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ABSTRACT 

Complex (genetic) diseases are caused by many genetic, epigenetic and 
environmental factors that in concert result in a disease phenotype. Identifying 
the contribution of an individual gene(s), epigenetic aberrations or 
environmental factors is extremely challenging. It is this understanding of 
complex diseases that has become the major topic in the field of human genetics. 
Hirschsprung disease (HSCR) is one such complex genetic disorder. It is the most 
common forms of congenital obstruction of the bowel, and results from a failure 
of the neural crest-derived progenitor cells of the enteric nervous system (ENS) 
to migrate, proliferate, differentiate or survive in the gut wall during early 
embryonic development. The phenotype of this defect(s) is a variable length of 
aganglionosis in the distal part of the bowel. Since the 1990s, a multitude of 
genetic studies based on linkage analysis, homozygosity mapping, and genome 
wide association studies (GWAS) resulted in the identification of many 
susceptibility loci and genes involved in this complex disease. In the last decade, 
extraordinary progress has been made in genome sequencing technologies, 
collectively referred to as Next Generation Sequencing (NGS). This has greatly 
enhanced our knowledge and understanding of the role of novel genes and 
genetic variability in the pathogenesis of diseases. Combining NGS-based 
strategies with traditional linkage or expression studies has resulted in the 
identification of new HSCR genes. Moreover, the use of in vitro and in vivo assays 
to establish genotype-phenotype associations has further enhanced our 
understanding of the different mechanisms associated with ENS development in 
general and HSCR in particular. In this thesis, we aim to better understand and 
unravel the complexity of HSCR genetics using genomics approach and in vivo 
modelling of HSCR in zebrafish model.  
 
 
THE ENTERIC NERVOUS SYSTEM (ENS) 
 
The gastrointestinal (GI) tract is an internal organ which requires the 
coordinated activity of its neuromuscular components for the mixing and 
propulsion of food, for breakdown of complex foods during digestion, and for 
secretion, absorption and excretion. The functions of the GI tract are governed by 
the ENS, an extensive network of neurons and glial cells that form a meshwork of 
interconnected ganglia along the entire bowel1. These comprise the outer 
myenteric (Auerbach’s) plexus which resides between the circular and 
longitudinal smooth muscle layers, and the inner submucosal (Meissner’s) plexus. 
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The myenteric plexus provides motor innervation to the muscle layers and 
secretomotor innervation to the mucosa1. 
Embryonic origin of ENS 
The entire ENS is derived from the neural crest (NC). The NC is a transient 
population of cells that emerges/detaches from the dorsal neural tube during 
early embryonic development. This happens after undergoing epithelial to 
mesenchymal transformation (EMT) and these neural crest cells (NCC) start 
migration to various locations throughout the embryo. NCC are multipotent and 
differentiate into a wide range of cell types during vertebrate development 
including elements of the craniofacial skeleton, peripheral neurons, glia, 
melanocytes and connective, endocrine and adipose tissues. The neural crest is 
the distinguishing feature of vertebrates and its regulation is highly conserved 
among humans and many other vertebrate species. The neural crest origin of the 
ENS was first demonstrated by using avian embryos to show that upon ablation 
of the vagal NC region, the enteric ganglia failed to form in the gut2. Subsequently, 
a number of classical transplantation experiments using chick-quail chimeras 
were fundamental in understanding the fate of NCC and established the vagal 
neural crest (adjacent to somite 1–7) as the major source of ENS precursors3. 
Vagal NCC colonizes the gut by rostro-caudal migration along the entire length of 
the gut and a further contribution to the distal ENS arises from sacral NCC 
(posterior to somite 28). It was shown in mouse and chick that these cells 
colonize the most distal part of the GI tract by migration in an opposing caudo-
rostral direction (Figure 1)4-7. It has also been reported that the anterior NCCs 
contribute to the foregut ENS8. NCCs enter mouse foregut at embryonic day E 9.5, 
and colonization of the mouse gut is complete by E14.5. In humans, NCCs enter 
the foregut by week 4 and at week 7 colonization of the entire gut is 
complete7,9,10.  

Enteric NCC (ENCC) derived cells also undergo a secondary inward radial 
migration in mice after initial colonization to form mucosal ganglia11. Contrary to 
the inwards migration, there is also an outwards migration from the submucosa 
in the case of avian4. It has also been shown that during early development of 
mice (E10.5-11.5), the vagal neural crest derived ENCC also migrate in a trans-
mesenteric direction perpendicular to rostro-caudal migration12. In contrast to 
these complex migrations of ENCC, the zebrafish ENS completely derives from 
vagal NC and there is no evidence to support a sacral NCC contribution to the 
ENS13. In humans, as enteric NCCs migrate along the gut, they proliferate and 
differentiate into different neuronal subtypes and glial cells to form 
interconnected ganglia (Figure 1). Defects in the development of NCCs result in 
myriad of neurocristopathies. One of the most common diseases affecting the ENS  
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Figure 1. Representation of embryonic origin of the ENS in diverse vertebrate models during 
early development. Embryonic origins of the ENS in diverse vertebrate models. (A) The ENS of 
zebrafish derives from vagal NCC (red arrow) that enters the rostral gut tube at approximately 36 
hours post-fertilization (hpf). Cells migrate caudally and progressively colonize the intestinal bulb 
(IB) and intestine. The gut is fully colonized by these vagal neural crest-derived ENS progenitors (red 
dots) by 66 hpf. (B) In the chick, the ENS is formed primarily from vagal NCC at the level of somite 1–7 
(red arrow) that enter the foregut (FG) at approximately embryonic day (E) 3–3.5 and migrate 
caudally to progressively colonize the gizzard (G) (mechanical stomach), intestine (I), cecal buds (CB) 
and hindgut, a process that is complete by E7.5 (red dots). Sacral NCC, arising caudal to somite 28 
(blue arrow), also contribute to the ENS, first forming the extramural nerve of Remak (RG) (blue), and 
then migrating into the hindgut (inset, blue arrows) to colonize primarily the distal hindgut (blue 
dots). (C) The mouse ENS is formed principally from vagal NCC from the level of somite 1–7 (red 
arrow), which enter the foregut at approximately E9, and migrate caudally to colonize the foregut 
(FG), midgut (MG), cecum (C), and hindgut (HG) (red dots). In addition to rostrocaudal migration, 
trans-mesenteric migration of vagal NCC from the midgut to the hindgut also occurs (inset, arrows). 
Colonization of the length of the gut is complete by E14. An additional ENS contribution arises from 
NCC that migrate from the sacral region (blue arrow). These cells initially form pelvic ganglia adjacent 
to the hindgut, then migrate into the gut and primarily occupy the hindgut and caudal midgut (blue 
dots). (D) In the human, the ENS derives from vagal NCC (red arrow) that enter the foregut (FG) at 4 
weeks of gestation and migrate along the gut to fully colonize the foregut, stomach (S), midgut (MG), 
cecum (C), and hindgut (HG) by week 7 (red dots). It is inferred, from mouse data, that sacral NCC also 
contribute to the hindgut ENS (blue hatched arrow), however no experimental evidence is yet 
available to confirm this. (Adapted from14). 

is HSCR, which is attributed to the failure of NCCs to migrate, differentiate, 
proliferate or survive and thereby form a functional ENS. HSCR research is 
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concentrated on gaining a better understanding of the underlying 
pathophysiology of this enteric neuropathy, including the genetics. 
 
HIRSCHSPRUNG DISEASE 
 
HSCR, also known as congenital megacolon, is the most common causes of 
neonatal intestinal obstruction, if left untreated then it is life threatening (Figure 
2). The first description of HSCR comes from ancient writings (between 1200 BC 
and 600 BC) of Ayurvedic Sushruta Samhita. It has described “Baddha 
Gudodaram,” a condition analogous to modern day HSCR15. The name 
Hirschsprung originates from Harald Hirschsprung, a Danish physician who in 
1888 described 2 boys, aged 8 and 11 months, respectively, who died due to 
severe constipation16. The first clinical description of what we now call HSCR is 
ascribed to a Dutch anatomist “Frederick Ruysch” in 1691, who reported a 5 year 
old girl with abdominal pain “enormis intestine cono dilatatio”17. The relation 
between congenital megacolon and bowel aganglionosis was not understood until 
1948 and until then HSCR remained a fatal disease (Figure 2). Pioneer studies by 
Swenson and Bill along with others recognized the histopathological features of 
HSCR by using full thickness rectal biopsies and correlated it with the absence of 
enteric ganglia in the intestinal segment below the dilated part of colon and these 
findings became significant for diagnosis and surgical intervention18-22. These 
studies allowed development of a simple and reliable diagnostic confirmation for 
HSCR using histochemical staining for acetylcholinesterase (AchE)23. These 
findings led to the identification of the underlying cause of the severe 
constipation seen in HSCR; an absence of enteric neurons in the myentric 
(Auerbach’s) plexus and the submucosal (Meissner’s) plexus in a length of the 
gut.  
 
Clinical features and diagnosis 
HSCR is clinically characterized by failure to pass meconium (the first stool) 
within the first 48 hours after birth, severe constipation, bilious vomiting, 
abdominal distention and recurrent neonatal enterocolitis24. Physical 
examination of children with HSCR show an enlarged abdominal circumference 
with numerous fecal masses (Figure 2)25.  

HSCR is usually diagnosed with radiographic studies combined with 
barium enema, anorectal manometry and rectal biopsies. Imaging studies 
incorporating non-invasive radiograph tests can be obtained first for children and 
infants suspected of having HSCR with history of pain. Abdominal X-ray showing 
a distended small bowel and proximal colon and an empty rectum can give an 

1 
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early indication of HSCR. A water soluble (contrast) enema typically shows a 
narrow distal segment, a funnel-shaped dilatation, characteristically localized at 
the level of the transition zone, and a marked dilatation of the proximal colon and 
poor emptying after 24 hours. Anorectal manometry measures the contractility in 
the anus and rectum. Usually, anal and rectal muscles are tightened to hold on 
bowel movement and they relax in order to pass feces. Absence of the recto-anal 
inhibitory reflex (RAIR), when the rectum is distended, can be helpful in 
diagnosing HSCR26, although there is a perception that it is unnecessary in most 
cases27. The gold standard for a definitive diagnosis of HSCR relies on 
histopathology of a full thickness rectal biopsy. In this biopsy the pathologist 
searches for the absence of ganglia at the plexuses (myenteric and submucosal) of 
gut wall. Pathological evaluation of rectal biopsies is based on enzymatic 
histochemistry using frozen sections to establish the presence of ganglia and the 
analysis of AchE positive nerve fibers. Another approach is based on paraffin 
sections stained with hematoxylin and eosin (H&E), and sometimes 
complemented with AchE histochemistry28,29.  

 

Figure 2. Hirschsprung disease (A) Cartoon of a child with a normal colon. (B) Cartoon of child with 
HSCR (intestinal megacolon). (C) Enteric ganglia are represented by green dots in the large intestine 
and in a normal gut the large intestine is fully colonized. (D) Aganglionosis of distal colon can be seen 
in HSCR affected colon.  
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Classification  
Based on the variability in the length of affected region, HSCR is further classified 
as short-segment HSCR (S-HSCR), long segment HSCR (L-HSCR) or total colonic 
aganglionosis (TCA). S-HSCR affects around 80% of patients and the 
aganglionosis does not extend beyond the sigmoid colon. In the case of L-HSCR, 
(which affects 15-20% of patients) the aganglionosis is also observed proximal to 
the sigmoid colon. In TCA (around 5% of cases), the aganglionosis affects the 
entire large intestine and may also affect the small intestine. In very rare cases, 
the whole bowel is affected and known as total intestinal aganglionosis (TIA). 
 
Incidence and prevalence 
The prevalence of HSCR is estimated to be ~1 in 5000 newborns, however this 
varies between ethnic groups (1.0/5000 for Hispanics, 1.5/5000 for Caucasians, 
2.1/5000 for African-Americans and 2.8/5000 for Asians) and males are affected 
more than the females (4:1) in all ethnic populations30-33. The male 
preponderance persists and decreases with the length of agangionosis. It varies 
from 4:1 in S-HSCR to 1:1-1:2 in L-HSCR and reverses to 0.8:1 in TCA34-36. There is 
no evidence of X-linked loci in HSCR and the exact cause behind sex bias remains 
largely unexplained.  
 
Association with other anomalies 
HSCR occurs as an isolated trait in 70% of the cases. Consequently, in 30% of the 
cases HSCR is associated with other congenital anomalies, which includes in 
addition to other GI malformations, cleft palate, cardiac malformations, 
craniofacial anomalies and polydactyly37. These anomalies can occur by chance or 
can be part of a (un)known syndrome, such as Waardenburg-Shah syndrome, 
type IV (WS4), Congenital Central Hypoventilation syndrome (CCHS), Mowat-
Wilson syndrome, cartilage-hair hypoplasia syndrome, Goldberg-Shprintzen 
syndrome (GOSHS) and Smith-Lemli-Opitz syndrome37. 

The most common syndrome of which HSCR is part of is Down syndrome 
(DS). Therefore, it is not surprising that trisomy 21 is the most common 
chromosomal abnormality seen in HSCR. The overall incidence of DS ranges from 
2-10% in all HSCR cases37-39. In total chromosomal abnormalities are identified in 
~12% of all the HSCR cases.  
 
Treatment and future therapies 
Current treatment for HSCR consists of surgical resection (pull-through) of the 
aganglionic segment of the intestine and reconnection of the proximal bowel to 
the anus40. Alternatively, individuals with extensive intestinal aganglionosis may 
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require intestinal transplantation41. Over the past decades the surgical 
management of HSCR has continued to evolve with the adoption of minimally 
invasive approaches. However, even after surgical treatment for HSCR, it is 
associated with long term morbidities such as constipation, fecal soiling and 
enteritis42. 

In recent years there has been much interest in the use of stem cell 
therapy for HSCR. Here the idea is that ENS progenitor cells/stem cells could be 
transplanted into the aganglionic region of the bowel to reconstruct the absent 
ENS43. In support of this approach, cultures of multipotent ENS progenitors that 
generate neurospheres or neurosphere like bodies (NLBs) containing ENCCs have 
been shown to differentiate to form mature neurons and glial cells from 
embryonic and postnatal mouse gut44,45. Human enteric neurospheres have also 
been isolated and grown successfully from full thickness and mucosal biopsies 
obtained from fetal, postnatal and adult bowel46-50. Upon transplantation, these 
ENCCs can colonize recipient bowel in vitro and have the capability of migration, 
proliferation and neuroglial differentiation44-47. Moreover, recent in vivo 
transplantation studies have demonstrated functional integration of ENCCs with 
the endogenous ENS51,52. ENS progenitors have also been isolated from the 
aganglionic gut of HSCR patients and it was found that p75-positive neural crest 
derived cells present in the thickened nerve trunk gave rise to neurons in 
culture53.  

Simultaneous studies have focused on generation of neural crest derived 
peripheral neurons from mouse and human embryonic stem cells (hESCs) using 
in vitro differentiation protocols54,55. It has been shown that neural crest stem 
cells (NCSC) can be derived from in vitro differentiated hESCs expressing neural 
crest markers such as p75, HNK1 (human natural killer-1) and SOX10 (SRY (Sex 
determining region Y)-box 10),  which give rise to multiple neural crest 
lineages56,57. Transplantation of hESCs derived NCSCs into the recipient chick 
embryo and adult mouse demonstrated survival, migration and differentiation in 
vivo57. Similarly, human induced pluripotent stem (iPS) cells can be differentiated 
in vitro to NCSCs that can be further differentiated into neurons and glial cells58. 
More recently, the in vitro differentiation of hESCs and human pluripotent stem 
cells into ENS progenitors and their further differentiation into functional enteric 
neurons have been established59. Transplantation of in vitro derived ENS 
precursors displayed targeted migration in the chick embryo, colonization of 
mouse gut, and reversal of disease-associated mortality in an HSCR mouse 
model59. These studies have also led to the identification of pepstetin A as a novel 
candidate therapeutic target that reverses the impaired migratory potential of 
NCC59. Despite these advancements and development of new treatment strategies 
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based on the stem cell therapy of the affected ENS, there are numerous concerns, 
such as optimal source, delivery method and safety concerns among others and 
these issues are being approached by many scientists to reach up to a consensus 
and address them for future clinical trials60. 
 
 
HSCR GENETICS 
 
Segregation studies in HSCR have demonstrated that the recurrence risk to 
siblings varies from 1.5-33% depending on the sex of the affected person and 
extent of aganglionosis31,33. HSCR is considered an inherited disease based on the 
fact that there are familial cases (~ 5%), and an overall elevated risk of 4% 
(relative risk as high as 200) of the disease in siblings the presence of 
chromosomal abnormalities and occurrence of naturally occurring animal 
models37.  
 
HSCR susceptibility loci by linkage analysis 
The first linkage studies on large multigenerational HSCR families identified 
10q11.2 as the major locus for HSCR61,62. These studies led to the earliest 
identification of RET (Rearranged during transfection) gene mutations in HSCR 
probands63,64.   
Bolk et al. conducted a linkage analysis study on 12 multiplex HSCR cases and 
found that all but one family showed linkage to the RET locus. Only half of the 
families carried a RET coding variant. Intriguingly, the families that did not have a 
RET coding variant showed linkage to 9q31. It was hypothesized that the gene in 
9q31 might be a modifier for development of HSCR65.  

In another study by Gabriel et al. a genome-wide scan was conducted in 
small HSCR families with S-HSCR. Sib pair analysis identified susceptibility loci at 
3p21 and 19q12 in addition to the RET locus66. A fifth locus at 13q21 was 
identified by Puffenberger et al. after performing linkage analysis in 43 
Mennonite trios belonging to the same kindred. Within the linkage region, EDNRB 
(Endothelin Receptor type B) was pinpointed as the causative HSCR gene. The 
linkage study also revealed the presence of genetic modifier of HSCR on 21q2267. 
A sixth locus was found by studying a large multi-generational Dutch family with 
isolated HSCR. It resulted in the identification of a HSCR susceptible locus at 
4q31.3-q32.368.  

 
 
 

1 



Chapter1 

18 

HSCR susceptibility loci by GWAS 
In HSCR, three GWAS have been performed mainly on sporadic HSCR cases from 
different ethnicities to identify additional HSCR genetic loci that could contribute 
to the disease risk69-71. GWAS conducted in a Chinese population found 
association with NRG1 (Neurogelin1)69. GWAS performed by the International 
HSCR Consortium on HSCR patients of European ancestry found an association 
downstream from the protein SEMA3D (Semaphorin3D) and upstream from 
SEMA3A (Semaphorin 3A) and mutational screening of these genes identified 
several coding variants in these genes72. Another GWAS performed on Thai 
population also found an association with RET and NRG171. 
Table 1. HSCR-associated genes and loci 
Gene Locus Phenotype Frequency of the 

coding mutations 
Inheritance 

RET 10q11.2 
Non-syndromic HSCR/ 
MEN2A 

50% familial, 15-35% 
sporadic 

Dominant, incomplete 
penetrance 

GDNF 5p13.1 Non-syndromic HSCR Rare Non-Mendelian 
GFRA1 10q25.3 Non-syndromic HSCR 1 case reported Dominant 
NRTN 19p13.3 Non-syndromic HSCR Very rare Non-Mendelian 
PSPN 19p13.3 Non-syndromic HSCR Very rare Non-Mendelian 
EDNRB 13q22.3 Non-syndromic HSCR, WS 3-7% Dominant (de novo in 80%) 

EDN3 20q13.32 Non-syndromic HSCR, WS  <5% 
Dominant, incomplete 
penetrance Recessive 

ECE1 1p36.12 
HSCR, craniofacial and 
cardiac defects 1 case reported Dominant 

NRG1 8p12 Non-syndromic HSCR 6% 
Dominant, incomplete 
penetrance 

NRG3 10q23.1 Non-syndromic HSCR Rare 
Dominant, incomplete 
penetrance 

SEMA3C 7q21.11 Non-syndromic HSCR Rare Non-Mendelian 
SEMA3D 7q21.11 Non-syndromic HSCR Rare Non-Mendelian 
SOX10 22q13.1 Non-syndromic HSCR, WS >5% Dominant (de novo in 75%) 
PHOX2B 4p13 CCHS <5% Dominant (de novo in 90%) 
ZFHX1B / 
ZEB2 2q22.3 Mowat-Wilson syndrome <5% Dominant (de novo in 100%) 
TCF4 18q21.2 Pitt-Hopkins syndrome 1 case reported Dominant 
NKX2-1 / 
TTF1 14q13.3 Non-syndromic HSCR 1 case reported Dominant 

L1CAM Xq28 
X-linked hydrocephalus 
and HSCR Rare X-linked dominant 

DSCAM 21q22.2 Non-syndromic HSCR, DS 
Association of common 
variants Non-Mendelian 

KBP / 
KIAA1279 10q22.1 

Goldberg-Schprintzen 
syndrome Rare Recessive 

DNMT3B 20q11.21 Non-syndromic HSCR Rare 
Dominant, incomplete 
penetrance  

PTCH1 9q22.32 Non-syndromic HSCR 
Association of common 
variants Non-Mendelian 

DLL3 6q27 Non-syndromic HSCR 
Association of common 
variants Non-Mendelian 

IKBKAP 9q31 
Non-syndromic HSCR, 
dysautonomia 

Association of common 
variants 

Dominant, incomplete 
penetrance  

Unknown 3p21 Non-syndromic HSCR   Non-Mendelian 
Unknown 16q23 WS   Non-Mendelian 

Unknown 4q31-q32 Non-syndromic HSCR   
Dominant, incomplete 
penetrance  

Unknown 19q12 Non-syndromic HSCR   Non-Mendelian 
Unknown 21q22 WS   Recessive 
HSCR: Hirschsprung disease, MEN2A: multiple endocrine neoplasia type 2, WS: Waardenburg-Shah syndrome, CCHS: 
Congenital central hypoventilation syndrome, DS: Down syndrome  
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Genes associated with HSCR   
To date mutations in 16 genes (Table 1, Figure 3) have been identified that can 
cause, or contribute to the development of HSCR70,73. 
 
