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Abstract 39 
 40 
 41 
Background and aims: Cardiovascular disease (CVD) is a major complication in 42 

patients with type 2 diabetes (T2D), especially in those with obesity. Plasma soluble low 43 

density lipoprotein receptor-relative with 11 ligand-binding repeats (sLR11) plays a role 44 

in the development of atherosclerosis and has been linked with the metabolism of 45 

triglyceride-rich lipoproteins, adiposity, and vascular complications in T2D. We aimed to 46 

determine the effect of diet-induced weight loss on plasma sLR11 levels in overweight 47 

and obese individuals with T2D.  48 

Methods: Plasma sLR11 levels were determined in 64 individuals with T2D and BMI > 49 

27 kg/m² before and after a 20-week weight loss diet. As a reference, sLR11 levels were 50 

also determined in 64 healthy, non-obese controls, matched as a group for age and sex. 51 

Results: Median plasma sLR11 levels of the T2D study-group at baseline (15.4 ng/mL 52 

(IQR 12.9-19.5)) were higher than in the controls (10.2 (IQR: 8.7-12.2) ng/mL; p=0.001). 53 

The diet resulted in a weight loss of 9.7±5.2% (p=0.001) and improved CVD risk factors. 54 

sLR11 levels were reduced to 13.3 ng/mL (IQR 11.0-17.1; p=0.001). Changes in sLR11 55 

levels positively associated with changes in non-HDL cholesterol (B=1.54, R2=0.17, 56 

p=0.001) and HbA1c (B=0.07, R2=0.11, p=0.007), but not with weight loss (B=0.04, 57 

R2=0.05, p=0.076). The changes in non-HDL cholesterol and HbA1c together explained 58 

24% of the variance of sLR11 reduction (p=0.001).  59 

Conclusions: Weight loss dieting in overweight and obese individuals with T2D resulted 60 

in a reduction in plasma sLR11 levels, that was associated with improvements in lipid-61 

profile and glycemic state.  62 

 63 
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Abbreviations 68 

ApoB: Apolipoprotein B 69 

BAT: brown adipose tissue 70 

BMI: Body Mass Index 71 

CVD: cardiovascular disease 72 

HbA1c: glycated hemoglobin 73 

HDL: high density lipoprotein 74 

GLP-1: Glucagon-like peptide-1 75 

GLUT4: glucose transporter 4 76 

LDL: low density lipoprotein 77 

sLR11: soluble low density lipoprotein receptor-relative with 11 ligand-binding repeats 78 

T2D: diabetes mellitus type 2 79 

TGRL: triglyceride-rich lipoproteins 80 

WAT: white adipose tissue 81 

 82 
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 85 
Introduction 86 

 87 

Type 2 diabetes (T2D) and obesity are major risk factors for cardiovascular disease 88 

(CVD) (1-4). The risk of cardiovascular disease (CVD) is higher in obese than in lean 89 

individuals with T2D (1). Weight loss has been shown to improve multiple cardiovascular 90 

risk factors in obese patients with T2D, e.g. lipid profile, glycemic control, blood pressure 91 

and systemic inflammation (5-9).  92 

Low density lipoprotein receptor-relative with 11 ligand-binding repeats (LR11, 93 

also called SorLA or SORL1) is a type I membrane protein, which after proteolytic 94 

cleavage sheds a large soluble extracellular part called sLR11 into the circulation (10, 95 

11). LR11 is highly expressed in intimal smooth muscle cells of atheromatous lesions in 96 

experimental animal models (12-14). LR11 and sLR11 have been shown to play a role in 97 

the development of atherosclerosis and plaque formation by increasing vascular smooth 98 

muscle cell proliferation and migration from media to intima layer, and by causing 99 

macrophage infiltration of the arterial wall (10, 11, 15, 16). In mouse models, LR11 100 

expression in adipose tissue and sLR11 plasma levels are upregulated by a high-fat diet 101 

