the asymptomatic stage of lung 

cancer, up to 5 years before radiological detection by CT.72, 73 Second, in contrast to antigens, 

autoantibodies are stable and persist in serum for a relatively long period of time at relatively 

high levels.64 Tumor-associated antigens may be temporarily present at very low levels due to 

temporary changes in only a few (pre)neoplastic cells. However, the immune system is very 

sensitive in detecting these very low levels of TAAs, and may respond by producing very high-

affinity T cells and autoantibodies.74 Such an autoantibody response to a tumor-associated 

antigen may endure over years. Thus, autoantibodies may be more detectable and at an 

earlier stage than their corresponding TAAs.

Human IgG antibodies, also known as immunoglobulins, are large molecules (~150 kDa) 

and composed of four polypeptide chains, two identical heavy chains (50 kDa) and two 

identical light chains (25 kDa). Each light chain has a variable (VL) and constant (CL) region. 

The heavy chains have three different constant regions (CH1, CH2 and CH3) and one variable 

region (VH). The first constant region and variable region of the heavy chain together with the 

constant and variable part of the light chain form the antigen binding fragment (Fab). The 

other two constant regions (CH2 and CH3) of the heavy chain form the Fc fragment (Figure 

2). Three hypervariable complementarity- determining regions (CDR1, CDR2 and CDR3) in 

the variable regions of the heavy and light chains of an immunoglobulin form the binding 

surface complementary to the antigen. As such, these CDRs in combination determine the 

specificity of the immunoglobulin to the antigen. The vast diversity in immunoglobulins 

initiates during immune response and B-cell development, when CDRs are generated by 

somatic rearrangements of different V, D and J germline genes, each forming a specific 

combination of germline genes. These rearranged genes can be further diversified by somatic 

hypermutations to increase antibody affinity.75-79 In both light and heavy chains, the diversity 

of CDR3 is even further enhanced by the insertions and deletions of nucleotides between 

the genes. The high diversity of CDR3 makes it the key part of antigen recognition, it is the 

region that most directly interacts with the antigen.80 The estimated potential diversity in 

immunoglobulins ranges from 1013 to more than 1050.78, 81 Despite this large range, there is 

evidence for a repertoire bias, which means that specific germline genes are preferred in the 

repertoire of immunoglobulins that is elevated during the immune response to a particular 

antigen.82, 83 Antigen-specific immunoglobulin sequences may be shared among different 

lung cancer patients and could serve as biomarkers for lung cancer.

Lung cancer associated autoantibodies

During tumor development lung cancer patients produce specific autoantibodies to tumor-

associated antigens (TAAs) that are potential biomarkers for lung cancer. Table 3 represents a 
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list of autoantibodies to TAAs as potential blood-based biomarkers for lung cancer that have 

been described in literature.

Although, autoantibodies are an active area of research, this research has not yet led to 

clinically relevant biomarkers. Table 3 represents a list of autoantibodies to TAAs that have 

been described in literature. All these studies were able to detect autoantibodies to TAAs, 

but none of the proposed autoantibodies has found application as a significant biomarker in 

the clinic. These autoantibodies studies have limitations. First, most of the studies described 

in Table 3 lack adequate clinical validation. Second, most proposed markers are not specific 

for lung cancer. For instance, Annexin, CAGE, CEA, HER2, MUC1, NYESO-1 and p53 also 

arise in other cancers and autoimmune diseases. Third, the studies that were validated were 

not able to show a clinically relevant sensitivity and specificity of at least 95%. Fourth, some 

of the methods are time-consuming and therefore not applicable in the clinic. Furthermore, 

because of the heterogeneity of lung cancer, it is not likely that an autoantibody to any 

single tumor-associated antigen will detect all types of lung cancer. Various target antigens 

are involved in the immune response to the different tumors. Therefore, it is more likely 

that autoantibodies to an antigen panel will detect the different types of lung cancer. The 

Figure 2. Structure of an immunoglobulin molecule (IgG).
Three hypervariable complementarity- determining regions (CDR1, CDR2 and CDR3) in the variable regions of the heavy 
(VH) and light (VL) chains of an immunoglobulin form the binding surface complementary to the antigen. As such, these 
CDRs combined determine the specificity of the immunoglobulin to the antigen. Fab, fragment antigen binding; H, 
heavy chain; L, light chain; JL, joining region of the light chain; CL, constant region of the light chain; DH, diversity region 
of the heavy chain; JH, joining region of the heavy chain; CH1, first constant region of the heavy chain; CH2, second 
constant region of the heavy chain; CH3, third constant region of the heavy chain; Fc, fragment crystallizable.
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EarlyCDT-Lung is currently used as an aid to risk assessment and the early detection of lung 

cancer in high-risk patients. This blood test measures autoantibodies to a panel of seven 

TAAs (p53, NY-ESO-1, CAGE, GBU4-5, SOX2, HuD and MAGE A4) and was validated in 

large cohorts including early and late stages NSCLC and SCLC. This autoantibody panel 

showed overall high specificity of about 91%, but rather low sensitivity of about 37% in 

NSCLC and 55% in SCLC (Table 3).73, 85, 91-93, 99. Another disadvantage of most methods in 

Table 3 is the limitation that the antigen or antigen panel must be known at the start of 

the study. Therefore, the development of a sensitive and specific autoantibody detection 

method without prior knowledge about the antigens involved offer opportunities to explore 

the complete inventory of tumor-associated antigens and would be of clinical importance.

To reach the highest sensitivity and specificity and to cover the histological heterogeneity 

of lung cancer, we propose that a panel of peptide sequences in the antigen-binding site 

of autoantibodies has potential as a relevant screening test for early stage lung cancer. 

While antibody diversity is huge, the selection pressures during B-cell development restrict 

the potential antibody diversity that is elevated to a particular tumor antigen. Antibodies 

are subjected to selection pressures after rearrangement and affinity maturation.82, 83 Dur-

ing B-cell development and maturation, germline sequences in the hypervariable regions 

of the antigen-binding site of antibodies are rearranged to form a specific VDJ germline 

combination. This specific germline combination is further refined by somatic mutations to 

form an antibody sequence with the highest-affinity to the targeted antigen. As such, these 

high-affinity sequences are highly specific for the antigen involved. Different studies have 

demonstrated that it is possible to identify similar or identical autoantibody sequences among 

different individuals.104-108 Specific sequences of high-affinity antibodies can be expressed in 

response to low levels of tumor-associated antigens in early stage lung cancer and could 

serve as biomarker for early detection of lung cancer.
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Chapter 1

Outline of this thesis

High sensitivity and specificity of CT screening can only be realized after follow-up CT ex-

aminations to assess nodule growth at different time points, as a consequence it delays 

lung cancer diagnosis. This delay in diagnosis of lung cancer may even take up to one year 

after baseline screening. Therefore, additional biomarkers to CT screening are needed to 

reduce the false-positive and false-negative results at baseline screening. The aim of this 

thesis was to find lung cancer related proteins, especially sequences of autoantibodies, that 

can differentiate early stage lung cancer patients from healthy individuals at high-risk in a 

well-controlled multicenter population study, stratified for smoking (NELSON). We applied 

immunological and high-performance proteomics techniques to identify and quantify these 

proteins.

The first two chapters of this thesis describe the development of immunomics methods to 

identify similar or identical CDR sequences of autoantibodies that can distinguish early stage 

lung cancer patients from matched controls with high sensitivity and specificity. Detection 

and identification of CDRs can significantly be improved by reduction of the complexity of 

the immunoglobulin molecule. In Chapter 2 we describe molecular dissection of IgG into 

Fab-κ, Fab-λ, κ and λ fragments to reduce the complexity of this molecule for mass spectrom-

etry measurement. We compared the number of CDRs identified in these immunoglobulin 

fragments of lung cancer cases and controls with the number of CDRs identified in the Fab 

fragments. In Chapter 3 we apply our IgG Fab purification method on a case-control study. 

The aim of the study was to find sequences in the Fab of immunoglobulins that are shared 

among early stage lung cancer patients using proteomics techniques without the need of 

prior knowledge about the antigens involved.

Case-control studies suggested that autoantibodies to survivin protein are potential bio-

markers for early diagnosis. In Chapter 4 we test the hypothesis that sandwich ELISA can 

detect autoantibodies to survivin before radiologic diagnosis in lung cancer patients from the 

NELSON trial. Chapter 5 describes a validation study of a 13-protein and 5-protein blood-

based classifier, which has been described in literature as a diagnostic tool to distinguish 

benign from early-stage malignant nodules in patients with indeterminate lung nodules. In 

analogy, we used immunodepletion on IgY14-Supermix resin columns and MRM-MS analysis 

with stable isotope-labeled internal standard (SIS) peptides to analyze the classifier proteins. 

Finally, the study results of this thesis are summarized and discussed.
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Abstract

Sera from lung cancer patients contain antibodies against tumor-associated antigens. 

Specific amino acid sequences of the complementarity determining regions (CDRs) in the 

antigen-binding fragment (Fab) of these antibodies have potential as lung cancer biomark-

ers. Detection and identification of CDRs by mass spectrometry can significantly be improved 

by reduction of the complexity of the immunoglobulin molecule. Our aim was to molecular 

dissect IgG into kappa and lambda fragments to reduce the complexity and thereby identify 

substantially more CDRs than by just total Fab isolation. We purified Fab, Fab-κ, Fab-λ, κ and 

λ light chains from serum from 10 stage I lung adenocarcinoma patients and 10 matched 

controls from current and former smokers. After purification, the immunoglobulin fragments 

were enzymatically digested and measured by high-resolution mass spectrometry. Finally, we 

compared the number of CDRs identified in these immunoglobulin fragments with that in 

the Fab fragments. Twice as many CDRs were identified when Fab-κ, Fab-λ, κ and λ (3330) 

were combined than in the Fab fraction (1663) alone. The number of CDRs and κ:λ ratio 

was statistically similar in both cases and controls. Molecular dissection of IgG identifies 

significantly more CDRs, which increases the likelihood of finding lung cancer-related CDR 

sequences.
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Introduction

Only 15-20% of all lung cancers are detected at an early and potential curable stage today.1 

An early detection and treatment of lung cancer can reduce the high lung cancer mortality 

rate. This is currently investigated in several randomized lung cancer CT screening trials.2-5 

At the moment, there is no early detection biomarker available for lung cancer. Biomarkers 

could be used to stratify people according to their risk to develop lung cancer. The different 

strata could, dependent on their cancer risk, be invited for baseline CT screening and for 

subsequent screening rounds. A biomarker for early detection of lung cancer could be used 

as a complement to CT screening in order to reduce the rate of false-positive test results and 

the number of unnecessary biopsies, surgical interventions or serial CT scans.6

There is increasing evidence that during tumor development a humoral immune response 

evolves into various tumor types, including lung cancer.7-9 Immunoglobulins against different 

tumor-associated antigens (TAAs) in lung cancer have been identified by different strate-

gies10-15 up to 5 years before the tumor was detectable by a CT scan.16, 17 These strategies 

use immunoglobulins to identify the targeted tumor antigens as potential biomarkers, rather 

than using the reactive immunoglobulins as potential biomarkers. In contrast to antigens, 

immunoglobulins are excreted and circulate in the blood at relatively high levels, which sup-

port their detection.

We previously described a new approach in which tryptic fragments of the immunoglobu-

lins themselves are used as potential biomarkers.18 Three hypervariable complementarity 

determining regions (CDR1, CDR2 and CDR3) in the variable regions of the light and heavy 

chains of an immunoglobulin form the binding surface complementary to the antigen. As 

such, these CDRs determine the specificity of the immunoglobulin to the antigen. During 

immune response and B-cell development, CDRs are generated by somatic rearrangements 

of different (V, or V, D and J) germline genes to form a specific combination. In both light and 

heavy chains, the diversity of CDR3 is even further enhanced by the insertions and deletions 

of nucleotides between the genes. The estimated potential immunoglobulin diversity varies 

from 1013 to more than 1050.19, 20 Despite this large range there is evidence for repertoire bias, 

which means that certain germline genes are preferentially used in response to a particular 

antigen.21, 22 Moreover, similar and identical CDR3 sequences have been found in humans 

and in zebrafish, respectively.23, 24 Our hypothesis is that a specific molecular profile of CDRs 

may distinguish lung cancer patients from controls and can thus be used as lung cancer 

biomarker.

The ability to find differences in CDRs between lung cancer cases and controls depends on 

the number of CDRs identified, which in turn depends on the accuracy, resolution, sensitivity 

and reproducibility of the mass spectrometry (MS) to identify these very low-abundant CDR 

peptides. However, ion suppression in the mass spectrometer especially for complex peptide 

mixtures can reduce the sensitivity.25 Reduction of this complexity reduces ion suppression 
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and leads to a significantly higher sensitivity to detect CDR peptides. In our previous paper, 

we presented our method to sequence Fab fragments by using mass spectrometry.26 To 

identify as many CDRs as possible, the complexity of the immunoglobulin molecule can 

be reduced by separating Fab into Fab-κ and Fab-λ, and even further by purifying only the 

kappa (κ) or lambda (λ) light chain. The normal overall κ: λ ratio in human immunoglobulins 

is approximately 2 (κ:λ of: IgG 2.34 ± 0.80; IgA 1.59 ± 0.40; IgM 1.86 ± 0.76) with most of 

the immunoglobulins consisting of IgG.27

Our aim was to use molecular dissection of IgG into kappa and lambda fragments to identify 

substantially more CDRs than obtained by the Fab method. To determine if we would be able 

to identify more CDRs by molecular dissection of IgG in kappa and lambda fragments than of 

Fab, we designed a pilot study. In this study, we purified Fab, Fab-κ, Fab-λ, κ and λ light chains 

from serum from 10 stage I lung adenocarcinoma patients and 10 matched controls from 

current and former smokers of the NELSON study.4 After purification, the immunoglobulin 

fragments were enzymatically digested by trypsin and measured by high-resolution mass 

spectrometry. Finally, we compared the number of CDRs identified in these immunoglobulin 

fragments with the number of CDRs identified in the Fab fragments.

Materials and Methods

Cases and controls from the NELSON trial

Sera from 20 current and former smokers were obtained from the Dutch-Belgian random-

ized lung cancer screening trial (NELSON), as described previously,4 and collected under 

uniform conditions. The subjects were between 53 and 73 years of age (50% males and 

50% females, median age 61 years). Ten serum samples of stage I lung adenocarcinoma 

patients without history of other cancer were collected. As non-cancer controls, 10 matched 

serum samples were taken from participants in the same trial. The controls were matched 

for gender, smoking status, COPD status, absence of previous cancer and asbestos history. 

All participants gave written informed consent as approved by the Dutch Minister of Health 

and the ethics board at each participating center. Samples were blinded and analyzed in 

random order.

Serum-collection protocol

During the participants’ visits to the center, one serum gel tube was collected per participant. 

The venous blood was allowed to clot, and was centrifuged for 10 minutes at 1400 x g and 

4°C within 2 hours after collection. After centrifugation, the serum was stored immediately 

in aliquots at -80°C. All samples were blinded and analyzed in random order.
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Reference sample

One reference donor sample (male: 59 years), with a normal serum IgG of 9.75 g/L, was used 

as a quality control for each analysis step.26 In accordance with the general guidelines of the 

Sanquin Blood Bank Rotterdam (the Netherlands), the healthy donor gave written consent 

for the serum to be used for scientific research.

Purification of IgG

Serum IgG (80 µL) was purified using the Melon Gel IgG purification kit (Pierce, Rockford, IL), 

according to the manufacturer’s instructions. The concentration of the purified IgG protein 

(800 µL) was determined by means of the mass extinction coefficient of 1.37 (mg/mL) cm-1 at 

280 nm on a NanoDrop Spectrophotometer (ND-1000, Nanodrop Technologies, Wilmington, 

DE).

Purification of Fab

After purification, purified IgG (400 µL) was digested in Fab and Fc fragments overnight by 

immobilized papain on agarose beads according to the manufacturer’s instructions (Pierce, 

Rockford, IL). Then this digest (2.800 mL) was concentrated approximately ten times by an 

Amicon Ultra 3K centrifugal filter device (Millipore, Amsterdam, the Netherlands).

Finally, the Fab fragments were separated from Fc fragments and undigested IgG by SDS-

PAGE under reducing conditions.26 The proteins were fixed and visualized with the Colloidal 

Blue staining kit (Invitrogen, Breda, the Netherlands) and gels were washed for a minimum 

of 4 h in deionized water (Figure 1).

Purification of IgG Fab-κ and IgG Fab-λ

For purification of IgG Fab-κ 100 µL λ-specific-anti-human IgG and for purification of IgG 

Fab-λ 200 µL κ-specific-anti-human IgG was immobilized onto the MicroLink Protein support 

of two AminoLink Plus coupling gel spin column (Pierce, Rockford, IL). Concentrated papain-

digested IgG (100 µL) was loaded onto the columns and incubated at 4°C overnight with 

gentle end-over-end mixing. Finally, the IgG Fab-κ and IgG Fab-λ were individually collected 

in the flow-throughs and separated from the Fc proteins by SDS-PAGE under reducing condi-

tions and visualized as described above (Figure 1).

Purification of κ and λ

The Melon Gel purified IgG (100 µL) was loaded onto the λ-specific-anti-human IgG (100 

µL) and κ-specific-anti-human IgG (200 µL) columns and incubated at 4°C overnight with 

gentle end-over-end mixing. Finally, the IgG-κ and IgG-λ were individually collected in the 

flow-throughs and the heavy chain (H) and light chain, κ or λ, were separated by SDS-PAGE 

under reducing conditions and visualized as described above (Figure 1).
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Sample preparation for LTQ Orbitrap MS

Recovery and reproducibility of the purifications were determined by densitometry. Intensities 

of the protein bands of the reference sample on the stained SDS-PAGE gel were quantified 

by scanning on a Molecular Imager GS-800 Calibrated densitometer (Bio-Rad, Veenendaal, 

the Netherlands) with Quantity One® 1-D analysis software (version 4.6.5: Bio-Rad). After 

imaging and analysis of the SDS-PAGE gels, the selected protein bands were excised from 

the gels and cut into plugs. The in-gel trypsin digestion was performed in Rapigest detergent 

solution according to the manufacturer’s instructions (Waters, Milford, MA, USA).

Nano-LC Orbitrap MS analyses

LCMS measurements of the tryptic peptides were performed on an Ultimate 3000 nano-LC 

system (Dionex, Amsterdam, the Netherlands) online coupled to a hybrid linear ion trap/

Orbitrap MS (LTQ Orbitrap XL: Thermo Fisher Scientific, Bremen, Germany).

For identification of the IgG peptides we used collisional activated dissociation (CAD) frag-

mentation. High-resolution full-scan MS was obtained in the Orbitrap (resolution 30,000; 

AGC 1,000,000) and CAD fragmentation was performed on the five most abundant masses 

in the full-scan spectra.

Data analysis

Progenesis software (Version 2.5: Nonlinear Dynamics, Newcastle, UK) was used for the 

label-free quantification of MS data. In total five Progenesis analyses were performed, one 

for each individual dissected IgG fraction. The raw data files were aligned by their retention 

time, features were selected and intensities were normalized (Nonlinear Dynamics http://

www.nonlinear.com/support/progenesis/lc-ms/faq/how-alignment-works.aspx, http://www.​

nonlinear.​com/​support/progenesis/lc-ms/faq/how-normalisation-works.aspx).26 Data matrices 

containing the feature intensities (area under the peak) were exported for further calcula-

tions.

Database searches were performed with Mascot (version 2.2.06: Matrix Science Inc., London, 

UK) against the NCBInr human database (version nrHuman_database_20090311; Homo 

sapiens species restriction; 2220660 sequences). Parameters used for the database search 

were as follows: a maximum of two miss cleavages; carbamidomethylation of cysteine as a 

fixed modification and oxidation of methionine as a variable modification; trypsin as enzyme; 

a peptide mass tolerance of 10 ppm; a fragment mass tolerance of 0.5 Da; an ion score of 

25 as a cut-off.

De novo sequencing was used for features not identified by a Mascot search against the 

database (NCBInr). Therefore, raw data files were processed by the Peaks Studio 5.1 software 

package (Bioinformatics Solutions, Waterloo, ON, Canada). The Average Local Confidence 

score (ALC%) was assigned on the basis of the positional confidence for each amino acid in 

the peptide sequence divided by the total number of amino acids.
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Peptide identifications from both Mascot and Peaks were imported into Progenesis, which 

keeps the best scoring sequence for each MS signal. To this end, Peaks data were manually 

converted to Mascot XML format for import into Progenesis, and the ALC% scores were 

divided by a factor of 100. By doing so Mascot scores obtained from the data-dependent 

search always overruled the ALC% scores. Finally, all intensities and sequences from Mascot 

and Peaks were combined in a single Progenesis file per individual fraction for further analysis.

Mascot and de novo peptide sequences were used for the identification of CDR sequences. 

Irrespective of the protein identification, the BLAST algorithm was subsequently used to align 

all peptides to databases containing human V, D, J or C-region germline sequences obtained 

from the IMGT database (IMGT®, the international ImMunoGeneTics information system® 

http://www.imgt.org). All peptides with a bit score of at least 12.5 were assigned to these 

germline sequences and selected for further analysis. Peptides aligned to a V-region germline 

sequence were also aligned using the IMGT/DomainGapAlign tool. This tool positions the 

peptide to the germline sequence in the IMGT unique residue numbering system and helps 

to identify the peptide as a framework or CDR in the immunoglobulin molecule. Only pep-

tides with an identity score of at least 70% were assigned to a CDR sequence. Total numbers 

of CDRs were calculated based on the CDRs found by Mascot and de novo sequencing.

Statistical Analysis

Coefficient of variation was used to measure the reproducibility of three replicate purifica-

tions of the reference sample for each individual IgG fraction. For each individual IgG fraction 

and each combination of IgG fractions, descriptive summary statistics (number of measure-

ments (N), mean, standard deviation (SD) and Confidence Interval (95% CI)) were provided 

for the number of CDRs identified in the cases and controls.

The two sample t-test (two-sided) was used to compare differences in the κ:λ ratio in Fab 

molecules between cases and controls. We used Microsoft Excel 2007 for the descriptive 

summary statistics and the t-tests. Pearson chi-square (X2) tests were performed to establish 

the existence of significant differences between cases and controls in the number of CDRs 

identified in each specific molecular dissected IgG fraction and each combination of IgG 

fractions compared with that of Fab. These tests, odds ratios and 95% confidence intervals 

were calculated by the application of Vassarstats software (http://faculty.vassar.edu/lowry/

VassarStats.html). The non-parametric Kruskal-Wallis test (two-sided) was performed to 

compare the CDR3 ratio in the three Fab fractions (Fab, Fab-κ, Fab-λ) with the CDR3 ratio in 

the light chain fractions (κ and λ). Analyses were done using STATA, version 11 (Stata, TX, 

USA).