RET gene mutations 

The proto-oncogene RET, is the predominant gene associated with HSCR. RET is 
considered to be the major HSCR gene, as 50% of the familial cases and 15-35% 
of the sporadic cases have a mutation in the RET coding region or in the regions 
involved in mRNA (messenger ribonucleic acid) splicing74. RET mutations in 
HSCR generally result in loss of function of the encoded protein supporting a 
haplo-insufficiency effect in disease pathogenesis75.  

A variety of RET mutations have been identified, including 
microdeletions, insertions, frameshifts, splice variants, nonsense and missense 
mutations. They can be found along the entire length of gene74,76,77. The 
inactivating mutations of RET affect its function due to various molecular 
mechanisms such as, protein misfolding, failure of protein transport to the cell 
surface and suppression of its biological activity75,78-80. The penetrance of RET 
mutations is incomplete in familial HSCR and it is higher in males (72%) than in 
females (51%) supporting the existence of one of more modifier genes to develop 
the disease76. It should be noted that RET mutations are also implied in other 
pathologies: multiple endocrine neoplasia of type 2A (MEN2A) and 2B (MEN2B) 
and familial and sporadic forms of medullary thyroid carcinoma (MTC) and 
papillary thyroid cancer81. In all these diseases, however the mutations are 
affecting specific codons and result in an activation of the mutated protein. 
Moreover, HSCR can be found in association with MEN2A and familial MTC with 
mutation in RET gene82,83. 
 
Non-coding mutations and HSCR 
As mentioned earlier, RET coding mutations have been identified in 50% of the 
familial cases of HSCR and failure to identify coding region mutations in some of 
the RET-linked families suggested that mutations in RET regulatory regions might 
contribute significantly to the disease65,66. This idea was further corroborated in 
studies by different groups on sporadic HSCR cases that consisted Caucasians and 
Asian population with and without coding mutation in RET. In all these studies a 
common disease associated RET haplotype was identified84-88. This haplotype 
spans approximately 27 Kb and it includes 4Kb of 5’ UTR (untranslated region), 
exon1, intron1 and exon2. Common variants in the RET promoter (rs10900296 
and rs10900297) upstream of the RET transcription start site were identified85. 
These SNPs (single nucleotide polymorphisms) were shown to reduce the 
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binding affinity of the transcription factor TTF1 (Thyroid transcription factor 1) 
and thereby the variant was believed to result in a decrease of RET 
transcription89. However, reduction in RET expression was later found to be cell 
line dependent90. Comparative genomics approaches identified a multispecies 
conserved enhancer region in intron1 of RET and within this enhancer region two 
SNPs (rs2435357 and rs2506004) are present. For these SNPs it was shown that 
both could negatively influence the enhancer activity leading to lower RET 
expression, independently91,92. It was also shown that SOX10 binding was 
disrupted by rs2435357, and rs2506004 served as binding site for NXF-ARNT2 
and SIM2-ARNT2 transcription factor heterodimers, respectively92,93. Taken 
together, these findings strongly support that both rare, coding mutations and 
common non-coding variants in RET contribute to HSCR development. RET is a 
transmembrane tyrosine kinase receptor expressed at highest levels during early 
embryogenesis in the developing excretory system, in all lineages of the PNS, and 
in motor and catecholaminergic neurons of the central nervous system (CNS)94. 
Alternative splicing generates three RET isoforms containing 51 (RET51), 43 
(RET43) and 9 (RET9) amino acids in the carboxyl (C)-terminal tail95. RET has a 
large extracellular domain, a transmembrane region and an intracellular kinase 
domain96. It is a signaling receptor for four ligands, GDNF (glial cell line-derived 
neurotrophic factor), NRTN (neuturin), ARTN (artemin) and PSPN (persephin) 
(Figure 3)97.  

These ligands activate RET by binding to the GPI (glycosyl phosphatidyl 
inosated)-linked GDNF family of receptors (GFRα1-4) respectively. Upon binding 
of the ligand-co-receptor complex, RET dimerization and autophosphorylation of 
the tyrosine residues occur in the intracellular domain. These tyrosine residues 
act as docking sites for adapter and signaling proteins to stimulate multiple 
downstream pathways98,99. These pathways include JAK-STAT, RAS-MAPK, PI3-
AKT, ERK, PKC and JNK, that can promote cell growth, proliferation, survival or 
differentiation100. 

 
The RET-GDNF-GFRα signaling pathway 
Through Ret, GDNF/GFRα1 signaling stimulates ENS progenitor proliferation, 
directional migration, survival and differentiation along the developing gut101-107. 
Deletion of Ret in mouse leads to complete intestinal aganglionosis108. ret 
knockdown in zebrafish embryos also display absence of enteric neurons in the 
gut13.  
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GDNF acts as a chemo-attractant for the RET positive vagal ENCCs and it is highly 
expressed in the stomach ahead of the migrating ENCCs wave-front and its 
expression is elevated in the caecum, while ENCCs migrate towards the distal part 
of the gut107,109. Heterozygous GDNF mutations have also been reported in 
sporadic HSCR patients74,110,111. Recently, it has also been found that a kinesin, 
KIF26A acts a negative regulator of GDNF-Ret signaling in ENS development112.  

NRTN and GFRα2 are other members of RET ligand-co-receptor complex 
that have been implicated in ENS development. The ENS is formed in adult NRTN 
and GFRα2-null mice, but myenteric neurons display decreased soma size and 
fewer excitatory nerve fibres in the myenteric plexus113-115. In rare cases of HSCR, 
patients have been identified carrying mutations in NRTN116.  
 
The EDNRB/EDN3 Signaling Pathway 
A second signaling pathway involved with HSCR and in ENS development is the 
Endothelin Receptor type B (EDNRB) pathway. EDNRB is a G-protein coupled 
receptor expressed in NC derivatives and Endothelin 3 (EDN3) mediates its 
activation. EDN3-EDNRB signaling is required for the development of 
melanocytes and enteric neurons117. HSCR patients have been identified carrying 

 
Figure 3. 
Proteins encoded by the identified HSCR susceptibility genes and possible interaction between the 
different protein identified (Adapted from73). 
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mutations in EDNRB, EDN3 and the endothelin converting enzyme ECE1 (which 
converts an inactive precursor form of EDN3 into an active form)118-120. Mutations 
in these genes are present in approximately 5% of HSCR patients121. Inherited 
mutations in these genes are generally seen in the context of Waardenburg-Shah 
syndrome, type IV (WS4), a disorder that includes pigmentation defects, 
sensorineural deafness, dysmorphic facial features and aganglionic megacolon in 
humans122. Avian studies have established that EDNRB transcripts are present in 
NCC , before as well as during their emigration from the neural tube at all levels of 
the neuraxis and EDN3 dramatically enhances the proliferation of NCC123. The 
mutant mice carrying mutations in Ednrb, Edn3 and Ece1 also exhibit 
aganglionosis and pigmentation defects124-126. EDNRB/EDN3 signaling is involved 
with regulation of ENCCs migration as EDNRB is expressed by migrating ENCCs, 
whereas Edn3 is expressed in the midgut and hindgut mesoderm and highly 
expressed in caecum and proximal colon127,128. Other studies have also suggested 
a role of EDNRB/EDN3 signaling in ENS development as activation of EDNRB by 
EDN3 induces enteric NCCs to proliferate, maintain their precursor state and 
prevent premature differentiation102,129,130.  
 
Neuregulin signaling 
A GWAS conducted in a Chinese population found association with NRG1 
(Neuregulin1). The neuregulins (NRGs) are cell-cell signaling proteins that are 
ligands for receptor tyrosine kinases of the ErbB family. NRG1 is believed to be 
involved in ENS development and it interacts with major HSCR gene RET69.  
Fine mapping of NRG1 locus by SNP genotyping resulted in identification of four 
highly associated SNPs on NRG1 promoter131. Later on, implication of NRG1 in 
HSCR was demonstrated through the identification of pathogenic coding 
mutations using different functional approaches132. Involvement of NRG1 variants 
in the etiology of HSCR was further confirmed in Thai HSCR population and in 
Caucasian HSCR patients as well133,134. Moreover, copy number variants (CNVs) in 
a paralog of NRG1 gene, NRG3 were found corroborating the importance of 
neuregulin signaling in HSCR135. Exome sequencing studies in Chinese family 
have also identified NRG3 as a susceptible gene for HSCR136.  

The protein encoded by NRG1 is a membrane glycoprotein that plays a 
critical role in the growth and development of multiple organ systems. A variety 
of different isoforms are derived from the neuregulin gene and the NRG1 isoforms 
exert their effects through a heterodimeric complex consisting of members of the 
EGF (epidermal growth factor) receptor tyrosine kinases ErbB3/ErbB4 in the 
heart and ErbB2/ErbB3 in  NCCs137,138. NRG1 is suggested to promote the survival 
and maintenance of the ENS and it is expressed in both neurons and glial cells of 
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enteric ganglia, nerve fibers and it acts as a neurotrophic factor for the ENS139. 
Conditional knockout of Erbb2 in mice display loss of enteric ganglia and 
distention of colon indicating the relevance of Nrg-ErbB signaling in murine ENS 
development140.  
 
Hedgehog Signaling 
Mammals have three Hedgehog homologues, Desert (DHH), Indian (IHH), 
and Sonic (SHH). The hedgehog pathway is involved in the development of the 
ENS and hedgehog proteins have important function as morphogens. Activation 
of Hh signal requires two transmembrane proteins including a receptor Patched 
(ptch) and signal activator Smoothened (Smo). The downstream signal activation 
of Hh pathway is mainly mediated by a family of zinc-fingers containing the 
transcriptional factors, the Gli proteins (Gli1, Gli2 and Gli3) and they act as 
activators and/or repressors141.  

It has been shown that localized expression of hedgehog proteins in the 
epithelium is essential for concentric patterning of the bowel wall 142. Sonic 
hedgehog promotes the proliferation and inhibits the differentiation of crest-
derived cells from embryonic mice in vitro143. Mice lacking either the Indian Hh- 
or Shh-secreted proteins display partial intestinal aganglionosis, accompanied by 
megacolon or ectopic ganglia formation142. Pathed-1 (Ptch1), the receptor of 
Hedgehog ligands is expressed by enteric neural progenitors143. Deletion of Ptch1 
in ENCCs results in elevated expression of Gli1 and inhibition of neurogenesis144. 
In zebrafish, sonic hedgehog is required for the migration of neural crest from the 
hindbrain into the anterior gut145. Recently, it has also been shown that some 
HSCR patients that lacked RET coding mutations have mutations in GLI genes146.  
 
Sema3C/D signaling 
Semaphorins are transmembrane, secreted, or GPI-linked proteins known to be 
involved with neuronal migration, proliferation, survival, or axonal guidance147. 
These proteins are grouped into different classes and many subgroups. In the 
developing colon and cecum, semaphorin 3A (Sema3A) is expressed by the inner 
mesenchyme, while the coreceptor for Sema3A, neuropilin-1, is expressed by all 
enteric neural crest derived cells148. Earlier studies had also postulated a role of 
semaphorin signaling in ENS development149,150. Further descriptive studies of 
the associated region led to the functional validation of the semaphorin genes in 
the aetiology of HSCR. It was found that Sema3a, Sema3c and Sema3d were 
expressed in the mouse ENS and knockdown of sema3 in zebrafish display 
reduction in the migration of ENS precursors70.  
 



Chapter1 

24 

Transcriptional regulation of ENS development and other genes 
Peripheral autonomic neurons and ENS development is regulated by a network of 
transcriptional factors151. Mutations in transcriptional factors have majorly been 
implicated in the genetic etiology of syndromic forms of HSCR, such as WS4, CCHS 
and Mowat-Wilson syndrome. 
 
SOX10 
Transcriptional regulator Sox10  is expressed in the vagal NCC, ENCCs and its 
mutations disrupts neural crest development in a HSCR mouse model called 
‘Dom’126,152. The identification of a mutation in the Dom mouse led in finding of 
SOX10 mutations in patients with Waardenburg-Hirschsprung disease and 
established its role in the development of ENS153. Cell death is increased in 
undifferentiated, postmigratory NCC lacking Sox10154. One of the earliest 
zebrafish mutants of the ENS, cls (colourless) mutant, was identified in a genetic 
screen for pigmentation defects. cls serves as a Waardenburg-Shah syndrome 
model since fish lack pigment cells, and have reduced enteric neurons as well as 
additional NCC defects155.  Subsequently, it was shown that the cls locus mapped 
to the sox10 gene which is known to be required for neural crest development156. 
 
PHOX2B 
HSCR is also associated with congenital central hypoventilation syndrome 
(CCHS), a disorder characterized by an idiopathic failure of the automatic control 
of breathing and primarily caused due to mutations in PHOX2B (Paired-like 
homeobox 2b) gene157,158. The homeobox protein Phox2b is essential for the 
development of autonomic neural crest derivatives and it is expressed by 
migrating ENCCs, and mice lacking Phox2b display aganglionosis due to failure of 
ENCCs to colonize the gut159. Similarly, Phox2b function is conserved in zebrafish 
and upon its knockdown, a HSCR-like phenotype is observed160. Like SOX10, 
PHOX2B is also required for Ret expression in enteric NCCs159.  
 
ZEB2/ZFHX1B or SIP1 
ZEB2 (Zinc finger E-box-binding homeobox2) is a transcription factor involved in 
neural specification and in epithelial-mesenchymal transition (EMT) during early 
neural crest development. Mowat-Wilson syndrome, characterized by mental 
retardation, facial abnormalities, epilepsy along with HSCR is caused by 
mutations in ZEB2161,162. Zeb2-/- mice show a complete lack of vagal neural crest 
and die around E9.5163. Targeted ablation of Zeb2 in neural crest of mice displays 
craniofacial, heart, pigment, PNS deformities and aganglionosis of entire colon 
extending up to the small intestine162. 
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L1CAM 
L1CAM (L1 Cell Adhesion Molecule) encodes a neuronal cell adhesion molecule 
and it is the only known X-linked gene associated with HSCR, but only a small 
subset (3%) of patients with mutations in L1CAM display HSCR and it is thought 
to be an X-linked HSCR modifier gene164,165. 
 
IKBKAP  
Fine mapping of the RET dependent modifier in the 9q31 Hirschsprung's disease 
locus pointed towards IKBKAP (inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase complex associated protein) as the most likely 
candidate gene166. Depletion of Ikbkap in zebrafish leads to a HSCR disease - like 
phenotype167. 
 
HOXB5 
Disruption of the transcription factor Hoxb5 (Homeobox B5) results in Ret 
haploinsufficiency and failure of ENCCs migration in the distal colon of mouse 
gut168. Perturbation of Hoxb5 in mice displays Sox9 downregulation, NCC 
apoptosis, hypoplastic sympathetic and dorsal root ganglia, hypopigmentation 
and ENS defects169.  
 
DSCAM 
DSCAM (Down syndrome cell adhesion molecule) is a cell adhesion molecule and 
using SNP association analysis, it was postulated that excessive of DSCAM may 
explain HSCR associated Down syndrome, but this association has not been yet 
confirmed experimentally in a model system170.  
 
KBP  
Goldberg-Shprintzen syndrome (GOSHS) is a syndromic form of HSCR. It is 
characterized by polymicrogyria, mental retardation, microcephaly, facial 
dysmorphisms and in most cases, by HSCR171,172.   Homozygosity mapping in a 
consanguineous family identified homozygous nonsense mutations in KIAA1279 
(now called KBP)171. KBP (Kinesin binding protein) interacts with microtubule 
associated proteins and it is required for neuronal differentiation and neurite 
outgrowth173. KIAA1279 mutations have not been yet identified in isolated HSCR 
patients. 
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DNMT3B 
DNMT3B (DNA (Cytosine-5-)-Methyltransferase 3 Beta) encodes for one of the de 
novo methyltransferases and it is essential in establishing CpG methylation 
patterns and it is proposed to play a role in ENS development and HSCR. Recently, 
it has been described that ENCCs isolated from HSCR patients display lower level 
of DNMT3B expression as compared to the control individuals and damaging 
mutations were found in a HSCR patient cohort174.  
 
Genetic interaction between RET and EDNRB signaling 
Initially, there was no any connection between RET and EDNRB signaling and 
these pathways were believed to work independently. Now it has been 
demonstrated that interaction between the RET and EDNRB signaling pathways 
does exist and control ENS development throughout the intestine127. Moreover, 
genome-wide association studies conducted on a Mennonite population, where 
the incidence of HSCR was ten-fold higher (1/500) than in the normal situation, 
showed a statistically significant co-transmission of EDNRB and RET alleles in 
affected individuals175. Activation of EDNRB specifically enhances the effect of 
RET signaling on the proliferation of uncommitted ENS progenitors127. EDNRB 
has also been shown to modify the migratory response of NCC to GDNF176. Finally, 
it has been shown that partial loss of Ednrb in Sox10 heterozygous mice impairs 
colonization of the gut by enteric crest cells177. 
 
Non-genetic factors and HSCR 
Few studies have focused on the hypothesis of involvement of non-genetic factors 
in the ENS development. It has been shown that adequate vitamin A levels are 
required during early gestation for proper development of ENS178. It was also 
found that mycophenolate, an inhibitor of de novo guanine nucleotide 
biosynthesis impaired ENS development in mice and zebrafish179. In yet another 
study by the same group, a common used drug ibuprofen was also shown to 
disturb bowel colonization by ENS precursors in zebrafish, mouse and chick180. 
These studies provide the earliest evidences of involvement of non-genetic 
factors influencing the ENS development and probably contribute to HSCR in 
some cases.  
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SCOPE OF THE THESIS  
 
HSCR is a heterogeneous, complex genetic disease involving mutations (in 
combination) in several genes. The differential contribution of rare and common 
coding and non-coding variants vary in accordance with gender and length of 
aganglionosis. Major mutations in genes involved in HSCR are also linked to ENS 
development, and defects in ENCCs migration, proliferation, differentiation and 
survival display HSCR like phenotype in animal models. Exome sequencing of 
families with unidentified mutations in known HSCR genes have led in 
identification of new HSCR genes. Mutations in regulatory elements 
encompassing the RET locus are associated with HSCR. Detailed epigenome 
profiling of different cell types and tissues by the Human epigenome atlas project 
have now provided desired datasets for interrogating the role of epigenetic 
marks in HSCR. Development of new transgenic models in model organisms such 
as, zebrafish has also facilitated the validation studies of genomic findings. All 
these studies identified a large number of genes and loci however they explain 
only part of the total genetic risk for HSCR. In this thesis we aim at finding novel 
genes, mutation within these genes and ENS specific regulatory regions that could 
explain part of the missing heritability.  

An overview of the ENS development, HSCR disease diagnosis, treatment 
and pathophysiology of HSCR is described in chapter 1. 

In chapter 2, we describe the role of de novo mutations in long-segment 
HSCR. Since genes carrying de novo mutations were not linked to ENS 
development based on bioinformatics prediction, we tested the functional 
contribution of these genes to ENS development in a zebrafish model. 

In a previous linkage study performed by Brooks et al. on a 
multigeneration Dutch family with HSCR, the 4q31-32 region was identified as a 
new HSCR susceptibility locus. In chapter 3, we tried to unravel the genetics 
within this family focusing not only on genes within the linkage region, but also 
on non-linked candidate HSCR genes.  

Most of the HSCR research had been mainly focused to identify coding 
variants in the genes associated with HSCR, although coding mutations had not 
been able to explain more than 25 % of all the cases. Chapter 4 describes our 
strategy to identify novel regulatory elements involved with ENS development 
and potentially with HSCR 

As the incidence of HSCR is over a hundred times higher in Down 
syndrome patients than in the general population, it is hypothesized that the 
trisomy of one or more genes on chromosome 21 contribute to the development 

1 
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of HSCR. To find this gene(s), we overexpressed highly conserved chromosome 
21 mRNAs in a transgenic zebrafish. This work is described in chapter 5. 

Pinpointing the functional relevance of newly identified genetic variants 
in HSCR is rather difficult. In chapter 6, we review the use of the zebrafish model 
in HSCR research and screening ENS for functional validation of newly identified 
disease variants. 

Finally, in chapter 7 we summarize and discuss the work presented in 
this thesis and we discuss work that might be done in future to further 
understand HSCR genetics and disease development.  
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ABSTRACT  
 
Hirschsprung disease (HSCR), the most common form of congenital bowel 
obstruction, results from a failure of enteric nervous system (ENS) progenitors to 
migrate, proliferate, differentiate or survive to and within the gastrointestinal 
tract, resulting in aganglionosis in the distal colon. The HSCR genes identified to 
date are known to be involved in ENS development. Therefore, the search for 
genes solving the missing heritability in HSCR has focused on ENS-related 
pathways. A de novo mutation (DNM) screening in 24 HSCR patients revealed 20 
DNMs in 20 genes besides 8 DNMs in the known HSCR gene RET. Knockdown of 
genes carrying missense and loss of function DNMs identified 4 genes 
indispensable for ENS development in zebrafish. Moreover, these 4 genes, which 
are expressed in the gut or ENS progenitors, are also involved in central nervous 
system (CNS) development. These newly identified HSCR genes indicate that CNS-
associated genes also play a major role in ENS development. 
 
