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Background: Late-onset Pompe disease is characterized by progressive skeletal myopathy followed by respiratory
muscle weakness, typically leading to loss of ambulation and respiratory failure. In this population, enzyme re-
placement therapy (ERT) with alglucosidase alfa has been shown to stabilize respiratory function and improve
mobility and muscle strength. Muscle pathology and glycogen clearance from skeletal muscle in treatment-
naive adults after ERT have not been extensively examined.

Methods: This exploratory, open-label, multicenter study evaluated glycogen clearance in muscle tissue samples
collected pre- and post- alglucosidase alfa treatment in treatment-naive adults with late-onset Pompe disease.
The primary endpoint was the quantitative reduction in percent tissue area occupied by glycogen in muscle bi-
opsies from baseline to 6 months. Secondary endpoints included qualitative histologic assessment of tissue gly-
cogen distribution, secondary pathology changes, assessment of magnetic resonance images (MRIs) for intact
muscle and fatty replacement, and functional assessments.

Results: Sixteen patients completed the study. After 6 months of ERT, the percent tissue area occupied by glyco-
gen in quadriceps and deltoid muscles decreased in 10 and 8 patients, respectively. No changes were detected on
MRI from baseline to 6 months. A majority of patients showed improvements on functional assessments after
6 months of treatment. All treatment-related adverse events were mild or moderate.

Conclusions: This exploratory study provides novel insights into the histopathologic effects of ERT in late-onset
Pompe disease patients. Ultrastructural examination of muscle biopsies demonstrated reduced lysosomal glyco-
gen after ERT. Findings are consistent with stabilization of disease by ERT in treatment-naive patients with late-
onset Pompe disease.

Abbreviations: 6MWT, 6-Minute Walk Test; AE, adverse event; BMI, body mass index; CI, confidence interval; ERT, enzyme replacement therapy; FVC, forced vital capacity; GAA, a-

glucosidase; HRLM, high-resolution light microscopy; PFT, pulmonary function testing; GMFCS-E&R, Gross Motor Functional Classification System-Expanded and Revised; GMFM-88,
Gross Motor Function Measure-88; GSGC, Gait, Stair, Gower's Maneuver, and Chair; LOTS, Late-Onset Treatment Study; MRI, magnetic resonance imaging; PedsQL, Pediatric Quality-of-
Life Inventory; QMFT, Quick Motor Function Test.
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E-mail address: Beth.Thurberg@genzyme.com (B.L Thurberg).
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1. Introduction

Pompe disease is a rare, autosomal recessive disorder caused by de-
ficiency of lysosomal acid a-glucosidase (GAA), an enzyme that breaks
down glycogen in the body [1]. The resulting lysosomal glycogen accu-
mulation, especially in cardiac and skeletal muscle, disrupts muscle
function leading to multisystem pathology, disability, and ultimately
death [2-4]. The classic infantile form of Pompe disease is rapidly pro-
gressive, characterized by cardiomegaly, hypotonia, and death from car-
diorespiratory failure in the first year of life [5-7].

Late-onset Pompe disease has a more varied disease course and later
manifestation from childhood to adulthood characterized by slowly
progressive skeletal myopathy but without the cardiomyopathy typical
of infantile Pompe disease [8-13]. Late-onset Pompe disease usually
presents with slowly progressive myopathy, predominantly of the prox-
imal muscles in the trunk and pelvic and shoulder girdles, while the de-
gree of respiratory muscle involvement is variable [9]. As skeletal and
respiratory muscle weakness progresses, patients often need ambulato-
ry and ventilator assistance. Respiratory failure is therefore a cause of
significant morbidity and the most frequent cause of death [8,9,14-17].

Alglucosidase alfa (Lumizyme®/Myozyme®, Sanofi Genzyme, Cam-
bridge, MA, USA) is an enzyme replacement therapy (ERT) for the treat-
ment of Pompe disease that provides patients with exogenous
recombinant human GAA [18-20]. In infantile-onset Pompe disease,
alglucosidase alfa prolongs overall and ventilator-free survival and im-
proves cardiomyopathy, motor skills, and functional independence
[21,22]. In late-onset disease, alglucosidase alfa stabilizes respiratory
function and improves mobility and muscle strength [23-25].