(17). In HepG2 and smooth muscle cell cultures, LR11 expression and sLR11 release 102 

are stimulated by triglyceride-rich lipoproteins (TGRL) (18), which typically are increased 103 

in subjects with T2D (19, 20). Compared to healthy controls, levels of sLR11 are higher 104 

in individuals with T2D (21, 22) and are correlated with hemoglobin A1c (HbA1c) levels 105 

(21, 23, 24). Individuals with T2D complicated by coronary stenosis, acute coronary 106 

syndrome, or retinopathy display increased plasma sLR11 levels, suggesting a link with 107 

the severity of vascular complications in these patients (21, 23, 25). In humans, LR11 108 
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expression in white adipose tissue (WAT) positively correlated with BMI (26), and 109 

plasma levels of sLR11 correlated with BMI and overall adipose tissue mass (17). In 110 

mouse models, sLR11 has been shown to act as a negative regulator of adipose tissue 111 

energy expenditure (17), and LR11 expression in WAT exacerbated diet-induced 112 

adiposity and decreased lipolysis in WAT by promoting cell surface recycling of 113 

internalized insulin receptors (26). The decrease in BMI and visceral and subcutaneous 114 

fat tissue induced by bariatric surgery in obese subjects was accompanied by a marked 115 

reduction in sLR11 levels (17). We therefore hypothesized that diet-induced weight loss 116 

will reduce sLR11 levels in patients with T2D. 117 

The aim of the current study was to determine whether diet-induced weight loss 118 

affects sLR11 levels in a cohort of overweight and obese patients with T2D. In addition, 119 

we investigated the association between plasma sLR11 levels and other CVD risk 120 

factors in relation with diet-induced weight loss. 121 

 122 

Materials and Methods 123 

 124 

Study Population and Design 125 

In this study, we enrolled the first 64 participants of the run-in phase of the Prevention of 126 

Weight Regain (POWER)-trial (27). The latter study was aimed at studying long term 127 

weight maintenance after the run-in diet phase. Participants were overweight and obese 128 

subjects (BMI > 27 kg/m2) with established T2D from the outpatient clinic of the Erasmus 129 

Medical Center, Rotterdam, the Netherlands. Exclusion criteria were pregnancy (or 130 

lactating), severe psychiatric problems, significant cardiac arrhythmias, unstable angina, 131 

decompensated congestive heart failure, major organ system failure, untreated 132 
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hypothyroidism, end-stage renal disease, or a cerebrovascular event, myocardial 133 

infarction or major surgery in the last 3 months.  134 

The participants were subjected to a very low calorie diet for 8 weeks, using a 135 

diabetes-specific meal replacement (Glucerna SR, Abbott Nutrition BV) for breakfast and 136 

lunch combined with a light dinner, providing approximately 750 kcal/day in total, 137 

including 67 g carbohydrates, 54 g protein and 32 g fat (of which 16 g was 138 

monounsaturated fatty acid), and micronutrients as recommended by the national 139 

nutritional guidelines (27). In the next 12 weeks, a low calorie diet according to the 140 

national nutritional guidelines (approx. 1300 kcal/day), was gradually reintroduced. 141 

At baseline and after the diet intervention, outcome parameters were measured 142 

and filed in a database using the OpenClinica® trial management system. We recorded 143 

demographic variables, exercise (days per week with minimum of 30 minutes of 144 

exercise), diabetes complications and medication use. Statin medication was converted 145 

into statin equivalent score (scale 0-7) (28). We measured bodyweight, height, waist 146 

circumference and blood pressure, and determined glycated hemoglobin (HbA1c), 147 

fasting glucose, fasting insulin, total cholesterol, HDL cholesterol, LDL cholesterol, 148 

triglycerides and hs-CRP by standard clinical laboratory assays. Non-HDL cholesterol 149 

was calculated as the difference between total and HDL cholesterol. HOMA-IR was 150 

calculated using the formula: HOMA-IR = [glucose (mmol/L) * insulin (µU/mL)/22.5] (29), 151 

but analyzed separately for insulin users and non-insulin users. 152 

A healthy control group was used as a reference for the sRL11 level. The controls 153 

were matched as a group for age and sex to the T2D group but did not undergo dieting. 154 