Keywords: De novo mutations, Hirschsprung disease, neural crest, ENS, CNS 
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INTRODUCTION  
 
Hirschsprung disease (HSCR) is the most common form of congenital obstruction 
of the bowel, with an incidence of ~1 per 5000 live births. However, the incidence 
varies significantly between ethnic groups with the highest incidence reported in 
the Asian population, with 2.8 per 10,000 live births1,2. HSCR results from a 
failure of the neural crest cells, that give rise to the enteric nervous system (ENS), 
to migrate, proliferate, differentiate or survive in the bowel wall, resulting in 
aganglionosis of the distal part of the gastrointestinal tract. This results in 
clinically severe and sometimes life-threatening bowel obstruction. As HSCR is a 
highly heritable disorder, genetic variation (mutations) in the genomes of these 
patients must largely explain disease development. The mode of inheritance of 
HSCR can be recessive mostly in syndromic cases, or dominant with incomplete 
penetrance in non-syndromic HSCR families, to oligogenic/polygenic in sporadic 
cases3. So far >15 HSCR susceptibility genes have been found as are 6 linkage 
regions1 and three associated loci2,4. The genes identified belong to a limited 
number of pathways, which have been shown to be relevant to the development 
of the ENS, of which the RET pathway and the endothelin pathway are the most 
important ones. However, the identified genes and variants in these genes explain 
no more than 25% of the overall genetic risk2,4. Thus, the vast majority of cases 
cannot yet be explained by the identified HSCR-associated variants. These 
findings indicate that the majority of the disease risk must be due to as yet 
unidentified rare or common variants in the known HSCR genes or, more likely, 
variants in yet unknown genes, acting alone or in combination.  

Exome sequencing followed by selection of genes that can be functionally 
linked to the pathways already known to be involved in the disease is the current 
approach in the field of human genetics. Variants in genes totally unlinked to the 
known genes or pathways are largely neglected. This study aimed to determine 
the contribution of rare exonic, non-synonymous de novo mutations (DNMs) to 
HSCR without any a priori selection. Therefore, not only did we perform 
‘standard’ exome sequencing analyses, followed by burden tests and in silico 
prediction, but we also carried out an unbiased in vivo analysis of the mutated 
genes in a zebrafish model.   
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METHODS 
 
Study samples 
Trios 
A total of 24 trios (affected child and unaffected parents) without family history 
of HSCR recruited in 5 different centers were included for Whole Exome 
Sequencing (WES). The patients were all non-syndromic. Five trios were of 
Chinese origin whereas 19 were of Caucasian ancestry. We prioritized the 
most/more severe and rarer HSCR cases for this study, namely female patients 
with long segment or total colonic aganglionosis. Sixteen out of the 24 patients 
had previously tested negative for RET damaging variants by traditional 
technologies. Characteristics of the patients are presented in Supplementary 
Table 1. Informed consent was obtained from all participants.   
 
Case-control 
WES data from 28 additional sporadic HSCR patients without sub-phenotype 
limitation (singletons) and 212 controls were used to check gene recurrence and 
assess the gene burden for rare variants (Supplementary Table 1).  
 
Data generation 
Whole exome sequencing 
DNA samples were sequenced in four centers. The exome-capture kit and 
sequence platforms used per center are detailed in Supplementary Table 2. 
Appropriate mapping tools (Burrows-Wheeler aligner–BWA- for Illumina data 
and Bfast for Solid data) were used to align sequence reads to the human 
reference genome (build 19)5. Sequence quality was re-evaluated using the 
FastQC toolbox, Picard’s metric summary and the GATK Depth-of-Coverage 
module. After initial quality control (QC) all eligible sequences were pre-
processed for local indel realignment, PCR duplicate removal and base quality 
recalibration6. 
 
Genome-wide SNP array 
To determine copy number variants (CNVs) and regions of homozygosity, DNA 
was hybridized to the HumanCyto SNP12 BeadChip (Illumina, San Diego, CA, 
USA) according to standard protocols. 
 
Variant calling and prioritization 
Aligned reads from all sequenced samples were pre-processed according to 
standard guidelines6. Variant calling was done independently for Illumina reads 
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or Solid reads using the Genome Analysis Toolkit (GATK) unified Genotyper 2.07. 
To avoid mismatched regions across different capture kits, calling was performed 
on whole genome wide without limiting on any capture array. Special setting 
(allow potentially miscoded quality scores) was used to make color-spaced solid 
reads compatible to the program (Broad institute). Raw variants (including single 
nucleotide variants and short insertions/deletions) with individual genotypes 
and their affiliated quality scores were stored in a standard VCF format after 
calling. Quality assessment (QA) and QC were then adopted on a few set of 
variants (raw variants, exonic variants, rare variants) to generate a confident 
variant set for downstream prioritization (Supplementary Note). 

Clean variant set at exonic regions was produced after variant-level and 
genotype-level quality control. Rare coding sequence variants were then 
prioritized by filtering out those variants with minor allele frequency >0.01 in 
any of these public databases (dbSNP137, 1000 Human Genome project and 
NHLBI Exome Sequencing project). An automatic pipeline integrating GATK, 
KGGSeq, Annovar and Plink was used to generate final set of qualified variants 
(Supplementary Figure 1). 
 
Identification of DNM  
WES DNM detection 
Rare, exonic variants present in the probands but absent in both parents were 
considered DNM. To select putative DNM (or de novo variations) the following 
criteria were used: 1) minimal coverage of 5 in patients and parents; 2) a minimal 
genotype quality score of 10 for both patients and parents; 3) at least 10% of the 
reads showed the alternative allele in patients; and 4) not more than 10% of the 
reads showed the alternative allele in parents. Subsequently all remaining DNM 
variants were manually inspected using the Integrated Genome Viewer (IGV) and 
classified into 5 different confidence ranks according to their base-calling quality 
and strand bias. The first two ranks of DNM candidates were selected for 
validation by Sanger sequencing; while the other three classes of candidates were 
re-evaluated by a model trained from variants submitted for Sanger sequencing 
(Supplementary Note). 
 
RET gene inspection 
To guarantee that no de novo mutations had been missed in the major HSCR gene, 
the depth of coverage of each of the 21 exons of RET was manually inspected for 
each patient. All exons with a coverage <10 were Sanger sequenced. Mutation 
Detector software (Thermo Fisher Scientific) was used to identify rare coding 
sequencing mutations from raw Sanger sequences; any mutation found in trio 
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proband was further checked in his/her parents. Besides rare mutations, bi-
allelic genotypes for the common risk single nucleotide polymorphisms 
(IVS1+9494, rs2435357T) were extracted from local databases or newly 
genotyped.  
 
Copy number variation detection 
The Nexus®software program (Biodiscovery, El Segundo, CA, USA) was used to 
normalize and analyse the SNP array data as mentioned above. Loss is defined as 
the loss of a minimum of 5 probes in a 150kb region, with a minimum Log R ratio 
– 0.2. Gain is defined as the gain of a minimum of 7 probes in 200kb region, with 
minimum Log R ratio 0.15. The minimum length of regions of homozygosity 
analysed was 2Mb. The identified CNVs were reviewed for pathogenicity using 
the genome browser UCSC (http://genome.ucsc.edu), the DGV database 
(http://dgv.tcag.ca/dgv/app/home), the Decipher database 
(https://decipher.sanger.ac.uk/) and our in-house local reference data base that 
consists of 250 healthy controls and 250 individuals of the general population.  
 
Statistical tests  
De novo mutation rate 
All proven DNMs were classified into loss-of-function (nonsense Single 
Nucleotide Variants (SNVs), frame-shift indels and splicing sites), missense SNVs, 
in-frame indels and synonymous SNVs. The counts of DNM per trio were fitted to 
Poisson distribution with lamda as observed mean. De novo mutation rates were 
calculated for these DNM subtypes and compared to 677 published healthy trios 
and neurodevelopmental disease trios using a binomial test8–13. Given per-gene 
mutation rate in Samocha et al. paper14, statistical over-representation of 
mutations in all 24 genes were calculated using Fisher’s exact test. 
 
Gene-wide burden analysis 
Genes with DNM were further scrutinized for the presence of inherited rare 
damaging variants in the trios as well as in HSCR singletons for whom WES data 
were available. A detailed analytical protocol was shared before running 
association in each centre. Briefly, genotypes of rare damaging variants (as 
previously defined) in genes carrying ≥1 de novo mutation were extracted from 
raw sequencing reads. CMC test in Rvtest package was used to collapse multiple 
variants into the same gene (boundary defined using hg19 refgene) and compare 
overall burden between cases and local matched controls15. P-values were 
estimated by asymptotic chi-square distribution. Gene-wise p-value, burden 
direction and variant count per gene were exported. Ultimately sample-size 
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weighted Z-score method was used to conduct meta-analysis on gene-wise 
summary statistics from three centres using the same protocol.   
 
Bioinformatics analysis 
Variant-level implication 
The impact of each DNM to its carrying gene was predicted using several of 
bioinformatics tools or databases. The conservation of missense SNVs was 
predicted using GERP and PhyloP across 29 different species. The deleteriousness 
of missense or nonsense SNVs were determined by a logit model incorporating 5 
prediction programs (Polyphen2, Sift, MutationTaster, PhyloP and Likelihood 
ratio)16. Human Splicing finder was used to predict whether DNMs causing 
synonymous change or locating at splicing sites (exon +/- 2bp) created or 
disrupted splice sites17. To further implicate the possible role of synonymous 
DNMs on transcription, RNAmute was used to predicted the RNA substructure 
change due to corresponding site mutation18. Finally, ClinVar and PubMed were 
searched for the same or similar mutations in the same gene that present in 
healthy controls or other disease patients. 
 
Gene-level implication 
The evidence of gene-level implication was collected from two aspects. On one 
side, those 24 genes carrying DNMs were searched against databases (ATGU’s 
Server) for other disease patients or healthy samples14. On the other side, ENS 
candidate genes/gene-sets (Supplementary Table 8; Supplementary Note) were 
linked to newly identified genes using pathway or PPI network information. 
Disease Association Protein-Protein Link Evaluator (DAPPLE) was used to test 
whether the genes carrying DNM in our study are functionally connected to each 
other. The significance of observed pathway enrichment and network 
connectivity was evaluated empirically using randomly selected genes, genes 
having the same genomic size as the identified DNM genes. InWeb and Ingenuity 
Pathway Analysis were used to detect direct and indirect protein interactions 
between ENS-related genes and genes with DNMs. 
 
Gene expression in ENS 
In order to test the involvement of the newly identified genes in enteric nervous 
system development, in house expression data was shared from other in-parallel 
projects in Hong Kong, Rotterdam centre. The first expression dataset was from 
RNA sequencing on an iPSC-induced enteric neural crest cell (ENCC) for a HSCR 
patient; the second and third expression dataset was from microarray chips on 
embryonic mouse gut and ENCC. 

2 
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Zebrafish 
Tg(-8.3bphox2b:Kaede) transgenic zebrafish (Danio rerio) embryos were obtained 
from natural spawning. Maintenance of zebrafish and culture of embryos were 
carried out as described previously. Embryos were staged by days post-
fertilization (dpf) at 28.5°C. 
 
Gene knockdown by antisense morpholino 
Antisense morpholinos (MO) (Gene Tools LLC) targeting the zebrafish 
orthologues of the candidate genes, by blocking either translation or splicing, 
were microinjected to 1 to 4-cell stage Tg(-8.3bphox2b:Kaede) transgenic 
zebrafish embryos as previously described19. For candidate genes that are 
duplicated in the zebrafish genome, morpholinos targeting all paralogs were co-
injected. Standard control morpholino and 5-nucleotide mismatch control 
morpholino for ckap2l, dennd3a, dennd3b, ncl1, nup98 and tbata were used as 
negative control. Embryos were raised to 5 dpf, analysed and imaged under a 
stereo fluorescence microscope (Leica MZ16FA and DFC300FX). An HSCR-like 
phenotype was defined as the absence of enteric neurons in the distal intestine in 
5 dpf embryos. Sequences and dosages of all morpholinos used are listed in 
Supplementary table 9. 
 
Expression analysis 
To confirm the target gene were successfully knockdown, total RNA were 
extracted from 1 dpf embryos (n=50) injected with the splice blocking 
morpholino using RNA Bee (Amsbio) and cDNA were reverse transcribed using 
iScript cDNA Synthesis Kit (Bio-rad). qPCR were performed using KAPA Sybr® 
Fast qPCR Kit (KAPA Biosystems; see Supplemantary Table 10 for primer detail) 
and the expression of the target gene was normalized by the mean expression of 
two housekeeping genes (elfa and actb). Relative expression of the target gene in 
the splice blocking morpholino-injected embryos to the control morpholino-
injected embryos was determined by Livak method20.  

To determine the temporal expression of the zebrafish orthologues, RT-
PCR was performed at various time points with primers used to amplify up a 
segment of the open reading frame of each gene. To determine the spatial 
expression patterns of dennd3a, dennd3b, ncl1, nup98 and tbata, antisense 
Digoxigenin-labeled probes for both genes were generated and whole-mount in 
situ hybridization was performed as described by Thisse et al.21. 
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RESULTS 
 
Identification of de novo mutations  
We performed whole-exome sequencing (WES) on 24 trios composed of a 
sporadic non-syndromic HSCR patient and the unaffected parents (72 individuals; 
Supplementary Table 1) and focused on de novo variants. Sporadic female cases 
with a long segment (LS) HSCR were overrepresented as the load of de novo rare 
coding variant is presumed to be the highest in this group. The depth coverage of 
the targeted sequences ranged from 18X to 74X (average 46X), and the targeted 
exome covered by at least 10 sequence reads ranged from 65% to 98% (average 
88%). Sequencing metrics after standard analytical pipeline (Supplementary 
Figure 1) were in normal ranges (Supplementary Note; see Supplementary Table 
2 and Supplementary Figure 2 for detail). 

All de novo variations were carefully selected, validated and/or 
statistically predicted (Methods and Supplementary Note; see prediction result in 
Supplementary  
 
Table 1. De novo mutations in Hirschsprung disease probands 

Trio Pheno-
type Gene De novo mutation Type 

Prediction 
delete-

riousness* 

MAF 
(dbSNP137/ 
ESP6500)% 

1 L, F RET 3splicing9+1 splicing - N / N 

    RBM25 c.474C>T: p.L158L synonymous - N / N 

2 L, F RET c.2511_2519delCCCTGGA
CC:p.S837fs frameshift - N / N 

    COL6A3 c.3327C>T: p.H1109H synonymous - 
0.00042 

(rs114845780) 
/ N 

3 L, F RET c.1818_1819insGGCAC: 
p.Y606fs frameshift - N / N 

4 L, F DAB2IP c.2339C>T:p.T780M# missense No N / N 

  ISG20L2 c.961G>A:p.G321R missense Yes N / N 

  MED26 c.675C>T:p.A225A synonymous - N / N 

  NCLN c.496C>T:p.Q166X# nonsense - N / N 

  NUP98 c.5207A>G:p.N1736S missense Yes N / N 

  VEZF1 c.584C>T:p.S195F missense Yes N / N 

    ZNF57 c.570C>T:p.D190D synonymous - N / N 

5 L, F RET c.1761delG :p.G588fs frameshift - N / N 

    SCUBE3 c.1493A>T:p.N498I missense No N / N 

6 L, M AFF3 c.1975G>C:p.V659L missense No N / N 

    PLEKHG5 c.2628G>T:p.T876T synonymous - N / N 

7 L, M KDM4A c.26A>G:p.N9S missense No N / N 
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8 L, M MAP4 c.3351C>T:p.G1117G synonymous - N / N 

9 L, F RET c.1858T>C:p.C620R missense Yes 0 (rs77316810) 
/ N 

10 TCA, M CKAP2L c.555_556delAA: p.E186fs frameshift - N / 0.00002 

11 L, F RET c.409T>G:p.C137G missense Yes N / N 

  HMCN1 c.10366G>A:p.A3456T missense No N / N 

    TUBG1 c.699T>C:p.S233S synonymous - N / N 

12 L, F CCR2 c.848T>A:p.L283Q missense Yes N / N 

    DENND3 c.1921delT:p.K640fs frameshift - N / N 

13 L, F RET c.1710C>A:p.C570X nonsense - N / N 

14 L, F RET c.526_528delGCA: 
p.R175del non-frameshift - N / N 

    TBATA c.157C>T:p.R53C missense No N / N 

F: Female; M: Male; L: Long-segment HSCR; TCA: Total Colonic Aganglionosis; *: Disease-causal prediction by 
KGGSeq57, a software that uses a weighted logistic regression to combine multiple prediction scores; #mosaic 
mutation; Dark grey: de novo RET mutations; Light grey: genes giving a HSCR-like phenotype in zebrafish; %: minor 
allele frequency in dbSNP137 or ESP database, with ‘N’ standing for no data available.  
 
Table 3). After Sanger sequencing validation, a total of 28 DNMs in 14 patients 
were identified (Table 1). The overall DNM rate per individual was 1.2 per exome 
per generation (Poisson distribution with λ=1.2; Kolmogorov-Sminov test, 
p=0.893; Supplementary Figure 3) which is in accordance with the expected 
mutation rate in the general population. Several studies have shown that the 
DNM rates are similar between patients and healthy controls, but found that 
patients have a significantly higher fraction of loss of function (LOF) DNMs8,9. 
Indeed, in our HSCR patient cohort, the rate of loss of function DNMs (LOF; N=8, 
including nonsense, frameshift and splice site changes) is significantly higher 
than that of healthy trios (p=0.011) or unaffected siblings of neuropsychiatric 
patients (p=0.001)  from multiple published studies8,10–12,22 (Supplementary 
Table 4). The 28 DNMs were localised in 21 genes. 8 DNMs were found in RET, the 
major HSCR gene23. Among the DNMs in RET was the Cys620Arg variant, known 
to cause both HSCR and Multiple Endocrine Neoplasia type 2A24. In this study, the 
observed rate for RET DNMs (0.33 per trio) was significantly higher (binomial 
test, p<2*10-16) than that modelled for RET DNMs in the general population 
(0.000133 per trio) according to Samocha et al.14. 
One of the patients analysed carried a total of 7 DNMs, two of which (in NCLN and 
DAB2IP) were mosaic mutations (Supplementary Figure 4). This finding is in line 
with a recent report stating that 6.5% of all DNMs are in fact mosaic and occur 
post-zygotic25. Within the 24 patients we looked for inherited rare damaging 
variants in the 21 genes that carried DNMs (Supplementary Note, Methods). 
Inherited damaging mutations were found in RET, HMCN1, PLEKHG5, MAP4, 
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SCUBE3, and KDM4A (Supplementary Table 5). Neither de novo nor inherited 
copy number variants (CNVs) were detected in any of the trios. 
 
Mutation profile of HSCR patients 
In general, disease-associated common variants confer a liability to disease to the 
individuals of the general population. These common variants, in combination 
with environmental and/or rare variants finally result in manifestation of the 
disease. Thus, since both rare and common variants jointly contribute to HSCR we 
carefully examined the genetic profile of our patients to assess the genetic 
background on which the DNMs reside. Each patient was investigated for the 
presence or absence of the common HSCR-associated RET allele (IVS1+9494, 
rs2435357T)26–29 as well as for the presence of rare variants (inherited from 
unaffected parents) in a set of 116 pre-selected genes known to be involved in 
ENS development (Supplementary Notes; Supplementary Tables 3 and 6). 
The mutation profile for all patients is shown in Supplementary Table 5. We 
observe that 29% of the patients with >= 1 DNM and 60% of the patients without 
any DNM carry the common RET risk genotype TT (rs2435357T). Moreover, 
patients with DNM carry on average 1.4 inherited rare damaging variants in ENS 
genes, compared to an average of 2.4 in patients without any DNM. Notably, six 
out of the 14 patients carried DNMs without co-occurrence of a RET coding 
sequence mutation. Although the differences are not statistically significant, these 
observations suggest that the new genes identified may, independently of the 
genetic background, play a role in the pathology of the disorder, and prompted us 
to further investigate those genes using in silico and in vivo approaches. 
 
Determining pathogenicity of the DNMs in silico 
The recurrence of a mutation or the identification of a recurrently mutated gene 
in an independent group of patients or unrelated controls can provide 
corroborating evidence of pathogenicity or neutrality30. Therefore, all the genes 
in which we identified DNMs were checked against public databases (ATGU’s 
Gene-Mutation-Constraint Server) for DNM recurrence.  Only one missense DNM 
(different from that identified in this study) in MAP4 was found in a patient with 
autism spectrum disorder (ASD). A few genes (SCUBE3, RBM25 and TUBG1; Table 
2) were identified evolutionary constrained genes in which functional variants 
are more likely to be deleterious14.  
To establish whether genes with DNMs carry significantly more rare variants in 
HSCR patients than in controls, we used the WES data from the 20 eligible HSCR 
trio-probands, 28 additional HSCR patients and 212 control individuals to 
calculate the variation burden per gene (Methods). Nine of the twenty-one genes 
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(RET, KDM4A, HMCN1, MAP4, NUP98, AFF3, COL6A3, CCR2, and CKAP2L) were 
found recurrently mutated in multiple HSCR patients with different rare 
damaging mutation sites (Supplementary Table 7). Meta-analysis of our gene 
burden tests showed that RET and CKAP2L were enriched for rare damaging 
variants in the HSCR patients (nominal p<0.05; Table 2 and Supplementary Table 
7). However, cross-checking of these 21 genes in another in-parallel HSCR exome 
study (190 cases and 740 controls) revealed only RET was significantly 
overrepresented with deleterious variants (p < 0.001; manuscript in preparation, 
A. Chakravarti). 
The possible impact of DNMs on gene function was explored using bioinformatic 
prediction tools (Methods). Besides the 8 LOF mutations, 6 out of twelve 
missense mutations were consistently predicted deleterious (Table 1). As for the 
seven synonymous DNMs, we found no in silico evidence indicating that those 
changes interfered with splicing and/or significantly changed the RNA structure 
(Supplementary Table 8).  
 