Muscle pathology and the pharmacodynamic effects of alglucosidase
alfa in clearing glycogen from skeletal muscle have been examined in
skeletal muscle biopsies from infantile Pompe patients [26]. Better re-
sponse to treatment was observed in patients with early-stage cell dam-
age at baseline characterized by predominance of lysosomal glycogen
accumulation. Lesser response to treatment was seen in patients with
more advanced disease characterized by predominance of cytoplasmic
glycogen and ultrastructural damage [26]. Data on muscle histopathol-
ogy and effects of ERT on glycogen clearance from skeletal muscle in pa-
tients with late-onset Pompe disease indicate that there is clinical
heterogeneity and variable response to treatment among patients
[27-31]. Additional morphologic studies examining pre- and post-ERT
muscle biopsies are needed to help determine appropriate timing of
treatment initiation for optimal responses for adult patients with
Pompe disease. This exploratory study used muscle biopsies, magnetic
resonance imaging (MRI) of skeletal muscle, and functional assess-
ments to characterize disease burden and the effects of 6 months of
alglucosidase alfa in treatment-naive patients with late-onset Pompe
disease. The results support the proposed biological activity of
alglucosidase alfa and characterize its histopathological and functional
effects in late-onset Pompe disease.

2. Methods
2.1. Study design

The Exploratory Muscle Biopsy Assessment Study (EMBASSY;
NCT01288027, Sanofi Genzyme) was an open-label, multicenter study
to evaluate glycogen clearance in muscle tissue samples and imaging as-
sessments collected pre- and post-alglucosidase alfa treatment (20 mg/
kg of body weight every other week for 6 months) in treatment-naive
late-onset Pompe disease patients. We also explored possible correla-
tions between glycogen content, MRI, and functional assessments.

Eligible patients were >18 years of age with confirmed GAA enzyme
deficiency from any tissue source and/or confirmed GAA gene mutations
without known cardiac hypertrophy. The main inclusion criteria were
the ability to walk 50 m without stopping and without an assistive de-
vice and forced vital capacity (FVC) in the upright position >50% pre-
dicted. Exclusion criteria were prior treatment with ERT, need for a
wheelchair or invasive ventilation, and formal contraindication to MRI
(e.g., pacemaker or implanted ferromagnetic metals).

2.2. Study assessments

The primary endpoint was the reduction in the percent tissue area
occupied by glycogen in muscle biopsies from baseline to 6 months.
The type of biopsy performed (open or needle) was chosen by the clin-
ical sites based on individual laboratory capabilities and expertise. Biop-
sies performed at 6 months were performed on the same side of the
body, near the original (baseline) site but far enough away so that
there would not be any interference from scar tissue at the site of the
baseline biopsy. Muscle biopsies were fixed in a glutaraldehyde-based
fixative, embedded in epoxy resin, and processed for high-resolution
light microscopy (HRLM) and electron microscopy as previously de-
scribed [26,32]. Muscle glycogen content in HRLM sections was mea-
sured by computer morphometry and expressed as “percent tissue
area occupied by glycogen” in quadriceps and deltoid muscle biopsies
as previously described [32]. As this was an exploratory study, analyses
were not blinded. Computer morphometry was used for objective anal-
ysis of glycogen. Serial sections from these epoxy resin blocks were pre-
pared for electron microscopy and used to confirm, when necessary, the
qualitative observations made on HRLM sections, such as localization of
glycogen to the lysosomes or cytoplasm and presence of autophagic de-
bris, fibrosis, and fatty replacement. When feasible, muscle MRI was
used to guide the level (i.e., axial slice position) that the biopsy should
target in order to capture the least-affected tissue (i.e., avoiding fatty re-
placed tissue). Secondary endpoints included qualitative histopatholog-
ical assessment of biopsies, skeletal muscle imaging, and functional
assessments.