The healthy controls (n = 64) were recruited via an advertisement in the Rotterdam 155 

region. 156 
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All participants provided written informed consent. This research was approved by the 157 

Medical Ethics Committee of the Erasmus Medical Centre, Rotterdam, the Netherlands 158 

(reference number MEC-2009-143/NL26508.078.09), in compliance with the Helsinki 159 

Declaration. 160 

 161 

Blood sample analysis 162 

Fasting blood samples were obtained from the patients with T2D before and after the 163 

20-week dieting period, and from the healthy controls. After centrifugation, plasma 164 

samples were stored at -80oC until analysis. Lipid and glycemic parameters were 165 

measured by standard biochemical techniques. Soluble LR11 was measured using a 166 

sandwich enzyme-linked immunosorbent assay (ELISA) with two specific monoclonal 167 

antibodies against human LR11 (Sekiaui Medical, Ryugasaki Japan) as previously 168 

described (30). In brief, 50 µl of plasma diluted with sample buffer were incubated with 169 

the capture monoclonal antibody M3 and then incubated with biotinylated reporter 170 

monoclonal antibody R14. The LR11-antibody complex was quantitated with 171 

horseradish-peroxidase-conjugated streptavidin. A standard curve was constructed 172 

using purified LR11 protein. The lower detection limit for sLR11 was 0.1 ng/mL.  173 

 174 

Statistical Analysis 175 

This was a post hoc analysis of data obtained in the run-in phase of a randomized trial, 176 

with long term weight loss as the primary endpoint (27). Normality of the data and 177 

homogeneity of variances were tested using the Shapiro-Wilks test and Levene’s test. 178 

Variables before and after the diet intervention period were expressed as ratio (%), 179 
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mean ± standard deviation or median (inter-quartile range). Differences were tested for 180 

statistical significance using a two-sided paired samples t-test or a Wilcoxon ranking 181 

test, depending on the normality of data. Changes were calculated as value after 182 

intervention minus baseline value. Differences between two (sub)groups were tested for 183 

significance using either a two-sided t-test or a Mann-Whitney U test. Potential outliers 184 

were identified using Cook’s Distance statistics (31). Correlations at baseline were 185 

determined using Spearman correlation analysis. We performed univariate linear 186 

regression analyses to identify potential contributors to the diet-induced changes in 187 

sLR11 levels. The change in sLR11 was log transformed to obtain a normal distribution 188 

of the residuals of the regression analyses and perform statistical testing. Subsequently, 189 

all significant co-variables were included in multivariate analysis. All data were analyzed 190 

using IBM SPSS v 21.0 software. 191 

 192 

Results 193 
 194 
 195 
Baseline measurements 196 

The general characteristics of the 64 patients with T2D are shown in Table 1. Sixty-two 197 

(96.9%) out of the 64 patients were obese (BMI> 30 kg/m2). At inclusion, 43 (67%) of 198 

the participants presented with microvascular complications and 16 (25%) had 199 

experienced macrovascular complications. Forty-five patients (70%) used insulin. The 200 

median HOMA-IR for insulin-users and non-insulin-users was 80.6 (39.7-225.9) and 201 

42.6 (23.9-73.0), respectively (p=0.016).  202 

The healthy controls had a significantly lower BMI (25.7±3.8 kg/m2) compared to 203 

the T2D patients (p<0.001). The median sLR11 level at baseline was 15.4 (IQR: 12.9-204 
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19.5) ng/mL for the T2D group, which was significantly higher than the median sLR11 205 

level of the healthy controls (10.2 (IQR: 8.7-12.2) ng/mL, p<0.001). 206 

In the T2D group, baseline levels of sLR11 correlated with levels of HDL 207 

cholesterol (r=-0.269, p=0.034), non-HDL cholesterol (r=0.274, p=0.031), ApoB 208 