Table 2. Genes carrying de novo mutations 

Gene # amino 
acids 

Co-occurrence 
with RET DNM 

Burden test 
meta-analyses 

(p-value) 

Zebrafish ENS 
phenotype 

Gut expression (human; 
mouse; zebrafish)& 

PLEKHG5 1062 No 0.3997 NT Yes; Yes; - 
KDM4A 1064 No 0.1190 No Yes; Yes;- 
ISG20L2 353 No 0.4949 No Yes; Yes; - 
HMCN1 5635 Yes 0.9789 No Yes; Yes; - 
AFF3 1226 No 0.4745 No Yes; Yes; - 
CKAP2L 745 No 0.0178 No Yes; Yes: - 
COL6A3 3177 Yes 0.6398 NT Yes; Yes; - 
CCR2 374 No 0.4745 No Yes; Yes; - 
MAP4 1152 No 0.4851 NT Yes; No; - 
SCUBE3* 993 Yes 0.7133 No Yes; Yes;- 
DENND3 1198 No 0.5977 Yes Yes; Yes; Yes 
DAB2IP 1189 No 0.9819 No Yes; Yes; - 
RET 1114 - 0.0078 Yes Yes; Yes; - 
TBATA 351 Yes 0.8028 Yes No; Yes; Yes 
NUP98 1817 No 0.7243 Yes Yes; Yes; Yes 
RBM25* 843 Yes 0.0846 NT Yes; Yes; - 
TUBG1* 451 Yes 1.0000 NT Yes; Yes; - 
VEZF1 521 No 0.6717 No Yes; Yes; - 
ZNF57 555 No 0.3808 NT Yes; No: - 
NCLN 563 No 1.0000 Yes Yes; Yes; Yes 
MED26 600 No 1.0000 NT Yes; Yes; - 
*genes evolutionary constrained as per Samocha et al. 2014; NT: not tested (gene carries synonymous mutation 
and/or has no ortholog in zebrafish); &data from in-house hIPSC-derived neural crest, mouse expression data, and 
RT-PCR in zebrafish (test only for 4 novel genes). 
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We next checked whether the genes with DNMs are functionally related to each 
other and/or to the signalling networks known to govern ENS development. 
ISG20L2 and  
MAP4 showed more indirect interactions with other genes carrying DNMs than 
expected by chance (p=0.0063 and p=0.0167 respectively) as predicted by 
DAPPLE, though no direct in silico interactions were found among those 21 genes. 
A list of 116 known ENS related genes (Supplementary Table 6) was used to 
study the functional link between genes with DNMs (other than RET) and the 
ENS. Only a single interaction was identified in the InWeb protein interaction 
catalogue (COL6A3 interacts with ITGB1). Using Ingenuity Pathway Analysis, we 
identified additional direct and indirect relationships with ENS-related genes for 
MAP4, COL6A3, RBM25 and TUBG1 (Supplementary Figure 5). All genes carrying 
DNMs were either expressed in human iPSC-derived enteric neuron precursors 
or in primary murine enteric neuron precursors (Table 2). 
 
Determining pathogenicity of the DNMs in vivo 
As no proof of functional effects for any of the synonymous DNMs was found, we 
further focused on the 13 genes (other than RET) that have a LOF or missense 
mutation. Because none of these 13 genes were obvious candidates for HSCR we 
used the zebrafish model system to further investigate the function of these genes 
in ENS development. Previous studies have shown that morpholino-mediated 
knockdown of orthologues of known HSCR genes result in an HSCR-like 
phenotype in zebrafish4,31–35. Except CCR2, all 13 genes with nonsynonymous 
DNMs have zebrafish orthologues. Splice-blocking morpholinos (SBMOs) were 
designed to knockdown the orthologues for these 12 genes (Methods). The 
SBMOs were injected into Tg(-8.3bphox2b:Kaede) transgenic zebrafish19 embryos 
that express the fluorescent protein Kaede in enteric neuron precursors and 
differentiated enteric neurons. Initially, knockdown of 5 orthologues (ckap2l, 
dennd3a and dennd3b, ncl1, nup98 and tbata) resulted in a HSCR-like phenotype 
as enteric neuron were absent in the distal intestine of 5 dpf embryos, while 
embryos injected with 5-nucleotide mismatch control morpholinos had normal 
ENS development with enteric neurons present along the entire length of 
intestine. We then co-injected the SBMOs with p53 morpholinos to verify the 
phenotype did not result from non-specific, p53-induced apoptosis. Co-injection 
of p53 morpholino with dennd3a and dennd3b, ncl1, nup98 or tbata SBMOs 
resulted in the same phenotype (Figure 1), indicating the phenotype was not 
caused by non-specific apoptosis. On the contrary, the phenotype could not be 
reproduced in ckap2l SBMO and p53 morpholino co-injection (Figure 1). To 
further demonstrate the absence of enteric neuron was specific to the knockdown 
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of the orthologues, we repeated the experiment by injecting translation-blocking 
morpholinos (TBMOs) against dennd3a, dennd3b, ncl1, nup98 and tbata and the 
phenotype was reproduced (data not shown). Therefore we concluded that 
knockdown of the DENND3, NCLN, NUP98 and TBATA orthologues disrupted ENS 
development and caused a HSCR-like phenotype in vivo. 

To confirm the SBMOs knockdown effect, qPCR was performed to 
compare the expressions of the target genes between SBMO-injected and control 
morpholino-injected embryos. Expression of dennd3a, dennd3b, nup98 and tbata 
was markedly reduced in the SBMO-injected embryos (Supplementary Figure 6). 
Intriguingly, there was no significant reduction in ncl1 expression in the ncl1 
SBMO injected embryos. 
 
 

 
Figure 1. Pathogenicity analysis in vivo by morpholino gene knockdown in zebrafish.  
Knockdown of ncl1, dennd3, nup98 and tbata resulted in HSCR-like phenotype that kaede-expressing 
enteric neurons were absent in the distal intestine at 5 dpf and the results were reproduced in the 
presence of p53 morpholino. Aganglionosis observed in ckap2l knockdown was caused by non-
specific apoptosis as the result was not reproducible in p53 morpholino co-injection. Number of 
embryos with phenotype out of total number of embryos observed is shown. Dotted lines outline the 
intestines. Asterisks indicate the positions of anus. Arrows indicate the position where the aganglionic 
region begins.  
 
Therefore we further investigated it by performing RT-PCR on individual 
embryos and found that there was a large variation in ncl1 expression between 
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embryos injected with the SBMO, with some of them showing a clear reduction in 
ncl1 transcript level (Supplementary Figure 7).  Of the zebrafish orthologues that 
did not show a specific HSCR-like phenotype after SBMOs injection, all 
demonstrated significant reductions in expressions except for aff3, scube3 and 
vezf1a (Supplementary Figure 6).  

In addition we performed RT-PCR and whole mount in situ hybridization 
(WISH) experiments to determine if the gene expression patterns of the zebrafish 
orthologues were consistent with a predicted role in ENS development. Temporal 
analysis using RT-PCR revealed that zebrafish orthologues of DENND3, NCLN and 
NUP98 were maternally and zygotically expressed from 0-120hpf while the 
TBATA orthologue is only zygotically expressed from 24-120hpf (Supplementary 
Fig 8). WISH analysis showed that the orthologues for all 4 genes were expressed 
in distinct spatial locations specifically in the intestine and the anterior CNS from 
24-96hpf (Figure 2). 
 
 
DISCUSSION 
 
Over the last years a large number of papers have been published on de novo 
mutation screening in human diseases. This has resulted in the identification of 
many new disease associated genes. Genes are considered as true disease causing 
when at least 2 unlinked patients are found with a mutation in the same gene. 
This works well for diseases that are relatively homogeneous or for which many 
patients can be investigated. For the more heterogeneous rare diseases for which 
only small cohorts are available this poses a problem. Often possible disease 
causing genes are found in a single patient. How to decide whether this finding is 
of importance? Expression of the gene in the relevant tissues can be considered 
as additional evidence, as is networks analysis. However, making strong 
statements for private disease genes is, and will be, extremely difficult. It also 
results in a bias towards genes in the known disease causing gene networks. 
Genes not fitting the current knowledge are often discarded as uninteresting. In 
the current study we wanted to take this all one step further. 

Therefore, we decided that the best way to obtain sound evidence for 
involvement of new candidate genes in HSCR should come from functional 
analysis. We opted for an in vivo approach using the zebrafish model system. We 
knocked down the expression of zebrafish orthologues of 12 of the 13 genes in 
which loss of function or missense DNMs were identified in a transgenic reporter 
zebrafish line (Tg(-8.3bphox2b:Kaede)). The orthologues of 9 of the 12 genes were 
successfully knockdown by morpholinos, and from which we discovered that 4 
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genes when functionally perturbed resulted in loss of neurons in the distal gut, as 
in the HSCR patients. It is noteworthy that the SBMOs targeting 3 of the 
orthologues (aff3, scube3 and vezf1a) did not knockdown the target transcripts as 
expected, which highlighted the limitation of morpholinos and might lead to 
false-negative results36. To bypass this limitation, other loss-of-function 
approaches should be considered to further study these genes, such as 
CRISPR/Cas9 knockout37.Finding 4 genes that when knocked-down in zebrafish 
give a hindgut phenotype resembling the human patients in which the DNMs 
were found, clearly demonstrates that genes that never would have been 
followed up, based on the usual gene selection criteria, should not be ignored.  

Using the bioinformatics prediction and statistics, we would have focused 
on RET and CKAP2L only as they were significantly enriched for rare variants in 
the HSCR patients (nominal p<0.05; Table 2).  

We wondered whether any or all of these 4 genes can be linked to the 
ENS or whether they play relevant roles in neuronal development or neural crest 
derived cell types in general. In fact by studying these genes in more depth   
 
 

 
Figure 2. Temporal and spatial expression patterns of zebrafish orthologues. Whole mount in 
situ hybridized embryos hybridized with antisense riboprobes for dennd3a, dennd3b, ncl1, nup98 and 
tbata at the indicated developmental stages. All columns show lateral views. Anterior CNS expression 
is apparent at all stages for all probes while intestinal expression for all probes is apparent from 48hpf 
onwards. 
 
we noticed that all 4, despite lack of obvious connection to the known ENS 
pathways, are involved in the development of the CNS or the neural crest, making 
these not as random as they might first appear.   

DENN/MADD Domain Containing 3 (DENND3) is a guanine nucleotide 
exchange factor (GEF) that is involved in intracellular trafficking by activation of 
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the small GTPase RAB1238. In zebrafish, Rab12 and other Rab GTPases are highly 
expressed by pre-migratory neural crest cells and their expression is 
dysregulated in Ovo1 morphant zebrafish that display altered migration of neural 
crest cells39. Independently of RAB12, DENND3 also regulates Akt activity, which 
is involved in the proliferation and survival of enteric neural crest cells38,40.  

Nicalin (NCLN) is a key component of a protein complex that antagonizes 
Nodal signalling41. In vertebrates, Nodal signalling is involved in induction of the 
mesoderm and endoderm42. In contrast, inhibition of Nodal signalling is required 
for the specification of human embryonic stem cells into neuroectoderm, 
including the neural crest43,44. The antagonizing function of Nicalin on Nodal 
signalling is therefore consistent with the neural crest specification that is 
required for ENS development. 

The NUP98 gene encodes a precursor protein that is autoproteolytically 
cleaved to produce two proteins: NUP98 from the N-terminus and NUP96 from 
the C-terminus45,46. A missense DNM was identified in the last exon of the NUP98 
gene and therefore affects the NUP96 protein. As in humans, zebrafish Nup96 is 
produced by cleavage of the Nup98 precursor protein. Since morpholino’s act on 
mRNA level, both nup98 and nup96 were targeted in our zebrafish experiments. It 
is therefore unclear whether the observed aganglionosis is caused by loss of 
Nup98 or Nup96. NUP96 is one of approximately 30 proteins in the nuclear pore 
complex (NPC)47 and its expression level regulates the rate of proliferation48. Two 
other members of the NPC (Nup133 and Nup210) are involved in neural 
differentiation in mice49,50. Moreover, NUP96 interacts with NUP98 and NUP98 is 
involved in the transcriptional regulation of the HSCR genes SEMA3A, DSCAM, 
NRG1 and the NRG1 receptor ERBB4 in human neural progenitor cells51. 
Therefore, it is likely that loss of both NUP protein (NUP96 or NUP98) could 
contribute to HSCR development. 

The mouse orthologue of Thymus, Brain And Testes Associated (TBATA) 
is called Spatial and is highly expressed during differentiation of several tissues52. 
These include the cerebellum, hippocampus and Purkinje cells in the brain, where 
TBATA/Spatial is expressed in early differentiating neurons53. In mouse 
hippocampal neurons, TBATA/Spatial is required for neurite outgrowth and 
dendrite patterning54.  

The 4 newly identified candidate genes for HSCR all seem to play a role in 
neuronal development and could potentially be involved in HSCR (Figure 3). This 
also suggests a clear link between CNS and ENS development. This is not 
surprising as a number of studies have described the strong correlation between 
Down syndrome and syndromic HSCR and several known HSCR genes (e.g. KBP, 
SOX10, NRG1, IKBKAP, ZEB2, PHOX2B) have been reported to be involved in both 
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CNS and ENS pathologies2,55–57. In humans, SOX10 mutations cause myelin 
deficiencies and sensory neuropathies as well as the neurological variant of 
Waardenburg-Shah syndrome which includes HSCR in the phenotypic spectrum. 
 
 
 

 
Figure 3. Newly identified genes in ENS development. All symbols represent proteins coded by 
Hirschsprung known genes or novel genes identified in this study. The effect of gene NUP98 is shown 
by protein NUP96. The interaction effects between different proteins are illustrated by four different 
lines representing binding, secreted/express, phosphorylation and activation. ENCC, enteric neural 
crest cell. 
 
Likewise, NRG1 is associated with schizophrenia and Nrg1 mutations in mice 
cause peripheral sensory neuropathies46. IKBKAP mutations are associated with 
the  
Riley-Day syndrome or familial dysautonomia (FD)58,59. Notably, some patients 
with FD also suffer from gastrointestinal dysfunction shortly after birth and 
interestingly, the co-occurrence of both FD and HSCR has been reported60. In 
addition, knockdown of ikbkap in zebrafish also generates a HSCR-like 
phenotype35. Further, KBP mutations are associated with Goldberg-Shprintzen 
syndrome61 (MIM 609460), a rare autosomal recessive inherited syndrome, 
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where patients present with HSCR, microcephaly polymicrogyria and moderate 
mental retardation. 
Besides the fact that several HSCR/neuromuscular genes are known to be 
associated with CNS defects, the opposite is also described. Many neurological 
and psychiatric disorders are associated with constipation, and sometimes 
defects in the ENS are reported62. For instance, it has recently been described that 
mutations in CDH8 result in a specific subtype of autism in combination with 
gastrointestinal problems. A cdh8-/- zebrafish recapitulates the human phenotype, 
including increased head size (expansion of the forebrain/midbrain), an 
impairment of gastrointestinal motility and a reduction in post-mitotic enteric 
neurons63. Besides, a search of CNS and autism in Phenolyzer64 returned two 
genes (APP and MECP2) that have been implicated in ENS development65,66. 

Thus, given all of the above, and the fact that HSCR occurs with 
neurological disorders more often than would be expected by chance, it is not 
surprising that dysfunction of these newly identified neurological related genes 
results in dysregulation of the neural crest-derived cells that form the ENS, and 
hence in HSCR. These data are further corroborated by the expression patterns 
we observed for the orthologues of these 4 genes in zebrafish embryos (Figure 2), 
with all 4 having clear expression in both the brain and the gut. 

Finding a niche for these genes in ENS development will help to open 
new avenues of research which, eventually, will enhance our knowledge about 
ENS development and HSCR disease mechanisms. Until now, we believed that the 
number of cellular processes involved in the development of HSCR was limited. 
Clearly this idea needs to be revisited as the novel genes we identified are not 
directly linked to any of the currently known HSCR gene networks. In spite of the 
plethora of databases and prediction tools available, very little is known about 
the intricate ways in which genes interact in the development of the ENS, or the 
function of many genes. 
 
URLS 
Genome analysis toolkit (GATK) (https://www.broadinstitute.org/gatk/); 
ANNOVAR (http://annovar.openbioinformatics.org/en/latest/); 
PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/); 
KGGSeq (http://statgenpro.psychiatry.hku.hk/limx/kggseq/); 
ATGU’s Server (http://atgu.mgh.harvard.edu/webtools/gene-lookup/); 
DAPPLE (http://www.broadinstitute.org/mpg/dapple/dappleTMP.php); 
ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) 
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SUPPLEMENTARY NOTES 
 
Quality assessment and control for exome variants 
Concrete criterions in quality assessment (QA) include: total number of variants; 
dbSNP137 coverage; Transition/Transversion (Ti/Tv) ratio; genotype 
concordance rate and cross-sample identical-by-decent (IBD) relatedness1. Two 
complementary steps were applied in quality control (QC), including variant-level 
filtering (hard filtration or variant quality recalibration (VQSR)) and genotype-
level filtering. In detail, we annotated GATK-called variants as low quality SNPs 
(“QD <2.0” or "MQ <40.0" or "FS >60.0" or "HaplotypeScore >13.0" or 
"MQRankSum <-12.5" or "ReadPosRankSum <-8.0" in their ‘info’ field) and low 
quality Indels (“QD <2.0" or "ReadPosRankSum <-20.0" or "InbreedingCoeff <-0.8" 
or "FS >200.0 in ‘info’ field); in addition, VQSR differentiated a few relatively low 
quality SNVs (labeled as “TruthSensitivityTranche99.90to100.00” after Gaussian 
mixture modeling at true sensitivity 99%) from other passed SNVs. On the other 
hand, individual genotypes were evaluated by quality parameters in the field of 
genotyping, mainly reflecting the likelihood of three possible genotypes (reference 
homozygous, heterozygous and alternative homozygous). A heterozygous 
genotype was kept only if it was supported by >4 total reads, and the ratio for 
alternative allele is above 0.25. Comparatively, a reference or alternative 
homozygous genotype was accepted if it was supported by > 4 total reads, and 
ratio for reference or alternative allele is above 0.95. 

Supplementary Table 2 shows the details of quality statistics for samples 
from different sequencing centers at variant level. The total count of SNVs 
(20~30K) or Indels (1~2K), Transition/Transversion (Ti/Tv) ratio (above 3.0), 
dbSNP137 coverage (above 95%) and GWAS genotype concordance (>99%) are all 
in normal range. No trio violated relatedness checking; meanwhile, no batch effects 
or close relatedness (pi-hat coefficient > 0.125 as first cousin or above) were found 
among the HSCR patients from different centers (Supplementary Figure 2). All 
these quality metrics or statistics showed data quality at exonic regions that were 
comparatively good for trios from different platforms or resources, and justified 
our unbiased searching of de novo mutations in the following stages. 
 
Mutation validation and prediction 
Each DNM candidate was manually inspected using the Integrative Genomic 
Viewer (IGV) and they were categorized into five different groups: probably true 
positive, possibly true positive, unclear, possibly false positive and probably false 
positive. Two lists of putative DNM candidates were generated for confirmation by 
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Sanger sequencing. The first list contains 74 variants with high confidence ranking 
(probably true positive and possibly true positive). Raw data were then re-
evaluated to generate 48 candidates with relatively low-confidence (unclear), 
especially for those trios without any confirmed DNM in the first round. Rare 
(minor allele frequency < 0.01 in public databases) predicted damaging variants in 
genes carrying confirmed de novo mutations were extracted from exome calls and 
submitted for Sanger validation. The allele origin was determined by checking the 
mutation site in both parents. Phasing of DNM and inherited variants in the same 
gene was also performed by Sanger sequencing. Rare damaging inherited variants 
located in 116 ENS candidate genes were extracted from exome reads using the 
same pipeline (Supplementary Figure 1); and the transmission patterns of these 
variants were determined by referring to parental and maternal genotypes at the 
same site. 
 Stepwise logistic regression was used to select effective predictors of the 
de novo status in a trio and for the presence or absence of a mutation in a given 
individual. The performance of these prediction models was evaluated using 10-
fold cross validation by the software WEKA. For model fitting to DNM status in the 
trios, genotype quality (represented by normalized phred likelihood score for the 
second most likely genotype) in the child and alternative allelic ratio in the parents 
were prioritized. The Area Under the Receiver Operating Characteristic Curve 
(AUC) was 0.959 (Supplementary Table 3) which suggests that the model predicts 
the DNM status accurately. This model was then adopted to test all other 
unvalidated de novo candidates (falling under the ”unclear”, “possibly false 
positive” or “probably false positive” categories), which all turned out to be 
negatives. For model fitting to the presence or absence of a variant in the patients, 
genotype quality and alternative allelic ratio in each individual were retained. The 
AUC was 0.824 (Supplementary Table 3). This second model was then used to help 
predict the presence of rare variants in the DNM genes or ENS genes. Only those 
variants predicted as positive candidates were shown (Supplementary Table 5). 
  