To determine whether the number of significant different CDRs increases by molecular dis-

section of IgG, we used the Anova available in the Progenesis program and the two sample 

t-test (two-sided). By a permutation test that was repeated 20 times we determined the 

random chance on such an event. Two standard deviations of this permutation test were 
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used as a threshold to determine whether the number of CDRs identified was significantly 

different. For all statistical tests a p-value <0.01 was considered statistically significant.

Results

Fab, Fab-κ, Fab-λ, κ and λ purification

To calculate the recovery and reproducibility of protein band intensities, triplicate purifica-

tions of the reference sample were quantified by densitometry. A total recovery of 91% for 

IgG of total IgG-κ (heavy + light chain) and total IgG-λ (heavy + light chain) combined and, 

≥95% for Fab of Fab-κ and Fab-λ combined was calculated. Coefficients of variation of the 

densitometry intensity of triplicate purifications of the reference sample were 2.1% for κ, 

4.8% for λ, 3.1% for Fab-κ and 4.4% for Fab-λ.

κ-to-λ ratio

Calculated serum IgG concentration of controls and cases were on average 9.5 g/L (95% 

CI 7.4-11.5 g/L) and therefore within the normal range (7.0-16.0 g/L). To determine the κ:λ 

ratio of the κ and λ purification, Fab, Fab-κ, Fab-λ, κ and λ fractions from the reference donor 

sample were purified in duplicate and each fraction was measured twice on an LTQ Orbitrap 

XL. Figure 2 represent the distribution of all Mascot peptide sequences corresponding to 

the V,D, J, and C region of the κ, λ and heavy chain (BLAST identity score ≥ 70%) and 

their normalized intensities in the Fab and the total IgG light chain (κ and λ). The κ:λ ratio 

was calculated by counting all V, D, J and C spectra, with a normalized intensity >0. We 

found a normal κ:λ ratio of 2.0 in the Fab and 2.1 in the total light chain of IgG (κ and λ) 

fraction in this healthy donor sample. In addition, we calculated the κ:λ ratio in the Fab of 

all controls and cases and observed a normal mean ratio of 1.9 (SD: 0.1) and 2.0 (SD: 0.0), 

respectively. The unpaired two sample t-test revealed no statistically significant difference 

(p=0.10) between the κ:λ ratio in cases and controls.

Enrichment of κ and λ peptides.

Kappa and lambda enrichment of the cases and controls was calculated by the κ:λ ratio in 

the Fab-κ, Fab-λ, κ and λ fractions, as described above. After purification we obtained a 

7-fold enrichment of κ in the Fab-κ (κ:λ ratio 14:1) and a 3-fold enrichment of λ in the Fab-λ 

fraction (κ:λ ratio 2:3). An 8-fold increase in enrichment factor was observed in the κ and a 

4-fold increase in the λ fractions of IgG. In addition, <9% peptides of the heavy chain were 

found in the light chain fractions of IgG.
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Replicate measurements of reference sample

In mass spectrometry, replicate measurements can increase the number of peptides identi-

fied. To determine whether the total number of CDRs identified in the multiple IgG fractions 

might increase due to the multiple MS measurements of the sample, we compared the 

number of CDRs identified in four replicate measurements of the Fab, Fab-κ, Fab-λ, κ, λ 

fractions of the reference sample. Although, the number of CDRs reached a maximum at 

each third or fourth replicate measurement, the combined fractions revealed more CDRs 

than the individual fractions (Figure 3). We found 617 CDRs in the Fab and 1238 CDRs in 

the combined fractions.

Figure 2. Distribution of VDJC peptides in Fab and IgG light chain of reference sample. All peptide sequences 
corresponding to the V region, D region, J region and C region of the κ (Blue), λ (Red) and heavy chain (Green) 
found by Mascot in the IMGT database and their normalized intensities in the Fab (A) and the IgG light chain 
(B).
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Number of CDRs identified in cases and controls

Nano-LC-LTQ Orbitrap MS measurements of the respective digested Fab, Fab-κ, Fab-λ, κ and 

λ of the cases and controls yielded a combined peak list of 13061, 12441, 8246, 10294 and 

11853 features reported by Progenesis. Automatic alignment in Progenesis was not possible 

for one Fab, one Fab-λ and one κ sample of the controls and one Fab-λ sample of the cases 

and therefore were excluded from data analysis. Figure 4 shows the number of features 

(MS signals) and the number of CDR peptide sequences identified by Mascot and de novo 

sequencing according to IMGT for each individual IgG fraction. In addition, we have listed 

the V, D, J and C regions (VDJC) and the V-region-related peptides.

To compare the number of CDRs identified between the fractions, only samples analyzed 

by Progenesis for each fraction were selected. Redundant peptide sequences of these 16 

samples were counted once in order to reveal the number of unique CDRs per fraction. 

Alignment to the IMGT database showed that 1663 peptide sequences of Fab, 1422 of 

Fab-κ, 971 of Fab-λ, 859 of κ and 991 of λ corresponded to CDRs. The numbers of the three 

types of CDR are shown in Figure 5.

In all three types of Fab (Fab, Fab-κ, Fab-λ) we observed a mean CDR1:CDR2:CDR3 ratio 

of approximately 1.0:2.0:1.0 and in the light chains different CDR ratios of approximately 

1.4:2.4:0.2 for κ and 1.0:2.7:0.3 for λ were seen. The CDR3 ratio in the three Fab fractions 

(Fab, Fab-κ, Fab-λ) was significantly (p<0.001) higher than the CDR3 ratio in the light chain 

fractions (κ and λ).

The mean number of CDRs identified in the individual and combined IgG fractions com-

pared with that of the Fab fraction of lung cancer cases and controls are listed in Table 1. We 

found 1.73 times more CDRs in the combination of Fab-κ, Fab-λ, κ and λ (Comb 6, Table 1), 
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Figure 3. Number of CDRs peptides identified in replicate MS measurements of the fractions individually and 
combined of the reference sample. Fab (Blue), Fab-κ (Red), Fab-λ (Green), kappa (κ) (Purple), lambda (λ) (Light 
Blue) fraction and all fractions combined (Orange).
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than in Fab for both cases and controls. Pearson chi-square tests with odds ratios were 

performed to measure the association between cases and controls in the number of CDRs 

identified in the individual and combined IgG fractions compared with that of Fab (Table 

1). We found no statistically significant difference (p>0.50) between cases and controls for 

these numbers.

Peptides Total Mascot de novo
VDJC-region 8013 3087 4926

V-region 5318 2567 2751

V-region unique 3191 1890 1301

CDRs unique 1663 1017 646

CDR1 458 228 230

CDR2 829 517 312

CDR3 376 272 104

Peptides Total Mascot de novo Total Mascot de novo
VDJC-region 7552 2466 5086 4950 1845 3105

V-region 4966 1986 2980 3193 1522 1671

V-region unique 2881 1375 1506 1885 1134 751

CDRs unique 1422 594 828 971 618 353

CDR1 352 120 232 224 110 114

CDR2 767 421 346 467 295 172

CDR3 303 53 250 280 213 67

Peptides Total Mascot de novo Total Mascot de novo
VDJC-region 5492 1893 3599 6387 1651 4736

V-region 3274 1355 1919 3804 1295 2509

V-region unique 1462 710 752 1774 789 985

CDRs unique 859 422 437 991 437 554

CDR1 302 118 184 266 74 192

CDR2 510 290 220 647 359 288

CDR3 47 14 33 78 4 74

10294 MS signals of controls and cases (9/10) 11853 MS signals of controls and cases (10/10)

kappa (κ) lambda (λ)

Fab

13061 MS signals of controls and cases (9/10)

Fab-k Fab-λ

12441 MS signals of controls and cases (10/10) 8246 MS signals of controls and cases (9/9)
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Figure 4. Number of MS signals and number of peptide sequences identified by Mascot and de novo sequenc-
ing for each individual IgG fraction. Redundant peptides corresponding to the VDJC-region and the V-region, 
and non-redundant (unique) peptides corresponding to the V-region and CDR (CDR1, 2, 3) region germline se-
quences from the IMGT database are shown. The graph illustrates the total number of CDR1, CDR2 and CDR3 
identified for each individual IgG fraction. (Published as Supporting Information Figure 4.)
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We calculated the mean additional number of unique CDRs (mean %, CI: 95%) found 

in the different individual and combined IgG fractions to the mean number of CDRs of 

the Fab fraction. Kappa (κ) gave 320 CDRs (23.1%, 20.6-25.5%), lambda (λ) 501 CDRs 

(36.0%, 34.2-37.8%), Fab-κ 679 CDRs (48.7%, 46.2-51.2%) and Fab-λ 315 CDRs (22.7%, 

20.1-25.4%) additional to Fab. Combined κ and λ fractions resulted in 804 additional CDRs 
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Figure 5. Numbers of CDR1, CDR2 and CDR3 identified in the individual IgG fractions. The total number of 
CDR1 (Blue), CDR2 (Red) and CDR3 (Green) identified in each individual IgG fraction.

Table 1. Number of CDRs identified in individual and combined IgG fractions compared with Fab: Lung cancer 
cases versus controls.

Fractions Number of CDRs OR 95% CI p

Lung cancer cases Controls

N mean (±SD) Odds N mean (±SD) Odds

Fab 9 1412 (± 72) ND 7 1370 (± 80) ND ND ND ND

Fab-κ 9 1119 (± 115) 0.79 7 1072 (± 97) 0.78 1.01 0.91-1.13 0.82

Fab-λ 9 715 (± 90) 0.51 7 706 (± 113) 0.52 0.98 0.86-1.12 0.79

κ 9 585 (± 82) 0.41 7 582 (± 83) 0.42 0.98 0.85-1.12 0.72

λ 9 748 (± 55) 0.53 7 700 (± 57) 0.51 1.04 0.91-1.18 0.58

Comb 1 32 1211 (± 100) 0.86 32 1172 (± 91) 0.86 1.00 0.90-1.12 1.00

Comb 2 32 1652 (± 127) 1.17 32 1609 (± 121) 1.17 1.00 0.90-1.10 0.92

Comb 3 32 1724 (± 85) 1.22 32 1690 (± 83) 1.23 0.99 0.90-1.09 0.84

Comb 4 32 2105 (± 144) 1.49 32 2032 (± 125) 1.48 1.01 0.91-1.11 0.92

Comb 5 48 2400 (± 146) 1.70 48 2335 (± 117) 1.70 1.00 0.91-1.10 1.00

Comb 6 64 2449 (± 159) 1.73 64 2376 (± 170) 1.73 1.00 0.91-1.10 1.00

Comb 7 80 3119 (± 165) 2.21 80 3024 (± 167) 2.21 1.00 0.92-1.09 1.00

Odds ratios between lung cancer cases and controls of the number of CDRs identified in individual and combined IgG 
fractions compared with Fab. ND, the value was not determined; OR, odds ratio; CI, confidence interval; p, p-value of 
Pearson chi-square (X2) test; Comb 1, κ+λ; Comb 2, Fab-κ+Fab-λ; Comb 3, Fab+Fab-λ; Comb 4, Fab+Fab-κ; Comb 5, 
Fab+Fab-κ+Fab-λ; Comb 6, Fab-κ+Fab-λ+κ+λ; Comb 7, Fab+Fab-κ+Fab-λ+κ+λ.
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(57.8%, 54.4-61.3%), and combined Fab-κ and Fab-λ fractions in 978 additional CDRs 

(70.3, 66.8-73.7%). In addition, these four fractions combined showed an additional 1683 

unique CDRs (121.0%, 115.5-126.5%) compared with the original Fab.

Figure 6 shows a Venn diagram of all the fractions of the cases and controls and the total 

number of CDRs found by Mascot and de novo sequencing. We found a total of 1663 CDRs 

in the Fab and an additional 2441 unique CDRs (146.8%) in all the other fractions combined.

Number of significantly different CDRs between cases and controls

We analyzed the CDR-identified sequences of cases and controls obtained via database-

dependent and de novo sequencing with Anova and the two sample t-test. We observed 

that in Fab-κ the number of significantly identified CDR (p<0.01) was significantly increased 

compared to random chance as determined by a permutation test.

Discussion

In this study, we demonstrated that molecular dissection of IgG into kappa and lambda 

fragments (Fab-κ, Fab-λ, κ and λ) identifies approximately twice as many CDRs than the Fab 

method.

In all fractions CDRs were identified exclusive to the specific fraction resulting in a total 

of 4104 CDR sequences. The results from all fractions and of combinations of them were 

evaluated. Although multiple MS measurements of an individual fraction also increase the 

number of CDRs identified, the combination of the various molecular fractions exceeds this 

significantly. In addition, the method we used to isolate Fab-κ, Fab-λ, κ and λ chains of IgG 
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Figure 6. Venn diagram of all fractions of the cases and controls and the total number of CDRs found by Mas-
cot and de novo sequencing.
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is reproducible and shows high recovery rates. The technical variation in MS measurements 

and variation in individual IgG molecules was described previously.26 More specifically, the 

normal κ:λ ratio in the Fab and light chain of the healthy donor sample and the Fab of the 

controls and cases demonstrated a sufficient purification with preserved κ:λ ratio, and was 

validated by MS measurement. By means of the κ:λ ratio we were able to determine the κ or 

λ enrichment for the different IgG fractions.

As the whole Fab fraction includes the heavy and light chains (both κ and λ), this fraction 

yielded the most features and as a result more CDRs were identified in the Fab fraction 

than in the other individual IgG fractions. The MS sample of the Fab-κ fraction yielded more 

features than the Fab-λ fraction, and therefore the Fab-κ fraction revealed more CDRs than 

the Fab-λ fraction. The lower number of CDRs identified in κ and λ light chain fractions is 

very likely caused by the fact that CDRs specific to the heavy chain are missing, including the 

highly diverse CDR3 of the heavy chains.28 This is supported by the observation of a different 

ratio for CDR1:CDR2:CDR3 in the light chains, which shows an approximately 4-fold lower 

ratio of CDR3 in the light chains than in the three types of Fab (Fab, Fab-κ, and Fab-λ). In 

general, in all fractions the CDR3 peptides were relatively difficult to assign. These peptides 

are highly diverse and their N-terminal side often contains a cleavage site for trypsin (lysine 

or arginine). As a result, their tryptic-digested peptides often contain a mostly conserved 

V-region fragment or a highly diverse fragment, which makes it difficult to align to the 

germline sequence. Interestingly, more significantly different CDRs were observed in the 

Fab-κ than in the other fractions. This points to the possibility of finding lung cancer-related 

CDRs and in general of finding tumor-related CDRs.

Peptides from the constant regions gave the highest peak intensities. By choosing the maxi-

mum injection volume based on the highest peak intensity in the UV chromatogram we were 

able to maximize the loading of the CDRs on the C18 trap column. Nano-LC-LTQ Orbitrap 

MS measurements of additional fractions cause an increase in measurement time. Even 

though, measuring both Fab and Fab-κ fractions instead of only the Fab fraction requires 

twice as much measurement time, it makes the effort worthwhile because of the additional 

50% CDRs identified. In addition, when measuring twice this is the best combination of all 

fractions because the immunoglobulin molecules that are occasionally expressed by cancer 

cells have been reported to consist predominantly of the heavy chains and κ chains.29 This 

can be explained by the fact that during B-cell differentiation first the heavy chain genes 

rearrange followed by the κ chain genes. Only if none of the κ chain gene rearrangements 

leads to a functional κ chain the λ chain genes start to rearrange.19 Another explanation 

is that the heavy chain contains the highly diverse CDR3, which plays a prominent role in 

antigen binding.28 Both heavy chains and κ chains are present in the Fab and Fab-κ fractions.

Recent studies have shown that antibody specificity is determined by a limited number of 

amino acid residues of the CDRs. Synthesized small peptides based on these CDRs retained 

the antigen-binding properties and functions of the intact immunoglobulin.30, 31 Administra-
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tion of synthetic CDR peptides inhibits tumor cell growth in mice and thereby increases their 

survival time.32 These reports support the hypothesis that a specific molecular profile of CDRs 

may distinguish lung cancer patients from controls. In agreement, we found an increase in 

the number of significantly different CDRs in the Fab-κ fraction.

In our study, the lung cancer cases did not differ in their normal κ:λ ratio of Fab and in the 

number of detected CDRs in all the different IgG fractions from the controls. These find-

ings show that our method is technical suitable to compare CDRs in IgG fractions between 

lung cancer patients and controls. Our approach revealed more CDRs than the original Fab 

method, which may enhance the possibility to identify a biomarker model for the early 

detection of lung cancer. However, there is most probably a larger sample set required to 

identify such statistically and physiologically relevant model. Sample size calculations33 based 

on unpublished data estimate that a sample set of approximately 30 lung cancer cases and 

30 controls is required to acquire this.

Improvements in sequence coverage and annotation may help to further increase the number 

of CDRs that is possible to identify. Alternative proteases could be used to obtain larger se-

quences coverage for a better alignment to the germline sequence. Other potential improve-

ments are using ultra high pressure chromatography techniques to improve resolution for a 

better identification of sequences and depletion of constant regions by partial digestion of 

immunoglobulins to enrich CDR regions. In addition, complementing fragmentation spectra 

by higher energy collision induced dissociation (HCD) and electron transfer dissociation (ETD) 

can improve de novo peptide sequencing compared to CID fragmentation.34-36

The ability to detect specific tumor-related CDR peptides by mass spectrometry depends on 

the proportion of total IgG that has affinity to the tumor antigen. Affinity purification of rat 

sera revealed that 1-3% of IgG had affinity for the antigen used for the immunizations.18 

Such a polyclonal antibody response to an antigen has been estimated to derive from ap-

proximately 100 B-cell clones.23 In another study, an upper limit of 0.1-0.3% of the human 

B-cell population was found to have originated from a particular clone.37 Based on these 

data, we estimate that 0.01-0.3% of the total IgG may present a particular immunoglobulin, 

depending on the degree of the immune response against the antigen and the diversity of 

the B-cell clones. In previously published papers we showed that it is possible to detect CDRs 

of specific immunoglobulins at these levels18, 26 and in particular, by our recent paper.36 In 

this paper, we showed that specific CDR peptides of a spiked antibody could be detected at 

attomole levels which were 5 orders of magnitude lower than the total IgG serum.

In conclusion, we have demonstrated that molecular dissection of IgG into kappa and lambda 

fragments is a valuable addition to Fab purification. Molecular dissection of IgG into kappa 

and lambda fragments identifies significantly more CDRs than Fab purification alone. This 

approach will increase the likelihood of finding lung cancer-related CDR sequences.
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Abstract

Late diagnosis of lung cancer is still the main reason for high mortality rates in lung cancer. 

Lung cancer is a heterogeneous disease which induces an immune response to different 

tumor antigens. Several methods for searching autoantibodies have been described that 

are based on known purified antigen panels. The aim of our study is to find evidence that 

parts of the antigen-binding-domain of antibodies are shared among lung cancer patients. 

This was investigated by a novel approach based on sequencing antigen-binding-fragments 

(Fab) of immunoglobulins using proteomic techniques without the need of previously known 

antigen panels. From serum of 93 participants of the NELSON trial IgG was isolated and 

subsequently digested into Fab and Fc. Fab was purified from the digested mixture by SDS-

PAGE. The Fab containing gel-bands were excised, tryptic digested and measured on a nano-

LC-Orbitrap-Mass-spectrometry system. Multivariate analysis of the mass spectrometry data 

by linear canonical discriminant analysis combined with stepwise logistic regression resulted 

in a 12-antibody-peptide model which was able to distinguish lung cancer patients from 

controls in a high risk population with a sensitivity of 84% and specificity of 90%. With our 

Fab-purification combined Orbitrap-mass-spectrometry approach, we found peptides from 

the variable-parts of antibodies which are shared among lung cancer patients.
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Introduction

Lung cancer is currently the most common cancer with the highest mortality rate (28%) in 

the World due to diagnosis at an advanced stage.1, 2 However, with the demonstration of 

a 20% lung cancer mortality reduction by the NLST trial (National Cancer Screening Trial) 

low dose CT screening for lung cancer is receiving increasing interest.3 The NELSON trial 

(Dutch-Belgian lung cancer screening trial) showed that after three screening rounds 3.6% of 

all participants of this study had a false-positive screen result.4 Although, still approximately 

27% of the participants were subjected to invasive procedures that revealed benign lung 

diseases at baseline screening (first round NELSON trial).5 A good biomarker (panel) will 

reduce this number of unnecessary invasive procedures. At the moment selection of high 

risk individuals for screening is done by age and smoking history. A biomarker or biomarker 

panel would be helpful in selecting high risk individuals for CT screening as this may detect 

lung cancer at an earlier stage than CT.

Antibodies can be interesting as markers for distinguishing lung cancer patients from lung 

cancer-free individuals. These antibodies are produced by the immune response that target 

specific tumor-associated antigens (TAAs) during cancer development, probably at an early 

stage.6-12 Recently Liu et al. showed that the concentration of circulating IgG autoantibodies 

against ABCC3 transporter was significantly higher in female adenocarcinoma patients than 

in female controls.13

Human antibodies consist of four chains, two identical heavy chains and two identical light 

chains. Each light chain has a variable (VL) and constant (CL) domain. The heavy chains have 

three different constant domains (CH1, CH2 and CH3) and a variable domain (VH). The first 

constant and variable parts form the antigen binding fragment (Fab). The remaining two 

constant parts of the heavy chain form the Fc region. Within the Fab six complementarity 

determining regions (CDR1, CDR2 and CDR3) are located between frameworks. These CDRs 

determine the antigen specificity and form a surface complementary to a shape that is part of 

the antigen. CDRs are hypervariable regions of the antibody.14 Antibodies, or immunoglobu-

lins, are highly complex molecules with large variation in their amino acid sequence. The 

possible diversity in immunoglobulins is estimated between 1013 and 1050 and therefore the 

finding of similar or even identical sequences in different individuals by chance is in theory, 

highly unlikely.14, 15 However, studies of different research groups have recently demonstrated 

that despite this theoretical small chance to have identical antibodies among individuals, it is 

possible to identify similar or identical sequences.16-19 A study performed by us showed that 

in PNS (paraneoplastic neurological syndrome) patients identical mutated primary amino acid 

sequences of complementarity determining regions (CDRs) exist. These CDRs are specific for 

known onconeural antigens, such as HuD and Yo in PNS patients, and most interestingly 

were shared between different PNS patients.20
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The aim of this study is to find evidence that specific antibody peptides are shared between 

lung cancer patients in contrast to lung cancer-free individuals. As lung cancer is a hetero-

geneous disease and with the variability of an antibody it might be a challenge to detect 

identical tumor-related antibodies in serum. We experimentally test the hypothesis that spe-

cific highly variable regions of an antibody including complementarity determining regions 

(CDRs) can be shared between lung cancer patients. Our experimental approach to verify this 

hypothesis is based on sequencing antibody peptides by mass spectrometry. Measurement of 

serum by a mass spectrometer might be too complex due to the high variability as mentioned 

above. Purifying IgG Fab from serum will reduce the complexity of the sample from a lung 

cancer patient and will give the possibility to focus on pure antibody fractions.