(r=0.324, p=0.010), triglycerides (r=0.303, p=0.016), HbA1c (r=0.254, p=0.045) and 209 

fasting glucose (r=0.319, p=0.012). sLR11 levels correlated with HOMA-IR in the non-210 

insulin-users (r=0.511, p=0.030), but not in the insulin-users (r=0.131, p=0.402). sLR11 211 

was not significantly correlated with weight (r=0.054, p=0.672), BMI (r=0.196, p=0.120), 212 

waist circumference (r=0.232, p=0.065) or statin dose (r=-0.219, p=0.082). Similar 213 

results were found after exclusion of the two non-obese T2D patients. In the combined 214 

T2D and healthy control group, sLR11 levels were significantly correlated with BMI at 215 

baseline (r=0.602, p<0.001), but no longer after correcting for fasting glucose levels 216 

(r=0.113, p=0.210). 217 

 218 

Effect of diet-induced weight loss 219 
 220 
After a 20-week dietary intervention, the participants lost 10.5 ± 6.1 kg body weight, 221 

which was 9.7% (range +1.7% to -20.7%) of the initial body weight (p<0.001, Table 1). 222 

Waist circumference, HDL cholesterol, non-HDL cholesterol, triglyceride, HbA1c, fasting 223 

glucose and HOMA-IR all improved significantly (p<0.001). At the end of the diet 224 

intervention, the number of participants using insulin was reduced from 45 (70%) to 41 225 

(64%; p=0.046), and among insulin users, the median dose was significantly reduced by 226 

66 units per day (p<0.001). The number of patients on metformin, statin and ACE 227 

inhibitors, and prescribed doses, did not change significantly during the intervention 228 

period.  229 
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After the diet intervention, median plasma sLR11 levels were 13.3 (IQR 11.0-230 

17.1) ng/mL, which was significantly lower than baseline levels (p<0.001). The effect of 231 

the diet on plasma sLR11 levels varied markedly among the participants, as shown in 232 

Figure 1. Of the 64 participants, 44 exhibited decreased plasma sLR11 levels, 7 233 

remained stable (defined as a change below the intra-assay coefficient of variation of 234 

3%), and the other 13 participants displayed increased plasma sLR11 levels. The 235 

participants with decreased sLR11 levels had lost significantly more weight than the 236 

other 20 participants (-11.7 kg vs. -7.7 kg, p=0.009). 237 

In Table 2, the results of the univariate regression analyses with the change in 238 

sLR11 are shown. The change in sLR11 was not associated with sex, age and weight 239 

loss. Significant associations were observed with change in non-HDL cholesterol 240 

(B=0.59, R2=0.17, p=0.001) and HbA1c (B=0.03, R2=0.11, p=0.007). The change in 241 

HbA1c strongly correlated with weight loss (r=0.456, p<0.001), while non-HDL 242 

cholesterol levels did not (r=0.209, p=0.105). 243 

In a multiple linear regression model, the change in non-HDL cholesterol and 244 

HbA1c remained independently associated with sLR11 change (p=0.003 and p=0.023, 245 

Table 3). The model with changes in non-HDL cholesterol and HbA1c explained 24% of 246 

the variance of sLR11 change (p<0.001). Adding baseline sLR11 to this model did not 247 

affect the point estimates, p-value and the explained variance. 248 

Using Cook’s distance analysis (31), we identified four possible outliers with 249 

strongly increased sLR11 levels. These four cases showed a moderate influence on the 250 

outcomes (Cook’s distance 0.08-0.19). Excluding these participants from the analysis 251 

yielded the same independent contributors to the change in sLR11, where the change in 252 

non-HDL cholesterol (B=1.48, p=0.001) and HbA1c (B=0.08, p=0.002) explained 35% of 253 
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the variance of sLR11 reduction (17% and 18% for change in non-HDL cholesterol and 254 