Generation of ENS candidate genes 
Candidate genes were selected by a literature review on Hirschsprung disease 
research, which included both genetic and functional studies. Most of them were 
also covered in Jiang et al.2 and Gui et al.3, which previously summarized possible 
genes related to HSCR or involved in ENS development. The genes were 
categorized into 4 major types, genes selected based on: genetic linkage, genetic 
association, microarray expression, and animal models. In total 116 genes were 
selected that fit more than 1 category (Supplementary Table 6). A few of these 
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genes fall into the same pathways previously implicated in neural crest cell 
migration, proliferation and differentiation. Three pathways (RET signaling 
pathway, EDNRB signaling pathway and KBP signaling pathway) were key partners 
involved in ENS development4. 
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SUPPLEMENTARY TABLES 

 
Supplementary Table 1. Information of sample included in the study. 

HSCR patients 

(N=52) 

Trios (N=24) Singletons (N=28) 
Controls 

(N=212) 
Short Long/TCA  Short Long/TCA  

(N=1) (N=23)  (N=15) (N=13) 

Males 0 7 (4) 13 4 117 

Females 1 (0) 16 (10) 2 9 95 

Trios used to detect de novo mutations in coding sequences. Case/control samples were exome sequenced by the 
same protocol in each cohort, and used to calculate gene-level burden for all genes carrying a de novo mutation. ( ): 
number of patients with validated DNM. TCA for total colon aganglionosis. 
 

 

Supplementary Table 2. Quality metrics for sequencing reads and variants from different cohorts 

 
This shows comparable read depth and % of targeted exonic bases on the intersected exonic regions (~ 30Mb) for 
different cohorts; in addition, variant-level metrics are also comparable at exonic regions (Ti/Tv ratio, SNP/Indel 
counts, dbSNP137 coverage). 1: SNVs passing variant quality recalibration filtering were counted; 2: only SNVs in 
exonic regions were used to estimate Ti/Tv ratio; 3: concordance between GWAS array and exome data, NA data not 
available; 4: RV, rare variants with minor allele frequency < 0.01 in dbsnp137, 1000 genome 2012 and ESP 6500 
databases; SS: Sure Select.  
 
 
Supplementary Table 3. Statistical models for mutation prediction 

Model Classifier1 Confusion 
matrix Sensitivity Specificity Precision F-

Measure 
AUC (10-
fold CV)2 

DNM status 
in trios 

2ndPL patient 
+ FA parents 93 3 0.692 0.969 0.857 0.766 0.959 

   8 18      
Variant 
presence/ 
absence in 
patients 

2ndPL patient 
+ FA patient 68 10 0.703 0.872 0.839 0.765 0.824 

   22 52      
Two models were trained by stepwise logistic regression on sequencing quality metrics and then used to predict the 
de novo mutation status in a trio or the variant presence/absence status in exome individuals. Training data was from 
true or false variants validated by Sanger sequencing, as shown in confusion matrix. 1: 2ndPL_patient means “second 
minimum phred-scaled likelihood (PL) score” in the trio proband; FA_parents means maximum ”fractions of reads 
(FA) supporting each reported alternative allele” from two parents. 2ndPL_patient, FA_patient means PL or FA value 
for given patient. 2: Area under curve (AUC) calculated from 10-fold cross-validation. Confusion matrix, F-measure and 
AUC were acquired from WEKA output. 
 

Centre # of 
Trios 

Capture 
array 

Target 
region 

Sequencer Mean 
covera

ge 

>10X SNVs/indels 
per patient1 

Ti/ 
Tv2 

Concor
dance 
rate3 

dbSNP 
v137 

coverage 

RV per 
patient

4 

HK 5 
Illumina 

Truseq 
62.3 M 

Illumina 

GAII 
27.9 X 74% 10475 / 234 3.52 NA 99.17% 228 

NL 10 
Agilent  

SS V4 
51.4 M 

Illumina 

HiSeq2000 
53.8 X 95% 13603 / 342 3.34 99.10% 99.29% 340 

FR 5 
Agilent  

SS V4 
51.4 M 

Illumina 

HiSeq2000 
51.8 X 92% 12432 / 287 3.42 NA 99.51% 234 

SP 4 
NimbleGen 

V2 
36.5 M ABISolid4 47.4 X 82% 10502 / 530 3.59 NA 95.50% 713 
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Supplementary Table 4. Comparison of de novo mutation rates  

 A B  C  

Mutation type HSCR-trios 
(N=24) 

Healthy-trios# 

(N=54) p-value 

Unaffected 
siblings 

(N=677)& p-value 

  Count (rate) Count (rate) A vs. B Count (rate) A vs. C 

All DNMs  28 (1.17)$ 44 (0.81) 0.159 547 (0.81) 0.065 

LOF DNMs  8 (0.33) 4 (0.07) 0.011* 54 (0.08) 0.001** 

Non-RET LOF 
DNMs 3 (0.13) 4 (0.07) 0.447 54 (0.08) 0.447 

Synonymous 
DNMs  7 (0.29) 12 (0.22) 0.62 143 (0.21) 0.365 

DNM mutation rate by different categories (All, LOF only, non-RET LOF, synonymous) were compared between HSCR 
trios included in this study and those published healthy trios or unaffected siblings to neurodevelopmental diseases. #: 
Data from Rauch (2012) and Xu (2012); &: data from Iossifov (2012), O’Roak (2012), Sanders (2012) and Gulsuner 
(2013); *: nominally significant at 0.05; **: significant after Bonferroni correction. 
 
Supplementary Table 5. Joint distribution of common and rare variants for each trio proband.  

Pheno-
type1 

RET 
rs2435357: 

T/C 

De novo mutations3 Inherited mutations in 
genes in which de 

novo mutations were 
found3 

Inherited mutations in 
116 ENS/HSCR 

candidate genes5 

L, F CC RET: 3splicing9+1 (splicing 
site); RBM25: L158L 

(synonymous) 

RET: L56M 
(missense) (P) 

SMO (P), KIAA1279 (M) 

L, F CC COL6A3: H1109H (synonymous); 
RET:S837fs (frameshift) 

 DCC  (P) 

L, F TC RET:Y606fs (frameshift);  SON (M) 
L, F CT DAB2IP: H1132Y (missense);     

NUP98:N1662S (missense); 
VEZF1:S195F (missense); 

ZNF57:D190D (synonymous); 
ISG20L2:G321R (missense); 

MED26:A225A (synonymous); 
NCLN:Q166* (stopgain)   

NUP98:I1609T 
(missense) (M) 

IKBKAP (P), SOX10 (M) 

L, F CC SCUBE3: N498I (missense);        
RET: G588fs (frameshift) 

PLEKHG5: E800fs 
(frameshift) (U) 

NOTCH3 (M) 

L, M TT PLEKHG5:T876T (synonymous); 
AFF3:V659L(missense) 

  

L, M TT KDM4A: N9S (missense) MAP4: A882G 
(missense) (M) 

ECE1 (P), JAG1 (P) 

L, M CT MAP4:G1117G (synonymous)  PCDHA1 (P), DCC (M), 
NOTCH3 (P) 

L, F TT RET:C620R (missense)   
TCA, M TT CKAP2L:E186fs (frameshift)  CBR1 (M) 

L, F C/T HMCN1:A3456T (missense); 
RET:C137G (missense); 

TUBG1:S233S (synonymous) 

  

L, F C/T CCR2:L283Q (missense); 
DENND3:K640fs (frameshift) 

 IKBKAP (P), JAG1 (M) 

L, F C/T RET:C570* (stopgain)  ECE1 (P) 
L, F C/T RET:R175del (non-frameshift); 

TBATA:R53C (missense) 
 NOTCH1 (P), PFKL (P) 

L, F CC  HMCN1: P1269T 
(missense) (P) 

IKBKAP (P), EDNRB 
(P), JAG1 (M) 

L, F CC  HMCN1: N2461S 
(missense) (M) 

PHACTR4 (P), GLI3 (M), 
SHH (M), HMX3 (M), 
NAV2 (M), PRPH (P), 

PSPN (P) 
L, M TT   IHH (P), PFKL (P, M) 
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S, F TT   JAG1 (P) 
TCA, M TT   ELAVL4 (P), SERPINI1 

(U), PTCH1 (U), 
IKBKAP (M) 

TCA, M TT   JAG1 (M) 
L, F TT   PLXNB1 (P) 
L, F TT  SCUBE3:R907C 

(missense) (P) 
NRG1 (M), IFNGR2 (P) 

L, F TC   TAGLN3 (P) 
L, F TC  DAB2IP:A338T 

(missense) (P); 
KDM4A: V988M (M) 

SON (P) 

Common risk SNP (RET rs2435357), DNMs, inherited damaging variants in genes carrying DNMs, rare damaging 
variants in ENS candidate genes were tabulated for each HSCR patient. DNMs and inherited variants in DNM genes 
were confirmed by Sanger sequencing. Rare damaging variants in ENS candidate genes were all predicted as true 
according to training model 2 (see Supplementary Table 3). 1: L: Long segment aganglionosis; S: Short segment 
aganglionosis; TCA: Total colonic aganglionosis; F: Female; M: Male. 2: rs2435357, T is risk allele, reference allele, and 
minor allele. 3: genes functionally validated in bold; 4: parent of origin for mutation in candidate genes, P for paternal 
(P); M for Maternal, U for Unsure; 5: 116 ENS-related HSCR candidate genes (as listed in Supplementary Table 6). 
 
Supplementary Table 6. Characteristics of 116 ENS-related HSCR candidate genes. 
Gene Gene name Chromosome Evidence Ref 

ALDH1A2 aldehyde dehydrogenase 1 family, 
member A2 15q22.1 Mouse (Absence EN) 5 

ARHGEF3 Rho guanine nucleotide exchange factor 
(GEF) 3 3p14.3 Expression 6,7 

ARTN artemin 1p34.1 Mouse (Abnormal ENS 
morphology) 8 

ASCL1 achaete-scute complex homolog 1 
(Drosophila) 12q23.2 Mouse (Absence 

EN)/Expression 7,9–11 

CADM1 cell adhesion molecule 1 11q23.2 Expression 7,12 
CARTPT CART prepropeptide 5q13.2 Expression 7 
CBR1 carbonyl reductase 1 21q22.13 Expression 13 
CDH2 cadherin 2, type 1, N-cadherin (neuronal) 18q11.2 Expression 7,14 
CRMP1 collapsin response mediator protein 1 4p16.1 Expression 7,15 
CSTB cystatin B (stefin B) 21q22.3 Expression 16 

CTNNAL1 catenin (cadherin-associated protein), 
alpha-like 1 9q31.3 Expression 7 

DCC deleted in colorectal carcinoma 18q21.2 Mouse (Absence 
submucosal ganglia) 17 

DCX doublecortin Xq22.3-q23 Expression 7 
DLL1 delta-like 1 (Drosophila) 6q27 Not described 10,11 
DLL3 delta-like 3 (Drosophila) 19q13.2 Not described 10,11 
DLX1 distal-less homeobox 1 2q32 Expression 7,18,19 
DPYSL3 dihydropyrimidinase-like 3 5q32 Expression 7,20 
EBF3 early B-cell factor 3 10q26.3 Expression 7,21 

ECE1 endothelin converting enzyme 1 1p36 Human (Linkage)/Mouse 
(Absence EN) 

17,22,2
3 

EDN3 endothelin 3 20q13 Human (Linkage)/Mouse 
(Absence EN) 

17,22,2
4,25 

EDNRB endothelin receptor type B 13q22 
Human 

(Linkage/CNV)/Mouse 
(Absence EN) 

17,22,2
6,27 

ELAVL2 ELAV (embryonic lethal, abnormal 
vision, Drosophila)-like 2 (Hu antigen B) 9p21 Expression 7,28 

ELAVL4 ELAV (embryonic lethal, abnormal 
vision, Drosophila)-like 4 (Hu antigen D) 1p34 Expression 7,29 

ERBB2 

v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 2, 
neuro/glioblastoma derived oncogene 
homolog (avian) 

17q12 Mouse (Abnormal ENS 
morphology) 30,31 

ERBB3 v-erb-b2 erythroblastic leukemia viral 
oncogene homolog 3 (avian) 12q13.2 Mouse (Abnormal ENS 

morphology) 30,31 

ERBB4 v-erb-a erythroblastic leukemia viral 
oncogene homolog 4 (avian) 2q33.3-q34 Human (CNV) 32 
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ETV1 ets variant 1 7p21.3 Expression 7,33 
FGF13 fibroblast growth factor 13 Xq26.3 Expression 7,34 
GAP43 growth associated protein 43 3q13.1-q13.2 Expression 7,35 

GDNF glial cell derived neurotrophic factor 5p13 Human (Linkage)/Mouse 
(Absence EN)/Expression 

17,22,3
6–39 

GFRA1 GDNF family receptor alpha 1 10q25 Human (1 patient)/Mouse 
(Absence EN)/Expression 

7,8,38,
40 

GFRA2 similar to GDNF family receptor alpha 2; 
GDNF family receptor alpha 2 8p21.3 Mouse (Abnormal ENS 

morphology) 8 

GFRA3 GDNF family receptor alpha 3 5q11.2 Mouse (Abnormal 
sympathetic system) 8 

GFRA4 GDNF family receptor alpha 4 20p13 Not described 8 

GLI1 GLI family zinc finger 1 12q13.3 Mouse (Abnormal 
intestinal morphology) 41,42 

GLI2 GLI family zinc finger 2 2q14 Mouse (Abnormal 
intestinal morphology) 41,42 

GLI3 GLI family zinc finger 3 7p14 Mouse (Abnormal 
intestinal morphology) 41,42 

GNG2 guanine nucleotide binding protein (G 
protein), gamma 2 14q21 Expression 7 

GNG3 guanine nucleotide binding protein (G 
protein), gamma 3 11p11 Expression 7,43 

GRB10 growth factor receptor-bound protein 10 7p12.2 Human (Linkage) 38 

HES1 hairy and enhancer of split 1, 
(Drosophila) 3q29 Mouse (Abnormal 

intestinal morphology) 41,42 

HLX H2.0-like homeobox 1q41 Mouse 
(Hypoaganglionosis) 17 

HMP19 HMP19 protein 5q35.2 Expression 7 
HMX3 H6 family homeobox 3 10q26.13 Expression 7,44 
HOXB5 homeobox B5 17q21.3 Expression 7,45 
HOXD4 homeobox D4 2q31.1 Expression 7,46 

IFNGR2 interferon gamma receptor 2 (interferon 
gamma transducer 1) 21q22.11 Expression 47 

IHH Indian hedgehog homolog (Drosophila) 2q35 Mouse (Absence EN) 41,42 

IKBKAP 
inhibitor of kappa light polypeptide gene 
enhancer in B-cells, kinase complex-
associated protein 

9q31.3 Human (Co-Expression) 48 

IL10RB interleukin 10 receptor, beta 21q22.11 Expression 49 

ITGB1 
integrin, beta 1 (fibronectin receptor, 
beta polypeptide, antigen CD29 includes 
MDF2, MSK12) 

10p11.22 Mouse (Absence EN) 17 

JAG1 jagged 1 (Alagille syndrome) 20p12.1 Not described 10,11 
JAG2 jagged 2 14q32.33 Not described 10,11 

KIAA1279 KIAA1279 10q21 Human (Linkage/GSM 
syndrome) 50 

KLF4 Kruppel-like factor 4 (gut) 9q31 Mouse (Abnormal 
intestinal morphology) 41,42 

L1CAM L1 cell adhesion molecule Xq28 

Human 
(Hydrocephalus)/Mouse 

(Delayed NCC 
differentiation)/Expressio

n 

7,51–
53 

MAB21L1 mab-21-like 1 (C. elegans) 13q13 Expression 7,54 
MAPK10 mitogen-activated protein kinase 10 4q22.1-q23 Expression 7,55 
MAPT microtubule-associated protein tau 17q21.1 Expression 7 

MLLT11 
myeloid/lymphoid or mixed-lineage 
leukemia (trithorax homolog, 
Drosophila); translocated to, 11 

1q21 Expression 7,56 

NAV2 neuron navigator 2 11p15.1 Human (Exome) 57 
NKX2-1 NK2 homeobox 1 14q13 Human (Case report) 17,22 

NOTCH1 Notch homolog 1, translocation-
associated (Drosophila) 9q34 Not described 10,11 

NOTCH2 Notch homolog 2 (Drosophila) 6q27 Not described 10,11 
NOTCH3 Notch homolog 3 (Drosophila) 19p13.12 Not described 10,11 

NRG1 neuregulin 1 8p12 Human (GWAS)/Mouse 
(Abnormal NCC migration) 58 
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NRG3 neuregulin 3 10q22-q23 Human (CNV/Exome) 32,59 
NRP1 neuropilin 1 10p11.22 Not described 60,61 

NRTN neurturin 19p13 Human (Linkage)/Mouse 
(Abnormal ENS) 62 

NTF3 3'-nucleotidase 1p36.11 Mouse (Reduced enteric 
ganglia) 17 

NTRK3 neurotrophic tyrosine kinase, receptor, 
type 3 15q25 Mouse (Reduced enteric 

ganglia) 17 

PAX3 paired box 3 2q36 Human (Exome)/Mouse 
(Absence EN) 8,57 

PCDHA1 protocadherin alpha 1; protocadherin 
alpha 4 5q31 Expression 7,63 

PFKL phosphofructokinase, liver 21q22.3 Expression 64 
PHACTR4 phosphatase and actin regulator 4 1p35.3 Mouse 65,66 
PHOX2A paired-like homeobox 2a 11q13.2 Expression 7,67 

PHOX2B paired-like homeobox 2b 4p13 

Human (Haddad 
syndrome)/Mouse 

(Abnormal 
ENS)/Expression 

7,68, 
69 

PLXNA1 plexin A1 3q21.3 Not described 60,61 
PLXNB1 plexin B1 3p21 Human (Linkage) 70,71 
POFUT1 protein O-fucosyltransferase 1 20q11.21 Mouse (Absence EN) 10,11 
PROK1 prokineticin 1 1p13 Not described 72,73 
PROK2 prokineticin 2 3p13 Not described 72,73 
PROKR1 prokineticin receptor 1 2p14 Not described 72,73 
PROKR2 prokineticin receptor 2 20p12 Not described 72,73 
PRPH peripherin 12q12-q13 Expression 7,74 
PSPN persephin 19p13.3 Not described 8 

PTCH1 patched homolog 1 (Drosophila) 9q22.32 Mouse (Abnormal 
intestinal morphology) 41,42 

RET ret proto-oncogene 10q11 
Human 

(Linkage/CNV/Exome)/M
ouse (Absence EN) 

7,57, 
75,76 

SALL4 sal-like 4 (Drosophila) 20q13.2 Mouse (Absence EN) 17 
SCG3 secretogranin III 15q21 Expression 7 

SEMA3A 
sema domain, immunoglobulin domain 
(Ig), short basic domain, secreted, 
(semaphorin) 3A 

7p12 

Human 
(Association)/Mouse 

(Abnormal ENS 
morphology) 

57,77 

SEMA3C/D 
sema domain, immunoglobulin domain 
(Ig), short basic domain, secreted, 
(semaphorin) 3D 

7p12 Human (GWAS)/Others 
(Not described) 60,61 

SERPINI1 serpin peptidase inhibitor, clade I 
(neuroserpin), member 1 3q26.1 Expression 7,78, 

79 

SHH sonic hedgehog homolog (Drosophila) 7q36 Mouse (Ectopic enteric 
ganglia formation) 41,42 

SMO smoothened homolog (Drosophila) 7q32 Mouse (Abnormal neural 
crest cell migration) 41,42 

SOD1 superoxide dismutase 1, soluble 21q22.11 Expression 80,81 
SON SON DNA binding protein 21q22.11 Expression 82 

SOX10 SRY (sex determining region Y)-box 10 22q13 
Human 

(Linkage/WS4)/Mouse 
(Absence EN) 

7,83 

SOX2 SRY (sex determining region Y)-box 2 3q26.3-q27 Expression 7,84 
SPRY2 sprouty homolog 2 (Drosophila) 13q31.1 Mouse (Increased EN) 17 
STMN2 stathmin-like 2 8q21.13 Expression 7,85 
STMN3 stathmin-like 3 20q13.3 Expression 7 

SUFU suppressor of fused homolog 
(Drosophila) 10q24.32 Mouse (Abnormal neural 

tube morphology) 41,42 

SYT11 synaptotagmin XI 1q21.2 Expression 7,86 
TAGLN3 transgelin 3 3q13.2 Expression 7 
TBX3 T-box 3 12q24.1 Expression 87,88 

TFF3 trefoil factor 3 (intestinal) 21q22.3 Expression 7,89, 
90 

TGFB2 transforming growth factor, beta 2 1q41 Expression 7,91 
TMEFF2 transmembrane protein with EGF-like 2q32.3 Expression 7,92 
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and two follistatin-like domains 2 
TREX1 three prime repair exonuclease 1 3p21.31 Human (Linkage) 70,71 

TTC3 tetratricopeptide repeat domain 3; 
tetratricopeptide repeat domain 3-like 21q22.2 Expression 93 

TUBB3 
tubulin, beta 3; melanocortin 1 receptor 
(alpha melanocyte stimulating hormone 
receptor) 

16q24.3 Expression 7,94 

UCHL1 ubiquitin carboxyl-terminal esterase L1 
(ubiquitin thiolesterase) 4p14 Expression 7,95 

VIP vasoactive intestinal peptide 6q25 Expression 7,96 

ZEB2 zinc finger E-box binding homeobox 2 2q22 
Human (Linkage/MW 

syndrome/CNV)/Mouse 
(Abnormal NCC migration) 

97–99 

ZIC2 Zic family member 2 (odd-paired 
homolog, Drosophila) 13q32 Mouse 100, 

101 
Notes: updated gene symbols used for ZFHX1B (replaced by ZEB2), TRKC (replaced by NTRK3) and RALDH2 (replaced 
by ALDH1A2); EN: enteric neurons; NCC: neural crest cells. 
 