Materials and Methods

Ethics and legal approval

The NELSON trial was approved by the Dutch Health Council, the Minister of Health and 

by the Medical Ethical Committees of all participating centers (clinical trial number IS-

RCTN63545820). All participants for this study provided written informed consent for the 

use of their serum samples. The donor of the reference sample used throughout this study 

provided written consent for the use of his/her serum for scientific purposes according to the 

guidelines of the Blood Bank Sanquin, Rotterdam, the Netherlands.

NELSON trial

The NELSON (Dutch-Belgian Lung Cancer Screening trial) trial has started recruitment in 

2003 by sending questionnaires to 548,489 males and females between 50–75 years of 

age. Participants had to be current or former smokers for at least 25 years, smoking at least 

15 cigarettes per day or smoking at least 30 years, smoking at least 10 cigarettes per day. 

From the 548,489 males and females 15,822 participants were included in the trial. These 

participants were randomized to a screen or control arm. The screening arm received CT 

screening in years 1,2 and 4. The control arm received no screening (usual care). Participants 

with a positive test result were referred to a pulmonologist. If the diagnosis lung cancer was 

established the patient was treated and went off screening. Participants with an indetermi-

nate test result underwent a follow-up scan three months later. If a negative test result was 

obtained the second-round CT scan was scheduled for 12 months later.5, 21

Study population

For this study, we selected 44 lung cancer cases and 49 controls (Supplementary Figure S1) 

from the NELSON lung cancer screening trial.5, 21 For the cases of the discovery set, NELSON 

1, only early stage (I and II) squamous cell (n = 4) or adenocarcinomas (n = 21) were selected. 
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They were carefully matched to the controls by age, gender, smoking status, duration and 

number of cigarettes smoked per day, chronic obstructive pulmonary disease (COPD) status, 

asbestos exposure and site of blood sampling (Supplementary Table S1). The selection criteria 

for the cases of the NELSON 2 (validation) set (n = 19) were similar, except that all non-small 

cell histology’s and disease stages were allowed (Supplementary Table S1) in order to chal-

lenge the results of the discovery phase. On purpose the clinical characteristics of the control 

patients are dissimilar with the NELSON 1 set in respect to smoking and COPD. Therefore, 

this NELSON 2 set is not matched with the NELSON 1 set. By using a validation sample set 

(NELSON 2) chosen in this way, the robustness of the method can be determined. Serum 

samples were collected for both NELSON 1 and NELSON 2 obtained from baseline CT screen-

ing (first round).

IgG Fab purification and nano-LC Orbitrap MS analyses

Prior to all sample preparation procedures, all samples were blinded and the key for unblind-

ing was put at the database coordinator of the NELSON trial. IgG Fab purification and nano-

LC Orbitrap MS analyses were performed according to the method described before.22 In 

brief, IgG was isolated from serum and digested into Fab and Fc (Figure 1). The Fab part was 

isolated from the digested mixture by SDS-PAGE. The Fab containing gel bands were excised 

and tryptic digested. A blank piece of gel that was not loaded with protein was excised and 

treated like the excised Fab bands for background assessment.

Figure 1. Flow-chart of the method and analysis used. In this flow-chart the different steps in Fab purification, 
Fab measurement and data analysis are illustrated. In yellow the Fab purification is shown, in blue the mass 
spectrometry measurement, in green the data analysis and in pink the statistical analysis.
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LCMS measurements were performed on an Ultimate 3000 nano LC system (Thermo Fisher 

Scientific/Dionex, Amsterdam, the Netherlands) online coupled to a hybrid linear ion trap/

Orbitrap MS (LTQ Orbitrap XL; Thermo Fisher Scientific, Bremen, Germany). Four µL of the 

digested Fab was loaded onto the system. For further settings and solutions we refer to 

previous published work.22 All samples were randomized before measurement and were 

measured in batches of 11 samples including a reference sample. A reference sample was 

used as a quality control for each measurement and analysis step. A blank sample was run 

at the start and end of the measurement to determine background and the existence of 

carry-over during chromatography.

Data Analyses

Raw data files were loaded into the software Progenesis (Figure 1) (Version 3.1; Nonlin-

eair Dynamics Ltd, New Castle, UK) and processes as described previously.22 In addition, 

we performed a Progenesis analysis where instead of detecting features (peptide masses 

(m/z)) in all the samples at the same time by the software program, feature detection was 

performed individually per sample. Features picked thereby were matched to the Progenesis 

result table containing all samples with a mass tolerance of 5 ppm. This was of advantage, 

since often features occur with low intensities in one sample and are subsequently matched 

by Progenesis in all other samples. This result in errors related to background if one takes 

the respective mass spectra into account. With this relative small adjustment it ensures that 

a feature is detected more accurately throughout the samples. The data acquired by this 

approach was filtered using the same default settings.22 A separate data matrix for every case 

and control was generated consisting of all features with corresponding raw abundance and 

retention time. To generate one large data matrix that includes all cases and controls from 

these separate data matrices, we searched masses from the separate data matrices per case 

or control in the complete data matrix generated from the standard Progenesis analyses. 

Every mass had to meet three criteria: 1) m/z (±5 ppm), 2) retention time (±1 min) and 3) 

identical charge. If a mass met these three criteria the raw abundance from the complete 

matrix (generated by a general procedure22 recommended by the manufacturer) was used. If 

a mass did not meet these criteria a zero was generated for the raw abundance.

MS/MS spectra were extracted from raw data files and converted into Mascot compatible 

files using extract-msn (part of Xcalibur version 2.0.7, Thermo Fisher Scientific Inc.). Mascot 

(version 2.3.01; Matrix Science Inc., London, UK) was used to perform database searches 

against the human subset NCBInr database (version March 11th, 2009; Homo sapiens species 

restriction; 222,066 sequences) of the extracted MS/MS data (Figure 1). Database (NCBInr) 

dependent peptide identification and de novo sequencing results (software PEAKS; Version 

5.2; Bioinformatics Solutions Inc., Waterloo, Canada) were also included in the Progenesis 

provided matrix. For settings used for the database search and de novo sequencing we refer 

to previous published work and methods S1.22 For de novo sequences so far not known from 
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a database, the Peaks software identifies a leucine for the isobaric amino acids leucine and 

isoleucine. Database dependent peptide identification results or de novo sequencing results 

were included in the matrix based on the highest peptide identity score (Data S1, Data S2 and 

Data S3). All peptide sequences from the cases and controls identified by Mascot or PEAKS 

were subsequently aligned to databases containing V, D, J or C-region germline sequences 

derived from IMGT database (IMGT, the international ImMunoGeneTics information system 

http://www.imgt.org) using the BLAST algorithm (Figure 1).23 Peptides with sufficient match 

(bitscore ≥12.5 and alignment score ≥70%) to the V-region database were assigned to a 

position on the immunoglobulin molecule with varying CDR lengths.

Raw data files of the reference samples of each data set were separately loaded into the 

software Progenesis and followed the standard procedures as mentioned above. To deter-

mine the proportion of variation between the reference sample measurements performed 

on different time points, median r-squares were calculated for each sample. Each sample 

was compared to all the other reference samples measured in that dataset and a median 

r-square was calculated for each sample. The comparison was based on the raw abundance 

of each feature. This was performed separately for both independent datasets, NELSON 1 

and NELSON 2.

To determine the proportion of variation (Figure 1) between the samples (cases and controls) 

of the two separate datasets, the same calculations were performed as described above for 

each case and control sample. This analysis was performed separately for the two datasets. 

Based on the distribution of the median r-squares of each sample, we decided to set a 

cut-off at r-square >0.70. The cases and controls that obtained a median r-square below 0.70 

were excluded from the dataset and further analyses. Calculations were conducted using 

Microsoft Excel 2007.

Statistical Analysis

Two independent data sets have been used, NELSON 1 and NELSON 2. The initial step in the 

statistical analysis consisted of testing for normality using skewness and kurtosis distribution 

characteristics on the intensity of the raw abundance of the features.24

Subsequently, univariate analysis was performed, applying either an unpaired t-test (para-

metric) or a Mann-Whitney U-test (non-parametric) to detect significant differences in raw 

abundance between cases and controls in the NELSON 1 set.25 The significance limit was set 

at 0.05 (two-sided). All identified features that were found significantly different were used 

for the selection of features to distinguish lung cancer patients from controls.

Secondly, we used for multivariate analysis only the significantly identified features that had 

≥2 triggered MS spectra. We applied a multivariate analysis on features fulfilling these criteria 

with a (logistic) stepwise regression model (y = a1×1 + a2×2 + a3×3….anxn + c) in combination 

with canonical linear discriminant analysis.26, 27 This resulted in a combination of features with 

high sensitivity and specificity in the NELSON 1 dataset. This combination of features was 
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then tested in the NELSON 2 dataset using the same methodology as described above.26, 27 

Note that for the NELSON 2 dataset it was necessary to optimize the coefficients in the model 

equation in order to optimize the sensitivity and specificity in the NELSON 2 dataset.

To avoid a random-error effect in modeling, we verified the statistical background of the 

combination of features in a permutated dataset. The background evaluation consisted of 

the same workflow as used for the model building, except that at the beginning the assign-

ment of cases and controls of NELSON 1 were permutated (Figure S2). This permutation was 

performed twelve times and the results obtained were tested for significance against the 

model outcome by z-test (one-sided; p<0.05). Since model building was based on the data 

as provided in NELSON 1 after which validation of this model was done using the data in 

NELSON 2, the same approach was taken after each individual permutation. Also here, note 

that for NELSON 2 dataset the coefficients in the model equation were optimized.

All analyses on model building, validation and background evaluation were done using 

STATA, version 12 (StataCorp, Texas, US). Throughout the study, using two-sided testing 

(except for one-sided testing for Z-values), p-values of 0.05 or lower were considered to be 

statistically significant. Statistical analyses of the data shown in Table S1 were generated by 

SPSS (IBM SPSS Statistics 20). The time to cancer was generated by calculating the interval 

between blood sampling and diagnosis for each case.

Results

Clinical characteristics of the study population

There was no significant difference in the clinical characteristics between the cases and 

controls in the NELSON 1 set (Table S1). In the NELSON 2 set, current or former smoker and 

COPD status differed significantly between cases and controls (Table S1). In 72% and 84% 

of the cases of the NELSON 1 set, and NELSON 2 set, respectively, the time interval between 

blood sampling and lung cancer diagnosis was between 0–1.5 years. The median follow-up 

duration after blood sampling was for the control population 1925 days (range 1075–2086 

days) and 1861 days (range 347–2135) in the NELSON 1 set and NELSON 2 set, respectively. 

None of the controls developed lung cancer during the follow-up period.

Technical Variation

During the mass spectrometry measurements of the biological samples we measured a refer-

ence sample at different time points. R-square values were calculated from the abundances 

of identified proteins in each reference measurement to show technical reproducibility. The 

lowest r-square value observed in the different measurements ranged between 0.84 and 

0.93 (Figure 2).
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We performed the same r-square calculation for 5 random biological samples taken from the 

NELSON 1 set that were measured on two different LC-columns (same batch) at different 

time points. The technical reproducibility within each column resulted in lowest r-square val-

ues ranging from 0.75–0.93, but the technical reproducibility of the five biological samples 

measured on two independent similar columns was lower. For the two independent similar 

columns a median r-square of 0.52 was observed. In Figure 3 the correlation between each 

sample and between columns are shown.

In Figure 4A the retention times are shown for peptides identified with high confidence 

(Mascot score >60) in the Reference samples measured concurrently with both NELSON 1 

and NELSON 2. This Figure shows that column performance was comparable between the 

two different LC columns for these abundant peptides (r-square 0.996). In addition, the 

abundances observed for these peptide also correlated well (Figure 4B; r-square 0.995). This 

suggests that both chromatography and mass spectrometry performed nominally, at least 

for peptides identified with high confidence at relatively high abundance. Thus, the technical 

variation we see primarily stems from peptides at lower abundances, closer to the detection 

limits (Figure S3).

An estimation of the biological variation was performed and resulted in a median r-square of 

0.43. This result was much lower than the lowest r-square (0.84) observed for the technical 

variation. Therefore, the biological variation is higher compared to the technical variation.

These results show that technical variation should be taken into account and adjustment 

is needed for comparison of independently measured sample sets since the NELSON 1 and 

Figure 2. Technical reproducibility of replicate measurements of the reference sample. Reference sample mea-
sured at different time points during measurement of the NELSON 1 sample set. A replicate of the reference 
sample (x-axis) was compared to each other replicate sample based on the raw abundance of each feature. An 
r-square value was calculated. Each dot represents an r-square (y-axis) value for the comparison of that specific 
replicate with another replicate. For each replicate the average r-square and standard deviation (SD) is shown.
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NELSON 2 dataset were measured on two different columns at different time points. To 

overcome this technical variation, we applied a number of filters on the data before we could 

start a data analysis as described in the Material and Methods section.

With this data we performed separate univariate analysis on all peptides found in cases and 

controls from the separate NELSON 1 and NELSON 2 data set. We were able to observe 

49 peptides that were significantly different between cases and controls in the NELSON 1 

dataset. However, these peptides, with one exception, did not show this difference in the 

NELSON 2 dataset. There was no trend observed (r-square 0.004) in p-values for the two 

datasets. Therefore, testing univariately in this manner was either not the right analysis strat-

Figure 3. Technical reproducibility of five biological samples measured on two different columns at different 
time points. This dendrogram shows the correlation between five different biological samples measured on two 
different columns from same batch, column 1 and column 2 (y-axis). On the y-axis the five different samples 
are shown. Sample 1–5 are measured on column 1 and 6–10 are measured on column 2. Sample 1 and 6 are 
from the same individual. This also applies for sample 2 and 7, 3 and 8, 4 and 9 and 5 and 10. On the x-axis the 
Euclidian distance between each sample is shown. A strong correlation per column is found.
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egy or the process generated randomly selected features (chance). Therefore, the significant 

peptides from NELSON 1 were analyzed as a next step in a multivariate way.

Antibody Peptide Model

An optimal combination of 12 peptides was identified by the multivariate statistics used on 

the NELSON 1 set (discovery set). This combination of peptides could distinguish lung cancer 

patients from controls with sensitivity and specificity of 96% and 100%, respectively. This 

antibody peptide model was able to detect lung cancer 373 days on average (range 39–1193 

days) before the diagnosis was determined. In Figure 5 we show that the combination of 

the 12 peptides was able to distinguish cases from controls. The 12 peptides corresponded 

to 1 sequence overlapping with the CDR2 region, 1 sequence overlapping CDR3 region, 

7 sequences overlapping the Framework 1 region and 3 sequences overlapping with the 

Framework 3 region according to the IMGT database (Table 1).

We performed an external validation in the NELSON 2 (validation) set. When we applied 

the same 12 peptide model to this set, cases and controls could no longer be distinguished. 

However, with the same peptides but after re-optimization of the model coefficients, we 

observed a sensitivity and specificity of 84% and 90%, respectively. As the coefficients of the 

equation are adjusted we had to check for the chance of overfitting of the data. Therefore, 

a background evaluation was performed which will be described later. Within the NELSON 

2 validation set the combination of peptides was able to detect lung cancer 281 days on 

average (range 54–777 days) before the diagnosis of lung cancer.
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Figure 4. LC-MS performance for high abundant peptides in NELSON 1 and NELSON 2. For Reference samples 
that were measured during both NELSON 1 and NELSON 2, we compared peptides that were identified with 
high confidence by a Mascot search with a score of more than 60 in both sets. For this subset of peptides, we 
compared the retention times observed in NELSON 1 and NELSON 2 (A) and also their abundance (B). For these 
parameters we observed r-square values of 0.996 and 0.995, respectively.
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We compared the raw abundance of the 12 peptides between the two NELSON datasets. We 

observed that the average raw abundance of five peptides was higher in the cases compared 

to the average abundance of the controls from the NELSON 1 dataset. These data were 

consistent with the findings from the NELSON 2 dataset The other seven peptides had a 

higher average raw abundance in the controls of the NELSON 1 dataset compared to the 

abundance in the cases of this dataset. For only one of these seven peptides, this difference 

could be confirmed in the NELSON 2 dataset.

Background evaluation of antibody peptide model

In addition to the finding of the optimal combination of peptides which significantly dis-

tinguished cases from controls, a background analysis was performed. As the coefficients 

of the equation of the model were adjusted for each dataset we verified the results for a 

contribution of random selection of the data and thereby the chance of finding a comparable 

model by chance. The same workflow was applied for the model building except that at the 

beginning of the workflow the cases and controls of NELSON 1 were permutated at random 

Figure 5. Distribution of the antibody peptide model outcome of the NELSON 1 and NELSON 2 sets. The raw 
abundances are filled-in in the model equation (y= a1x1 + a2x2 + a3x3 …..anxn + c) of the relevant sample set. On 
the y-axis (in arbitrary units) the figures generated by the equation are shown.
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(Figure S2). Discovery was performed in the 12 times permutated NELSON 1 datasets, each 

time with 12 different peptides showing the lowest p-value (p<0.05) in the NELSON 1 set 

for that particular permutation. Validation of these models was performed in NELSON 2. 

The performance of the multivariate model of the permutated discovery sets (NELSON 1) is 

shown in Figure 6A (black dots) where the sensitivity is plotted against the specificity. The 

corresponding power in the validation sets (NELSON 2) is shown in Figure 6B (black dots). 

Thus, each point in Figure 6A (black dot) corresponds with a point (black dot) in Figure 6B. 

Also, the performance found for the actual datasets in which the antibody peptide model 

was found is plotted (red dot). It can be observed that the multivariate fitting from the per-

mutated datasets produces reasonable models even for permutated data in the discovery set.

However, especially in the validation datasets, the real data (antibody peptide model) 

performed significantly better (p<0.05) than the permutated datasets, suggesting that the 

immunoglobulin peptides harbor information related to the disease state of the patient. 

Thus, the results we obtained do not stem from an artifact in the data processing.

CT Screening Result in NELSON 1 and NELSON 2 Dataset

In Figure 7A and 7B the screening results of the baseline CT scans are shown for the NELSON 

1 and NELSON 2 set, respectively. According to the screening protocol of the NELSON trial, 

a repeat CT scan was performed following an indeterminate screening result, approximately 

3 months later.
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Figure 6. Background determination in NELSON 1 and NELSON 2 datasets. Twelve times a permutation (Back-
ground) was performed on the NELSON 1 and NELSON 2 dataset. The sensitivity and specificity of the antibody 
peptide model are shown in red. Background assessment: A) Twelve permutation runs are shown with the 
corresponding sensitivity and specificity of the NELSON 1 dataset (black). The same 12 peptides found in the 
background evaluation of NELSON 1 were tested in NELSON 2. B) The 12 runs are shown with the correspond-
ing sensitivity and specificity of NELSON 2 dataset (black). Note, as some results of the background analysis 
occurred more than once, a random number between -1 and 1 were added to each sensitivity and specificity 
number to make sure each analysis (black dot) can be seen in the figure.
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We observed that 68% of the cases had a positive screening result in both the NELSON 1 and 

NELSON 2 set during the first 3 months of the screening program, the other lung cancers 

were diagnosed following another repeat CT scan after 3 months or during the second 

screening round. After on average 367 days (range 39–1193 days) for NELSON 1 and 269 

days (range 54–777 days) for NELSON 2, the screening result was positive, i.e. suspect for 

lung cancer and resulting in clinical work-up by the pulmonologist and eventually finally 

diagnosis of lung cancer.

Figure 7. CT scan results of the NELSON 1 and NELSON 2 sample set. CT scan results of the A) NELSON 1 and B) 
NELSON 2 sample sets are shown at time of blood sampling (Baseline). Also, CT results are shown of the follow-
up CT scan after approximately three months (Follow-up). For one case from the NELSON 1 set no Follow-up CT 
scan result was available. The last row represents the numbers of positive, indeterminate and negative CT scan 
results of baseline including follow-up results.
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Discussion

By mass spectrometry we found evidence that a proportion of peptides of the variable part 

of antibodies differ between lung cancer patients and controls. A combination of 12 dif-

ferent peptides was able to distinguish lung cancer patients from controls in a high risk 

population. A sensitivity of 96% and a specificity of 100% were observed in the discovery 

set. An external validation in an independent case–control set was performed and generated 

a sensitivity of 84% and a specificity of 90%. The background evaluation showed that the 

12 antibody peptide model performed significantly better than a model generated based on 

permutated data.

Recently, Arentz et al. published that uniquely mutated V regions peptides could be used as a 

proxy for the detection of anti-Ro52 autoantibodies in sera from primary Sjögren’s syndrome 

patients by mass spectrometry.28 Why these and other studies were able to identify similar 

or identical sequences could be explained by repertoire bias and the convergent evolution 

of antibodies during somatic mutation and selection.19, 20 This selection favors specific alleles 

and sequences of antibodies with the optimal affinity towards the specific antigens during 

immune response18, 29, 30

We were able to identify peptide sequences which were distributed differently between 

lung cancer patients and controls. The antibody peptide model consisted not only of peptide 

sequences positioned at the CDR regions of an immunoglobulin but also at the framework 

region surrounding the CDRs. It may appear surprising that most of the peptides that are 

represented in the antibody peptide model derive from framework regions of the immuno-

globulin, rather than from the hypervariable CDRs. This may be explained by their abundance 

in the immunoglobulin pool. Peptides carrying only few mutations relative to the germline 

are more likely to occur in several antibody clones, and thus have a higher abundance. This 

favors their detection by the mass spectrometer, especially in samples of high complexity. 

While technological advances may enable the reliable quantitation of also lower abundant 

peptides, it may even be that hypermutated CDRs are not as likely to be common among 

patients sharing an immune response. But moderately mutated peptides strike the best bal-

ance between specificity, abundance and sharing for the purposes of a diagnostic marker. 

The large heterogeneity of lung cancer could also contribute to the presence of fewer CDR 

peptides shared between lung cancer patients.