Skeletal muscle MRI using qualitative T1-weighted imaging in all pa-
tients and quantitative T2 and Dixon modalities in a subset of patients
was performed at baseline and 6 months. MRIs were read and analyzed
by a central laboratory (C.R.LS., Tournai, Belgium). The T1-weighted
data were analyzed using Mercuri grading (1: normal appearance, 2:
mild involvement, 3: moderate involvement, and 4: severe involve-
ment) to determine the degree of intact muscle and fatty replacement.
The Mercuri grading system provides a qualitative measure of disease
involvement. Water T2 imaging provides a quantitative measure of dis-
ease activity (e.g., inflammation, sarcoplasmic leakage, cell edema, or
necrosis) within muscles, where an abnormal value is defined as >39
milliseconds (ms). T2 determination based on multi spin-echo se-
quences typically requires knowledge of the radio-frequency transmit-
ter field (B1) spatial deviation in the image, which typically requires
an additional acquisition for computing the B1 maps. Muscle T2 can
be estimated without this additional acquisition, but at the expense of
a loss in precision. Therefore, T2 values (ms) are provided both with
and without B1 sorting. In fatty infiltrated muscles, water T2 was sepa-
rated from the fat signals by tri-exponential fitting of the global signal
decay [33]. The percent of fatty infiltration in lower limb muscles was
quantified using a 3-point 3D Dixon acquisition. For each subject, the
average for each upper (thigh) and lower leg was computed for Mercuri
grading, percentage of fat, muscle water, and T2 with and without B1
sorting. Muscle trophicity also was evaluated at the quadriceps level
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by measuring the cross-sectional area of the four heads on three slices at
mid-femur.

Functional efficacy was evaluated at baseline, 3 months, and
6 months using the following validated assessment tools: pulmonary
function testing (PFT); 6-Minute Walk Test (6MWT); Quick Motor
Function Text (QMFT), formerly the Rotterdam Motor Function Test;
hand-held dynamometry; Gross Motor Function Measure-88 (GMFM-
88); Gait, Stair, Gower's Maneuver, and Chair (GSGC); Pediatric Quali-
ty-of-Life Inventory (PedsQL) Multidimensional Fatigue Scale; and
Gross Motor Functional Classification System-Expanded and Revised
(GMFCS-E&R).

Treatment-emergent adverse events (AEs) were categorized by seri-
ousness, severity, and whether the AE led to study discontinuation, and
classified by the investigator as not related, unlikely related, possibly re-
lated, or related to the study drug or procedures.

2.3. Statistical analysis

This exploratory study was not powered to make statistical infer-
ences. Formal sample size calculations were not performed. All patients
who received at least one complete infusion of alglucosidase alfa were
included in the analysis. A paired t-test was used to test for statistically
significant absolute change from baseline in percent tissue area occu-
pied by glycogen for each patient (the primary endpoint) and for the
percent change in the primary endpoint. For the secondary endpoints,
change from baseline to 3 months (if measured) and 6 months was cal-
culated and a t-test was performed to estimate the 95% confidence in-
terval (CI) and P value.

3. Results
3.1. Patient disposition and baseline characteristics

Between July 2011 and December 2013, 20 patients were screened
for eligibility, of which 16 patients were enrolled at 11 sites in the Unit-
ed States, Germany, the Netherlands, and the United Kingdom. All 16
patients received 20 mg/kg alglucosidase alfa; all completed the study.
Evaluable paired biopsy samples were available for the quadriceps mus-
cle of 13 patients and deltoid muscle of 10 patients.

Baseline characteristics are shown in Table 1. Three patients used an
assisted walking device. The mean distance walked on the baseline
6MWT was 450 m (range: 173-997 m). The mean percent predicted
FVC was 76% (range: 50-115%) in the upright position and 57%
(range: 27-119%) in the supine position. On the GMFCS-E&R assess-
ment, 3 patients were Level I, 10 were Level II, and 3 were Level Il
The mean T1-weighted Mercuri score at baseline was 1.9 (0.77) in the
upper leg (n = 13) and 1.1 (0.27) in the lower leg (n = 14).

Table 1
Demographics and baseline patient characteristics.

Parameter Patients receiving alglucosidase
alfa (N = 16)
Age at study enrollment (y), mean (SD), 51.6 (13.69)
median (min, max) 56.9 (24.5,70.7)
Sex, n (%)
Female 9 (56.3)
Male 7 (43.8)
Height (cm), mean (SD) 174.0 (12.08)
Weight (kg), mean (SD) 74.9 (17.40)
BMI (kg/m?), mean (SD) 24.5 (4.01)

Age at first symptoms (y), mean (SD) (min,
max)

Age at Pompe disease diagnosis (y), mean
(SD) (min, max)

40.0 (11.58) (14.4, 59.4)

50.2 (13.48) (20.1, 66.1)

Abbreviations: BMI = body mass index; max = maximum; min = minimum; SD =
standard deviation.