 
Supplementary Table 7. Gene recurrence and burden test.  

Gene 
symbol 

HK (14/73) Spain (15/100)% Rotterdam (19/39) Meta-analysis 
(48/212) 

p-value Direction* p-value Direction* p-value direction p-value Direction* 

AFF3 1.0000 -1 0.6973 -1 0.0392 1 0.4745 1 

CCR2 1.0000 -1 0.6973 -1 0.0392 1 0.4745 1 

CKAP2L 0.0216 1 0.1175 1 1.0000 -1 0.0178 1 

COL6A3 0.5883 -1 0.5430 -1 0.5970 1 0.6398 -1 

DAB2IP 0.4402 -1 0.6973 -1 0.1484 1 0.9819 -1 

DENND3 0.3699 -1 0.6973 -1 0.5970 1 0.5977 -1 

HMCN1 0.4308 -1 0.3662 1 0.8013 -1 0.9789 1 

ISG20L2 1.0000 -1 1.0000 -1 0.1484 1 0.4949 1 

KDM4A 0.0216 1 0.4967 -1 0.1484 1 0.1190 1 

MAP4 0.6596 -1 0.2903 1 0.5970 1 0.4851 1 

MED26 1.0000 -1 1.0000 -1 1.0000 -1 1.0000 -1 

NCLN 1.0000 -1 1.0000 -1 0.1484 1 0.4949 -1 

NUP98 0.5309 -1 0.6973 -1 0.0392 1 0.7243 1 

PLEKHG5 1.0000 -1 0.1999 -1 0.9826 1 0.3997 -1 

RBM25 1.0000 -1 0.0095 1 1.0000 -1 0.0846 1 

RET 0.1867 1 0.6367 1 0.0008 1 0.0078 1 

SCUBE3 1.0000 -1 0.5806 -1 1.0000 -1 0.7133 -1 

TBATA 1.0000 -1 1.0000 -1 0.5970 1 0.8028 1 

TUBG1 1.0000 -1 1.0000 -1 1.0000 -1 1.0000 -1 

VEZF1 1.0000 -1 0.6973 -1 0.1484 1 0.6717 1 

ZNF57 0.0216 1 0.4967 -1 1.0000 -1 0.3808 1 
Genes with DNMs were checked for the presence of rare damaging mutations in additional HSCR patients. The burden 
of rare, damaging mutations in HSCR patients was compared to that of a local population-matched controls; in 
addition, gene-wise burden test p-values from three cohorts (HK, Spain and Rotterdam) were combined using meta-
analysis. Number of cases and controls are given in parentheses. *: Direction 1 means rare damaging variants enriched 
in cases, -1 means rare variants enriched in controls; %: 4 HSCR patients in discovery trios were not included due to 
mismatched platform with control data. nominal P-values from meta-analyses < 0.05 are given in bold (CKAP2L and 
RET). 
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Supplementary Table 8. Bioinformatics prediction of the functional impact of DNMs. 

Gene and 
mutation 

RNA 
structure 
change1 

Human 
splicing 
finder2 

Conservation 
(PhyloP)3 Gene-level relevance4 

RET:splicing9+1 0.7866 splice 
donor 7.88 Major HSCR gene 

RBM25:L158L 0.8224   Constrained gene102, interacts with PAX3 
RET:S837fs NA   Major HSCR gene 

COL6A3:H1109H 0.4898   
Interacts with ERBB2, ITGB1, shares pathway 

with NRTN, GDNF 
RET:Y606fs NA   Major HSCR gene 
DAB2IP:H1132Y 0.8539  1.76  
ISG20L2:G321R 0.495  7.59  
MED26:A225A 0.9717   Pathway sharing with NOTCH genes 
NCLN:Q166* 0.5467  7.38 Nodal signaling, involves in CNS development 

NUP98:N1662S 0.5235  5.95 Regulation of known HSCR genes, involves in 
CNS development 

VEZF1:S195F 0.0565  9.86  ZNF57:D190D 0.5217    
RET:G588fs NA splice-

acceptor  Major HSCR gene 

SCUBE3:N498I 0.5473  1.96 Hedgehog signaling 
KDM4A:N9S 0.5813  3.54 Neural crest specification in chicken 
PLEKHG5:T876T 0.4096    
AFF3:V659L 0.0272  1.84  
MAP4:G1117G 0.996  1.40 Interacts with CDH2, ERBB2, MAPT and DCX 
RET:C620R 0.4286  4.80 Major HSCR gene 
CKAP2L:E186fs NA   Involves in CNS development 
RET:C137G 0.6841  3.73 Major HSCR gene 
HMCN1:A3456T 0.6906  0.60  
TUBG1:S233S 0.5802   Interacts with SOX2 

CCR2:L283Q 0.0659  5.87 3p21; interacts with GLI2; shares pathway with 
EDN3 

DENND3:K640fs NA   Involves in CNS development 
RET:C570* 0.1453  -0.02 Major HSCR gene 
RET:R175del NA   Major HSCR gene 
TBATA:R53C 0.5526  1.71 Involves in CNS development 
Bioinformatics prediction tools, databases and literature were used to predict functional impact of DNMs and the 
genes carrying DNMs. 1: significant changes (< 0.2) are in bold; 2: only potential splice sites (donor or acceptor) are 
shown; 3: Phylop score > 2 means conservative; 4: evidence collected from PubMed literature and bioinformatics 
databases (STRING, MsigDB pathways). 
 
 
Supplementary Table 9. Sequence and dosage of antisense morpholino.  

a. Splice-blocking morpholino 

Target gene Human ortholog Sequence Dosage (ng) 
aff3 AFF3 AAATGTCTTTCCCCCCTCACCTTTC 6 
ckap2l CKAP2L TGAAGTAAACTCACAGTCTTTCCTC 6 
dab2ipa DAB2IP* AGGTCAGCAGACTCACCTCGAAGCA 6 
dab2ipb DAB2IP* GCTTTCCACTAACACCTTACCCAGC 6 
dennd3a DENND3* CATCTTTACCCTGTGCGAAAAGTTA 6 
dennd3b DENND3* CCATTCAATTTTGTTTCACCTGGAA 6 
hmcn1 HMCN1 GCACAAAGATTTCCCCTTACCCTGA 6 
isg20l2 ISG20L2 CTACTGATGCTTATTTCATACCTCT 6 
kdm4aa KDM4A* GACACAAGCAATGACAGTACCAGGA 6 
kdm4ab KDM4A* AGTTGAACAGAACATACTTGTCGCT 6 
ncl1 NCLN GAACCTGCCAATGGATGTGGTTTAT 6 
nup98 NUP98 GTATGGAGCAGCTAAACTTACGGTT 1 
scube3 SCUBE3 ACTAGATGAAGGGACTCACTCTTGC 6 
tbata TBATA GATAGAGCCCAATACTGTACCTCCC 4 
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vezf1a VEZF1* AGCCAATCGCACTAGCCTTACCTTT 6 
vezf1b VEZF1* ATCCAAAATGCTAAACCCACCTAGA 6 
 
b. Translation-blocking morpholino 
Target gene Human ortholog Sequence Dosage (ng) 
ckap2l CKAP2L GTCTTCATCAGTCATCGTTTCCATC 6 
dennd3a DENND3* GACCACACGGCACATTATCAGCCAT 8 
dennd3b DENND3* GACCGTCTGCCATTGAAAATCAACA 8 
ncl1 NCLN ACCTCACCAGCCTCCTCGAACATGC 0.8 
nup98 NUP98 GTTGAACATCTTGCACTGCTATAGA 12 
tbata TBATA AGCACCTGCACAAACAAATCAGACT# 6 
 
c. Control morpholino 
Target gene Human ortholog Sequence^ Dosage (ng) 
ckap2l CKAP2L TGtAcTAAAgTCACAcTgTTTCCTC 6 
dennd3a DENND3* CAaCaTTACgCTGTGCcAAAAcTTA 6 
dennd3b DENND3* CCAaTgAATTTTcTTTCACgTcGAA 6 
ncl1 NCLN GAACaTcCCAATGaATcTGaTTTAT 6 
nup98 NUP98 GTtTcGAGCAcCTAAAgTTACcGTT 1 
tbata TBATA GAaAcAGCCgAATACTcTAgCTCCC 4 
p53 P53 GCGCCATTGCTTTGCAAGAATTG 2 
HBB%   CCTCTTACCTCAGTTACAATTTATA 12 
*DENND3, DAB2IP, KDM4A and VEZF1 are duplicated in zebrafish genome. #There was no suitable target site in tbata 
for translation-blocking morpholino. A second non-overlapping splice-blocking morpholino was used instead. ^Small 
letters indicate the mismatch nucleotides to the corresponding splice-blocking morpholino. %morpholino against 
human beta-globin as an universal negative control. 
 
 
Supplementary Table 10. qPCR/RT-PCR primers. 
Target transcript Forward / Reverse Sequence (5' to 3') 

aff3 
Forward AAAGCAGCAGTCAACGTTCC 

Reverse CATCTGTCCAACTGCCAATG 

ckap2l 
Forward TGAGATCCAACCACACCAAG 

Reverse GTTCCACAGCGAAGACAATG 

dab2ipa 
Forward TGGGACAGGATTTCTGCTTC 

Reverse GCACAGCACGTCTCAAATTC 

dab2ipb 
Forward GCACTAAAGCCATCGAGGAG 

Reverse ACGGGTCCACTTCACAGTTC 

dennd3a 
Forward TGCTTGGAGTGTCAAACGAG 

Reverse ATAAACGGTGGAGCGTGAAC 

dennd3b 
Forward GCAGCCTCTGATGATTGTCCT 

Reverse GTTGGGACAGTATGGGCACA 

hmcn1 
Forward GAAGAAATTGCCTCGACCAG 

Reverse AGCAGGTGAACCTTTGAGGA 

isg20l2 
Forward ACTCGCTGGAGTGGAATCAG 

Reverse GGATAGCATGTCCCACAACC 

kdm4aa 
Forward GGGATGTGGAAGAGCACATT 

Reverse TGCTCTGGAGGCACAACATA 

kdm4ab 
Forward TGAAAGAGTTCCGCAAAACC 

Reverse CAGCTCCATAGATGGGAGGA 

ncl1 
Forward CTGTTTCTGTCGGTCGGAAT 

Reverse ATCACACAGCGACGACTCAG 
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nup98 
Forward GAACCTGGGGTTTGGATTCT 

Reverse CCAGCATCACTTCCTCCAAT 

scube3 
Forward TCTCCTGTCCTGGAAACACC 

Reverse ACTCCACATTGGCTGGGTAG 

tbata 
Forward CTGAAAGCTGGCGTGAGGAA 

Reverse GTGTGTGTGTTGTCGTACGC 

vezf1a 
Forward GATGGAGGTGTCCACAAACC 

Reverse GCAGGCCGTTACTTGACATT 

vezf1b 
Forward GCACAAGCCCTACATCTGCT 

Reverse TGGCATTTAAAGGGTCGTTC 

elfa 
Forward CTTCTCAGGCTGACTGTGC 

Reverse CCGCTAGCATTACCCTCC 

actb 
Forward TACAATGAGCTCCGTGTTGC 

Reverse GTTCCCATCTCCTGCTCAAA 
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SUPPLEMENTARY FIGURES 
 

 
Supplementary Figure 1. Analytical pipeline for exome sequence filtration and prioritization. 1: 
GATK; 2: KGGSeq; 3: PLINK; 4: ANNOVAR. KGGSeq integrates different kinds of knowledge resources 
from (epi)genetic databases, pathways databases and protein-protein interaction networks to annotate 
the genes that harbor any post-QC variants as well as to predict the potential pathogenicity of their 
variants. For deleteriousness prediction, KGGSeq integrates 5 prediction programs (Polyphen2, Sift, 
MutationTaster, PhyloP and Likelihood ratio) which are weighted by logistic regression103. Annovar is 
mainly used to double-check the final remaining variant for annotation, and provides supplementary 
features from Database of genomic variation (DGV) and clinical variation database (ClinVAR). 
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Supplementary Figure 2. Relatedness plotting of HSCR exome sequences. Around 17K common 
SNPs (minor allele frequency > 0.01 in 1000Genomes European populations) were used to calculate 
identical by descent (IBD) and identical by state (IBS) proportion. Each cell shows pi_hat statistics1 (IBD 
proportion, calculated from P(IBD=2)+0.5*P(IBD=1); 
http://pngu.mgh.harvard.edu/~purcell/plink/ibdibs.shtml) between two patients. No pairwise pi_hat 
coefficients are above 0.125 (the first cousin relationship); the light blue cells represent 0.07~0.11 for 
samples mainly from HK population, which is expected to be different from other European patients. 
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A 

 
 
B 

 
Supplementary Figure 3. Distribution of de novo mutations per trio. A) Number of DNMs 
(separated by mutation type) in each trio, categorized into three different types (Loss of function, 
synonymous and others). B) Distribution of observed counts of DNMs per trio and expected counts per 
trio calculated from Poisson distribution (lambda at 1.2). 
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A 

 
 

B 

  
Supplementary Figure 4. Sanger confirmation of mosaic DNMs in DAB2IP and NCLN. Two out of 28 
de novo mutations (in DAB2IP and NCLN) were confirmed as mosaic mutations by Sanger sequencing 
(forward and reverse Sequencing direction). A) Peak for the DAB2IP heterozygous mosaic mutation. B) 
peak for the NCLN heterozygous mosaic mutation.  
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Supplementary Figure 6. qPCR confirmation of gene knockdown by SBMO. Relative expression of 
the candidate genes between SBMO-injected (grey bar) and control morpholino-injected embryos 
(black bar) by qPCR.  
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Supplementary Figure 7. RT-PCR confirmation of ncl1 SBMO knockdown. ncl1 expressions in six 
1dpf embryos injected with ncl1 SBMO were compared to control MO injected embryos. Arrow 
indicated the expected amplicon. L: ladder; C1: control MO-injected embryo; C2: RT negative control. 
 

 
Supplementary Figure 8. RT-PCR for expression of 4 candidate genes in zebrafish. Temporal 
expression pattern of zebrafish orthologue genes. RT-PCR for dennd3a, dennd3b, ncl1, nup98 and tbata 
was performed on RNA isolated from wild type embryos at 0, 24, 48, 72, 96 and 120 hpf. 
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ABSTRACT  
 
Hirschsprung disease (HSCR) is a congenital disorder characterized by the 
absence of enteric ganglia in a variable length of the intestinal tract. A linkage 
study previously performed on a large Dutch multi-generational HSCR family 
revealed linkage to 4q31.3-q32.3. To determine the genetic cause of HSCR in this 
family, we performed exome sequencing and variant prioritization. We identified 
one main candidate in the linkage interval in exon 20 of LRBA. Although in silico 
prediction suggested an effect on mRNA splicing, but functional assays did not 
confirm this. A role as an enhancer mutation for MAB21L2, a gene embedded 
within an intron of LRBA, was also not confirmed. However, we show that 
MAB21L2 is important for enteric neural crest cells (NCC) differentiation during 
enteric nervous system (ENS) development in a zebrafish model. The incomplete 
penetrance of the HSCR in the family suggests the involvement of other (rare) 
variants elsewhere in the genome. Therefore, we searched for variants present 
especially in known HSCR genes and genes associated with ENS development. We 
identified several candidates, among which a rare RET coding variant in one 
branch of the family and inherited IHH, GLI3 variants along with a de novo 
mutation in GDNF (RET ligand) in the second branch of the family. Functional 
studies confirmed the pathogenic nature of the variants identified in RET and 
IHH, confirming the importance of RET and Hedgehog signaling for ENS 
development. This study demonstrates that rare variants in multiple genes, lead 
to the development of HSCR, further illustrating the complexity of HSCR genetics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Oligogenic inheritance in HSCR: implications of RET and Hedgehog signaling in ENS development 

                                                                                                                                                           
87 

3 
 

INTRODUCTION 
 
Hirschsprung disease (HSCR) is a congenital disorder characterized by the 
absence of enteric ganglia in the submucosal and myenteric plexuses of the 
intestinal tract along a variable length of the distal gut. This aganglionosis leads to 
intestinal obstruction by dysregulated muscle relaxation, HSCR results from a 
failure of enteric neural crest cells (NCC) to migrate, differentiate, proliferate or 
survive and thereby colonize the gut to form a functional network of neurons and 
glia, called the enteric nervous system (ENS)1.HSCR mainly occurs as a sporadic 
disorder and in most cases only a short segment of the terminal bowel is affected 
(termed short segment HSCR)2. Based on the familial occurrence, chromosomal 
abnormalities and on the presence of a many naturally occurring animal models 
with an aganglionic colon, HSCR is considered to be an inherited disease. The 
mode of inheritance can be dominant with reduced penetrance, mostly found in 
non-syndromic familial HSCR cases, whereas in families with syndromic HSCR, a 
recessive pattern of inheritance is often observed3.  

Numerous studies have been performed to find genes involved in HSCR 
development. To date mutations in 16 genes have been identified that can cause, 
or contribute to, the development of HSCR4,5. Of these genes, RET is considered to 
be the major HSCR gene, as 50% of the familial cases and 15-35% of the sporadic 
cases have a mutation in the RET coding region or affecting mRNA splicing 
regions6. Most of the other genes have been identified in rare (familial) 
syndromic HSCR cases. The majority of sporadic cases are suspected to be 
oligogenic or polygenic in nature and have not been resolved genetically. 
However, a low penetrant RET variant is often present in intron 1 in the majority 
of (sporadic) patients (OR=2 when present heterozygous and OR=20 when 
present homozygous)7. Combinations of distinct rare mutations resulting in the 
disease have yet hardly been reported. However, sib pair-analysis clearly points 
towards an oligogenic inheritance of HSCR, with the involvement of at least three 
loci8 for which, besides RET, no other gene has been identified as yet. 

In a previous linkage study, we identified a 12.2 Mb linkage interval on 
4q31.3-q32.3 (chr4: 154,674,450-167,058,075 (Hg19) in a multi-generational, 
Dutch HSCR family with five affected members9. The pattern of inheritance in this 
family appeared to be autosomal dominant with reduced penetrance, indicating 
that a mutation in this region would be necessary but not sufficient to cause the 
disease. Therefore, it is most likely that in addition to the mutated gene on 
chromosome 4 (Chr4), variants in genes located elsewhere in the genome must 
also contribute to the development of the disease as well. In the linkage interval, 
57 genes were present. Among these genes, MAB21L2 was considered to be the 
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most promising candidate HSCR gene based on its expression in the central 
nervous system and neural crest in mid gestation embryogenesis in mice10. 
Moreover, MAB21L2 is also linked (downstream target) to the TGF-β signaling 
pathway in which another known syndromic HSCR gene ZEB2, has been 
previously identified11,12. Mutational screening of MAB21L2 was performed in this 
family, but no mutation was found in its coding region9.  

In an attempt to identify the causal genes and disease-associated variants 
leading to HSCR in this family, we have now exome sequenced two affected family 
members from different branches of the family (Fig.1: V-1 and V-4) and 
subsequently, we used whole exome sequencing for the trio containing patient V-
4 to identify de novo mutations (Figure 1A: shown in enclosed dotted box). We 
determined the segregation patterns for the candidate variants identified and 
functionally studied the effects of several of them to reveal the complex genetics 
of HSCR. 
  
 
MATERIALS AND METHODS 
 
Patients and DNA samples 
The multigenerational Dutch family included in this study is composed of five 
individuals diagnosed with HSCR and two diagnosed with functional constipation 
(Figure 1A). A detailed description of the phenotypes has been previously 
reported9. Genomic DNA was isolated from peripheral blood leucocytes using a 
standard protocol13.  
 
Exome sequencing; samples and variant prioritization 
For exome sequencing, we initially selected two HSCR affected individuals (V-1 
and V-4) from different branches of the family. In a later stage of the study we 
also selected a trio consisting of IV-4, IV-5 and V-4 (Figure 1A) Three micrograms 
of DNA from each of the individuals was sheared using acoustic technology 
(Covaris, Inc. Woburn, Massachusetts, USA). Target enrichment for V-1 and V-4 
was performed with the SureSelect Human All Exon 50 Mb Targeted exome 
enrichment kit v4 and for the trio (IV-4, IV-5 and V-4) the Agilent Sureselect CRE 
capture kit (Agilent Technologies, Inc., Santa Clara, California). The captured 
fragments were sequenced (paired-end 101 bp read length) on the Illumina 
HiSeq2000 sequencer (Illumina, San Diego, USA). De-multiplexing, alignment to 
the human genome build 19 (Hg19) reference genome using the Burrows-
Wheeler Aligner version 0.6.214 and curation of low quality reads were done as 
described by our in-house developed NARWHAL pipeline15. Chromosome sorted 
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BAM-files were generated with SAMtools version 0.1.12a16. Variant calling with 
the Bayesian genotyper incorporated in the genome analysis toolkit version 
1.2.917 resulted in variant files of VCFv4 format, which were uploaded into 
Cartagenia Bench NGS version 3.04 (Cartagenia Inc, Boston, MA, USA) for variant 
filtering. Four types of analysis were performed. One was specifically focused on 
shared variants located inside the linkage interval, with another aimed at 
identifying shared rare variants outside the linkage interval. Other was aimed at 
identifying variants in known HSCR genes and also genes known to be involved in 
ENS development. The latter was done using a set of candidate HSCR genes, HSCR 
associated linkage intervals, genes identified via genome wide association studies 
(GWAS), and gene expression profiling studies and previously reported animal 
models. The fourth and final analysis consisted of de novo mutation identification 
in a trio by filtering out the parental variants.  
 Variants were selected with a read depth > 6 for the analysis. We focused 
on nonsense, missense, InDels or synonymous variants located near exon-intron 
borders. (3 bases in the exon and 3 bases in the intron) Common variants (minor 
allele frequency ≥ 0.03) were excluded using an in-house cohort of 300 
unaffected individuals, ESP6500; 1000 genomes; and GoNL 
(http://www.nlgenome.nl/) databases. 
 