We observed that the average raw abundance of 6 from the 12 peptides was distributed dif-

ferently in the cases versus controls between the two datasets. The average raw abundance 

of these six peptides was higher in the controls in the NELSON 1 set but in the NELSON 2 

set the average raw abundance was higher in the cases. This may be due to the increased 

technical variation we observed for lower abundance peptides between the sets that were 

measured some time apart on different LC columns. While the system operated nominally 
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for abundant peptides, possibly the performance close to the detection limit cannot be held 

constant over time, affecting reliable detection and quantification of such peptides.

For our validation set, NELSON 2, we used all disease stages in contrast to NELSON 1. In 

NELSON 1 we only used early stage I and II. Using different stages of lung cancer could also 

contribute to the average raw abundance discrepancies between NELSON 1 and NELSON 2. 

It could be that tumor-specific antibodies are more abundant in sera from early stage lung 

cancer patients compared to late stage lung cancer patients. We repeated our data analysis 

for cohorts that were a mixture of NELSON 1 and -2 data. While this reduced the clinical 

differences between the Discovery and Validation sets, advantages from this improvement 

were outweighed by the technical differences between the samples. While similar trends 

were observed, they were not as strong as those shown in Figure 6 (Figure S4).

We also have to cope with the high variability of immunoglobulins, which make the samples 

probably too complex for the mass spectrometer. A solution to this problem could be reduc-

tion of the complexity of the sample before it is measured on the mass spectrometer. This 

reduction could be established by fractionation into smaller protein fragments such as Fab-κ 

and Fab-λ, or by producing immunoglobulin fragments containing just the variable domains 

of the IgG molecule.

It was our aim to offset biological variation by including a relatively large number of patients 

in this study, but unfortunately large sample numbers translate to extended measurement 

times of up to 8 weeks for a dataset. These measurement times introduce technical variation 

that counteracts the advantage gained from the number of included patients.

We were not able to distinguish lung cancer cases from controls univariately by one peptide. 

Instead we needed a panel of different peptides to discriminate significantly between cases 

and controls. Lung cancer is a very heterogeneous disease which results in high variability 

between patients and cancer types. This might induce various immune responses to different 

tumor antigens. Therefore, finding only one antibody that is shared between all lung cancer 

patients is highly unlikely. Brichory et al. for instance showed for PGP 9.5, annexin I and II a 

sensitivity of only 14%, 30% and 33%, respectively.31, 32 Chapman et al. tested a panel of 

seven TAAs and found a sensitivity of 41% and a specificity of 93%. Validation of this panel 

in an independent sample set showed a sensitivity and specificity of 47% and 90%, respec-

tively.33 Koziol et al. were able to distinguish lung cancer patients from normal individuals 

with a panel of seven TAAs. A sensitivity of 80% and a specificity of 90% were observed, 

but no validation was performed.34 Moreover, Khattar et al. and Zhong et al. were able 

to identify validated autoantibody peptide panels for lung cancer screening with sensitivity 

and specificity ranging from 84%–91% and 73%–91%, respectively.35, 36 It is therefore not 

surprising that no single peptide could be found in the current data set that distinguishes 

cases from controls.

Using a multivariate model, we were able to distinguish lung cancer patients from con-

trols. However, due to the experimental and biological variation, it was necessary that we 
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recalibrated our model for each group of patients. This limits the current applicability of 

the method in the clinical practice, at least until significant technical advances enable a 

more robust quantification and identification of peptides in such complex samples. Still, we 

conclude from our data that differences exist between the immunoglobulin-derived peptides 

from early lung cancer patients and controls. This is corroborated by data from earlier stud-

ies in our own group as well as in other research groups that showed conservation and 

sharing of rearranged immunoglobulin sequences in immunoglobulins against a particular 

antigen.19, 20, 28

So far, only age and smoking history have been used as selection criteria for enrolment in 

screening trials, but it is well known that even though over 80% of all lung cancer cases are 

directly related to smoking, only 11% of female smokers and 17% of male smokers will be 

diagnosed with lung cancer during their lifetimes.37, 38 Therefore, additional diagnostic tests 

might select high risk individuals more precise when combined with the selection criteria 

age and smoking history in screening trials. The cases and controls we used for this study 

were selected based on their diagnosis of lung cancer within three years (range 39–1193 

days) after the baseline CT scan. Therefore, calculation of sensitivity and specificity of CT 

screening in our subset of cases and controls from the NELSON trial are not applicable in 

this retrospective study. However, in this study we have demonstrated that 68% of the cases 

were detectable for lung cancer by CT screening. At the same time point the CT scan was 

performed, the antibody peptide model was able to detect lung cancer in 96% and 84% of 

the cases in the NELSON 1 and NELSON 2 set, respectively. Eventually after approximately 1 

year the screening result of all cases were positive by CT screening.

In the high risk population of the NELSON trial still approximately 27% of the participants 

are subjected to invasive and expensive follow-up studies that revealed in benign disease 

at baseline CT screening.5 The performance of CT improves after follow-up scans, but only 

after an amount of time has passed, on average a year for the sets in this study. Thus, there 

is need for additional diagnostic capabilities that can improve the performance of the current 

testing at baseline. For example, the group of Massion recently published their results on a 

combination of a serum proteomic biomarker panel with clinical and CT data.39 In the current 

study, we were able to detect lung cancer with an antibody peptide model in the NELSON 1 

and NELSON 2 set with sensitivities of 96% and 84% and specificities of 100% and 90%, 

respectively at an early stage. This indicates that specific antibodies are present at an early 

disease stage and that such a panel of antibodies is able to detect lung cancer at an earlier 

stage than CT. Auto-antibody profiling has the potential to be a tool for early detection when 

incorporated into a comprehensive screening strategy if technical challenges described in this 

study can be overcome.

In conclusion, a panel of antibody peptides is identified that discriminates samples of lung 

cancer patients from controls. This is a first indication that peptides generated from the 

variable part of antibodies are shared between lung cancer patients and can be used to 
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discriminate lung cancer patients and control groups. More quantitative work is still needed 

to assess the use of these peptides in clinical settings.
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Supplementary Data

Figure S1. Study Flow-chart. A flow-chart diagram of the samples used in this study. NSCLC: Non-small cell 
lung carcinoma.



82

Figure S2. Statistical analysis flow-chart. Before background analysis is performed, cases and controls of the 
NELSON 1 dataset are shuffled randomly.

Figure S3. Variation at different abundances. The 
abundances of all peptides in the reference sample 
compared in data from the Nelson-1 and Nelson-2 
datasets. Superimposed, the subset of peptides that 
was identified with high confidence, as plotted in Fig-
ure 4B, has been superimposed in red.
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Figure S4. The performance of the prediction model was tested in Training and Testing sets, for both real data, 
and data in which the assignment of cases and controls had been randomized. This approach is the same as in 
Figure 6, except that each set was composed of samples drawn from a combination of both the Nelson-1 and 
Nelson-2 sets. We assessed three such combinations, and four permutations
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Abstract

The high mortality rate in lung cancer is largely attributable to late diagnosis. Case-control 

studies suggest that autoantibodies to the survivin protein are potential biomarkers for early 

diagnosis. We tested the hypothesis that sandwich ELISA can detect autoantibodies to sur-

vivin before radiological diagnosis in early-stage non-small-cell lung cancer (NSCLC) patients. 

Because previous studies assayed survivin autoantibodies with the direct antigen-coating 

ELISA (DAC-ELISA), we first compared that assay with the sandwich ELISA. Based on the more 

robust results from the sandwich ELISA, we used it to measure survivin autoantibodies in the 

serum of 100 individuals from a well-controlled population study (the Dutch-Belgian lung 

cancer screening trial (NELSON) trial) composed of current and former smokers (50 patients 

with NSCLC, both before and after diagnosis and 50 matched, smoking-habit controls), and 

another 50 healthy non-smoking controls. We found no difference in specific autoantibodies 

to survivin in NSCLC patients, although non-specific median optical densities were 24% 

higher (p<0.001) in both NSCLC patients and smokers, than in healthy non-smokers. Finally, 

we confirmed the ELISA results with western blot analysis of recombinant and endogenous 

survivin (HEK-293), which showed no anti-survivin reactivity in patient sera. We conclude 

that specific anti-survivin autoantibody reactivity is most likely not present in sera before or 

after diagnosis. Autoantibody studies benefit from a comparison to a well-controlled popula-

tion, stratified for smoking habit.
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Introduction

Long-term survival in lung cancer depends mainly on early detection and immediate start of 

treatment of the tumor.1 During tumor development, tumor-antigen expression elicits cellular 

and humoral immune responses.2-4 Identifying autoantibodies to tumor-associated antigens 

(TAAs) is thought to be a promising method of early lung cancer diagnosis,5-8 especially 

because these autoantibodies have been found up to 5 years before CT detection.9, 10

Antibodies to survivin are one of the autoantibodies described most frequently in lung 

cancer.5, 11-18 Survivin, also known as baculoviral IAP repeat-containing protein 5 (BIRC5), 

is a member of the inhibitor apoptosis proteins (IAP) family. It promotes cell proliferation 

and inhibits apoptosis, thereby favoring the growth and progression of transformed cells 

and tumors. Although survivin is abundantly expressed in fetal cells, transformed cell lines 

and various tumors, it is undetectable in most normal, differentiated adult tissues.19 If over-

expressed in lung cancer, it may lead to antibody responses to this protein. Various studies 

have compared amounts of survivin autoantibodies in lung cancer patients and healthy 

blood-donor control subjecst; the presence of antibodies against survivin in lung cancer sera 

collected after diagnosis was reported to range between 8%16 and 58%.15

In our institute a well-controlled multi-center population study was conducted aiming at 

early detection of lung cancer with specific emphasis on smoking habit, the NELSON trial.20, 21 

We wanted to test the hypothesis that,in this population, anti-survivin autoantibodies are 

detectable before the radiological diagnosis of NSCLC and establish how these autoantibod-

ies may emerge over time in the disease. For that purpose, we collected NSCLC-cases from 

the NELSON trial with well-matched controls to the NSCLC cases, subdivided into individuals 

who currently smoking or were former smokers. In addition, we included late-stage NSCLC 

patients from the Dutch Association of Pulmonologists for Lung Diseases and Tuberculosis 

(NVALT)-12 study22 and a control group of generally healthy blood donors, similar to that 

used in the publications on survivin autoantibodies.5, 11-18

All published studies on survivin autoantibodies in lung cancer have used the direct antigen-

coating (DAC) form of an ELISA with a recombinant survivin.5, 11-18 However, the DAC-ELISA 

assay can give false-positive results if antibodies bind to impurities in the antigen preparation. 

In our study we therefore chose to assess the presence of autoantibodies to survivin with 

the sandwich-ELISA. In this assay, a highly specific capture antibody is absorbed to the solid 

phase and incubated with an antigen solution. Only autoantibodies to survivin are then 

detected in the serum samples. At the cost of less signal, this greatly increases the specificity 

of the assay.
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Materials and Methods

Subjects

We obtained serum from 50 NSCLC cases (82% adenocarcinoma; 90% stage I/II) before and 

after diagnosis and from 50 smoking-habit controls drawn from current and former smokers 

in the NELSON trial, as described previously20, 21 Smoking-habit controls were matched to 

the NSCLC cases for age, gender, smoking status, smoking duration, number of cigarettes 

smoked per day, chronic obstructive pulmonary disease (COPD) status, asbestos exposure, 

and blood collection center (Supplementary Table S1). For the reference population, serum 

was derived from 50 healthy non-smoking blood donors of the Sanquin Blood Supply Rot-

terdam. These non-smoking controls were matched to cases and smoking-habit controls for 

age and gender (Supplementary Table S1). From the NVALT-12 study we obtained baseline 

serum from 20 patients (10 males and 10 females; 6 current smokers; 12 former smokers; 2 

non-smokers; mean age 63.2 ± 9.1 years) with stage IV NSCLC (80% adenocarcinoma; 20% 

large cell carcinoma). From Sanquin Blood Supply Rotterdam we obtained seven independent 

serum samples from healthy non-smoking controls with a normal serum IgG (mean 10.5 ± 

1.78 g/L). Professor Anastasios E. Germenis16 made available nine serum samples labeled 

positive for anti-survivin antibodies by the DAC-assay from NSCLC patients (8 males and 1 

female, mean age 57.6 ± 8.0 years) in his laboratory. Upon diagnosis, these patients—part of 

a cohort of 117 NSCLC patients (108 males and 9 females, mean age 64.2 ± 9.3 years)—had 

been shown by DAC-ELISA to have higher anti-survivin antibody levels than 100 healthy, 

age- and gender-matched individuals (99 males and 1 female, mean age 68.2 ± 5.8 years).

For all human samples, a medical ethical statement according to the Declaration of Helsinki 

was given by the METC Erasmus MC Rotterdam. Written informed consent was obtained 

from all participants for the use of their samples.

Serum-collection protocol

During the participants’ visits to the center, one serum gel tube was collected per participant. 

The venous blood was allowed to clot, and was centrifuged for 10 min at 1400 x g and 4°C 

within 2 hours after collection. After centrifigation, the serum was stored immediately in 

aliquots at -80°C. All samples were blinded and analyzed in random order.

Detection of anti-survivin antibodies by ELISA

Antibody reactivity against recombinant full-length human survivin fused to calmodulin 

(CaM)-tag (BIRC5, Abcam) was measured by DAC-ELISA as described previously16 and by 

sandwich ELISA. To validate that both assays detected survivin autoantibodies and to assess 

their dynamic ranges, we used a rabbit monoclonal antibody (mAb) to survivin (0.06-1000 

ng/mL; Abcam, Cambridge, UK) to establish standard curves (Supplementary Figure S1). The 

standard curve of rabbit anti-survivin showed a dynamic range from 0.06 to 40 ng/mL in the 
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DAC-ELISA and from 0.06 to 1000 ng/mL in the sandwich ELISA (Supplementary Figure S1). 

To determine if these assays could distinguish human autoantibody–positive from –negative 

sera, we analyzed serum from seven NSCLC patients that had been previously reported16 to 

be positive for survivin autoantibodies and from seven healthy non-smoking controls, the 

type of control group used by Karanikas and colleagues.16 The replicability of our sandwich 

ELISA was established by repeatedly testing a single sample for intra-assay variation, as well 

as testing inter-assay variation. The intra-assay coefficient of variation (CV) for the the optical 

densities (ODs) with survivin of 20 replicates of 1 serum from a non-smoking control sample 

was 6.9 %, the inter-assay (plate-to-plate) CV for 6 serum samples from non-smoking control 

controls ranged from 5.3% to 11.0%.

DAC-ELISA for anti-survivin antibodies. One half of a microtiter plate (Nunc-Immuno 

Maxisorp flat bottom, Thermo Scientific, IL, USA) was incubated with 100 µL of the 2 µg/mL 

recombinant CaM-tagged survivin in 0.05 mol/L carbonate buffer (pH 9.6) and the other half 

only with 0.05 mol/L carbonate buffer for 20 hours at 4°C. After washing five times with 

phosphate-buffered saline containing 0.05% Tween-20 (PBST), plates were blocked with 

200 µL 5% bovine serum albumin (BSA, Sigma, USA) in PBST for 20 hours at 4°C. Plates were 

washed five times with PBST, and wells with and without survivin on the same plate were 

incubated for 1 hour at room temperature with 100 µL of serum sample either diluted 1:40 

as described previously,16 diluted 1:100, or with serial dilutions of rabbit anti- survivin in PBST. 

After washing as before, plates were incubated for 1 hour at room temperature with 100 µL 

of horseradish peroxidase (HRP)-conjugated goat anti-human IgG (H+L) (100 ng/mL; Vector, 

CA, USA) or HRP-conjugated goat anti-rabbit IgG (Fc) (80 ng/mL; Jackson, PA, USA) in 1% 

BSA-PBST. Plates were washed six times, and enzyme activity was visualized by adding 100 µL 

of 3,3′,5,5′-tetramethylbenzidine substrate (TMB; Sigma-Aldrich, MO, USA). Absorbance at 

450 nm was measured after 10 min. Absorbance values were corrected by blank subtraction.

Sandwich ELISA for anti-survivin antibodies. Microtiter plates were coated overnight at 4°C 

with 100 µL of 0.50 µg/mL Cam-tag specific mAb (Santa Cruz Biotechnology, TX, USA) in 

0.05 mol/L carbonate buffer. Plates were washed five times with PBST and blocked with 200 

µL 5% BSA-PBST for 1.5 hours at room temperature. After washing five times with PBST, 

one half of the plate was incubated with 100 µL of 400 ng/mL recombinant CaM-tagged 

survivin in 5% BSA-PBST, and the other half with only 5% BSA-PBST for 3.5 hours at room 

temperature. Plates were washed as before, and 100 µL of serum sample diluted 1:100 or 

serial dilutions of rabbit anti-survivin in PBST were added to wells with and without survivin 

on the same plate. After 1-hour incubation at room temperature followed by washing, wells 

were incubated with 100 µL of (HRP)-conjugated goat anti-human IgG (H+L) (100 ng/mL) or 

(HRP)-conjugated goat anti-rabbit IgG (Fc) (80 ng/mL) in 1% BSA-PBST for 1 hour at room 

temperature. After washing six times, enzyme activity was visualized by adding 100 µL of 
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TMB. After 10 min incubation, absorbance at 450 nm was measured. Absorbance values 

were corrected by blank subtraction.

Sensitivity and specificity of reagents. The linearity of the sandwich ELISA was determined 

by diluting the rabbit anti-survivin positive control into six non-smoking control sera and ten 

NSCLC patient sera, to create a standard curve. ODs of serial dilutions of rabbit anti-survivin 

in human sera were identical to those spiked in diluent (Supplementary Figures S3 and S4).

To validate the utility and specificity of our secondary antibody (goat anti-human IgG (H+L)), 

we designed a similar sandwich ELISA using as a positive control a different human protein 

and sera that were known to contain autoantibodies to it. Patients with paraneoplastic 

neurological syndromes (PNS) can generate autoantibodies against the onconeural antigen 

HuD.23 Recombinant HuD antigen (ELAV4) was applied to serial dilutions of a patient serum, 

known to be positive for anti-HuD antibodies. For this test, one healthy donor sample was 

used as negative control.

To determine non-specific reactions, samples were analyzed in wells with and without 

survivin on the same plate. After blank subtraction, the net absorbance at 450 nm for 

each sample was calculated using the following equation: Net OD = OD with survivin – OD 

without survivin.

Western blot analysis

With CaM-survivin antigen. To determine the specificity of the DAC-ELISA and sandwich 

ELISA, selected samples diluted 1:200 were analyzed by Western blotting of CaM-tagged 

survivin (50 ng/lane). Rabbit anti-survivin serially diluted (1.6 to 200 ng/mL) was analyzed to 

check the sensitivity of the western blot. Blots were incubated with a 1:10,000 dilution of 

IRDye© 800CW goat anti-human IgG (H+L) or IRDye© 680RD donkey anti-rabbit IgG (H+L), 

and scanned with an Odyssey Infrared Imager (LI-COR, NE, USA) to simultaneously visualize 

proteins at anti-human and anti-rabbit dual wavelengths.

With HEK-293 cell lysate. Blots were performed using HEK-293 cell lysate as a source of 

endogenous survivin. For equal loading of proteins, 100 µL HEK-293 cell lysate was loaded 

into a single-well comb slot for western blot analysis. After protein transfer, the blot was cut 

into strips containing equal amounts of protein per centimeter of strip. Antibody response 

to HEK-293 antigens was analyzed with either serum samples diluted at 1:200 or rabbit 

anti-survivin diluted 1:2,500. Proteins were detected by fluorescence as described previously 

or by chemiluminescence using the ECL western blotting substrate (Thermo Scientific, IL, 

USA) according to the protocol provided.
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Preparation of HEK-293 cell lysate as source of endogenous survivin

Potentially, posttranslational modification of survivin may be necessary for immune recogni-

tion and may be a reason that a positive survivin antibody serum is missed. We prepared 

human embryonic kidney (HEK)-293 cell lysate that endogenously produces survivin.24 HEK-

293 cells were cultured in DMEM with GlutaMax (Life Technologies) supplemented with 10% 

fetal bovine serum, 1% penicillin and 1% streptomycin at 37°C in 5% CO2. The identity 

and homogeneity of the HEK-293 culture was verified by light-microscopic inspection of cell 

morphology and growth patterns. No additional authentication was performed. Cells were 

washed with PBS and lysed in 1 mL SDS sample buffer (± 106 cells/mL). The cell lysate was 

centrifuged and stored in aliquots at -20°C until analysis.

NanoLC Orbitrap mass spectrometry measurement of endogenous survivin 
in HEK-293 cell lysate

Proteins in the HEK-293 cell lysate were separated by SDS-PAGE. Protein bands (band 1-5) in 

the 15-16 kDa range were tryptic digested for LC-MS measurement as described previously.25 

Tryptic peptides were measured by LC-MS on an Ultimate 3000 nano-RSLC system (Dionex, 

Amsterdam, Netherlands) coupled online to a hybrid linear ion trap/Orbitrap MS (Orbitrap 

Fusion, Thermo Fisher Scientific, San Jose, CA, USA). The trap column was then switched 

online with the analytical column (PepMap C18, 75 μm ID x 500 mm, 3 μm particle and 

100 Å pore size; Dionex), and peptides were eluted by a 90-minute gradient from 4 to 38% 

acetonitrile at a flow rate of 250 nL/minute. For electro-spray ionization (ESI), metal-coated 

nano ESI emitters (New Objective, Woburn, MA, USA) were used at a spray voltage of 1.7 

kV. Two different methods for MS detection were used. First, all samples were run according 

to a data-dependent shotgun method whereby MS1 survey scans of 400-1600 m/z were 

acquired in the Orbitrap at 120,000 resolution. Subsequently, CID MS/MS spectra were ac-

quired in the linear iontrap using the top speed mode of the instrument. Second, in a further 

measurement of protein band 2, the method described above was adjusted to exclusively 

trigger MS/MS spectra of precursor masses matched with the predicted tryptic peptides of 

survivin within a 12 ppm m/z window.

Statistical analysis

Before samples were included in this study, the clinical characteristics of non-smoking controls, 

NSCLC cases and smoking-habit controls were statistically analyzed. To detect significant 

differences in absorbances (OD) among the data sets, the Mann-Whitney U-test (two-tailed) 

was performed. Pearson correlation and linear regression analysis were performed to as-

sess the relationship between the OD of samples measured in wells with survivin and those 

measured without survivin. All data were analyzed by SPSS (IBM SPSS Statistics 21). A p-value 

of <0.05 was considered statistically significant.
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Results

Before we started our studies on the development of survivin autoantibodies in NSCLC, we 

tested both the DAC-ELISA and the sandwich ELISA for robustness and specificity.