3.2. Tissue glycogen content

The type and location of muscle biopsy performed at baseline and
6 months are provided online (Online Supplementary Table 1). At
baseline, total glycogen (lysosomal plus cytoplasmic glycogen) levels
were generally higher in the quadriceps muscle (mean: 5.3%; range:
1.0-14.2%; n = 14) than in the deltoid muscle (mean: 2.4%; range:
1.2-5.9%; n = 12). As shown in Fig. 1A, the percent tissue area occupied
by glycogen in the quadriceps showed a downward trend in 10 patients
and increased in 3 patients. Statistically significant changes were noted
in 6 patients (4 decreased glycogen and 2 increased glycogen). As
shown in Fig. 1B, the percent tissue area occupied by glycogen in the
deltoid showed a downward trend in 8 patients, increased in 1 patient,
and was unchanged in 1 patient. Statistically significant decreases were
noted in 5 patients.

In baseline biopsies, glycogen was present in a number of different
locations across the cell. HRLM sections show glycogen-filled lysosomes
as discrete, small, round PAS-positive structures (Fig. 2A, green arrows).
Electron microscopy images confirm the lysosomal nature of these
structures, 1-2 um in diameter, and characterized by smooth, intact,
round-to-oval membranes (Fig. 3A and C, green arrows). Glycogen
was also present within the cytoplasm as thin, PAS-positive cytoplasmic
streaks, as larger accumulations in cytoplasmic pools, and associated
with central cores of autophagic debris (Fig. 2A). Free cytoplasmic gly-
cogen also accumulated below the sarcolemmal membrane creating
PAS-positive outer membrane blebs (Fig. 2B). Electron microscopy ex-
amination confirmed the cytoplasmic nature of glycogen in these
areas (Figs. 3A-D).

Both HRLM (Fig. 2) and electron microscopic (Fig. 3) examination of
post-treatment biopsies revealed a paucity of the small, intact, glyco-
gen-filled lysosomes. Other features noted at baseline, such as free cyto-
plasmic glycogen present within streaks, pools, autophagic debris cores,
and peripheral blebs, persisted in post-treatment biopsies. Because bi-
opsy samples were embedded in epoxy resin to optimally preserve
the glycogen for computer morphometry, acid-phosphatase staining
and immunochemistry for other markers of autophagy could not be
performed on tissue samples prepared this way. These investigations
therefore were not part of this study. No fibrosis, inflammation, or
fatty replacement were observed in biopsies, a finding potentially at-
tributable to protocol instructions to biopsy muscle tissue that appeared
normal as determined by MRIL

3.3. Skeletal muscle MRI

On T1-weighted MRI of the upper and lower leg muscle using
Mercuri scoring, evaluable assessments at baseline and 6 months were
available for the upper and lower leg in 13 and 14 patients, respectively.
Overall, mean Mercuri scores indicated mild muscle involvement, vary-
ing from normal to moderate for individual patients, with the upper leg
(1.9 + 0.8) more affected than the lower leg (1.1 + 0.3). Muscles within
individual patients exhibited a heterogeneous pattern of involvement.
In the thigh, adductor magnus, semi-membranous, semi-tendinous
and long head of biceps femoris were the most infiltrated, while rectus
femoris, gracilis and sartorius showed very little damage. Lower leg
muscles were spared, with the exception of gastrocnemius medially,
which occasionally presented very mild involvement. The tongue,
subscapularis, and lumbar extensors were always affected, moderately
to severely, confirming previous descriptions [34]. At 6 months, overall
changes from baseline in mean Mercuri scores were not observed in ei-
ther the upper leg (mean change: 0.0 [95% CI: —0.0, 0.1]) or lower leg
(mean change: 0.0 [95% CI: 0.0, 0.0]). Quantitative comparison of the de-
gree of fatty infiltration from baseline to 6 months using 3-point 3D
Dixon imaging was possible in 5 patients. Percentages of fatty infiltra-
tion were normal or elevated (>10%) in accordance with the Mercuri
scoring degree. Overall, no changes from baseline were apparent at
6 months (mean change: 0.6 [95% CI: — 1.7, 3.0]; P = 0.49). Muscle
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Fig. 1. MetaMorph analysis of glycogen content in quadriceps and deltoid biopsies, pre- and post-treatment. Up to 10 sections derived from multiple tissue blocks from each biopsy were
imaged digitally, analyzed by computer morphometry and expressed as percent tissue area occupied by glycogen. Analyses were not blinded, and computer morphometry provided
objective analysis of glycogen. The values from these sections were averaged to obtain a mean and standard deviation at each patient-time point. This approach thereby takes into
account any variability in the distribution of glycogen across the entire biopsy. There was an overall trend toward reduction or stabilization of glycogen levels in post-treatment
biopsies. Total glycogen load in deltoid samples were consistently lower than that measured in quadriceps biopsies. Panel A: quadriceps biopsy samples. Panel B: deltoid biopsy samples.