HbA1c, respectively).  255 

 256 

Discussion 257 

 258 

The present study shows that plasma sLR11 levels were significantly reduced in 259 

overweight and obese individuals with T2D upon a 20-week weight loss diet. The 260 

reduction in plasma sLR11 was independently associated with reductions in non-HDL 261 

cholesterol and HbA1c, but not with weight loss or the reduction in waist circumference 262 

or BMI. The observed reduction in sLR11 during weight loss may have clinical relevance 263 

as it is in the same order of magnitude as the previously reported increase in sLR11 264 

upon coronary stenting in response to vascular injury (32). Since patients with T2D are 265 

prone to develop atherosclerosis, and sLR11 has been shown to facilitate the 266 

atherosclerotic process (10, 11, 15, 16), the reduction in sLR11 may be beneficial in 267 

delaying the development of vascular complications.  268 

A decrease of sLR11 levels after weight loss has also been described in morbidly 269 

obese individuals, who underwent bariatric surgery (17). At 12 months post-surgery, the 270 

decrease in sLR11 and BMI was 37 % and 28%, respectively. In our study, 20 weeks of 271 

weight loss dieting resulted in a more modest decrease in sLR11 and BMI of 9% and 272 

10%, but the decrease in sLR11 relative to that in BMI was similar in both studies. In the 273 

bariatric surgery study, the decrease in sLR11 was strongly associated with the loss of 274 

adipose tissue mass, but not with the reduction in BMI. In our study, the change in 275 

sLR11 levels was also not related to change in BMI, nor with change in weight or waist 276 

circumference. However, we did not include measurements of adipose tissue mass. 277 
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Obviously, the effects of bariatric surgery go beyond weight reduction, and include 278 

changes in peptide hormones (like GLP-1 and leptin), bile acid flow and gut bacteria, all 279 

potentially affecting sLR11 levels (33). Whether these factors are also affected by diet-280 

induced weight loss is unknown. Nonetheless, we show for the first time that the 281 

potentially beneficial reduction in sLR11 levels seen after bariatric surgery can also be 282 

achieved through weight loss dieting. 283 

The average baseline sLR11 level in the overweight and obese subjects with T2D 284 

was significantly higher than in healthy, non-obese controls. Comparable high sLR11 285 

levels (mean: 16.8 ng/ml) have been reported in morbidly obese individuals (17), 286 

suggesting that the high sLR11 level in our participants is related to their prominent 287 

obesity. However, in our T2D study group sLR11 levels were not correlated with 288 

baseline BMI, weight and waist circumference. Whittle et al. found that circulating sLR11 289 

levels were positively correlated with BMI in 156 subjects with sleep apnea and in 25 290 

subjects with type 2 diabetes or glucose intolerance (17). The participants in their sleep 291 

apnea study group were mostly non-obese, and also in their glucose-intolerant study 292 

group half of the participants were non-obese, resulting in a BMI ranging from morbidly 293 

obese to underweight values. When we included our healthy, mostly normal weight 294 

controls in the analysis, we indeed found a strong correlation between BMI and sLR11. 295 

Since this correlation disappeared after correcting for baseline fasting glucose levels, it 296 

could be argued that the increase of sLR11 with BMI is secondary to decreased glucose 297 

tolerance. In line with this, sLR11 levels have previously been shown to be associated 298 

with HbA1c levels in diabetic as well as the non-diabetic patient groups (21, 23, 24).  299 

The mechanism by which sLR11 decreases during weight loss-dieting or bariatric 300 

surgery remains to be clarified. There is evidence that circulating sLR11 originates from 301 
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the vasculature (34); however, brown and white adipose tissue highly express LR11 and 302 

therefore may also contribute (17). High-fat feeding significantly increased and fasting 303 

decreased LR11 mRNA expression in adipose tissue of mice (17). Similarly, we have 304 

previously reported that high-fat feeding upregulates liver LR11 expression and 305 

circulating sLR11 levels in mice (18). We have also shown that postprandial TGRL 306 

enhance the expression of LR11 in hepatocytes (18), as it does in endothelial cells (35). 307 

Consequently, the decline in sLR11 levels in the overweight subjects with T2D upon 308 

dieting may also be due to reduced levels of TGRL during the dieting period. 309 

Accordingly, our data show that changes in sLR11 levels associated with changes in 310 

non-HDL cholesterol. These changes in non-HDL cholesterol predominantly reflect 311 

altered levels of TGRL, because LDL-C levels were hardly affected by the diet (Table 1). 312 