DAC-ELISA for survivin antibodies

The antibody response to human survivin was measured in seven NSCLC serum samples 

previously found positive for survivin antibodies in the provider’s laboratory16 and in seven 

serum samples from healthy non-smoking controls. Tests were carried out at a 1:40 (Figure 

1A) and a 1:100 dilution (Supplementary Figure S2). Comparisons between patients and 

healthy non-smokers were made. The Mann-Whitney U-test showed no significant difference 

between the NSCLC cases and the healthy non-smoking controls at two different dilutions 

(1:40 dilution, p = 1.000; 1:100 dilution, p = 0.620). In addition, no significant differences 

were found in specific binding, between OD readings in assays that contained the antigen, 

survivin, and those without antigen, either at a 1:40 (p = 0.535) or 1:100 (p = 0.535) dilution.

Sandwich ELISA for survivin antibodies

We first determined the replicability of our sandwich ELISA by repeatedly testing a single 

sample for intra-assay variation, as well as testing inter-assay variation (see Materials and 

Methods), and found no sample matrix interference in the sandwich ELISA (Supplementary 

Figures S3 and S4).

To determine whether our sandwich ELISA technique can detect known human autoantibod-

ies, we tested the assay using the onconeural antigen HuD (ELAV-like protein 4) and serial 

dilutions of an anti-HuD-positive serum from a patient with PNS. Serum from a healthy donor 

was used as negative control. The patient serum gave a linear standard curve at serum dilu-

tions of 1:10 to 1:640 and a relatively high OD (2.378) at the 1:100 dilution that is commonly 

used for immunohistology (Supplementary Figure S5). The negative control serum had a 

low OD (0.147) at a dilution of 1:100. When antigen was omitted from the sandwich ELISA 

and serum used at a1:100 dilution, the patient serum had a much lower OD (0.102), but 

the OD of the negative donor serum was virtually unchanged (0.146). Thus, the anti-human 

secondary antibody reaction works correctly in demonstrating the presence of immobilized 

antigen-bound human auto-antibody in our sandwich assay.

Comparison of DAC-ELISA to sandwich ELISA

Having validated the sandwich ELISA as capable of detecting human autoantibodies, we 

retested the same seven NSCLC patient and healthy control samples that we had assayed 

with the DAC-ELISA, at a serum dilution of 1:100. We found that specific binding was es-

sentially zero, ranging from 0.000 to 0.008. We observed that ODs with and without antigen 

were significantly higher for patients (median 0.108; interquartile range (IQR) 0.095-0.121) 
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than for the non-smoking control subjects (median 0.075; IQR 0.065-0.092; Mann-Whitney 

U-test, p = 0.011) and were strongly correlated (Figure 1B).

Survivin sandwich ELISAs of NELSON samples

We tested sera for the presence of autoantibodies to survivin from 50 NSCLC cases,before 

and after diagnosis, 50 matched, smoking-habit controls from the NELSON trial, and an-

other 50 non-smoking controls (n=200). All samples were randomized before measurement. 

Specific reactions (subtracting background values obtained in the absence of survivin in the 

sandwich ELISA) were almost zero, ranging from −0.004 to −0.001 (Figure 2). However, as 
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Figure 1. Antibody response to recombinant survivin was measured in seven NSCLC patient serum samples pre-
viously reported to be positive for survivin antibodies16 and in serum samples from seven healthy non-smoking 
control subjects. DAC-ELISA (A) was carried out at a 1:40 dilution and sandwich ELISA at a 1:100 dilution (B). 
ODs were measured in assays that contained the antigen, survivin (green), and those without antigen (grey). 
Specific binding (red) was obtained by subtracting background ODs (grey) obtained in the absence of survivin. 
A, No significant difference was found between ODs with antigen from the NSCLC patients (square; median 
0.345; IQR 0.271-0.852) and those of the healthy non-smoking control subjects (rhombus; median 0.320; 
IQR 0.284-0.442; Mann-Whitney U-test (MW), p = 1.000). In addition, no significant differences were found 
in specific binding (MW, p = 0.535). B, ODs with and without antigen were significantly higher for NSCLC pa-
tients (median 0.108; IQR 0.095-0.121) than for the healthy non-smoking control subjects (median 0.075; IQR 
0.065-0.092; MW, p = 0.011) and were strongly correlated. Pearson correlation and linear regression between 
OD with survivin and OD without survivin of these samples resulted in an R2 value of 0.96 (p<0.001) with an 
intercept of 0.014 (95% CI, 0.003-0.025) and a slope of 0.896 (95% CI, 0.781-1.011). Specific binding was 
essentially zero, median Net ODs (ODs with survivin – ODs without survivin) ranged from 0.000 to 0.008.
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noted with the sera from the study by Karanikas and colleagues,16 the background median 

OD was significantly higher in NSCLC patients (p< 0.001) and smoking-habit controls than in 

non-smoking controls (Figure 2 and Table 1). Thus, the choice of control may be critical for 

these studies if background is not removed before reporting data.

We also tested for autoantibodies in sera of 20 NSCLC patients from the late-stage NVALT-12 

study (median 0.051; IQR 0.027), 13 smoking-habit controls (median 0.059; IQR 0.045, p = 

0.253 ), and 13 non-smoking controls (median 0.062; IQR 0.035, p = 0.113). None of these 

late-stage NSCLC cases was positive for antibody binding to survivin.

Sandwich ELISA results confirmed by western blot analysis

CaM-tagged survivin was used in western blots for further testing of serum samples from 

nine NSCLC patients previously found positive by DAC-ELISA16, five patients before diagnosis 

of NSCLC, five patients after diagnosis of NSCLC, two smoking-habit controls, and two non-

smoking controls (Supplementary Figure S6). To check the sensitivity of the western blot, we 

Figure 2. Results of sandwich ELISA for antibody response to recombinant human survivin in sera from 50 
smoking-habit controls, 50 cases measured before and after diagnosis (dx) of NSCLC, and 50 healthy non-
smoking controls. Data, OD at 450 nm (A) and Net OD at 450 nm (Net OD = OD with survivin – OD without 
survivin) (B) with bars representing median OD (IQR) for each group. A, no difference in specific autoantibodies 
to survivin was found in NSCLC patients, although nonspecific median ODs were 24% higher (p < 0.001) in 
both NSCLC patients and smokers, than in healthy non-smokers. B, specific median ODs (subtracting back-
ground values obtained in the absence of survivin in the sandwich ELISA) were almost zero, ranging from 
–0.004 to –0.001. For the 200 samples, ODs with survivin and ODs without survivin were strongly correlated. 
Pearson correlation and linear regression analysis of log-transformed OD values resulted in an R2 value of 0.83 
(p < 0.001) with an intercept of –0.117 (95% CI, –0.280-0.053) and a slope of 0.971 (95% CI, 0.781-1.011).
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analyzed rabbit anti-survivin serially diluted from 1:5,000 to 1:625,000 (1.6 to 200 ng/mL), 

finding a sensitivity of at least 1.6 ng/mL for rabbit anti-survivin antibodies. The 20 NVALT-12 

study samples were also analyzed as described above. Sandwich ELISA and western blot 

analysis both showed all selected human serum samples to be negative.

Western blot analysis with HEK-293 cell lysate

To rule out the possibility that autoantibodies are not reactive to recombinant survivin but 

only to endogenous survivin, blots were also performed with HEK-293 cell lysate as the 

source of endogenous survivin. Proteins in the HEK-293 cell lysate were separated by SDS-

PAGE and bands of interest (band 1-5) were excised from the gel for MS.

MS/MS database search identified survivin (predicted: 16 kDa) in 16-kDa protein bands 2 

and 3 (Figure 3). The presence of survivin was verified by a targeted MS analysis on protein 

band 2, which identified four peptides of BIRC5: KKEFEETAK, HSSGCAFLSVK, AIEQLAAMD, 

and RAIEQLAAMD. Western blot analysis showed that rabbit anti-survivin recognized a band 

of 15- to 16-kDa protein in the HEK-293 lysate (Figure 3) that was in agreement with band 

3 of the mass spectrometry (MS) analysis. Thus, western blot and MS both confirmed the 

presence of survivin in HEK-293 cells.

Antibody response to antigens in HEK-293 cell lysate was analyzed in serum of seven ran-

domly selected non-smoking controls and nine longitudinally collected sample sets, each set 

Table 1. Survivin antibody absorbances of NSCLC cases, smoking-habit controls, and non-smoking controls

Sample set N
OD at 450 nm

Sample set pa

Median (IQR)

vs.

Non-smoking controls 50 0.054 (0.023)

Smoking-habit controls 0.003

NSCLC cases before dx 0.001

NSCLC cases after dx 0.006

Smoking-habit controls and 
NSCLC casesb <0.001

Smoking-habit controls 50 0.068 (0.029)

NSCLC cases before dx 0.751

NSCLC cases after dx 0.978

NSCLC cases before dx 50 0.067 (0.037)

NSCLC cases after dx 0.652

NSCLC cases after dx 50 0.066 (0.028)

Smoking-habit controls and 
NSCLC casesb 150 0.067 (0.017)

dx, diagnosis of lung cancer; IQR, interquartile range; N, number of sandwich ELISA measurements; OD, absorbance. 
aDifferences in absorbance values were statistically determined by the Mann–Whitney U test (two-tailed).bNSCLC cases 
before and after diagnosis.
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consisting of one case (OD > median OD + 2 IQR of non-smoking controls) analyzed before 

and after diagnosis of NSCLC (89% adenocarcinoma; stage I) and one smoking-habit control 

matched to this case. Immunodetected proteins at 16 kDa were observed for all samples, 

including smoking-habit controls and non-smoking controls. Specific individual patterns of 

antibodies against HEK-293 proteins were identical for cases before and after diagnosis of 

lung cancer (Figure 3). Proteins that showed intense bands in the 16-kDa region after Coo-

massie Brilliant Blue staining, were identified by MS as ribosomal proteins (Supplementary 

Table S2 online); it is highly likely that some non-specific binding at these bands occurs. We 

conclude that no anti-survivin reactivity was detected in any of the patient sera.

Discussion

No survivin-specific autoantibodies were detected by sandwich ELISA in sera from NSCLC 

cases, smoking-habit controls, or healthy non-smoking controls, even though background 

non-specific binding was 24% higher (p < 0.001) in NSCLC cases and smoking controls than 

in healthy non-smoking controls. Thus, if background is not subtracted, significantly higher 

OD values for cases and smokers can be misleading when compared only with non-smoking 

healthy controls. A study of autoantibodies to a panel of ten tumor-associated antigens 

reported that smokers—lung cancer patients and non-lung cancer patients alike—consis-
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Figure 3. Western blot analysis of endogenous survivin in HEK-293 cell lysate. I, SDS-PAGE of HEK-293 cell 
lysate. Molecular weight control (M), HEK-293 cell lysate (HEK). Protein bands of interest (1–5) in the 16-kDa 
region were excised from the gel for MS analysis. MS/MS database search identified survivin in bands 2 and 3. 
Proteins that showed intense bands were identified as ribosomal proteins. II–IV, Western blot analysis of HEK-
293 cell lysate. Molecular weight control (M). Staining of endogenous survivin in HEK-293 cell lysate (15–16 
kDa) with 1:2,500 diluted rabbit anti-survivin (S) and staining with blank control (BL). Antibody response to 
antigens in HEK-293 cell lysate in sera from seven nonsmoking control subjects (d, yellow box) and nine longitu-
dinally collected sample sets (1–9), each set consisting of one case analyzed before diagnosis (b, dark blue box) 
and after diagnosis of NSCLC (a, red box) and one smoking-habit control matched to this case (c, green box). 
Immunodetected proteins at 16 kDa were observed for all samples, including smoking-habit control subjects 
and nonsmoking control subjects. No anti-survivin reactivity was detected in any of the patient sera.
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tently had significantly higher background binidng when assaying for autoantibodies than 

did healthy non-smoking controls.18.

Specific antibody reactivity for survivin was no higher in any of the 50 NELSON NSCLC pa-

tients than in smoking-habit controls. Positive rabbit control samples gave a strong response 

in the assay. Thus the assay was functioning correctly, and survivin in vivo had not induced 

significant antibody responses before or after diagnosis of NSCLC. This observation is sup-

ported by the absence of cytolytic responses against survivin peptides.26 Western blot analysis 

revealed no antibody reactivity with the recombinant survivin, consistent with these ELISA 

results.

To our knowledge, the population we used is the best well-controlled population related to 

smoking habit in lung cancer case-control studies on survivin autoantibodies to date. Our 

inability to find survivin autoantibodies in NSCLC patients does not agree with the results 

reported by others,11-18 who found survivin autoantibodies with an 8% to 52% prevalence. 

Although these inconsistent findings may have been due to differences in the type of tumor, 

the stage of lung cancer, or the source of antigen, the most likely explanation is the differ-

ence in assay methodology.

Forty-one (82%) of the 50 NSCLC patients in our study were diagnosed with adenocarcinoma 

and 45 (90%) were classified as early stage (I and II). This uneven distribution of pathology 

might explain the absence of survivin autoantibodies. Antibodies to survivin have neverthe-

less been found irrespective of tumor type and clinical stage of NSCLC.15, 16 To exclude the 

possibility that our selection of patients had been unbalanced, we also investigated late-

stage (IV) NSCLC samples. In these, too, sandwich-ELISA and western blot analysis revealed 

no positive samples.

To date, the method used most widely to detect survivin autoantibodies involved direct 

adsorption assays using immobilized recombinant survivin. If the antigen solution is not 

absolutely pure, contaminating antigens may be co-immobilized in much the same way as 

Escherichia coli proteins which are very often copurified with the recombinant protein.27 

Due to the high prevalence of E. coli infections in humans, background responses to the 

E. coli bacteria used in producing recombinant proteins have been found to be a major 

problem.28, 29 We also detected these antibody responses to E. coli proteins in a western blot 

of E. coli extract with sera of lung cancer patients (data not shown). Although the specificity 

of the survivin recognition in the DAC-ELISAs was confirmed by decreased reactivity after 

pre-absorption of sera with soluble survivin, reactivity is also likely to be reduced by non-

specific reactions with impurities in the survivin solution.

In solid-phase immunoassays, non-specific binding for autoantibodies has been found to 

correlate with increased concentrations of IgG and other inflammatory mediators.30 Despite 

the fact that the DAC-ELISA showed higher apparent anti-survivin levels than the sandwich 

ELISA, in our hands this assay showed no significant difference between lung cancer patients 

previously reported16 to be positive for anti-survivin and healthy non-smoking controls – in ad-
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dition, any differences disappear when background is subtracted. In general, DAC-ELISA may 

incorrectly assess antibodies to survivin, and presumably to other tumor antigens, because it 

does not compensate for non-specific binding. Much more than DAC-ELISA, sandwich ELISA 

makes it possible to significantly reduce—and also monitor—non-specific binding. Due to 

better specificity, absorbance in the sandwich ELISA was an order of magnitude lower than 

in the DAC-ELISA.

To test if any differences in posttranslational modifications of endogenous survivin, com-

pared to recombinant survivin, could be the cause of a lack of anti-survivin reactivity to 

recombinant survivin, we also used HEK-293 cell lysate as the source of endogenous survivin 

antigen. Although western blot analysis with HEK-293 cell lysate showed no autoantibody 

reactivity to endogenous survivin (16 kDa), it showed that the individual patterns of antibod-

ies against HEK proteins before and after the diagnosis of lung cancer were almost identical 

in each NSCLC cancer patient.

In conclusion, we demonstrated that survivin autoantibody reactivity is not present in sera 

from NSCLC cases, smoking-habit matched controls, and healthy non-smoking controls. 

Higher apparent survivin autoantibody reactivity in serum of smokers than in non-smokers 

that has been previously reported is likely the result of non-specific binding in smokers. In 

general, autoantibodies to lung tumor antigens should be investigated using sandwich ELISA 

or another well-characterized technology in a well-controlled population, stratified for at 

least smoking habit.
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Supplementary Data

Figure S1. Standard curve of rabbit monoclonal antibody to recombinant survivin using DAC-ELISA (A) and 
sandwich ELISA (B).
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Figure S2. Antibody response to recombinant survivin was measured in seven NSCLC patient serum samples 
previously reported to be positive for survivin antibodies16 and in serum samples from seven healthy non-smok-
ing control subjects. Optical densities (ODs) were measured at a 1:100 dilution in DAC-ELISA that contained 
the antigen, survivin (green), and that without antigen (grey). Specific binding (red) was obtained by subtract-
ing background ODs (grey) obtained in the absence of survivin. No significant difference was found between 
ODs with antigen from the NSCLC patients (square; median 0.209; IQR 0.154-0.427) and those of the healthy 
non-smoking controls (rhombus; median 0.241; IQR 0.209-0.325; Mann-Whitney U-test (MW), p = 0.620). In 
addition, no significant differences were found in specific binding (MW, p = 0.535).

Figure S3. Standard curve of rabbit anti-survivin spiked in non-smoking control sera using sandwich ELISA. ODs 
of serial dilutions of rabbit anti-survivin in six healthy non-smoking control sera (D1-D6) were identical to those 
spiked in diluent (St). No sample matrix interference was found in the sandwich ELISA.
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Figure S4. Standard curve of rabbit anti-survivin spiked in NSCLC patient sera using sandwich ELISA. ODs of 
serial dilutions of rabbit anti-survivin in ten NSCLC patient sera (C1-C10) were identical to those spiked in dilu-
ent (St). No sample matrix interference was found in the sandwich ELISA.

Figure S5. Standard curve of human autoantibodies to HuD using sandwich ELISA. Sandwich ELISA with HuD 
antigen and serial dilutions from 1:10 to 1:640 (0.16-10% serum) of an anti-HuD-positive serum from a patient 
with paraneoplastic neurological syndrome (PNS).
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Table S1. Characteristics of NSCLC cases, smoking-habit controls and non-smoking controls

NSCLC
cases
n = 50

Smoking-habit
controls
n = 50

p-valuea

Non-smoking
controls
n = 50

Gender 1.000

Male 43 86.0% 43 86.0% 37 74.0%

Female 7 14.0% 7 14.0% 13 26.0%

Age (years) 62 (51-74) 63 (51-75) 0.646 59 (50-69)

Men 63 (51-74) 63 (51-75) 0.736 59 (52-69)

Women 61 (58-74) 61 (58-74) 0.903 60 (50-69)

Smoking status 0.548

Current 28 56.0% 25 50.0% 0 0.0%

Former 22 44.0% 25 50.0% 0 0.0%

Smoking duration (years) 0.711

26-40 22 44.0% 19 38.0% 0 0.0%

41-45 15 30.0% 18 36.0% 0 0.0%

> 45 13 26.0% 13 26.0% 0 0.0%

Cigarettes/day 0.265

11-15 7 14.0% 14 28.0% 0 0.0%

16-20 16 32.0% 14 28.0% 0 0.0%

21-25 15 30.0% 10 20.0% 0 0.0%

> 25 12 24.0% 12 24.0% 0 0.0%

Figure S6. Results of sandwich ELISA were confirmed by western blot analysis.Examples of sample negatives 
measured by sandwich ELISA to recombinant survivin with CaM-tag (33 kDa; 50 ng/lane) analyzed by western 
blotting. Western blots (A and B) of blank control (5% BSA-TBST, Bl, light blue); positive control (Rabbit mono-
clonal to survivin, C1-C4; 1:5,000, 1:25,000, 1:125,000, 1:625,000, purple); sera from nine NSCLC patients 
previously found positive by DAC-ELISA (16) (P1-P9, orange); five cases analyzed before diagnosis of NSCLC 
(b, dark blue box) and after diagnosis (a, red box); two smoking-habit controls (c, green box); and two healthy 
non-smoking controls (d, yellow box). Western blot analysis on recombinant survivin was negative for survivin 
antibodies in patient sera.
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Table S1. Characteristics of NSCLC cases, smoking-habit controls and non-smoking controls (continued)

NSCLC
cases
n = 50

Smoking-habit
controls
n = 50

p-valuea

Non-smoking
controls
n = 50

COPD 0.683

Yes 22 44.0% 18 36.0% 0 0.0%

No 26 52.0% 29 58.0% 0 0.0%

Unknown 2 4.0% 3 6.0% 50 100.0%

Asbestos exposure 1.000

Yes 9 18.0% 9 18.0% 0 0.0%

No 41 82.0% 41 82.0% 0 0.0%

Unknown 2 4.0% 3 6.0% 50 100.0%

Center 0.904

	 Groningen 12 24.0% 13 26.0% 0 0.0%

	 Utrecht 16 32.0% 16 32.0% 0 0.0%

	 Haarlem 17 34.0% 18 36.0% 0 0.0%

	 Leuven 5 10.0% 3 6.0% 0 0.0%

	 Rotterdam 0 0.0% 0 0.0% 50 100.0%

Histology

	 Adenocarcinoma 41 82.0% - - - -

	 Squamous cell carcinoma 7 14.0% - - - -

	 Otherb 2 4.0% - - - -

Stage

	 IA 35 70.0% - - - -

	 IB 7 14.0% - - - -

	 IIA 1 2.0% - - - -

	 IIB 2 4.0% - - - -

	 IIIA 4 8.0% - - - -

	 IV 1 2.0% - - - -

Time before diagnosis (years)c

	 0-0.5 23 46.0% - - - -

	 0.5-1.5 13 26.0% - - - -

	 1.5-2.5 11 22.0% - - - -

	 2.5-3.5 3 6.0% - - - -

Time after diagnosis (years)d

	 0-0.5 0 0.0% - - - -

	 0.5-1.5 14 28.0% - - - -

	 1.5-2.5 19 38.0% - - - -

	 2.5-3.5 12 24.0%

	 3.5-4.5 5 10.0% - - - -

n, number of subjects; COPD, Chronic Obstructive Pulmonary Disease;a Significant differences in all characteristics 
between NSCLC cases and smoking-habit controls were analyzed by Pearson chi-square tests except for age (Mann-
Whitney U-test). b NSCLC histology other than adenocarcinoma or squamous cell carcinoma. c Time of blood collection 
before diagnosis. d Time of blood collection after diagnosis.
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Introduction

The observation of indeterminate pulmonary nodules on an imaging scan generally leads to 

subsequent diagnostic biopsy or surgery procedures which do have a serious risk profile.1, 2 To 

avoid such invasive procedures for patients with benign nodules, predictive serum biomark-

ers will be of great value. Li and coworkers3 developed and initially validated a 13-protein 

blood-based classifier using multiple-reaction-monitoring mass spectrometry (MRM)4 that 

distinguishes benign from early-stage (IA) non-small cell lung cancer (NSCLC) nodules with 

a 90% negative predictive value (NPV) in a retrospective study. They suggested that this 

classifier might provide a diagnostic tool for physicians to rescue patients with benign lung 

nodules from unnecessary, invasive, and costly medical procedures.5, 6 In a subsequent valida-

tion paper Vachani et al.,7 including ten authors of the earlier paper,3 state that a classifier 

composed of only five of the original 13 peptides could indeed be useful as a diagnostic tool 

to distinguish benign from malignant nodules in patients with indeterminate lung nodules.