water T2, a non-specific marker of disease activity that senses mainly
edema and inflammation, could be quantified at baseline in 9 patients
with and 13 patients without B1 sorting.

Approximately one-third of all muscles had abnormally elevated T2
muscle water at baseline. After 6 months, there were no obvious water
T2 MRI changes compared with baseline for analysis with B1 (mean
change: 2.2 ms [95% CI: —0.9, 5.2]; P = 0.15) or without B1 (mean
change: 1.9 ms [95% CI: —0.5,4.3]; P = 0.10). Quadriceps cross-section-
al area revealed a modest (2%) but significant increase in muscle mass
(mean change: 106 mm?; P = 0.05).

3.4. Functional assessments

Functional improvements were observed from baseline to 6 months
(Table 2). The mean percent predicted upright FVC changed from 76.4%
to 77.6% (mean absolute increase: 1.8 percentage points; P = 0.67). Sta-
tistically significant improvements at 6 months were seen on QMFT,
where the mean score improved by 5.3% (P = 0.04; n = 15), and on
the 6MWT, where the mean distance walked increased by 37 m (P =
0.02; n = 15).

3.5. Exploratory correlation analyses

Exploratory analyses were conducted to assess potential correla-
tions among glycogen clearance and the functional assessments. Re-
duced quadriceps muscle glycogen content correlated significantly
with improved outcomes on QMFT (r = —0.8426, P = 0.004) but did
not correlate with increased distance walked on 6MWT
(r=—0.4231,P = 0.26) in all patients. Among 10 patients with paired
data for comparison of within-patient reduction in quadriceps glycogen
content with knee extensor muscle strength (where quadriceps is the
main force) on the biopsied side, there was no change in muscle
strength. However, there was glycogen clearance suggesting that en-
zyme enters the lysosomes.

3.6. Safety outcomes

There were no AEs leading to study withdrawal and no deaths. There
was one serious AE, which was not related to treatment. All treatment-
related AEs (24 events in 6 [35.5%] patients) were mild or moderate in
severity. Four (25%) patients experienced infusion-associated reactions.
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Fig. 2. Pre- and post-treatment biopsy findings by high-resolution light microscopy
(HRLM). Biopsy samples shown are from the quadriceps muscles of the same patient
(Patient 12). Features that appear responsive to ERT are noted with green arrows.
Features that persist after ERT are noted with red arrows. Panel A: In baseline biopsy
samples, glycogen was located intra-lysosomally in small, round PAS positive lysosomes
(green arrows; see high magnification insert). Glycogen was also present within the
cytoplasm, not bound within lysosomal membranes, but floating freely in between
myofibrils. These areas appear as thin, PAS-positive cytoplasmic streaks in HRLM
sections (red arrows). In areas with myofibrillar damage, the cytoplasmic glycogen
accumulates further, displacing the myofibrils, and appears as larger, PAS-positive pools
(red arrow). Glycogen was also associated with centrally located cores of autophagic
debris (red arrow). At the periphery of some myocytes, free glycogen accumulates
beneath the outer cell membrane and appears as PAS-positive blebs (not shown in
baseline image; see similar structure in panel B). Panel B: Post-treatment biopsy
samples revealed a paucity of the small, intact, glycogen-filled lysosomes. The other
features noted at baseline (free cytoplasmic glycogen present within streaks, pools,
autophagic debris cores, and peripheral blebs) persisted in post-treatment biopsies.
These HRLM features of pre- and post-treatment biopsy samples were confirmed by
electron microscopy of serial sections. (HRLM, 1 pm epoxy resin section, PAS and
Richardson's stain, 400 x magnification).