Non-HDL cholesterol level is a known CVD risk factor and a strong predictor of CVD and 313 

death in patients with T2D (36, 37). Modulation of sLR11 levels may contribute to the 314 

mechanisms by which non-HDL cholesterol affects CVD risk.  315 

sLR11 has recently been identified as a negative regulator of brown adipose 316 

tissue (BAT) activity (17). It is tempting to speculate that BAT activity increased, possibly 317 

contributing to weight loss and improved metabolic profile, as a result of the decreased 318 

sLR11 levels in our study population. The association of sLR11 levels with the glycemic 319 

state of the participants, as reflected by HbA1c, has been reported previously for the 320 

diabetic as well as the non-diabetic population (21, 23, 24). In mouse models, the 321 

increased thermogenic activity in brown and white adipose tissue that is associated with 322 

decreased sLR11 levels, has been shown to improve insulin sensitivity and the glycemic 323 

state (17). Interestingly, in a recent study mice lacking LR11 expression showed 324 

improved insulin sensitivity when fed a high-fat diet, although LR11 was shown to 325 
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augment insulin receptor signaling in adipocytes by recycling internalized receptor 326 

molecules to the cell surface (26). Possibly, the plasma sLR11 levels are only remotely 327 

related to LR11 expression in adipose tissue, or the effects of LR11 on systemic glucose 328 

tolerance are mainly mediated by circulating sLR11. Alternatively, glucose transporter 329 

type 4 (GLUT4)-storage vesicles were found to be enriched in LR11 (38) suggesting a 330 

possible role for LR11 in GLUT4 trafficking. Whether sLR11 has a direct effect on 331 

glucose metabolism needs further study. 332 

 333 

Study limitations and strengths 334 

Diet-induced weight loss induces a wide range of metabolic changes, making it difficult 335 

to pinpoint the precise mechanisms responsible for the observed effect on sLR11 levels. 336 

Therefore, it remains to be established to which aspect of the dietary intervention the 337 

reduction of sLR11 and its associations can be attributed. We did not study the effect on 338 

visceral and subcutaneous fat mass, which in part may account for the unexplained 339 

variance in sLR11 change. Moreover, we have conducted a before-after study in which 340 

we analyzed weight loss in a continuous way. As a consequence, we cannot fully 341 

exclude that lifestyle changes other than the dietary intervention have contributed to the 342 

weight reduction. Physical activity, however, did not change significantly. Another 343 

limitation is the use of change scores in the regression analyses, which may be sensitive 344 

to regression toward the mean, although adding baseline levels to the regression 345 

analyses did not change our results. Strengths of this study are the prospective design, 346 

the relatively large study population of overweight and obese subjects with T2D, and the 347 

relatively long duration of the diet intervention. 348 

 349 
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In conclusion, circulating sLR11 levels were significantly reduced during weight loss 350 

dieting. The reduction in sLR11 was associated with reduction in HbA1c and non-HDL 351 

cholesterol levels, and respectively pointing at improved glycemic control and reduced 352 

cardiovascular risk. The reduced sLR11 levels may contribute to the mechanism by 353 

which diet modulates CVD risk. Further research is warranted to elucidate the direct 354 

interactions between sLR11 and glucose, cholesterol and triglyceride metabolism in 355 

patients with T2D. 356 
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Figures and tables 486 

 487 

Figure 1 488 

Baseline sLR11 levels and change (%) in plasma sLR11 levels during 20 weeks of 489 

diet in individual participants.  490 

 491 

(A) Baseline sLR11 levels and (B) change (%) in plasma sLR11 levels during 20 weeks 492 

of diet in individual participants 1 till 64. Participants were arranged according to relative 493 

change in plasma sLR11 levels. 494 

 495 

496 
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Table 1  497 

Characteristics of the participants before and after diet (n=64) 498 

 Baseline  After diet p 

Male sex N (%) 28 (44)   

Age (y) 53.0 (46.3-62.0)   

Ethnicity (cau) N (%) 39 (61)   

Microvascular complications N (%) 43 (67)   