As part of our study on prospective biomarkers in a longitudinal prospective cohort study 

on subjects with a smoking habit (NELSON trial),8, 9 we performed a validation of both these 

classifiers3, 7 and examined their utility as a diagnostic tool.

Materials and Methods

The NELSON trial

In this NELSON trial (Dutch-Belgian Lung Cancer Screening trial), approved by the Dutch 

Ministry of Health and the Population Screening Act committee, participants were recruited 

between 2003 and 2005 by sending questionnaires to 548,489 individuals between 50–75 

years of age. Current or former smokers with a smoking history of at least 15 cigarettes per 

day for at least 25 years or at least 10 cigarettes per day for at least 30 years were included 

in the trial. Individuals with malignancies other than primary lung cancer or diagnosed with 

lung cancer less than five years ago, were excluded. A total of 15,822 participants were ran-

domized (1:1) to a screen or a control arm. The screen arm received computed tomography 

(CT) screening in years 1, 2 and 4, whereas the control arm received no CT screening (usual 

care).10 Initial CT screening results were based on the lung nodule presence and volume. 

Participants with a positive screening result were referred to a pulmonologist for a diagnostic 

follow-up. If lung cancer was diagnosed, the participant was offered a treatment protocol 

and went off screening. Participants with an initial indeterminate screening result received a 

follow-up CT scan three months later to classify their final screening test result as negative 

or positive, based on nodule volume doubling time (VDT).8, 11 Participants with a negative 

screening result underwent a second-round CT scan 12 months later.
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Study population of the NELSON trial

For this validation study, we randomly selected 30 participants in the screen arm of the NEL-

SON trial with nodules of which 16 had been proven benign and 14 malignant, stage IA-B 

NSCLC (64.3% adenocarcinoma, 21.4% squamous cell carcinoma, 14.3% other histology, 

64.3% stage IA and 35.7% stage IB). Lung nodules were classified as benign or malignant 

based on radiological examination and histological confirmation. Because the original studies 

reported lung nodule size in diameter, we converted nodule volume at baseline screening 

into nodule diameter, assuming a spherical nodule. Indeterminate lung nodules (IPNs), nod-

ules with a diameter size of 4 to 30 mm as described by Li et al., were correctly identified by 

CT in 81.2% of the benign and in 64.3% of the cancer subjects (Table 1). Benign subjects 

were matched to cancer subjects for age, gender, smoking status, smoking duration, number 

of cigarettes smoked per day, chronic obstructive pulmonary disease (COPD) status, asbestos 

exposure and blood collection center. No significant difference in these clinical characteristics 

were found between the benign and cancer subjects (Table 1). Written informed consent was 

obtained from all participants for the use of their samples. During the participants’ visits to 

the center, one serum gel tube was collected per participant. The venous blood was allowed 

to clot, and was centrifuged for 10 min at 1400 x g and 4°C within 2 hours after collection. 

After centrifugation, the serum was stored immediately in aliquots at -80°C. In contrast to 

the above mentioned publications,3, 7 we used available serum samples instead of plasma. 

Serum protein concentrations are very similar to plasma except for proteins related to coagu-

lation such as fibrinogen, which is removed by conversion into a fibrin clot. Differences in the 

abundance of classifier peptides between serum and plasma from two non-smoking donors 

were determined by Mann-Whitney U-test. Except for fibrinogen, no differences (p>0.05) 

were observed for the peptides in the two classifier sets.

Reference sample

One reference donor sample (male; 59 years) was used as a quality control for each analysis 

step In accordance with the general guidelines of the Sanquin Blood Bank Rotterdam (the 

Netherlands), the healthy non-smoking donor of the reference sample gave written consent 

for the use of his serum for scientific research.

Proteomics analysis

Analysis was performed as previously described with minor modifications.3, 7 All samples 

were blinded and randomized before analysis. Samples were prepared in two batches during 

depletion and in one batch during digestion and MRM-MS analysis. One reference donor 

sample was measured as quality control for each analysis step at the start, the middle and 

the end of the batch. To assess the technical variation of the MRM-MS analysis, one pool of 

digested samples was measured at the start, after every 10th sample and the end of the run. 

In brief, 60 µL of serum was diluted in 0.15 M (NH4)HCO3 to a final volume of 180 µL and 
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Table 1. Clinical characteristics of subjects and nodules

Cancer n = 14 Benign n =16 p-value*

Gender 0.63

Male 13 92.9% 14 87.5%

Female 1 7.1% 2 12.5%

Age (years) 63 (55-66) 64 (59-66) 0.55

Smoking status 0.23

Current 10 71.4% 8 50.0%

Former 4 28.6% 8 50.0%

Smoking duration (years) 0.65

26-40 7 50.0% 5 31.3%

41-45 2 14.3% 6 37.5%

> 45 5 35.7% 5 31.3%

Cigarettes/day 0.33

0-15 3 21.4% 2 12.5%

16-20 4 28.6% 5 31.2%

21-25 5 35.7% 3 18.8%

> 25 2 14.3% 6 37.5%

COPD 0.94

Yes 7 50.0% 9 56.3%

No 6 42.9% 6 37.5%

Unknown 1 7.1% 1 6.2%

Asbestos exposure 0.27

Yes 12 85.7% 11 68.8%

No 2 14.3% 5 31.2%

Center 0.51

Groningen 5 35.7% 4 25.0%

Utrecht 2 14.3% 6 37.5%

Haarlem 5 35.7% 5 31.3%

Leuven 2 14.3% 1 6.2%

Histology

Adenocarcinoma 9 64.3% - -

Squamous cell carcinoma 3 21.4% - -

Other† 2 14.3% - -

Stage

IA 9 64.3% - -

IB 5 35.7% - -

Nodule size (mm)‡ 0.01

< 4 0 0.0% 3 18.8%

4-30 9 64.3% 13 81.2%

> 30 and ≤ 50 5 35.7% 0 0.0%

n, number of subjects; COPD, Chronic Obstructive Pulmonary Disease;* Significant differences in all characteristics 
between NSCLC cases and benign controls were analyzed by Pearson chi-square tests except for age (Mann-Whitney U-
test). †NSCLC histology other than adenocarcinoma or squamous cell carcinoma. ‡ Nodule volume at baseline screen-
ing was converted into nodule diameter, assuming a spherical nodule.
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filtered using a 0.2 µm AcroPrep 96-well filter plate (Pall Life Sciences). Immunodepletion 

of high and medium abundant proteins was performed on an IgY14-Supermix LC5 resin 

column (Sigma Aldrich) coupled to an Ultimate 3000 HPLC system (Thermo Fisher Scientific), 

comparable to the study of Li et al.3 After immunodepletion, low-abundant protein frac-

tions were pooled and concentrated in a vacuum concentrator. For tryptic digestion of the 

low-abundant proteins in peptides, we used our standard procedure because this procedure 

resulted in a more complete digestion compared to the procedure described by Li et al.3 In 

brief, the pool of low-abundant proteins was divided into four equal aliquots. Aliquots were 

evaporated in a vacuum centrifuge (SPD 1010 Speedvac System; Thermo Fisher Scientific 

Inc., Waltham, MA) to complete dryness. Dried aliquots were immediately stored at -80°C 

until further analysis. One dried aliquot was reconstituted in 100 μL of 0.1% Rapigest™ SF 

(Waters, Milford, MA) in 50 mmol/L NH4HCO3. The proteins in the sample were reduced 

with 1 μL of 500 mmol/L dithiothreitol (DTT) in 50 mmol/L NH4HCO3 at 60°C for 30 min 

and alkylated with 5 μL of 300 mmol/L iodoacetamide in 50 mmol/L NH4HCO3 at room 

temperature in the dark for 30 min. Proteins were digested with 5 µL of 100 ng/µL trypsin 

in 50 mmol/L NH4HCO3 (Trypsin Gold, Promega, Leiden, the Netherlands) for 16 h at 37°C. 

Subsequently, digestion was terminated by addition of 20 µL of 50% (v/v) TFA to achieve 

a final pH <2 and incubation for 45 min at 37°C. Finally, the tryptic digested sample was 

evaporated in a vacuum centrifuge to complete dryness. The dried sample was immediately 

stored at -80°C until further analysis. The sample was dissolved in 25 μL with 0.1% (v/v) TFA 

in water by sonification for 5 min in an ultrasonic bath just prior to LC-MRM MS analysis. 

After centrifugation for 10 min at 10,000 g, the supernatant was spiked with stable isotope-

labeled peptides and transferred into a labeled HPLC sample vial.

Six endogenous normalization peptides, as described by Li et al., were used to correct for the 

inter-sample variation in the depletion and digestion procedures.

MRM-MS analysis

The 13 classifier and the six normalization peptides were analyzed by MRM-MS. In contrast 

to the original study3, we monitored by MRM-MS four transitions instead of one transition 

for each peptide to avoid false peptide identification from co-eluting transitions. We included 

stable isotope-labeled internal standard (SIS) peptides for each classifier and normalization 

peptide to control variation in the MRM-MS analysis as recommended by guidelines12. In the 

follow-up publication, Vachani and coworkers also used SIS-peptides.7 In brief, SIS peptides 

were added to the tryptic digest prior to MRM analysis. Six microliters of this mixture were 

injected onto an Ultimate 3000 nano-RSLC system (Thermo Fisher Scientific). After pre-con-

centration and washing of the sample on a C18 trap column (5 mm × 300 µm ID), peptides 

were separated on a C18 PepMap column (250 mm × 75 µm ID) (Thermo Fisher Scientific) 

using a linear 90 min gradient (4–38% ACN/H2O 0.1% formic acid) at a flow rate of 250 

nL/min. The separation of the peptides was monitored by absorption at 214 nm. MRM-MS 



117

Chapter 5

analysis was performed on a Q-Exactive Plus (Thermo Fisher Scientific) mass spectrometer 

equipped with a nano-spray ion source. A targeted MS/MS method was developed for all 

endogenous and corresponding SIS peptides (Table S1). A quadrupole isolation window of 

0.7 m/z units, an automatic gain control target of 1e6 ions, a maximum fill time of 250 ms 

and an Orbitrap resolving power of 17500 at 200 m/z were used. A normalized collision 

energy of 27 was used for each peptide precursor. Peak analysis of the MRM-MS data was 

performed with Skyline (MacCoss Lab, University of Washington). Abundances ratios of the 

endogenous peptides to the corresponding SIS peptides were normalized by the abundances 

ratios of the six normalization peptides according to the Inte-Quan method.7, 13

Statistical analysis

Statistical analyses were performed by Excel (Microsoft 2007) and SPSS (IBM SPSS Statistics 

21). A p-value <0.05 was considered statistically significant.

Results and discussion

MRM-MS of classifier peptides

In our short imitation of the discovery study of Li et al.,3 three (LRP1, FIBA and GSLG1) of 

the 13 peptides of the 13-protein classifier were not detectable or detected with a very low 

intensity by MRM-MS. These peptides could therefore not be properly assigned to the clas-

sifier. In agreement with this finding, Vachani and coworkers7 in their later study were also 

not able to quantify these three peptides. More specifically, eight of the 13 classifier proteins 

gave unreliable results for the MRM-assay (BGH3, GRP78, GSLG1, ISLR, LRP1, PRDX1 and 

TETN) or had affinity to the depletion column (FIBA), and were eliminated from the classifier 

in their validation study.7

Statistical analysis of classifier peptides

Statistical analyses of normalized abundances of the classifier peptides were performed. The 

median technical coefficient of variation (CV) of four replicate MR-MS measurements of the 

classifier peptides in the sample pool was 3.5%. The median inter-sample CV of five sample 

preparations of the reference sample was 14.6%. For statistical analysis, we first used the 

Mann-Whitney U-test to determine the individual diagnostic performance of the remain-

ing five classifier peptides. In accordance with the original study, no significant difference 

(p>0.05) between levels of the benign controls and NSCLC cases was found for the individual 

classifier peptides. Secondly, we applied logistic regression analysis to reproduce the 5-pro-

tein classifier of the transitions of the five remaining peptides using the logistic regression 

classification method as described previously.3, 7 Logistic regression does not assume normally 

distributed independent variables, therefore transformation of the normalized abundances 
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of the classifier peptides was not needed. In addition, log transformation of the data as 

described by Li et al. did not significantly improve the performance of the logistic regression 

model. For better interpretation of the regression coefficients, we have calculated a 5-protein 

logistic regression classifier model based on standardized values (z-values). Classifier peptides 

and one interaction term composed of COIA1 and FRIL and their coefficients (β) in the logistic 

regression classifier model are shown in Table S2. Based on the logistic regression classifier 

model a classifier score between 0 and 1 was calculated for each sample. A cut-off value 

in this range, called “reference value”, was selected to identify lung nodules with classifier 

scores at or below the reference value (a negative test result) as “benign”, as described previ-

ously.3, 7 In general, it is better to utilize the actual probabilities that come from the logistic 

regression model and not to dichotomize them in a classifier. However, our motivation in this 

commentary has been to replicate exactly the analysis of Li et al.

Classifier performance

Table 2 shows the performance of the classifiers in the discovery and validation studies 

for NSCLC prevalences with the selected reference values. To test the performance of the 

5-protein classifier, we selected the reference value as described by Vachani et al.7 Using their 

reference value of 0.36, the 5-protein classifier identified benign nodules with 88% NPV and 

27% PPV at 31% specificity and 86% sensitivity in our validation set.

Li et al. and Vachani et al. found in their classifier validation areas under the receiver operat-

ing characteristics (ROC) curves (AUCs) of 0.60 and 0.62, which is too low to be clinically 

useful14. In addition, we found an AUC of 0.65 for our validation of the 5-protein classifier 

(Figure 1). As our cohort also comprised 36% stage IB nodules, whose larger nodule size 

represents a higher degree of malignancy,15 we expected an even better association between 

prediction by imaging and true outcome.

Table 2. Performance of the classifier in discovery and validation studies.

Data set AUC
Reference
value

Sensitivity
(%)

Specificity
(%)

NPV
(%)

PPV
(%)

13-protein classifier at NSCLC prevalence of 15%

Li et al.3

Discovery ( n = 143) 0.82 0.60* 82 66 95 30

Validation (n = 104) 0.60 0.60* 71 44 90 18

5-protein classifier at NSCLC prevalence of 23%

Vachani et al.7

Validation (n = 141) 0.62 0.36‡ 90 17 85 25

Broodman et al.

Discovery (n = 30) 0.65 0.36 86 31 88 27

*Reference value, cut-off value prioritizing a NPV of ≥95% for NSCLC prevalence of 15%.
‡Reference value, cut-off value prioritizing high sensitivity at a target NPV of 90% for NSCLC prevalence of 23%.
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Using the NSCLC prevalence of 23%, CT screening according to the NELSON volume-based 

protocol identified in our study benign nodules with 91% NPV and 31% PPV at 44% 

specificity and 86% sensitivity at baseline. According to this screening protocol, a repeat 

CT scan was performed for all indeterminate screening results (33%), three months later8, 9. 

After on average 95 days (range 91-112 days), we found 100% NPV and 54% PPV at 75% 

specificity and 100% sensitivity (Figure 2A). During a follow-up period of on average 4.3 

years (range 3.0-5.7 years), none of the benign subjects were diagnosed with lung cancer. 

As such, NELSON CT screening at baseline identified benign nodules with a higher NPV and 

specificity than the 5-protein classifier in the validation study.

The performance of the 5-protein classifier in our prospective study shows that a NPV of 

88% can be reached. However, we observed a sensitivity of 86% and a specificity of 31%. 

This means that the 5-protein classifier identifies accurately an optimistic one third (5/16) 

of the benign nodules in our cohort. However, at the cost of 69% (11/ 16) benign patients 

still receiving an unnecessary invasive follow-up procedure and, on the other hand 14% 

(2/14) cancer patients do not receive a necessary follow-up procedure (Figure 2B). From 

these results we conclude that the 5-protein classifier is not useful as a diagnostic tool to 

distinguish benign from malignant nodules in our NELSON cohort.

In a recent paper,16 Vachani et al assessed the clinical utility of the 5-protein classifier in a 

prospective-retrospective study of 287 (81.3%) NSCLC and 66 (18.7%) benign patients with 

indeterminate nodules who had an invasive diagnostic procedure. All 287 cancer patients 

were correctly diagnosed after an invasive procedure and 66 benign patients had an un-

necessary invasive procedure. The classifier identified benign nodules with NPV ≥ 84% at 
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Figure 1. ROC curve of the 5-protein clas-
sifier. The area under the receiver operat-
ing characteristics (ROC) curve (AUC) of the 
5-protein classifier was 0.65 (95% CI: 0.45-
0.86).
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32% specificity and 76% sensitivity. Using the classifier, 263 (74.5%) instead of 353 patients 

would receive an invasive procedure. At the cost of 69 (24.0%) cancer patients not receiving 

a necessary invasive procedure and 45 (68.2%) benign patients receiving an unnecessary 

invasive procedure. As such, the classifier does not reliably exclude malignancy which may 

cause harm to cancer patients by delay of treatment and decreases the number of invasive 

procedures only to a limited extent.

Based on our results and the results presented in the recent paper,16 we conclude that the 

5-protein classifier in its present form has no added value for rescuing patients with benign 

lung nodules from unnecessary invasive procedures in a clinical setting.
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Figure 2. CT scan and 5-protein classifier results of the NELSON sample set.
A, Baseline CT scan results of the NELSON samples are shown at time of blood sampling. Follow-up CT scan results are 
shown for indeterminate screening results after approximately three months. The last row represents the numbers of 
positive, indeterminate and negative CT scan results, including baseline and follow-up scan results. B, 5-protein classi-
fier results of the NELSON samples are shown at time of blood sampling. *Benign fibrotic nodule.
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Table S2. The logistic regression classifiers

Protein (human) Peptide β

ALDOA ALQASALK -0.24

COIA1 AVGLAGTFR 0.32

FRIL LGGPEAGLGEYLFER 0.08

LG3BP VEIFYR -0.45

TSP1 GFLLLASLR 0.07

COIA1 × FRIL Interaction term -0.40

Constant (α) -0.16

Shown are the classifier peptides and one interaction term composed of COIA1 and FRIL and their corresponding coef-
ficients (β) in the 5-protein logistic regression classifier model.
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Chapter 6

Summary and discussion

Lung cancer is an aggressive disease that has the highest mortality rate among cancer pa-

tients in the world, in particular because most patients are only diagnosed at an advanced 

and non-curable stage. Survival rates of lung cancer patients may improve significantly with 

early detection and diagnosis. Early stage lung cancer patients have a better prognosis and 

are potentially curable.1 In early-stage lung cancer patients are usually asymptomatic and at 

this stage the disease can only be detected by advanced imaging techniques. Improvement 

of lung cancer survival rates can therefore best be reached by screening of high risk individu-

als such as current and former smokers. Low-dose computed tomography (LDCT) is currently 

the usual detection method in clinical trials on high risk populations. However, the still high 

false-positive rate of LDCT may harm healthy individuals because of unnecessary follow-up 

scans and invasive follow-up procedures.

Non-invasive biomarkers, complementary to CT screening, could lower the false-positive rate 

of CT screening at baseline and thereby reduce the number of patients that need follow-

up. On the other hand, additional biomarkers might also reduce potential false-negative 

and indeterminate CT results and thereby prevent delayed diagnosis and treatment of lung 

cancer patients.

Lung cancer tissue generates lung cancer-associated proteins to which the immune system 

might produce autoantibodies. These tumor-associated antigens or their autoantibodies can 

be measured in biofluid, and could serve as biomarkers for early detection of lung cancer. In 

this thesis we describe immunological and high-performance mass spectrometry techniques 

(MS) to identify lung cancer related proteins, especially sequences of autoantibodies. The 

main findings and conclusions of our studies in serum of high-risk individuals from a well-

controlled multicenter population study (NELSON) are summarized and discussed in this 

chapter.

As described in Chapter 1, the immune system might respond to tumor-associated antigens 

by producing high-affinity autoantibodies. This autoantibody response starts in early stage 

lung cancer and may endure over years.2-7 Antigen-specific sequences of antibodies may 

be shared among different lung cancer patients. Identification of these antigen-specific 

sequences as potential biomarkers could be an effective approach for early detection of lung 

cancer.

The estimated possible diversity in antibodies, also known as immunoglobulins, varies from 

1013 to more than an unrealistic 1050.8, 9 Because of the vast diversity of immunoglobulins 

one could assume that antibody sequences are unique for each individual, and that these 
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sequences will not be shared among other individuals. However, different studies, including 

studies of our group, have shown that this assumption is not the whole story and that 

there is evidence for repertoire bias. This means that antibodies are subjected to selection 

pressures after rearrangement and affinity maturation, favoring certain genes from the 

germline repertoire that are used in response to a particular antigen.10-15 For instance, similar 

CDR3 sequences were found in different humans after tetanus toxin immunization, and a 

sequencing project in zebra fish showed identical CDR3 sequences shared among several 

zebra fish.13, 16 Patients with paraneoplastic neurological syndromes (PNS) are associated with 

aberrantly expression of autoantibodies to onconeural antigens such as HuD, Yo, Amp or 

CV2. In the study of Maat et al., primary amino acid structures of autoantibodies were 

uniquely identified in samples from one of the autoantibody characterized PNS groups.17 

These findings confirm that specific amino acid structures are shared among individuals with 

autoantibodies to the same onconeural antigens. Moreover, VanDuijn et al. demonstrated by 

proteomic analysis of affinity purified IgG that rats immunized with onconeural HuD antigen 

shared a selection of amino acid sequences.18 This study showed that the development of 

antibodies during immune response is not a random process, but that selection pressures 

favor a selection of amino acid sequences in response to an antigen. We previously described 

a new approach for identification and quantification of antigen-specific sequences of the 

purified IgG antigen-binding fragment (Fab) by mass spectrometry.19 An overlap of 83% 

in MS signals of IgG Fab derived peptides showed that the immunoglobulin repertoire of 

seven healthy donors is very similar. In this study, we demonstrated that our approach is able 

to detect, with high reproducibility and recovery, qualitative (17%) and quantitative (4%) 

differences in Fab sequences between healthy donor serum samples by mass spectrometry. 

We were also able to isolate and identify several complementary determining regions (CDRs) 

by mass spectrometry. From these results we conclude that with this approach it is technically 

feasible to identify CDRs of lung cancer related antibody fragments without the requirement 

of prior knowledge of the antigen involved.