Validation of candidate variants and family screening   
Candidate variants were validated by Sanger sequencing as previously 
described18. Segregation analysis was also performed in the family members for 
which DNA was available (II-2, III-2, IV-1 until IV-5, V-1, V-2, V-3 and V-4).  
 
Vectors design and site direct mutagenesis (SDM) 
Approximately 400 bp from the genomic region of LRBA, containing exon 20 and 
its flanking sequence, was amplified from control and patient DNA to get both the 
wild type (WT) and mutant (Mut) (NM_001199282.2:c.2444A>G) alleles, named 
LRBA-Enh-WT and LRBA-Enh-Mut, respectively. The PCR products obtained were 
inserted into the pCR™2.1-TOPO® vector, subsequently digested with XhoI and 
KpnI, and cloned into a pGL3-SV40 promoter (SV40-P), upstream of the luciferase 
gene (Promega, Madison, USA). The SV40-P and pGL3-SV40p-Luc-LRBA-Enh-
WT/Mut (LRBA-WT/ LRBA-Mut) vectors were used for Luciferase reporter 
assays. The same LRBA products were also directly cloned into the exon trapping 
vector pSPL3 (Invitrogen), and named pSPL3-LRBA-WT/Mut. The pCMV-RET-WT 
vector, encoding the short isoform of human RET (RET9), was used to create the 
pCMV-RET-Mut (P399L) by site-directed mutagenesis, according to the 
manufacturer’s instructions (Stratagene, La jolla, USA). The pCMV-IHH-FLAG-WT 
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vector was used to create the pCMV-IHH-FLAG-Mut (Q51K) by site-directed 
mutagenesis, according to the manufacturer’s instructions (Primers details in 
Supplementary Table 1)19. All inserts were Sanger sequenced to confirm the 
presence of the WT and Mut variant, and the orientation of the inserted 
fragments. 
 
Cloning of zebrafish lrba, mab21l2 and ihh and whole mount in situ 
hybridization expression analysis 
Zebrafish lrba mab21l2 and ihh genes were amplified by RT-PCR using a One-Step 
RT-PCR Kit (Qiagen) from 48 hpf total mRNA using the following primers: lrba F-
CTTTTGACCAAAGGAATGGGTTACG, R-TCCAAGCATGACTTCTGCTTTCC; mab21l2 
F- ATTCGCTCCCGCTTTCAG, R-TCGTCCCAGTCAGTCTCCC; ihh, F- 
GAATTTTACGCACGGACGAT R-CGTAATGCAGCGAATCTTCA. Amplified bands 
were gel purified and subcloned into TOPO TA PCRII vector (Thermo Fisher). 
Digoxigenin labeled antisense probes (Roche) were generated using SP6 
polymerases (Roche) after linearizing the plasmid templates using Not1 
restriction enzymes (New England Biochemicals). Embryos were collected and 
processed for whole-mount in situ hybridization as previously described20. 
Digoxigenin-labeled probes were visualized with NBT/BCIP coloration reactions. 
 
Zebrafish mab21l2 lrba and ihh Morphant Analysis 
Two lrba splice blocking morpholinos (SBMOs) were designed, one to exon 13 
(AGTTGGTTTAGTCTCTTACCGAGAC) and the other to exon 24 
(ACTGCATACTAACCGAAGAAGAAGT). A previously described translation blocking 
morpholino (TBMO) for mab21l2 (ACTGTAGACCGGAGTTTCGCAGTAC) was 
obtained from Genetools LLC21. An ihh morpholino was designed to target the 
transcription start site as previously described22. The sequence of the ihh 
morpholino is: GGAGACGCATTCCACCGCAAGCG. The effectiveness of these lrba 
SBMOs were confirmed by RT-PCR. Morphants were generated by injecting 
100μM morpholinos into one-cell embryos. Morphants and controls embryo were 
allowed to develop to 120hpf and were then fixed and antibody stained for ENS 
neurons using the HuC/D antibody (Invitrogen) as previously described23. 
Control embryos were injected with scrambled morpholinos and experimental 
and control embryos were also co-injected with a p53 control morpholino (Gene 
Tools) designed to suppress apoptotic effects induced by morpholinos as 
previously described24. 
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Cell culture and transfections 
Human embryonic kidney (HEK293) cells, COS-7 cells and control fibroblasts 
were cultured in DMEM (GIBCO) containing 10% fetal bovine serum (GIBCO) and 
penicillin/streptomycin (GIBCO). The neuroblastoma cell line (Neuro-2a) (ATCC 
# CCL-131) was cultured according to the ATCC’s protocol (LGC Standards, 
Middlesex, UK). All the cell lines were incubated at 37oC, and supplied with 5% of 
CO2. Approximately 106 cells were cultured in 1 well of a 6-wells plate for 24 
hours prior to transient transfections for the cell lines and approximately 
300,000 control human fibroblast cells were plated prior to transfections. All the 
cells were transfected using 3µl genejuice transfection reagent (Novagen, 70967, 
Millipore) according to the manufacturer’s instructions. 
 
Exon trapping assay for functional analysis of a possible splice site mutation 
The LRBA variant has been predicted to affect the mRNA splicing. Therefore, the 
effect of this variant was analysed using an exon trap assay as described earlier25. 
Shortly, COS-7 cells were transfected with 1 µg pSPL3-LRBA-WT/Mut. The 
transfected cells were incubated for 48 hours and total RNA was isolated from the 
transfected cells using the RNA easy Mini Kit (Qiagen) and cDNA was synthesized 
using the iScript™ cDNA Synthesis Kit (Bio-Rad) using equal amounts of RNA 
from all conditions. RT-PCR was performed for 30 cycles using SA2 and SD6 
primers (Supplementary Table 2) that flanked the vector spanning internal exons. 
The RT-PCR products were run on a 1.5 % agarose gel and stained with gel red 
dye.   
 
Luciferase assays to determine enhancer activity of the LRBA variant 
To establish/determine whether the variant in LRBA exon 20 interferes with 
transcription regulation (of MAB21L2) we determined whether the mutation 
containing fragment has any enhancer activity and whether the mutation has any 
influence on this possible enhancer activity. Cells were transfected with 1 µg of 
SV40-P or LRBA-WT/Mut (sense) and co-transfected with 10 ng of internal 
control pRL-SV40-Renilla Luciferase (Promega, Madison, USA). The Luciferase 
activity was measured using the Dual-Luciferase-Reporter Assay (Promega), 48 
hours after transfection on a glomax platform (Promega, Madison, USA). The ratio 
of Firefly Luciferase compared to Renilla Luciferase (normalized data) was used 
to determine the activity of each enhancer element LRBA-Enh-WT/Mutant 
(sense). The results were presented as a fold change of normalized data of each 
enhancer to the promoter only construct (SV40-P). As a negative control, we used 
SV40-E (without any promoter) and RET-WT-enhancer was used as a positive 
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control as published earlier26. The luciferase assays were performed in three 
independent, triplicate experiments (n=9). 
 
GDNF activation and Western blot 
pCMV-RET-WT and pCMV-RET-Mut were transiently co-transfected in 
combination with pCMV-GFRα1 and pNE-GFP into HEK293 cells. After 24 hours 
of culturing, cells were treated with 50ng/ml of GDNF (Prepotech EC,London, UK) 
for 15 minutes and they were lysed using a lysis buffer containing 150mM NaCl, 
20mM Tris-HCl pH 7.4, 1% Triton X-100, protease inhibitors (Roche) and 
phosphatase inhibitors (Thermo Scientific, Waltman, MA, USA). Cell lysates were 
collected after centrifugation at 10000 rpm, at 4ºC for 10 minutes. Protein 
concentration was measured using the BCA kit (Pierce Biotechnology, Rockford, 
USA) according to the manufacturer’s protocol. Forty micrograms of total protein 
was run on mini-Protean TGX 4-15 % (Bio-Rad) for separation and transferred 
onto a nitrocellulose membrane (GE). Five percent of skimmed milk in phosphate 
buffered saline (PBS) containing 0.1% Tween-20 (PBST) was used to block the 
nitrocellulose membrane. Western blot was performed using the primary 
antibodies and secondary antibodies described in Supplementary Table 3. The 
primary antibodies were applied overnight at 4oC and respective secondary 
antibodies were applied for 1 hour at room temperature and the nitrocellulose 
membrane was washed 3X for 5 minutes with 1XPBST. The membrane was 
scanned with the Odyssey™ infrared Imager (Li-COR Biosciences). 
 
Indian Hedgehog (IHH) WT/Mutant treatment and quantification of GLI1 
expression  
To determine whether the IHH variant identified resulted in a less functional IHH 
protein, we analysed a downstream target of IHH signaling, Gli1, after exposing 
fibroblasts with WT and mutant IHH proteins. HEK293 cells cultured in a 6 well 
plate were transiently transfected with pCMV-IHH-FLAG-WT/Mut. After 24 
hours, the medium of transfected cells (conditioned medium) was collected and 
filtered using a 0.45 µm filter. Two - three hundred thousand control human 
fibroblast cells were cultured in a 6 well plate for 24 hours and the medium was 
replaced by 1 ml fresh complete medium and 500 µl of conditioned medium 
(containing secreted IHH-WT or IHH-Mut). Conditioned medium from non-
transfected HEK293 cells was used as a negative control. Medium supplemented 
with 20 µM of Purmophamine (Calbiochem), an agonist of SMO and an 
intermediate in IHH-GLI signaling pathway, was used as a positive control for 
activation of Hedgehog (Hh) signaling. Five hundred microliters of conditioned 
medium was concentrated using an M-10 filter (Millipore) and used for Western 
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blot to determine the level of IHH-WT and IHH-Mut protein secretion into the 
medium. To quantify GLI1 expression, quantitative real-time (qRT) Sybr Green 
PCR was performed using the 7300 Real time PCR platform system (Applied 
Biosystem). Approximately 20-25 ng of cDNA from fibroblasts treated with IHH-
WT and IHH-Mut conditioned medium, and with Purmophamine was used as a 
template for qRT-PCR. GLI1 expression was determined and CLK2 housekeeping 
gene was used to normalize the GLI1 expression (Primer details in 
Supplementary Table 4). qRT-PCR data were analysed using the method 
described by Livak27, and presented as fold change after comparison with the 
normalized GLI1 expression in fibroblasts treated with non-transfected HEK293 
conditioned medium. The experiments were performed in three independent 
triplicate experiments (n = 9). 
 
Statistical analysis 
All results are expressed as the mean ± standard deviation (SD) or SEM. All data 
were analyzed using a 2-tailed Student’s t test or the χ2 test. P < 0.05 was 
considered statistically significant. 
 
RESULTS 
 
Exome sequencing  
HSCR patient V-1, V-4, IV-4 and IV-5 (as shown in Figure 1 A) from previously 
identified family were exome sequenced. Target coverage statistics of the exome 
sequencing data of patient V-1, V-4, IV-4 and IV-5 are depicted in Supplementary 
Table 5.  
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Figure 1.  (A) Pedigree of a multigenerational Dutch family with HSCR. Patients affected with HSCR 
are represented as black symbols and two members with functional constipation are marked in grey. 
The exome sequenced trio for de novo mutation identification is enclosed in dotted box. (B) 
Chromatogram showing the LRBA variant in exon 20 of two affected individuals (V-1 and V-4) and in 
one control (C) Evolutionary conservation of the LRBA variant (p.N815) across vertebrates (enclosed 
in red box). 
 
LRBA and TMEM144 variants in the linkage interval  
We first looked for variants present in the Chr4 linkage interval as reported 
earlier9. We found two variants in this linkage interval which were located in 
LRBA (NM_001199282.2:c.2444A>G) and TMEM144 (NM_018342.4:c.715A>T) 
(Table 1). TMEM144 is not expressed in mouse gut at E14.5 (data not shown). On 
the contrary we could detect expression of LRBA in the mouse gut and in ENS 
progenitors at E14.5 (data not shown).  
 
Table 1. List of rare variants identified and shared between two HSCR patients V-1 and V-4 

Gene HGVS cDNA-level Exon 
ExAC 
MAF 

GoNl 
MAF dbSNP 

db 
SNP 
buil

d 
≥ 2 

EMC 

SMPD4 NM_017951.4:c.1450T>G 15 0.01161 - rs148027738 136 yes 

NRP2 NM_201266.1:c.1000C>T 7 0.001574 0.003 rs114144673 134 no 

ARMC9 
NM_001271466.2:c.1645C>
T 17 0.01037 0.021 rs148296188 134 yes 

CCRL2 NM_003965.4:c.11A>G 2 0.02773 0.024 rs11574443 120 yes 

MTTP NM_000253.2:c.502G>A 6 0.01018 0.004 rs61750974 129 yes 

PGRMC2 NM_006320.4:c.185G>A 1 
0.000347
5 - rs41298555 127 no 

LRBA 
NM_001199282.2:c.2444
A>G 20 

0.00253
4 0.009 

rs14066684
8 134 no 

TMEM144 NM_018342.4:c.715A>T 10 
0.00511
7 0.014 rs62335898 129 no 

ADAMTS2 NM_014244.4:c.1993G>A 13 0.007849 0.011 rs35372714 126 yes 

FNDC1 NM_032532.2:c.4429A>G 14 - - - - yes 

FNDC1 NM_032532.2:c.4436C>G 14 - - rs398066440 138 yes 

PTPRD NM_002839.3:c.2341A>G 26 0.02691 0.028 rs72694737 130 yes 

ZNF518A 
NM_001278524.1:c.1477G>
C 7 0.002935 0.007 rs41291602 127 yes 

ATM NM_000051.3:c.3161C>G 22 0.01692 0.026 rs1800057 89 yes 

KDELC2 NM_153705.4:c.431C>T 3 0.01606 0.025 rs74911261 131 yes 

OR6T1 NM_001005187.1:c.107T>C 1 0.01039 0.010 rs140244798 134 yes 

OR8D1 
NM_001002917.1:c.304T>
G 1 0.01701 0.019 rs2510433 100 yes 

OR1F1 NM_012360.1:c.47G>A 1 0.002605 0.008 rs142486394 134 yes 

CLUH NM_015229.3:c.3547G>C 24 
0.000164
3 - rs201361018 137 no 
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PELP1 NM_014389.2:c.2696T>C 16 0.007134 0.009 rs199636910 137 yes 

PELP1 NM_014389.2:c.2161A>G 16 0.001568 0.006 rs200062536 137 no 

NADK 
NM_001198994.1:c.1769_1
771dupAGG 14 -  rs150880809 134 yes 

 
Sanger sequencing validation of the identified LRBA variant 
(NM_001199282.2:c.2444A>G) shared by V-1 and V-4 is shown in Figure 1 (B). 
The identified LRBA variant is evolutionary conserved in other vertebrates as 
shown in Figure 1 (C). The in silico prediction of rare variants identified and 
shared by both the individual are depicted in Table 2. 
 
Table 2. In silico prediction of rare variants shared in the HSCR patients V-1 and V-4 

Gene 

PH
AST 

GERP++ neutral rate 

GERP++ RS 

PhyloP 

SiPhy 

M
utation 

Taster 

SIFT 

PolyPhen2 H
um

Var 

LRT 

M
utation 

Assessor 

FATH
M

M
 

BLO
SU

M
62 

SMPD4 - 4.24 4.24 1.538 
11.31
4 DC 0.19 PoD D M 

 
-1 

NRP2 0.9 5.91 5.03 1.505 
15.05
6 DC 0.02 ProD D M -4.81 -3 

ARMC9 - - - - - - - - - - - -3 

CCRL2 0 5.4 
-
0.048 0.042 4.516 P 0.07 B N L 0.15 -2 

MTTP 1 5.9 5.07 1.519 
13.01
5 DC - - D M 0.99 3 

PGRMC2 - 3.81 1.87 0.927 7.764 DC 1 B N N -1.13 -2 

LRBA 1 5.66 4.47 0.96 
12.98
1 DC 0.01 PoD D M -0.12 1 

TMEM14
4 1 5.35 5.35 2.027 

14.32
9 DC 0.05 ProD D M 0.61 0 

ADAMTS
2 0.9 5.37 4.5 1.269 

13.28
9 DC 0.06 B N L -0.49 -2 

FNDC1 - 5.32 1.53 0.022 6.352 DC 1 B N L 2.91 0 

FNDC1 - 5.32 5.32 2.476 
18.60
1 P 0.48 PoD N L 2.93 1 

PTPRD 1 5.95 4.83 2.281 9.61 DC - B D N 0.28 0 
ZNF518A - - - - - - - - - - - -2 
ATM 1 5.63 5.63 2.798 20.05 DC 0 ProD D M -0.56 -2 

KDELC2 0.9 4.68 4.68 2.871 
18.90
2 DC 0 ProD D M 1.57 -3 

OR6T1 0 4.26 1.86 
-
0.202 8.753 P 0.21 B  N 4.02 -1 

OR8D1 1 4.29 4.29 1.813 8.849 DC 0.01 PoD U M 7.56 -1 

OR1F1 1 4.97 4.97 2.456 
16.06
4 DC 0.01 ProD D H 5.95 -2 

CLUH 1 5.07 3.02 1.248 6.899 DC 0.08 B N N -1.58 -1 
PELP1 0 4.42 0.488 0.187 0.625 P 0.64 B N L 0.88 0 
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PELP1 0.9 5.56 0.466 0.051 3.9 P 1 B N N 0.92 1 
NADK - - - - - - - - - - - - 
Build hg19, ProD= probably damaging, PoD= possibly damaging, D= deleterious, N = neutral, P = polymorphism, DC = 
disease causing, B = Benign, U = Unknown, N = Neutral, L = Low, M = medium, H = High 
 
Moreover, we determined which exons were not totally covered within the 
linkage region and sequenced those (17 regions) by regular Sanger sequencing. 
We did not find any rare variant that could be linked to the disease phenotype 
(data not shown). 
RET and IHH variants in V-1 and V-4 exomes.  
As we hypothesized that the variant in the linkage interval is not enough to cause 
the disease, we subsequently focussed on non-shared rare variants outside the 
linkage region present in any of the two individuals in genes of the HSCR gene 
target panel. Of these (Table 3) we prioritized variants based on their function 
and deleteriousness (Table 4) for further evaluation. We identified a rare RET 
variant (NM_020975.4:c.1196C>T) in patient V-1 and four rare variants in patient 
V-4. These were in the Indian hedgehog (IHH) gene (NM_002181.3:c.151C>A), 
Neuron Navigator 2 (NAV2) (NM_001244963.1:c.2569C>T), Arginine Vasopressin 
Receptor 2 (AVPR2)   (NM_000054.4:c.1110_1112delATC) and GLI family zinc 
finger 3 (GLI3) (NM_000168.5:c.2119C>T). No allelic frequencies of these variants 
were found in ExAC. 
Table 3. Exonic variants present in the ‘HSCR/ENS gene panel’ identified in the two HSCR 
patients (V-1 and V-4).  

Individual 

Gene 

H
GVS 

cD
N

A-level 

Exon 

Exac M
AF 

GoN
L M

AF 

dbSN
P 

dbSN
P 

build 

≥ 2 EM
C 

V-4 NOTCH
2 

NM_024408.3:c.7223T>
A 34 0.001788 0.004 rs35586704 126 No 

V-4 TGFB2 NM_001135599.2:c.272
G>A 1 0.005275 0.006 rs10482721 119 No 

V-4 IHH NM_002181.3:c.151C>A 1 - -     No 

V-4 GLI3 NM_000168.5:c.2119C>
T 14 0.0001977 0.001 rs121917716 133 No 

V-4 FKTN NM_001079802.1:c.133
6A>G 11 0.01189 0.010 rs41313301 127 Yes 

V-4 NAV2 NM_001244963.1:c.256
9C>T 11 0.0001568 - rs144875196 134 No 

V-4 BBS10 NM_024685.3:c.424G>A 2 0.00837 0.019 rs142863601 134 Yes 

V-4 AMH NM_000479.3:c.1556C>
T 5 0.002029 - rs200031151 137 No 

V-4 AVPR2 NM_000054.4:c.1110_1
112delATC 3  -     No 

V-1 PCDHA
4 NM_018907.3:c.920A>G 1 0.01291 0.027 rs145409201 134 Yes 

V-1 PCDHA
8 NM_018911.2:c.337C>T 1 0.006259 0.014 rs146047089 134 Yes 

V-1 PCDHA 
# 

NM_018901.3:c.2414G>
A 2 0.001467 0.004 rs150254638 134 Yes 

V-1 FKTN NM_001079802.1:c.166
C>T 5 0.02353 0.027 rs41277797 127 No 
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Build hg19, #PCDHA 1-13 and AC1-2, ## not replicated with Sanger sequencing 
 
 
De novo mutations in patient V-4 
De novo mutations in patient V-4 were identified in Glial cell-derived 
neurotrophic factor (GDNF), suppression of tumorigenicity 18, zinc finger (ST18) 
and alstrom syndrome protein 1 (ALMS1), respectively. No allelic frequencies of 
these variants were found in ExAC. An inframe insertion of 3 bp was found in 
ALMS1 (NM_015120.4:c.72_74dupGGA). The de novo variant of ST18 
(NM_014682.2:c.1009G>A) in the exon10 results is a missense mutation. In the 
GDNF gene, a heterozygous inframe insertion of 6bp just before the last codon of 
exon 3 was found.  
Table 4. In silico prediction of the rare variants identified in the two HSCR patients (V-1 and V-
4) present in the ‘HSCR/ENS gene panel’. 