4. Discussion

This study provides the first prospective evidence of the histopatho-
logic effects of alglucosidase alfa in late-onset Pompe disease patients.
Baseline biopsies identified glycogen present within lysosomes and as
free cytoplasmic glycogen. Alglucosidase alfa treatment reduced lyso-
somal glycogen, with the glycogen remaining after 6 months of treat-
ment being predominantly cytoplasmic (i.e., extra-lysosomal). Non-
lysosomal-bound glycogen has also been shown to persist in post-treat-
ment biopsies of Pompe infants [26]. Because the enzyme is taken up by
receptor-mediated endocytosis via the mannose-6-phosphate receptor,
alglucosidase alfa relies on endosomal delivery of the enzyme via fusion

with intact lysosomes and has optimal activity within this acidic micro-
environment. We observed qualitative decreases in small intact lyso-
somes, which is consistent with this mechanism of action. Further
study is needed to confirm and validate this observation. Glycogen
blebs that are free floating within the cytoplasm are therefore presum-
ably inaccessible to the enzyme and thus remain. Safety outcomes were
consistent with previous studies of alglucosidase alfa in patients with
late-onset Pompe disease [25,35].

This study illustrates the similarities and differences between infan-
tile and late-onset pathology and disease progression. Histologic glyco-
gen accumulation observed in infants was 5-10 times higher by
histomorphometry measurement than in the adult biopsies here,
reflecting the rapidly progressive nature of the infantile disease, which
exhibits global immobility shortly after birth by disturbance of the con-
tractile apparatus of skeletal muscle [6,26,36,37]. In adults, this process
seems to be much slower with mobility deficits emerging gradually over
time [36]. MRI studies show the earliest disease occurring in the
paraspinal and trunk muscles and eventually the thigh muscles [34],
as well as a selective pattern of muscle damage with trunk involvement
even in asymptomatic patients [38]. In adults, muscle groups located in
regions of the body that are subject to more continuous or repetitive
contraction (e.g., axial skeletal muscles for standing, lower limb muscles
for ambulation, diaphragm for breathing) appear to manifest clinical de-
cline and histologic damage earlier in the disease compared with mus-
cle groups that are subject to relatively intermittent contraction (e.g.,
deltoid within the upper limbs), which manifest clinical deterioration
later [9,12]. This suggests that the differences in frequency and intensity
of the biomechanical forces of contraction in different muscle groups
may determine the evolution of lysosomal disruption, cytoplasmic gly-
cogen accumulation, ultrastructural damage, and the rate of clinical dis-
ease progression within these muscles. This may also explain the higher
baseline glycogen levels observed in quadriceps biopsies compared
with deltoid biopsies. Further additional analyses of different fiber
types are needed to confirm or refute this hypothesis.

Our analysis indicates that 6 months of alglucosidase alfa treatment
is apparently sufficient to show an effect on lysosomal glycogen clear-
ance in most adults. Our findings are consistent with muscle biopsy
findings obtained at baseline and 3 and 12 months in a clinical study
of 8 infantile Pompe disease patients, in which the extent of glycogen
clearance varied widely with some samples showing dramatic glycogen
reduction and others showing further accumulation [26]. In both infants
and adults, the glycogen that remained refractory to treatment was
extra-lysosomal, suggesting that treatment is most effective when the
disease process in the individual muscle fibers is not yet too far ad-
vanced [39], while the cellular mechanisms to degrade both lysosomal
and cytoplasmic glycogen properly are still intact and are not yet dis-
turbed or are still working properly. This was illustrated by the fact
that the post-treatment biopsies revealed a paucity of the small, intact,
glycogen-filled lysosomes. The other features noted at baseline (free cy-
toplasmic glycogen present within streaks, pools, autophagic debris
cores, and peripheral blebs) persisted in post-treatment biopsies. The
effect of ERT, therefore, cannot be quantified. The underlying pathologic
mechanism responsible for the persistence of pools and streaks of free
cytoplasmic glycogen not amendable to therapy is not fully understood.
However, if it is the result of lysosomal rupture, then it suggests that ERT
may have been initiated too late in this group of patients. The results un-
derscore the importance of additional studies focusing on the timing of
initiation of ERT in adults with Pompe disease.