The possibility to find differences between lung cancer cases and controls depends on the 

number of CDRs identified. Identification of CDRs by mass spectrometry may be significantly 

improved by molecular dissection. Molecular dissection reduces the complexity of the im-

munoglobulin molecule, which in turn reduces ion suppression and leads to a significantly 

higher sensitivity to detect these very low-abundant CDR peptides by mass spectrometry.

In Chapter 2 we present a new method to further reduce the complexity of the immuno-

globulin by molecular dissection of IgG into kappa (κ) and lambda (λ) fragments and thereby 

identify significantly more CDRs than by just Fab purification. We performed proteomic 

analysis on purified Fab, Fab-κ, Fab-λ, IgG-k and IgG-λ fragments from 10 stage I non-small 

cell lung cancer (NSCLC) patients and 10 matched controls from current and former smokers 
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of the NELSON trial. The molecular dissection method is reproducible (CV <5%) with a high 

total recovery (>90%) of IgG-κ and IgG-λ for IgG and Fab-κ and Fab-λ for Fab. More precisely, 

high-resolution mass spectrometry analysis of the fractions demonstrated a sufficient purifi-

cation with preserved normal κ to λ ratio in the Fab and light chain of the healthy donor and 

the Fab of the lung cancer cases and controls. Since the whole Fab fraction comprises heavy 

and both kappa and lambda light chains, we identified more CDRs in this fraction than in the 

other individual fractions. Moreover, the lower number of CDRs identified in IgG-κ and IgG-λ 

can be explained by the fact that these fractions are missing the CDRs, including the highly 

diverse CDR3, of the heavy chain.20 This was also demonstrated by the approximately four 

times higher ratio of CDR3 (CDR1: CDR2:CDR3) found in Fab, Fab-κ and Fab-λ compared to 

IgG-κ and IgG-λ. We identified twice as many CDRs when Fab-κ, Fab-λ, IgG-κ and IgG-λ frac-

tions were combined than in the Fab fraction alone. No significant difference between lung 

cancer cases and matched controls for these numbers were found. We identified more CDRs 

and more significantly different CDRs in the Fab-κ fraction than in the Fab-λ, IgG-κ and IgG-λ 

fractions. This can be explained by the fact that during B-cell differentiation the heavy chain 

genes are rearranged first, followed by the κ chain genes. Only if κ chain rearrangements do 

not result in a functional κ chain, the λ chain genes do start to rearrange.9 Immunoglobulins 

that are expressed during tumor development have been described to consist mainly of 

heavy and κ chains.21 Because of these findings, we recommend to use both Fab-κ and Fab 

purifications as the best combination. Mass spectrometry measurements of both Fab and 

Fab-κ purifications requires twice as much measurement time, but makes the effort worth-

while because of the additional 50% CDRs that can be identified. Furthermore, identification 

of more CDRs may increase the likelihood of finding lung cancer-related CDR sequences.

In Chapter 3 we applied our previously described IgG Fab purification method on a case-

control study.19 The aim of our study was to find specific peptide sequences in the antigen-

binding fragments (Fab) of antibodies that distinguish lung cancer patients from controls 

without the need of previously known antigens. We applied proteomic analysis on purified 

IgG Fab fragments from 44 NSCLC cases and 49 matched controls of the NELSON trial. A 

model of 12 antibody peptide sequences was able to distinguish lung cancer patients from 

controls in this high-risk population. This antibody peptide model consists not only of peptide 

sequences at the CDR regions of the immunoglobulin, but also of peptide sequences at 

the framework regions of the immunoglobulin. The fact that the antibody peptide model 

not exclusively consists of antibody peptides of the hypervariable CDR regions but also of 

antibody peptides of framework regions can be explained by their abundance in the im-

munoglobulin pool. Peptides with only few mutations compared to the germline, such as 

framework peptides, are more likely to exist in various clones and therefore have a higher 

abundance.22 Because of their higher abundance these peptides have more chance of being 

detected by mass spectrometry in a high complex immunoglobulin sample. Reduction of the 
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complexity of the immunoglobulin by molecular dissection into smaller protein fragments 

such as Fab-κ or Fab-λ, or by purifying only fragments containing the variable regions of the 

immunoglobulin, could improve the mass spectrometry measurement of the low-abundant 

CDR peptides. Besides this complexity problem, it is possible that hypermutated CDRs are not 

commonly shared among patients.22 Instead of hypermutated CDRs, moderately mutated 

peptides may have the best overall properties in respect to abundance, specificity and sharing 

as a potential biomarker for lung cancer. Lung cancer is a heterogeneous disease which 

causes high variability between patients and may elicit several immune responses to several 

tumor-associated antigens.4-6, 23-25 Therefore, it is not unexpected that we were not able to 

find one single antibody peptide in our data set that could distinguish lung cancer patients 

from controls. This finding is supported by other studies as well. The studies of Brichory et 

al. for instance showed low sensitivities ranging from 14%-33% for antibodies to single 

TAAs.26, 27 In contrast, studies of Zhong et al. and Lowe et al. showed validated autoantibody 

panels to TAAs for lung cancer screening with sensitivity ranging from 83%-86% and speci-

ficities ranging from 78%-88%.4, 7 Using a multivariate model we were able to distinguish 

lung cancer patients from controls with a sensitivity of 96% and a specificity of 100% in the 

discovery set (NELSON 1). In the independent validation set (NELSON 2) we observed 84% 

sensitivity and 90% specificity. Because of experimental and biological variation we needed 

to recalibrate our antibody peptide model for each data set. We evaluated the statistical 

background of these results for an effect of random selection of the data and thereby the 

likelihood of discovering a similar model by chance. This background evaluation showed 

that our 12 antibody peptide model performed significantly better than a model based on 

permutated data. Up to now, only age and smoking history have been used as inclusion 

criteria for enrolment of high-risk individuals in screening trials. Additional biomarkers might 

stratify high-risk individuals more accurately when combined with the inclusion criteria age 

and smoking history in screening trials. CT screening is able to detect lung cancer with 

high sensitivity and specificity at different screening rounds after approximately one year of 

baseline screening.28 Nevertheless, about 27% of the high-risk individuals in the NELSON 

trial received unnecessary invasive and expensive follow-up procedures that revealed benign 

disease at baseline CT screening.28 CT screening test performance improves after follow-up 

scans, but only after a relatively long period, on average one year after baseline screening. 

Therefore, additional diagnostic tests are needed to improve the diagnostic value of CT 

screening at baseline. For instance, the group of Massion reported the added diagnostic 

value of a serum proteomic signature in the evaluation of CT screening results of indeter-

minate lung nodules.29 In our study, we were not only able to detect lung cancer with an 

antibody peptide panel at an early stage, but also at an earlier stage than CT screening, on 

average one year before the final diagnosis was determined. Our results show that auto-

antibody profiling could be a valuable additional test for early detection of lung cancer in 
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CT screening. However, still technical challenges have to be overcome before this method is 

applicable in the clinical setting.

Several case-control studies have suggested that autoantibodies to the apoptosis inhibitor 

protein ‘survivin’ are potential biomarkers for early detection of lung cancer. These were 

detected using direct antigen-coating ELISA (DAC-ELISA) with recombinant survivin as cap-

ture protein. Survivin autoantibody levels in lung cancer cases were compared with healthy 

blood-donor controls. In Chapter 4 we wanted to test the hypothesis that survivin autoanti-

bodies can be detected equally well by our usual sandwich ELISA, in a well-controlled popu-

lation stratified for smoking habit (NELSON), before radiological diagnosis of NSCLC. Our 

preference for sandwich ELISA is based on its generally higher antigen-specificity than the 

DAC-ELISA. We therefore first compared the DAC-ELISA with our sandwich ELISA. Because 

of the more robust results of the sandwich ELISA, we used this assay to measure survivin 

autoantibodies in serum from 50 stage I-II NSCLC cases, both before and after diagnosis, 

and 50 smoking-habit matched controls from the NELSON trial. In addition, we measured 

also 20 late stage NSCLC cases from the Dutch Association of Pulmonologists for Lung 

Diseases and Tuberculosis (NVALT)-12 study and 50 healthy nonsmoking controls. No specific 

autoantibodies to survivin were detected in sera from any of the early NSCLC cases, but a 

remarkably higher (+24%, p<0,001) nonspecific binding was found in both NSCLC cases 

and smoking controls, than in healthy nonsmoking controls. Hence, without subtraction of 

background binding, significantly higher binding for NSCLC patients and smokers will be 

found when compared only with healthy nonsmokers. This misleading finding is supported 

by a study of autoantibodies to 10 tumor-associated antigens.30 This study demonstrated 

that smokers, including lung cancer patients and non-lung cancer patients, had significantly 

higher background binding in assays for autoantibodies than healthy non-smokers.30 We 

found no specific antibody reactivity to survivin in any lung cancer patient, either before or 

after diagnosis, taking apparently healthy smokers as control. Thus, survivin in vivo had not 

elicited an antibody responses before or after diagnosis of lung cancer. This observation is 

also supported by the absence of cytolytic T-cell immune responses against survivin peptides 

in lung cancer.31 We confirmed our ELISA results with Western blot analysis of recombinant 

survivin, which also revealed no anti-survivin antibody reactivity. To our knowledge, we used 

the best well-controlled population related to smoking habit in lung cancer case-control stud-

ies on anti-survivin autoantibodies to date. However, the absence of anti-survivin antibodies 

in NSCLC patient sera reported by our study is in disagreement with the results reported by 

other studies, which reported the presence of anti-survivvin antibodies in NSCLC patient 

sera to range from 8% to 52%.30, 32-38 These inconsistent results may have been caused by 

differences in the type of tumor, the stage of NSCLC, or the source of antigen, but the most 

likely reason is the difference in the method of the assay. Survivin autoantibodies have been 

reported in spite of tumor type or stage of NSCLC.36, 37 However, the uneven distribution 
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of pathology of the 50 NSCLC patients of the NELSON study (82% adenocarcinoma, 90% 

stage I/II) might explain the absence of survivin autoantibodies. To exclude this possibility, we 

also investigated late stage (IV) NSCLC patients of the NVALT study. In these patients too, 

sandwich ELISA and Western blot analysis revealed no antibody reactivity to survivin. Up to 

now, the most common assays for detection of survivin antibodies are direct antigen-coating 

assays using immobilized recombinant survivin solution. The disadvantage of these assays is 

that if the antigen solution is not absolute pure, contaminating proteins may be immobilized 

as well. For instance, E. coli proteins are frequently copurified with the recombinant protein, 

and because of the high prevalence of E. coli infections of humans, background antibody 

response to E.coli proteins in assays is a major problem.39-41 We also detected these antibody 

responses to E. coli proteins in Western blot analysis of lung cancer sera. Another disadvan-

tage is the non-specific binding in direct antigen-coating (DAC) assays for autoantibodies 

due to increased concentrations of IgG and other inflammatory mediators.42 Generally, DAC-

ELISA may incorrectly assess antibodies to survivin and to other tumor antigens because of 

non-specific binding. Non-specific binding can be monitored and significantly reduced in a 

sandwich ELISA. Differences in posttranslational modifications of survivin, compared with 

recombinant survivin, could be the reason of the lack of anti-survivin reactivity to recom-

binant survivin. However, sandwich ELISA results and Western blot analysis of endogenous 

survivin (HEK-293) also confirmed the lack of survivin antibody reactivity in patient sera. In 

conclusion, we demonstrated that specific survivin autoantibody reactivity is not present in 

sera before or after diagnosis of lung cancer. Higher apparent survivin antibody reactivity in 

smokers than in nonsmokers reported by other studies is likely caused by nonspecific binding 

in smokers. In conclusion, autoantibodies to lung tumor antigens should be examined using 

a sandwich ELISA or another well-defined assay in a population that is stratified for smoking.

The discovery of indeterminate pulmonary nodules on a CT scan may lead to invasive 

diagnostic follow-up procedures such as biopsy or surgery, which may imply a consider-

able burden and medical risk for the patient. To avoid unnecessary invasive procedures for 

patients with benign nodules, there is need for a non-invasive predictive tool to distinguish 

patients with benign nodules from patients with malignant nodules. Chapter 5 describes 

our validation study of a blood-based 13-protein and a 5-protein classifier, which have been 

described by Li et al. and Vachani et al. respectively as a diagnostic tool to distinguish benign 

from early-stage malignant nodules in patients with indeterminate lung nodules. For our vali-

dation study, we used serum samples from 14 stage IA-B NSCLC cases and 16 well-matched 

benign controls from the NELSON trial. Indeterminate lung nodules (IPNs) with a diameter 

size of 4 to 30 mm were correctly identified by CT in 81.2% of the benign and in 64.3% of 

the cancer subjects. In analogy, we used immunodepletion on IgY14-Supermix resin columns 

and MRM-MS analysis to analyze the classifier peptides and six endogenous normalization 

peptides.43 In contrast, to the original study of Li et al., we monitored four transitions instead 
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of one transition for each peptide, and included stable isotope-labeled internal standard 

(SIS) peptides for each classifier and normalization peptide. In our study, three of the 13 

peptides of the 13-protein classifier could not be quantified. In the later study of Vachani 

et al., these three peptides and five other peptides could either not be quantified and were 

therefore eliminated from the classifier in their validation study.44 In line with the original 

study, no significant difference (p>0.05) was found between normalized abundances of the 

benign controls and NSCLC cases for single classifier peptides. We applied logistic regression 

analysis to reproduce the 5-protein classifier of the transitions of the five remaining peptides 

using the logistic regression classification method as described by Vachani et al.44 Using their 

reference value of 0.36 for a NSCLC prevalence of 23%, the 5-protein classifier identified 

benign nodules with 88% NPV and 27% PPV at 31% specificity and 86% sensitivity in our 

validation set. Li et al. and Vachani et al. found in their validation study ROC curves with 

AUCs of 0.60 and 0.62, which are too low to be medically useful.45 Furthermore, we found 

an AUC of 0.65 for our validation of the 5-protein classifier. Since our cohort also comprised 

36% stage IB nodules, whose larger nodule size represents a higher degree of malignancy, 

we expected an even better relation between prediction and true outcome. Using the NSCLC 

prevalence of 23%, CT screening according to the NELSON protocol identified in our cohort 

benign nodules with 91% NPV and 31% PPV at 44% specificity and 86% sensitivity at 

baseline. As such, the NELSON CT screening at baseline identified benign nodules with a 

higher specificity and NPV than the 5-protein classifier in our validation study. The 5-protein 

classifier identified accurately an optimistic one third (5/16) of the benign nodules in our 

cohort. However, at the cost of 69% (11/ 16) benign patients still receiving an unnecessary 

invasive follow-up procedure and, on the other hand 14% (2/14) cancer patients do not 

receive a necessary follow-up procedure. Recently, Vachani et al. tested the clinical utility of 

the 5-protein classifier in a prospective-retrospective study of patients with IPNs who had an 

invasive diagnostic procedure.46 Using the 5-protein classifier, 263 (74.5%) instead of 353 

patients would receive an invasive procedure. However, 69 (24.0%) malignant patients would 

not receive a necessary invasive procedure and 45 (68.2%) benign patients would receive an 

unnecessary invasive procedure. Based on these results and our results, we conclude that this 

5-protein classifier has no added value for rescuing patients with benign lung nodules from 

unnecessary invasive procedures in the clinic.

Future perspectives

Serum-biomarkers for lung cancer might be useful for early detection and monitoring of 

the disease in individuals at high risk. In a complex and heterogeneous disease like lung 

cancer a variety of proteins is involved. Therefore, it is more logical to search for a panel of 

biomarkers to achieve high sensitivity and specificity than for a single biomarker. A panel of 

specific peptide sequences in the antigen-binding fragments could be a model for sensitive 

and specific biomarkers in lung cancer as we described in this thesis.
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We used a bottom-up approach to identify the 12 putative sequences of this antibody 

peptide model by label-free high-resolution mass spectrometry. Despite the highly sensitive 

mass spectrometry this peptide-based approach has some limitations. Digestion of proteins 

into peptides increases the complexity of the sample for mass spectrometry measurement. 

This peptide complexity can be reduced before protein digestion by molecular dissection of 

the immunoglobulin protein into smaller protein fragments or by depletion of the constant 

regions, or by enrichment of the variable regions of the immunoglobulin protein. This will 

reduce the complexity of the sample and thereby significantly improve the detection of the 

low-abundant CDRs peptides by mass spectrometry. In addition, because of the tryptic diges-

tion it is difficult to identify the highly diverse CDR3 peptides. The CDR3 peptide sequence 

has often at the beginning a lysine (K) or arginine (R) amino acid, which are the cleavage sites 

of trypsin. As a result, their tryptic-digested peptides often contain either a mostly conserved 

V-region fragment or a highly diverse fragment, which is difficult to align to the germline 

sequence. The use of alternative enzymes could help to improve this CDR3 identification. An 

even better option for CDR identification would be the measurement of larger fragments by 

using middle-down or top-down proteomics. Top-down (protein-based) proteomics using 

high-resolution mass spectrometry allows the measurement of larger fragments than the 

antigen-binding site of antibodies and thereby may facilitate the identification of the longer 

segments of CDR sequences.47, 48

For clinical use as biomarker panel we need to know the full sequence of the 12 antibody 

peptides. However, the full sequences of these antibodies are not present in databases. Pro-

teogenomics is an emerging field that provides an opportunity to identify peptides by search-

ing mass spectrometry data of peptides against genomic databases.49, 50 Proteogenomics in 

combination with the emerging development of targeted next generation sequencing (NGS) 

allow us to develop databases derived from RNA-sequencing data containing full sequences 

of rearranged antibody peptides.51, 52 For this purpose, antibodies produced by tumor-

infiltrating cells will be characterized by mass spectrometry and NGS in order to identify 

common autoantibodies specific for lung cancer. While the NGS data will reveal antibodies 

that are locally produced by tumor-infiltrating cells in lung tissue, this tissue may also contain 

antibodies that are produced elsewhere, in lymphoid tissue, in peripheral circulation or in 

bone marrow. Therefore, the NGS data will be combined with proteomics data in order to 

reveal a complete inventory of antibodies produced locally in lung tissue and elsewhere in 

the body. In brief, lung tissue and sera will be collected from lung cancer patients and from 

COPD patients as controls, since these patients have the same history of smoking and inflam-

mation, which are known to provoke also substantial auto-immune response. Immune cells 

such as T-cells, B-cells, dendritic cells and macrophages often infiltrate the lung tumor. These 

tumor-infiltrating lymphocytes may be organized into tertiary lymphoid structures (TLS), 

also called tumor-induced bronchus-associated lymphoid tissues (T)i-BALTs, which are highly 
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organized lymphoid aggregates that also can be found in lymph nodes.53-57 In these TLS, 

T-cells and B-cells closely interact with tumor-associated antigens presented by dendritic cells, 

resulting in further development of the variable regions in their antigen-specific sites.58 After 

staining for infiltrating B-cells, the TLS sections of the lung tissues will be obtained by laser 

capture microdissection. Total RNA from these sections will be extracted using RNA isolation 

kits and subsequently be transcribed to cDNA using primers specific for the constant regions 

of immunoglobulins. The cDNA will be amplified by PCR with a universal primer set specific 

for the set of human immunoglobulin variable regions. After this PCR step the PCR products 

will be ligated to Illumina adapters for subsequently sequencing of the variable regions of 

immunoglobulins. After sequencing, this NGS data will be filtered for unique sequences. 

Proteomic analysis by high-resolution mass spectrometry will be performed of purified IgG 

in serum and lung tissue samples from the same cohort. Mass spectra data as fingerprints 

for immunoglobulin peptides in serum and lung tissue samples will be searched against a 

database based on the NGS data. After data analysis and integration of mass spectrometry 

data and NGS data of these tissue and serum samples the most promising autoantibody se-

quences will be selected. Further identification of the complete variable region sequence by 

using targeted NGS data of lung carcinoma tissue enables us to synthesize exact and reliable 

sequences of our 12 autoantibody panel or a newly discovered autoantibody panel. Subse-

quently, reliable quantification of these antibody sequences by parallel reaction monitoring 

(PRM) on high resolution mass spectrometers using stable isotope-labeled standard peptides 

(SIS) as references may improve this autoantibody panel. This autoantibody panel will be 

validated in sera of early stage lung cancer patients and matched controls of an independent 

cohort from the well-controlled prospective NELSON study. After validation, we may be able 

to develop a serum test of an antibody panel that combined with CT screening at baseline, 

reaches the desired sensitivity and specificity of at least 95% for clinical use. For clinical use 

of this serum test high-throughput multiplex assays can be developed such as bead-based 

immunoassays (e.g. Luminex®), high-affinity assays using commercially available aptamers 

(e.g. Avacta Life Science®, Olink Bioscience® and SomaLogic®) or even fully automated 

immunoassays (e.g. by Roche Diagnostics®).
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Samenvatting

Longkanker is een agressieve ziekte met het hoogste sterftecijfer onder kankerpatiënten in 

de wereld, hoofdzakelijk doordat bij de meeste patiënten de ziekte pas in een vergevorderd 

en ongeneeslijk stadium wordt gediagnosticeerd. De overlevingskansen van longkankerpati-

ënten kunnen aanzienlijk verbeteren door vroegtijdige opsporing en diagnose. Patiënten in 

een vroeg stadium van longkanker hebben een betere prognose en een aannemelijke kans 

op genezing. In een vroeg stadium zijn longkankerpatiënten echter vaak asymptomatisch 

en de ziekte kan in dit stadium enkel worden opgespoord door geavanceerde beeldtech-

nieken. Het verbeteren van de overlevingskans bij longkanker kan het best worden bereikt 

door screening van individuen met een verhoogd risico zoals huidige en voormalige rokers. 

Lage dosis CT (computed tomography) is momenteel de gebruikelijke detectiemethode bij 

klinische studies met hoog-risico groepen. Echter kan het nog steeds hoge percentage vals-

positieve uitslagen bij LDCT schade toebrengen aan gezonde individuen als gevolg van de 

onnodige vervolgscans en invasieve vervolgprocedures (follow-up).

Aanvullend op CT screening kunnen niet-invasieve biomarkers mogelijk het aantal vals-

positieven bij aanvang van CT screening (baseline screening) verlagen en daardoor het aantal 

patiënten dat follow-up procedures nodig heeft verminderen. Daarnaast kunnen aanvullende 

biomarkers waarschijnlijk ook het aantal vals-negatieve en ondefinieerbare CT resultaten 

verminderen en daarmee de vertraagde diagnose en behandeling van longkankerpatiënten 

voorkomen.

Longkankerweefsel genereert aan longkanker gerelateerde eiwitten waartegen het im-

muunsysteem autoantistoffen kan produceren. Deze tumor gerelateerde antigenen of hun 

autoantistoffen kunnen in biovloeistoffen worden gemeten en zouden kunnen dienen als 

biomarkers voor vroegtijdige opsporing van longkanker. In dit proefschrift beschrijven we 

immunologische en hoogwaardige massaspectrometrie technieken (MS) om longkanker 

gerelateerde eiwitten te identificeren en in het bijzonder de sequenties van autoantistoffen. 