Macrovascular complications N (%) 16 (25)   

30 minutes of exercise (days/week) 7.0 (4.0-7.0) 7.0 (5.0-7.0) 0.583 

Weight (kg) 106.7±19.5 96.3±17.7 <0.001 

BMI (kg/m2) 37.2±5.3 33.6+5.0 <0.001 

Waist circumference (cm) 121.7±12.6 112.2+11.9 <0.001 

Systolic blood pressure (mmHg) 141.6±18.1 139.8±21.2 0.509 

Diastolic blood pressure (mmHg) 80.1±10.7 79.5±9.4 0.637 

sLR11 (ng/mL) 15.4 (12.9-19.5) 13.3 (11.0-17.1) <0.001 

Total cholesterol (mmol/L) 4.5 (3.9-5.5) 4.3 (3.6-5.0) 0.003 

HDL cholesterol (mmol/L) 1.1 (1.0-1.3) 1.2 (1.0-1.4) 0.003 

LDL cholesterol (mmol/L) 2.5 (2.1-3.1) 2.5 (1.8-2.9) 0.035 

Non-HDL cholesterol (mmol/L) 3.3 (2.7-4.1) 3.0 (2.5-3.8) <0.001 

Triglyceride (mmol/L) 1.9 (1.3-2.9) 1.5 (1.0-2.2) <0.001 

hs-CRP (mg/L) 2.8 (1.3-17.7) 2.3 (1.0-10.6) 0.055 

HbA1c (%) 7.8 (7.2-8.6) 7.2 (6.3-8.3) <0.001 

HbA1c (mmol/mol) 62.0 (55.0-70.0) 55.0 (45.3-67.8) <0.001 

Fasting glucose (mmol/L) 8.8 (7.2-10.4) 7.2 (6.0-9.4) <0.001 

Insulin users N (%) 45 (70) 41 (64) 0.046 

Insulin dose among users (IU/day)  100.0 (57.0-136.0) 34.0 (19.0-50.0) <0.001 

Metformin users N (%) 46 (72) 48 (75) 0.157 
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aData are mean±SD or median (IQR) 499 

 500 

 501 

502 

Metformin dose among users (mg/day) 1700 (1375-2550) 1700 (1000-2550) 0.602 

Statin users N (%) 47 (73) 45 (70) 0.705 

Statin equivalent dose (scale 0-7) 4.0 (3.0-4.0) 4.0 (3.0-4.0) 0.839 

ACE inhibitor users N (%) 38 (59) 34 (53) 0.637 
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Table 2  503 

Univariate regression analysis of (log-transformed) change in plasma sLR11 504 

levels and age, sex, baseline sLR11 and changes in other co-variables. 505 

  B 95%CI R2 p 

Univariate      

           Age 0.01 -0.01-0.04 0.02 0.292 

           Sex 0.13 -0.43-0.69 0.00 0.644 

           Baseline sLR11 0.02 -0.03-0.07 0.01 0.413 

           ∆Weight 0.04 -0.01-0.09 0.05 0.076 

           ∆Waist circumference 0.03 -0.02-0.09 0.02 0.243 

           ∆HDL cholesterol 0.32 -1.03-1.66 0.00 0.639 

           ∆non-HDL cholesterol 0.59 0.25-0.93 0.17 0.001 

           ∆Triglyceride 0.01 -0.14-0.15 0.00 0.917 

           ∆CRP -0.02 -0.04-0.01 0.02 0.245 

           ∆HbA1c 0.03 0.01-0.05 0.11 0.007 

           ∆Fasting glucose 0.10 -0.01-0.22 0.05 0.082 

 506 

 507 

508 
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Table 3  509 

Matched multiple regression analysis of (log-transformed) changes in plasma 510 

sLR11 levels and changes in co-variables. 511 

 512 

 B 95%CI Partial R2 p 

Multivariate     

          ∆Non-HDL cholesterol 0.53 0.19-0.86 0.15 0.003 

          ∆HbA1C 0.02 0.003-0.04 0.09 0.023 

          Explained variance   0.24  

 513 