Muscle MRI and functional disease classification indicated a relative-
ly mildly affected patient cohort that remained largely stable through-
out the study. The baseline overall Mercuri scores showed mild
muscle involvement, varying from normal to moderate for individual
patients. Despite the low incidence and extent of chronic degenerative
changes, it is worth noting that, when water T2 could be measured, ap-
proximately one-third of muscles had abnormally elevated T2, similar
to an observation recently reported in another group of adult Pompe
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Fig. 3. Intracellular glycogen localization was confirmed by electron microscopic examination. Biopsy samples are from the quadriceps muscle of the same patient (Patient 12). Features
that appear responsive to ERT are noted with green arrows. Features that persist after ERT are noted with red arrows. Panel A: Glycogen-filled lysosomes, 1-2 pm in diameter, are present
singly in between myofibrils (green arrows). Glycogen that has escaped lysosomes and floats freely in the cytoplasm merges to form an early pool of glycogen (red arrow). The tattered,
discontinuous nature of the membranes suggests disruption of lysosomal integrity and release of glycogen into the cytoplasm. Panel B: In early streaks, glycogen floats freely in between
myofibrils (red asterisk). As more glycogen accumulates within the cytoplasm, myofibrillar structure is disrupted (red arrow). Panel C: Glycogen was also associated with centrally located
cores of autophagic debris. In these areas, glycogen can be observed spilling out of disrupted lysosomes and into the cytoplasm. These disrupted lysosomes are characterized by broken,
tattered and discontinuous membranes (red arrows). Two intact lysosomes are visible in the periphery (green arrows). Panel D: Free cytoplasmic glycogen pushed to the periphery of the
cell accumulates beneath the outer sarcolemmal membrane, forming periphery blebs which appear PAS positive on HRLM (see Fig. 2B). Scale bars indicate magnification in each panel.

Table 2
Pulmonary and physical function from baseline to 6 months.

Baseline 6 months Change from baseline Percent change from
baseline
Forced vital capacity (L), % predicted
Upright (n = 15) 76.4 (15.63) 77.6 (28.46) 1.8 (16.39) 0.4 (15.03)
(504, 115.1) (49.3,174.8) (—73,109) (—7.9,88)
P = 0.67 P=091
Supine (n = 14) 57.0 (24.84) 60.8 (34.09) 2.9 (12.35) 1.5 (12.23)
(26.9, 118.7) (25.7,161.3) (—45,10.4) (—5.9,8.9)
P =041 P =0.67
Maximum Inspiratory Pressure
(cm H,0), % predicted
Upright (n = 13) 64.0 (29.58) 65.6 (28.25) 1.6 (13.22) 44 (27.18)
(—6.4,9.6) (—12.0,2038)
P=0.68 P=0.57
Supine (n = 6) 55.2 (35.11) 58.1 (32.57) —82(12.32) —14.7 (27.58)
(—21.1,4.8) (—43.7,14.2)
P=0.17 P=0.25
Maximum Expiratory Pressure
(cm H,0), % predicted
Upright (n = 13) 69.2 (27.43) 71.6 (29.98) 2.4 (14.88) 1.3 (24.02) (—13.2,15.8)
(—6.6,11.4P = 0.57 P=0.85
Supine (n = 6) 49.0 (27.78) 53.2 (36.79) —11.6 (12.25) (—244,1.3)  —30.0 (29.97) (—61.4, 1.4)
P =0.07 P = 0.06
6-Minute Walk Test (n = 15) 449.9 (208.01) (173.0, 471.2 (223.60) (139.0, 37.3(53.55) 7.9 (12.91)
997.0) 1007.0) (7.7,67.0) P = 0.02 (0.8,15.1) P = 0.03
Quick Motor Function Test (n = 15) 445 (11.87) (26.0,64.0) 46.8 (12.31) (24.0,64.0) Not reported 5.3(9.37)
(0.1,10.5) P = 0.045
Hand-held dynamometry - upper body (n = 15) 2065.5 (859.85) (1589.3, 2108.7 (850.70) (1637.6, 43.2 (272.80) (—107.8,194.3) 4.7 (20.46)

Hand-held dynamometry - lower body (n = 15)
Gross Motor Function Measure-88 (n = 16)

Gait, Stairs, Gower's Maneuver, and Chair (n = 16)

Pediatric Quality of Life Inventory Multidimensional

Fatigue Scale (n = 15)

2541.7)

1764.0 (795.67) (13234,
2204.6)

84.0 (20.17) (24.1,
100.0)

13.4 (5.19)

(5.0,21.0)

58.5 (20.74) (12.5, 87.5)

2579.8)

1952.3 (839.40) (14874,
2417.1)

86.7 (17.46) (40.0,
100.0)

12.5 (6.04)