De belangrijkste bevindingen en conclusies uit onze studies omtrent serum van hoog-risico 

individuen uit een goed gecontroleerd multicenter bevolkingsonderzoek, de NELSON trial, 

zijn in dit hoofdstuk samengevat.

Zoals beschreven in hoofdstuk 1, kan het immuunsysteem op aan tumor gerelateerde 

antigenen reageren door het produceren van autoantistoffen met hoge binding voor deze 

antigenen. Deze autoimmuunrespons begint in een vroeg stadium van longkanker en 

kan meerdere jaren voortduren. Antigeen-specifieke sequenties van antistoffen kunnen 

gemeenschappelijk voorkomen in verschillende longkankerpatiënten. Identificatie van deze 
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antigeen-specifieke sequenties als mogelijke biomarkers zou een effectieve aanpak kunnen 

zijn voor de vroegtijdige opsporing van longkanker.

Antistoffen, ook wel bekend als immuunglobulinen, bestaan uit constante en variabele 

delen. Het variabele deel in het antigeen-bindend fragment (Fab) van een antistof bevat 

drie “complementary determining regions” (CDRs). Deze CDRs zijn hypervariabel en zorgen 

voor de specifieke herkenning en binding van het antigen. De geschatte mogelijke variatie 

in antistoffen varieert van 1013 tot meer dan een onrealistische 1050. Vanwege de enorme 

verscheidenheid in immunoglobulinen zou men kunnen aannemen dat aminozuursequenties 

van antistoffen uniek zijn voor elk individu en dat deze sequenties niet gemeenschappelijk 

voorkomen in andere individuen. Verschillende studies, met inbegrip van studies van onze 

groep, hebben echter aangetoond dat deze veronderstelling niet het hele verhaal is en dat 

er bewijs is voor een “repertoire bias”. Dit betekent dat antistoffen worden onderworpen 

aan een bepaalde selectiedruk na herschikking van de immunoglobuline-genen (V, D en 

J-genen) en bindingsrijping, ten gunste van bepaalde genen uit het repertoire van de immu-

noglobuline-genen die worden gebruikt in respons op een bepaald antigeen. Soortgelijke 

CDR3 sequenties werden bijvoorbeeld bij verschillende mensen gevonden na immunisatie 

met tetanus toxine en een sequencing project met zebravissen toonde identieke CDR3 se-

quenties in verschillende vissen. Patiënten met paraneoplastische neurologische syndromen 

(PNS) worden geassocieerd met abnormale expressie van autoantistoffen tegen onconeurale 

antigenen zoals HuD, Yo, Amp of CV2. In de studie van Maat et al. werden primaire ami-

nozuurstructuren van autoantistoffen exclusief geïdentificeerd in monsters behorende tot 

één specifieke autoantistof getypeerde PNS groep. Deze bevindingen bevestigen dat ge-

meenschappelijke aminozuurstructuren voorkomen bij personen met autoantistoffen tegen 

dezelfde onconeurale antigenen. Bovendien kon VanDuijn et al. door proteomics analyse van 

affiniteitsgezuiverde IgG van ratten na immunisatie met het onconeurale HuD antigeen, aan-

tonen dat deze groep ratten gemeenschappelijke aminozuursequenties hadden ontwikkeld. 

Deze studie laat ook zien dat de ontwikkeling van antistoffen tijdens de immuunrespons niet 

een willekeurig proces is, maar dat de selectiedruk een bepaalde selectie van aminozuurse-

quenties begunstigt in respons op een antigeen. Eerder beschreven we een nieuwe aanpak 

voor de identificatie en kwantificering van antigeen-specifieke sequenties van het gezuiverde 

IgG antigeen-bindend fragment (Fab) door massaspectrometrie. Een overlapping van 83% in 

MS signalen van IgG Fab gezuiverde peptiden liet zien dat het immunoglobuline repertoire 

van zeven gezonde donoren zeer vergelijkbaar is. In deze studie toonden we aan dat onze 

aanpak in staat is om met hoge reproduceerbaarheid en opbrengst, kwalitatieve (17%) en 

kwantitatieve (4%) verschillen in Fab sequenties tussen gezonde donor serummonsters door 

massaspectrometrie te detecteren. Eveneens waren wij in staat om de verschillende CDRs 

(complementarity determining regions) met massaspectrometrie te isoleren en te identifice-

ren. Uit deze resultaten concluderen wij dat het met deze aanpak technisch haalbaar is om 
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CDRs van longkanker gerelateerde antistoffragmenten te identificeren zonder vereiste en 

voorafgaande kennis van het betrokken antigeen.

De mogelijkheid om verschillen tussen longkankerpatiënten en controles te vinden is afhan-

kelijk van het aantal geïdentificeerde CDRs. Identificatie van CDRs door massaspectrometrie 

kan aanzienlijk worden verbeterd door moleculaire dissectie. Moleculaire dissectie verlaagt 

de complexiteit van de immunoglobulinemolecule, waardoor de ionsuppressie in de mas-

saspectrometrie vermindert wat uiteindelijk leidt tot een aanzienlijk hogere gevoeligheid om 

deze zeer laag abundante CDR-peptiden te detecteren.

In hoofdstuk 2 presenteren we een nieuwe methode voor het verder verlagen van de 

complexiteit van de immunoglobuline door moleculaire dissectie van IgG in kappa (κ) en 

lambda (λ) fragmenten. We voerden een proteomics analyse uit op de gezuiverde Fab, Fab-κ, 

Fab-λ, IgG-k en IgG-λ fragmenten van 10 NSCLC (non-small cell lung cancer) patiënten met 

stadium I en 10 gematchte controles van huidige en voormalige rokers van de NELSON 

studie. De moleculaire dissectie methode is goed reproduceerbaar (CV <5%) en geeft hoge 

totale zuiveringsopbrengsten (>90%) voor IgG-κ en IgG-λ gezuiverd uit IgG en voor Fab-κ 

en Fab-λ gezuiverd uit Fab. Deze methode liet ook een behouden normale κ:λ ratio in de 

Fab van zowel longkankerpatiënten als controles zien. Aangezien de gehele Fab fractie 

bestaat uit zowel de zware ketens als de beide lichte ketens, kappa (κ) en lambda (λ), iden-

tificeerden we meer CDRs in deze fractie dan in de andere afzonderlijke fracties. Daarnaast 

kan het lager aantal geïdentificeerde CDRs in IgG-κ en IgG-λ worden verklaard door het 

feit dat in deze fracties de CDRs van de zware keten ontbreken, inclusief de zeer variabele 

CDR3. Dit werd ook aangetoond door de ongeveer vier maal hogere verhouding van CDR3 

(CDR1:CDR2:CDR3) gevonden in Fab, Fab-κ en Fab-λ ten opzichte van IgG-κ en IgG-λ. We 

identificeerden tweemaal zoveel CDRs in de gecombineerde Fab-κ, Fab-λ, IgG-κ en IgG-λ 

fracties dan in de afzonderlijke Fab fractie. Er werd geen significant verschil voor deze aantal-

len gevonden tussen de longkankerpatiënten en de gematchte controles. Fab-k leverde naast 

meer CDRs ook meer significant verschillende CDRs op dan de Fab-λ, IgG-κ en IgG-λ fracties. 

Immunoglobulinen die tijdens de ontwikkeling van de tumor tot expressie komen blijken 

voornamelijk uit zware en κ-ketens te bestaan. Vanwege deze bevindingen raden we massa 

spectrometrie van zowel de Fab en de Fab-κ fracties aan. Massaspectrometrie metingen van 

zowel de totale Fab als de afzonderlijke Fab-κ fractie vereist weliswaar twee keer zoveel tijd, 

maar levert wel 50% meer geïdentificeerde CDRs op en vergroot daarmee de kans op het 

vinden van longkanker gerelateerde CDR sequenties.

In hoofdstuk 3 pasten we onze eerder beschreven IgG Fab zuivering methode toe op een 

patiënt-controlestudie (case-controle studie). Het doel van onze studie was het vinden van 

specifieke peptidesequenties in de antigeen-bindende fragmenten (Fab) van antistoffen die 
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longkankerpatiënten en controles van elkaar kunnen onderscheiden zonder de noodzaak 

om op voorhand de antigenen al te kennen. We voerden een proteomics analyse uit op 

gezuiverde IgG Fab-fragmenten van 44 NSCLC patiënten en 49 gematchte controles van 

de NELSON studie. Een model van 12 peptidesequenties van antistoffen was in staat om 

in deze hoog-risico groep de longkankerpatiënten van de controles onderscheiden. Dit 

antistof-peptide model bestaat niet enkel uit peptidesequenties van de hypervariabele CDR-

regio’s van de immunoglobuline, maar ook uit peptidesequenties van de framework- regio’s 

van de immunoglobuline. Deze framework peptiden met slechts een paar mutaties heb-

ben meer kans om in verschillende klonen voor te komen en zijn daardoor in hogere mate 

aanwezig (abundantie). Door hun abundantie is de kans groter dat deze peptiden in een 

zeer complex immunoglobuline monster door massaspectrometrie worden gedetecteerd. 

Naast dit complexiteitsprobleem is het ook mogelijk dat hypergemuteerde CDRs niet ge-

meenschappelijk voorkomen in patiënten. In plaats van de hypergemuteerde CDRs hebben 

de matig gemuteerde peptiden wellicht de beste algemene eigenschappen met betrekking 

tot abundantie, specificiteit en het gemeenschappelijk voorkomen onder patiënten als een 

potentiële biomarker voor longkanker. Longkanker is een heterogene ziekte die grote ver-

schillen tussen patiënten veroorzaakt en verschillende immuunresponsen tegen verschillende 

tumor-geassocieerde antigenen kan ontlokken. Daarom is het niet onverwacht dat er niet één 

enkele antistof-peptide in onze dataset is gevonden die longkankerpatiënten van controles 

kan onderscheiden. Deze bevinding wordt ook door meerdere studies ondersteund. Daarom 

zijn we op zoek gegaan naar een model dat uit verschillende antistof-peptiden bestaat. Met 

behulp van een multivariaat antistof-peptide model waren we in staat om longkankerpatiën-

ten en controles in de eerste set (NELSON 1) met een sensitiviteit van 96% en een specificiteit 

van 100% van elkaar te onderscheiden. In de tweede onafhankelijke validatie set (NELSON 2) 

vonden we een sensitiviteit van 84% en een specificiteit van 90%. Voor het neutraliseren van 

de experimentele en biologische verschillen hebben we het model voor elke dataset opnieuw 

gekalibreerd. Om de kans op het vinden van een vergelijkbaar model gebaseerd op wil-

lekeurige selectie van data uit te sluiten, hebben we een achtergrond evaluatie uitgevoerd. 

Deze achtergrond evaluatie liet zien dat het door ons gevonden antistof-peptide model 

significant beter is dan een model gebaseerd op permutatie van de data. Tot nu toe zijn 

alleen leeftijd en rookhistorie als selectiecriteria gebruikt voor het includeren van hoog-risico 

individuen in een screeningtrial. Het nauwkeuriger selecteren van hoog-risico individuen 

voor een screening trial kan waarschijnlijk worden bereikt door leeftijd en rookhistorie met 

aanvullende biomarkers te combineren. CT screening kan longkanker met hoge sensitiviteit 

en specificiteit na meerdere screening rondes en ongeveer één jaar na baseline screening 

(beginpunt screening) detecteren. Niettemin ondergaat ongeveer 27% van de deelnemers 

aan de NELSON trial onnodige invasieve en kostbare follow-up procedures die resulteren in 

goedaardige longziekten. CT screening resultaten verbeteren na een aantal follow-up scans, 

echter alleen na een betrekkelijk lange periode van gemiddeld één jaar na baseline screening. 
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Daarom zijn er aanvullende diagnostische tests nodig om de diagnostische waarde van CT 

screening op baseline te verbeteren. Onze studie laat zien dat we niet alleen in staat zijn om 

longkanker met een antistof-peptide panel in een vroeg stadium te detecteren, maar ook in 

een eerder stadium dan CT screening, gemiddeld een jaar voordat de uiteindelijke diagnose 

is vastgesteld. Onze resultaten tonen aan dat autoantistof profilering een waardevolle aan-

vullende test zou kunnen zijn voor de vroegtijdige detectie van longkanker bij CT screening. 

Echter moeten er nog een aantal technische uitdagingen worden overwonnen voordat deze 

methode toegepast kan worden in de kliniek.

Diverse patiënt-controle studies hebben gesuggereerd dat autoantistoffen tegen het apop-

tose-remmer eiwit ‘survivin’, potentiele biomarkers kunnen zijn voor de vroegtijdige detectie 

van longkanker. Survivin autoantistof concentraties werden in deze studies gedetecteerd met 

behulp van een directe antigeen-coating ELISA (DAC-ELISA) met recombinant survivin als 

“capture” eiwit en vergeleken tussen longkankerpatiënten en gezonde bloeddonor contro-

les. In 8% tot 52% van de longkankerpatiënten werden deze autoantistoffen gedetecteerd. 

In hoofdstuk 4, testten we de hypothese dat deze survivin autoantistoffen even goed te 

detecteren zijn met onze gebruikelijke sandwich ELISA vóór de radiologische diagnose in 

patiënten in een vroeg stadium van NSCLC. We vergeleken eerst de DAC-ELISA met onze 

sandwich-ELISA. Vanwege de meer robuuste resultaten van de sandwich ELISA, gebruikten 

we deze test voor het meten van survivin autoantistoffen in het serum van 50 NSCLC patiën-

ten, zowel vóór als na de diagnose, en 50 gematchte controles voor rookgedrag van huidige 

en voormalige rokers uit de NELSON trial. Daarnaast hebben we deze antistoffen ook in 

serum van 20 laat stadium (IV) NSCLC patiënten van de NVALT-12 studie en 50 gezonde niet-

rokers controles gemeten. In geen enkel serum van de NSCLC patiënten werden specifieke 

autoantistoffen tegen survivin gedetecteerd. Echter werd er zowel in de NSCLC patiënten 

als in de gematchte controles voor rookgedrag een opmerkelijke hogere (+24%, p <0,001) 

niet-specifieke binding ten opzichte van de gezonde niet-rokers controles gevonden. Dus 

zonder correctie voor niet-specifieke achtergrondbinding kan er een significant hogere 

binding voor NSCLC patiënten en rokers ten opzichte van niet-rokers als controles worden 

gevonden. Deze niet-specifieke binding kan in een sandwich ELISA beter gecontroleerd en 

aanzienlijk gereduceerd worden dan in een DAC-ELISA. Ook in western blotting werden 

geen autoantistoffen tegen recombinant survivin in de patiënten sera gevonden. Verschillen 

in de posttranslationale modificaties in survivin ten opzichte van recombinant survivin zou 

het ontbreken van anti-survivin reactiviteit tegen recombinant survivin kunnen verklaren. 

Echter ook western blotting met endogene survivin (HEK-293) toonde het ontbreken van 

anti-survivin reactiviteit in patiënten sera aan. We concluderen dan ook dat specifieke anti-

survivin autoantistof reactiviteit hoogstwaarschijnlijk niet aanwezig is in serum van long-

kankerpatiënten zowel voor of na diagnose van longkanker. Hogere schijnbare anti-survivin 

autoantistof reactiviteit in serum van rokers ten opzichte van niet-rokers die door andere 
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studies worden gerapporteerd, wordt zeer waarschijnlijk veroorzaakt door niet-specifieke 

binding in rokers. Autoantistoffen tegen longkanker antigenen dienen met behulp van een 

sandwich ELISA of een andere goed gedefinieerde assay in een goed gecontroleerde en op 

rookgedrag geselecteerde patiëntengroep te worden onderzocht.

De ontdekking van ondefinieerbare nodules, “vlekjes”, op een CT-scan van de longen kan 

leiden tot invasieve diagnose follow-up procedures, zoals een biopsie of een operatie die 

een aanzienlijke belasting en een medisch risico voor de patiënt kan betekenen. Om deze 

onnodige invasieve procedures voor patiënten met benigne (goedaardige) nodules te voor-

komen is er behoefte aan een niet-invasief diagnostisch instrument om de benigne nodules 

van de maligne nodules (kwaadaardige) te kunnen onderscheiden. Hoofdstuk 5 beschrijft 

onze validatiestudie van een 13-eiwit classificator en een 5-eiwit classificator in bloed, die 

zijn beschreven door Li et al. en Vachani et al. respectievelijk als een diagnostisch instrument 

met een hoge negatief voorspellende waarde (NPV) om de benigne van de vroeg stadium 

(IA) maligne nodules in patiënten met ondefinieerbare long nodules (IPNs) te kunnen on-

derscheiden. Voor onze validatiestudie gebruikten we serummonsters van 14 vroeg stadium 

IA-B NSCLC patiënten (64,3 % IPNs) en 16 goed gematchte benigne controles (81,2% 

IPNs) van een prospectieve cohortstudie (NELSON). In overeenstemming met de beschreven 

studies gebruikten we immunodepletie en MRM-massaspectrometrie om deze classificatie 

peptiden te analyseren. In tegenstelling tot de originele studie van Li et al. monitorden we 

vier transities in plaats van één transitie en gebruikten we stabiele isotoop gelabelde interne 

standaard (SIS) peptiden voor de meting van elke peptide. In onze studie konden drie van de 

dertien peptiden van de 13-eiwit classificator niet worden gekwantificeerd. In de vervolgstu-

die van Vachani et al. konden deze drie peptiden en ook vijf andere peptiden niet worden 

gekwantificeerd en werden daarna in hun validatiestudie verwijderd uit de classificator. Na 

validatie identificeerde onze 5-eiwit classificator benigne nodules met een NPV van 88% en 

een positief voorspellende waarde (PPV) van 27% bij een specificiteit van 31% en een sensi-

tiviteit van 86%. Wij vonden in onze validatiestudie een ROC curve met een AUC van 0.65. 

Aangezien onze cohort ook bestond uit 36% stadium IB NSCLC nodules, waarvan de nodule 

grootte een hogere graad van maligniteit vertegenwoordigt, hadden we een betere relatie 

tussen voorspelling en ware uitkomst verwacht. Recent hebben Vachani et al. de klinische 

toepasbaarheid van hun 5-eiwit classificator getest in een prospectieve-retrospectieve studie 

van patiënten met IPNs die een invasieve diagnostische procedure hadden ondergaan. Hier-

uit bleek dat 69 (24.0%) van de maligne patiënten niet een noodzakelijke vervolgprocedure 

zouden ontvangen, terwijl 45 (68.2%) van de benigne patiënten een onnodige invasieve 

procedure zouden ondergaan. Op basis van deze resultaten en onze resultaten concluderen 

we dat deze 5-eiwit classificator klinisch niet bruikbaar is.



In een complexe en heterogene ziekte zoals longkanker is een scala aan eiwitten betrok-

ken. Daarom heeft een panel van eiwitten meer kans dan een enkel eiwit om een hoge 

gevoeligheid en specificiteit als biomarker voor longkanker te bereiken. De conclusie van 

dit proefschrift is dat een panel van specifieke peptidesequenties in de antigeen-bindende 

fragmenten van antistoffen een sensitieve en specifieke niet-invasieve biomarker voor de 

vroegtijdige detectie van longkanker kan zijn. Verder onderzoek is nodig om de klinische 

toepassing als biomarker te realiseren. In hoofdstuk 6 beschrijf ik hoe dit onderzoek tot 

stand kan komen.
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List of abbreviations

AAB	 tumor-associated autoantibody

AAH	 atypical adenomatous hyperplasia

ADC	 adenocarcinoma

ALC%	 average local confidence score

AUC	 area under the curve

BSA	 bovine serum albumin

CAD	 collisional-activated dissociation

CaM	 calmodulin

CDR	 complementarity-determining regions

CID	 collision-induced dissociation

COPD	 chronic obstructive pulmonary disease

CT	 computed tomography

CV	 coefficient of variation

CXR	 chest X-ray

D	 discovery set

DAC	 direct antigen-coating

DANTE	� Detection and Screening of Early Lung cancer by Novel Imaging Technology and 

Molecular Essays

DLCST	 Danish Lung Cancer Screening Trial

Dx	 diagnosis

ELISA	 enzyme-linked immuno sorbent assay

ES	 early stage

ETD	 electron-transfer dissociation

Fab	 fragment antigen binding

Fc	 fragment crystallizable

FMAT	 fluorometric microvolume assay technology

H	 heavy chain

HCD	 higher energy collisional dissociation

HEK	 human embryonic kidney

HRP	 horseradish peroxidase

IAP	 inhibitor apoptosis protein

IASLC	 International Associations for the Study of Lung

IgG	 immunoglobulin G

IPN	 indeterminate pulmonary nodule

IQR	 interquartile range

ITALUNG	 Italian lung study

κ	 kappa
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λ	 lambda

LC	 lung cancer

LCC	 large cell carcinoma

LCMS	 liquid chromatography mass spectrometry

LDCT	 low-dose spiral computed tomography

LS	 late stage

LUSI	 German Lung Screening and Intervention trial

mAb	 monoclonal antibody

MILD	 Multicentric Italian Lung Detection trial

MRI	 magnetic resonance imaging

MRM	 multiple reaction monitoring

MS	 mass spectrometry

N	 patient number

NA	 not applicable

NELSON	 Dutch-Belgian Lung Cancer Screening Trial (Dutch acronym)

NLST	 National Lung Screening Trial

NSCLC	 non-small cell lung cancer

NVALT	 Dutch Association of Pulmonologists for Lung Diseases and Tuberculosis

OD	 optical density

PBS	 phosphate buffered saline

PBST	 phosphate buffered saline containing 0.05% Tween-20

PET	 positron emission tomography

PNS	 paraneoplastic neurological syndromes

PTM	 posttranslational modifications

PVDF	 polyvinylidene difluoride

SC	 smoking controls

SCD	 squamous cell carcinoma dysplasia

SCLC	 small cell lung cancer

scFv	 single chain fragment variable antibodies

SDS-PAGE	 sodium dodecyl sulfate polyacrylamide gel electrophoresis

SRM	 selective reaction monitoring

SCC	 squamous cell carcinoma

TAA	 tumor-associated antigen

TBS	 tris buffered saline

TBST	 tris buffered saline containing 0.05% Tween-20

TSA	 tumor-specific antigen

TMB	 3,3′,5,5′-tetramethylbenzidine

TNM	 tumor, node and metastases

Tx	 tumor stage unknown
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UKLS	 UK Lung Screening trial

V	 validation set

VDT	 volume doubling time

yrs	 years
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