(4.0,23.0)

66.0 (15.73) (36.1,91.7)

P =0.55

188.3 (405.42) (—36.2,412.8)

P =0.09
Not reported

—09(2.22)
(—2.1,03)P=0.14
8.1(17.01) (—1.4,17.5)
P = 0.088

(—6.7,16.0) P = 0.39
18.7 (45.89) (—6.7,44.1)
P=0.14

6.1 (16.30)
(—2.6,148)P =0.16
Not reported

Not reported

Baseline and 6-month values are mean (standard deviation) (min, max).
Change and percent change data are mean (standard deviation) (95% confidence interval) P value.
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patients [40]. In these patients, muscles with higher water T2 experi-
enced faster progression of fatty degenerative changes. This strongly
suggests that elevated water T2 can reveal subclinical damage in muscle
of still-normal appearance. The confirmation of a high percentage of
muscles with abnormal water T2 in Pompe patients brings in a new el-
ement of reflection for early therapeutic intervention. The functional
disease measure GMFCS-E&R, also indicated mild overall functional im-
pairment. Both at the cohort level and for most individual patients, this
clinical disease classification was consistent with the MRI-based
Mercuri scores.

Although alglucosidase alfa improves walking distance and respira-
tory function in late-onset Pompe disease [23,25,35], skeletal muscle
weakness has been shown to persist [41]. Patients in our study were
able to walk a mean 37 m farther on the 6MWT and had a mean increase
of 1.8 percentage points in percent predicted FVC in the upright posi-
tion. These functional improvements are generally consistent with the
longer, double-blind, placebo-controlled Late-Onset Treatment Study
(LOTS), where the increase distance walked on the 6GMWT at 18 months
was 25 m and the increase in percent predicted upright FVC was 1.2 per-
centage points [25], despite baseline differences between our 16 pa-
tients and the 90 patients in LOTS. Compared with alglucosidase
alfa-treated patients in LOTS, on average, our patients were
10 years older at symptom onset, 6 years older at first infusion, had
been living with Pompe disease 2 years longer, and had percent pre-
dicted upright FVC 20 points higher [25]. Interestingly, a small but
significant increase in quadriceps trophicity was detected after
6 months of ERT, which is similar to an observation made some
years ago [42]. The increase in muscle mass might have contributed
to the gain in 6MWT or this increase may have been the consequence
of improved physical activity with ERT.

Examining glycogen clearance in muscle biopsies of ERT-treated
adults with late-onset Pompe disease is important for understanding
the apparent resistance of skeletal muscle to ERT. In our study, the
reduction in quadriceps glycogen content for individual patients
was significantly associated with motor function improvement on
the QMFT (r = — 0.84; P = 0.004). However, baseline glycogen con-
tent in muscle biopsies correlated poorly with skeletal muscle imag-
ing and functional indicators of disease severity at baseline. This is
likely due to sampling and pathology analysis of a single muscle
belly, whereas imaging and functional assessments evaluate the dis-
ease and function of a group of muscle bellies acting in concert. Thus,
muscle biopsy assessment is useful in answering proof-of-concept
questions and evaluating disease state and therapeutic response of
a single muscle belly, but may be less reflective of the musculoskele-
tal system as a whole. Biopsy sampling of multiple muscles would be
ideal, but a practical impossibility. Whole body MRI of Pompe pa-
tients would best evaluate the stage of disease in multiple muscles,
but systematic quantitative imaging and generation of parametric
maps of percentage of muscle fat content and muscle water T2 will
allow more meaningful correlations with clinical functional
outcomes.

This uncontrolled, exploratory study was not statistically
powered to demonstrate significant changes from baseline. It was
designed to demonstrate proof-of-concept in adults and to explore
changes in muscle histopathology underlying the clinical and func-
tional improvements associated with alglucosidase alfa observed in
LOTS [25,35].

Nonetheless, these muscle biopsy results in adults with late-onset
Pompe disease demonstrate reduction of lysosomal glycogen in re-
sponse to alglucosidase alfa treatment, with maintenance of cytoplas-
mic glycogen, within a relatively short treatment period of 6 months.
This treatment effect observed at the histopathologic level was accom-
panied by improvement and/or stabilization in most clinical disease pa-
rameters, which is consistent with stabilization of disease by
alglucosidase alfa in treatment-naive adults with late-onset Pompe
disease.
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