Individual 

Gene 

H
GVS 

PH
AST 

GERP++ 
neutral rate 

GERP++ RS 

PhyloP 

SiPhy 

M
utation 

Taster 

SIFT 

PolyPhen2 
H

um
Var 

LRT 

M
utation 

Assessor 

FATH
M

M
 

V-
4 NOTCH2 NM_024408.3:c

.7223T>A 1 5.35 5.35 2.027 
14.
50
7 

DC 0 
P
r
D 

U L -
1.1 

V-
4 TGFB2 NM_00113559

9.2:c.272G>A 1 5.45 5.45 2.837 13.
71 DC 

0
.
0
7 

P
o
D 

D L 
-
0.1
1 

V-
4 IHH NM_002181.3:c

.151C>A  - 4.22 4.22 2.18 
12.
67
1 

DC 0 
P
r
D 

D H 
-
6.0
3 

V-
4 GLI3 NM_000168.5:c

.2119C>T 1 5.82 4.94 1.468 14.
65 

DC
A 

0
.
0
1 

P
r
D 

N M 2.1
8 

V-
4 FKTN NM_00107980

2.1:c.1336A>G 1 6.04 6.04 2.317 15.
77 DC 

0
.
0
2 

P
r
D 

D M 0.8
7 

V-
4 NAV2 NM_00124496

3.1:c.2569C>T 0.9 5.02 0.95
4 0.298 

14.
95
5 

DC   
P
r
D 

D M 1.2 

V-
4 BBS10 NM_024685.3:c

.424G>A 0.9 5.34 5.34 2.937 
16.
92
2 

DC 

0
.
0
5 

P
o
D 

D L 
-
2.4
6 

V-
4 AMH NM_000479.3:c

.1556C>T 0 3.88 1.72 0.639 8.1
28 P 

0
.
1
4 

B U N 
-
1.8
1 

V-1 SVEP1#

# 
NM_153366.3:c.7244G>
A 38 0.001953  rs192347509 135 No 

V-1 SVEP1 NM_153366.3:c.1849A>
G 9 0.01806 0.019 rs74597491 132 Yes 

V-1 NOTCH
1 

NM_017617.3:c.6853G>
A 34 0.02541 0.006 rs61751489 129 Yes 

V-1 RET NM_020975.4:c.1196C>
T 6 - -   No 
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V-
4 AVPR2 

NM_000054.4:c
.1110_1112del
ATC 

 -  -  -  -  -  -  -  -  
-  -  - 

V-
1 PCDHA4 NM_018907.3:c

.920A>G - 4.34 0 0.15 2.2
73 P 

0
.
0
4 

B U L 0.7
1 

V-
1 PCDHA8 NM_018911.2:c

.337C>T 1 3.72 3.72 1.794 
15.
92
4 

DC 

0
.
0
2 

P
o
D 

U M 0.5
8 

V-
1 PCDHA # NM_018901.3:c

.2414G>A - 5.31 5.31 2.478 
17.
15
5 

DC 0 
P
r
D 

N M 2.1
7 

V-
1 FKTN NM_00107980

2.1:c.166C>T 1 5.65 5.65 2.668 
13.
65
1 

DC  

P
r
D 

D L 
-
2.8
3 

V-
1 SVEP1 NM_153366.3:c

.7244G>A 1 5.8 0.87
3 

-
0.091 

5.6
78 DC 

0
.
9
2 

B N N 
-
0.0
5 

V-
1 SVEP1 NM_153366.3:c

.1849A>G 1 4.85 4.85 1.822 
14.
41
3 

DC 

0
.
0
3 

- D L 2.2
1 

V-
1 NOTCH1 NM_017617.3:c

.6853G>A 0 5.55 2.74 0.405 8.6
04 P 

0
.
4 

B N N 
-
1.4
9 

V-
1 RET NM_020975.4:c

.1196C>T - 5.13 4.22 1.151 
10.
52
4 

DC 0 
P
o
D 

D M 
-
3.0
2 

Build hg19, #PCDHA 1-13 and AC1-2, PrD= probably damaging, PoD= possibly damaging, D= deleterious, N = neutral, 
P = polymorphism, DC = disease causing, , DCA = Disease causing automatic, B = Benign, U = Unknown, N = Neutral, L 
= Low, M = medium, H = High 
 
Validation of candidate variants, segregation analysis and MAB21L2 
sequencing 
We validated the candidate variants by Sanger sequencing in all the family 
members for whom the DNA was available (n=11). Details of the primer pair used 
for amplification and sequencing are provided in supplementary Table 6. 
Segregation analysis of the entire validated DNA variants is shown in Table 5. 
MAB21L2 is embedded within intron 42 of LRBA gene (Figure 2). 

 

Figure 2. Schematic overview of the genomic region of LRBA and MAB21L2 as a nested pair (located 
in intron 42 of LRBA) and their respective positions in the human genome (hg19). The variant in exon 
20 of LRBA is located 288.6 Kb away from the start site of the MAB21L2 gene. 
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Subsequently we sequenced 16 Kb upstream of MAB21L2 assuming that a 
mutation in the regulatory region may also have an impact on the phenotype, but 
we did not find any rare variants that could be linked to the disease phenotype. 
Table 5. Segregation analysis of candidate variants linked to HSCR identified by exome 
sequencing in the family members 

Gene II-2 III-2 IV-1 IV-2 IV-3 IV-4 IV-5 V-1 V-2 V-3 V-4 
LRBA (c.2444A>G) + + - + + + - + + + + 
RET (c.1196C>T) - - - + + - - + + + - 
IHH (c.151C>A) - - - - - + - - - - + 
NAV2 (c.2569C>T) N.A N.A - - N.A + - - N.A N.A + 
AVPR2 (c.1110_1112delATC) N.A N.A - - N.A - + - N.A N.A + 
TMEM144 ( c.715A>T) + + - + + + + + + + +/+ 
GLI3  (c.2119C>T) N.A N.A - - N.A + - - N.A N.A + 
NRP2  (c.1000C>T) + + - + - + - + - - + 

+: Present, +/+ homozygous, Absent, N.A Not applied 
The variant in LRBA does not affect splicing  
The rare variant identified in exon 20 of LRBA (NM_001199282.2:c.2444A>G) has 
been predicted to affect mRNA splicing by one of the five splice site prediction 
programs included in the Alamut splicing prediction module, 
(http://www.interactive-biosoftware.com/alamut-visual/). The in-vitro splicing 
assay did not identify any splice defect caused by the identified LRBA variant, as 
similar sized bands of spliced product were observed in both the WT and mutant 
situations (Figure 3). 

 

Figure 3. In vitro splice assay using 
the exon trapping method. Gel 
electrophoresis of cDNA-PCR products 
generated from wild type and mutant 
constructs (LRBA-WT/Mut) after 
transfection into COS-7 cells. Lane 1: 
DNA marker, 1Kb+ (Invitrogen); Lane 2: 
Splice product of exon 20 wild-type 
construct; Lane 3: Splice product of 
exon 20 mutant construct; Lane 4: 
Splice product of pSPL3; Lane 5: Un-
transfected control. In the absence of an 
insert a splice product of 263 bp is 
produced. A splice product of 345 bp is 
produced in case of a construct 
containing wild type LRBA sequence or 
the mutant version. No difference was 
observed between the wild type and 
mutant sequence on the size of the 
splicing product using this exon 
trapping method. 

 
The variant in LRBA does not disturb enhancer activity  
The MAB21L2 gene is located within the LRBA gene, specifically in intron 42 of 
LRBA (Figure 2). Interestingly, several enhancer elements for MAB21L2 reside 
within the LRBA gene, and are known to drive expression of MAB21L2 in a tissue 
specific manner28. We hypothesized that exon 20 of LRBA might be such an 
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enhancer for MAB21L2, and that the variant identified in this family enhances or 
diminishes the function of this prospective enhancer element.  

 
Figure 4. Enhancer activity effect of the LRBA exon 20 variant (c.2444A>G) and its 
flanking sequence.  Exon 20 of LRBA proved to have enhancer activity when coupled to a 
SV40 promoter (SV40-P). However, no difference in luciferase activity could be detected 
between LRBA WT and LRBA Mut (c.2444A>G) constructs. SV40-E was used as a negative 
control. , A RET intronic enhancer element (RET WT) was used as a positive control for the 
luciferase enhancer activity. 

 
To test this hypothesis we performed a series of luciferase assays using exon 20 
of LRBA and its flanking regions containing the WT or the mutant sequence 
(c.2444A>G). Our results showed that exon 20 of LRBA with its flanking region 
could enhance the promoter activity of SV40, as hypothesized (Figure 4). 
However, no difference was detected when the LRBA variant (c.2444A>G) was 
introduced (Figure 4). As a positive control for the luciferase enhancer activity, 
we used a RET intronic enhancer (RET- WT) previously published26.  
 
Knockdown of lrba gene did not perturb ENS development in Zebrafish 
To investigate the in vivo function of lrba in ENS development we utilized the 
zebrafish model system. A single zebrafish orthologue for lrba was identified in 
an Ensemble gene search and showed strong sequence similarity, as well as 
genome organization, to its human orthologue (82% sequence identity). Whole-
mount in situ hybridization (WISH) studies revealed that zebrafish lrba 
expression has a comparatively restricted expression pattern. lrba is expressed 
along the yolk sack boundary and weakly in the hindbrain at 24hpf 
(Supplementary Figure 1). At 48hpf there is very weak expression in the 
hindbrain but no apparent expression elsewhere in the embryo (Supplementary 
Figure 1). The weak expression in the hindbrain continues from 72-96hpf and at 
72 hpf expression appears in the intestinal bulb and continues at 96hpf 
(Supplemental Figure S1). To determine the functional significance of lrba in 
zebrafish ENS development genes we designed two different splice blocking 
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morpholinos (SBMOs). When examined at 120hpf lrba morphants had a 
shortened body axis and subtle gut morphogenesis defects but no significant 
reduction in enteric neuron number when compared to control embryos (Figure 
5A, C). 
 
Knockdown of mab21l2 gene causes a reduction in the number of enteric 
neurons in Zebrafish   
As MAB21L2 is residing within the LRBA gene, and because we hypothesized that 
the LRBA mutation might have an influence on MAB21L2 expression, we 
performed expression and knockdown experiments in zebrafish for this gene. As 
in the human the zebrafish mab21l2 gene is located within the lrba gene. 

Whole-mount in situ hybridization (WISH) studies revealed that mab21l2 
is strongly expressed in zebrafish embryos from 24-96hpf (Supplementary Figure 
2). It has particularly strong expression in the hindbrain and cranial neural crest 
especially at 48hpf (Supplementary Figure 2). This cranial neural crest 
expression can be most clearly seen in the pharyngeal arches (Supplementary 
Figure 2). This pattern of expression is consistent with previously reported 
mab21l2 expression21. Significantly though we observed that mab21l2 is 
expressed in the gut mesoderm from 48hpf onward, which had not been 
previously reported (Supplementary Figure 2). 

 

 
Figure 5.  Enteric neurons in control, mab21l2 morphant and lrba morphant embryos. 
HuC/Elavl3 antibody stain shows differentiated neurons in control and morphant embryos at 
120 hpf. mab21l2 morphants have reduced numbers ofenteric neurons  and  aganglionosis in the 
distal part of the intestines compared to control embryos (A-B) (brackets indicate aganglionic 
region in B and equivalent regions in A and C). Enteric neuron number and distribution along the 
gut in lrba morphants is similar to controls. 
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To investigate the in vivo function of this gene we used a morpholino knock down 
approach. Knock down of mab21l2 causes defects in pharyngeal arches and 
intestinal smooth muscle development. These phenotypes were identical to those 
previously published21. Critically, mab21l2 morphants also display a significant 
reduction in the number of enteric neurons (72% reduction in enteric neurons as 
compared to controls) (Figure 5B). 
 
RET-P399L disturbs protein glycosylation and affects phosphorylation upon 
GDNF activation 
RET is a transmembrane receptor tyrosine kinase required for normal 
development, maturation and maintenance of a limited number of cell types 
including the neural crest-drived precursor cells of the ENS. To determine the 
effect of the RET rare variant identified (c.1196C>T, p.P399L), cell lysates 
extracted from HEK293 cells transiently transfected with pCMV-RET-WT and 
pCMV-RET-Mut (P399L) expressing vectors, were analysed by Western-blot. In 
the presence of the RET-WT expressing vector, two bands were identified for RET 
protein as expected. The lower one (~150 kDa) corresponds to the un-
glycosylated RET protein; while the upper band (~170 kDa) is the glycosylated 
(mature) RET protein. In the presence of the RET-Mut (RET-P399L) expressing 
vector, only the lower band was detected, suggesting that the variant identified 
disturbs protein glycosylation (Figure 6).  
 

 

Figure 6. RET variant (c. 1196C>T, p.RET-
P399L) disturbs protein glycosylation and 
phosphorylation. Western blot analysis of cell 
lysates isolated from HEK293 cells transiently 
transfected with pCMV-RET-WT and RET-P399L 
expressing vectors in the presence (+) or absence 
(-) of GDNF (50ng/ml). Anti-RET and anti-
phospho RET (pRET) primary antibodies were 
used for detection of RET expression and 
activation levels. β-actin was used as a loading 
control and GFP as a transfecting control. M: 
Marker, NT: non-transfected, WT: wild type. 

RET phosphorylation was also investigated upon GDNF stimulation, and we 
observed that in the presence of the RET-Mut (RET-P399L) expressing vector, 
RET phosphorylation was dramatically reduced (Figure 6). These result suggests 
that the variant identified is likely pathogenic. 
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IHH-Q51K disturbs/impairs the activation of Hedgehog signaling 
IHH is a member of the Hedgehog signaling pathway. IHH binds to the patched 
(PTCH1) receptor, which together with Smoothened (SMO) activates the 
transcription of several target genes. In order to study the affect of this IHH 
variant identified (c.151C>A, p.Q51K) on Hh signaling, we transiently transfected 
HEK293 cells with plasmids containing IHH-WT-FLAG and IHH-Q51K-FLAG 
followed by collection of the culture medium (conditioned medium) and cell 
lysates after 24 hours. Western blot analysis was performed for the cell lysates 
and conditioned medium using an anti-FLAG antibody.  
 

 
Figure 7. (A) Expression of IHH. The IHH-WT-FLAG, IHH-Q51K-FLAG precursor (~46 kDa) and 
C-terminal fraction (~26 kDa) are equally expressed in the cells and in secreted as detected by 
western blot analysis. (B) GLI1 expression. Quantification of GLI1 expression by qPCR in 
fibroblasts grown in the presence of conditioned medium containing IHH-WT or IHH-Q51K 
secreted proteins. Purmorphamine (PUR+), an activator of Hh signaling was used as a positive 
control. Gli1 expression is lower for in cells that were stimulated with the mutant IHH, when 
compared to cells stimulated with WT IHH. 

We found comparative expression levels for the precursor form of IHH-WT (~46 
kDa) and IHH-Q51K in the cell lysate and in the conditioned medium from the 
transfected HEK293 cells (Figure 7A). To determine whether the IHH rare variant 
identified had an effect on overall Hh signaling, we determined GLI1 
(transcriptional target of Hh signaling) expression by qPCR in fibroblasts after 
growing them in conditioned medium containing the secreted form of either IHH-
WT or IHH-Q51K. Our data shows a significantly lower GLI1 expression for the 
fibroblast cells that were stimulated with conditioned medium containing the 
secreted form of mutant IHH when compared to the cells stimulated with WT IHH 
(Figure 7B). 
 
Ihh is required for ENS development in zebrafish  
Although, a role for shh in zebrafish ENS development, have been previously 
shown, the role of ihh in ENS development in zebrafish has not been elucidated29. 
To address this we injected Tg(-8.3phox2b:Kaede) transgenic embryos with an ihh 
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morpholino, and imaged at 120hpf to determine if these embryos have an enteric 
neuronal phenotype (Figure 8). ihh morphants have a curved body, small eyes, no 
swim bladder as well as a 87.0% decrease in enteric neurons as compared to 
uninjected controls (Figure 8 B, D). 

 

 
Figure 8.  ihh morphant embryos exhibit a significant decrease in enteric neurons. (A, C) 
Kaede uninfected control embryos and (B,D) ihh MO injected embryos.  (A, B) 120hpf ihh MO injected 
embryos has a curvature of the body, a smaller eye, craniofacial abnormalities and a loss of swim 
bladder. (C, D) Lateral views of 120hpf embryos stained with anti-Elavl3 antibody show an 87.0% 
decrease in enteric neurons. 
 

DISCUSSION 

Variants identified within the linkage interval of chromosome 4  
After performing exome sequencing on two distantly related, affected members 
of the large HSCR family, we identified two rare missense variants in the linkage 
interval: one in the exon 20 of the LRBA gene (NM_001199282.2:c.2444A>G) and 
the other one in TMEM144 (NM_018342.4:c.715A>T).  

TMEM144 is a protein-coding gene with unknown function. It has been 
reported to be over-expressed in brain, fetal myelinating oligodendrocyte cells 
and cerebral cortex30. However Tmem144 is not expressed in mouse gut or ENS 
percursors at E14.5 (in-house data not shown). The Minor allele frequency of the 
TMEM144 variant (NM_018342.4:c.715A>T) is 0.005117 in the Exome 
Aggregation Consortium (ExAC) database (Cambridge, MA, URL: 
http://exac.broadinstitute.org) although, it is relatively common in the Dutch 
population (GoNL 0.014). We therefore concluded that it is unlikely that 
TMEM144 is involved in HSCR development. 

The other variant present in the LRBA gene 
(NM_001199282.2:c.2444A>G) is also rare, with a minor allele frequency of 
0.002534 in the ExAC and an allele frequency of 0.009 in GoNL. LRBA encodes for 
the LPS-Responsive vesicle trafficking, Beach and Anchor containing protein. It 
has been shown that LRBA is involved in cancer cell growth and it is hypothesized 
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that it is a positive regulator of cell survival and is anti-apoptotic31. Homozygous 
variants in LRBA have been implicated in common variable immunodeficiency 
with autoimmunity (CVID) 32 and inflammatory bowel disease (IBD)33. In this 
context it is intriguing that ENS abnormalities in IBD patients have also been 
described and reported34,35. The enteric neuroglial apoptosis in IBD points 
towards a defective ENS and since HSCR is an ENS defect it is possible that LRBA 
might also play a role in HSCR.  

LRBA is a cytosolic protein expressed in almost all cell types, but highly 
expressed in immune cells36. The function of LRBA is regulating the endosomal 
trafficking, particularly endocytosis of ligand-activated receptors37. This gene 
belongs to the WDL-BEACH-WD (WBW) gene family and genes of this family 
share a conserved WBW multidomain structure at their C terminal36. WBW 
proteins appear to function as scaffolding proteins in vesicle trafficking and 
among the 8 members of this protein family, NBEA regulates neurotransmitter 
receptor trafficking to the synapses and it is known for its role in neuronal 
development and synaptic functions38. NBEA has already been implicated in 
autism spectrum disorders39,40. Since NBEA has 75% protein homology with 
LRBA, it is possible that a connection between LRBA and ENS development/HSCR 
exists. In silico analysis predicted that the LRBA variant could be a weak splice 
site variant. However, we were not able to confirm this prediction with our in 
vitro splicing assay, making it difficult to prove that the variant affects normal 
splicing (Figure 3).  

Our results from zebrafish studies also provided no evidence to support 
a direct role for lrba in zebrafish ENS development. This result is striking as 
orthologs of nearly every other previously identified HSCR genes have been 
shown to have an evolutionarily conserved function in zebrafish ENS 
development41. As no evidence was found that the synonymous LRBA variant in 
exon 20 has any effect on the encoded LRBA protein via splicing nor did we find 
evidence from our zebrafish experiments that LRBA could be the HSCR gene we 
were looking for, we hypothesized that this variant could have an influence on the 
expression and regulation of MAB21L2, a gene present in intron 42 of LRBA and 
known to be involved in neural development (Figure 2). This idea was triggered 
by the study of Tsang et al, which showed that non-coding sequences scattered 
throughout Lrba give rise to tissue-specific expression of a reporter gene during 
mouse embryonic development28. Therefore, we hypothesized that the LRBA 
variant (c.2444A>G) might reside in an enhancer element that could influence the 
expression of MAB21L2. To prove this hypothesis we performed luciferase assays 
and were able to show that this DNA sequence (LRBA-WT) can enhance the 
expression of the luciferase gene. However, we could not detect any difference in 
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luciferase expression between the WT and the mutant variant (Figure 4), and 
therefore it could not be proved that this variant has an influence on MAB21L2 
expression.  

Although our in vitro assays could not pinpoint MAB21L2 as the disease 
associated gene on chromosome 4, we performed expression studies and 
morpholino induced knockdown studies in zebrafish for MAB21L2. mRNA 
expression analysis of the zebrafish ortholog of mab21l2 showed that this gene’s 
expression is consistent with playing a role in ENS and GI tract development. 
Furthermore our results confirm and extend the previously reported expression 
data for this gene in zebrafish21. Our in vivo functional analysis using morpholinos 
also confirm the previously reported mab21l2 morphant phenotype but also 
reveals an essential role for this gene in zebrafish ENS development. This result is 
potentially significant and suggests that MAB21L2 is indeed a potential HSCR 
gene. Further functional analysis in mammalian model systems will be required 
to confirm this.  
 
Conclusion: a HSCR gene on chromosome 4   
Based on bioinformatics data, published reports and in vivo data presented here, 
MAB21L2 seems to be a perfect candidate for HSCR in the linkage interval. 
However, we have not found any genetic evidence for its involvement with HSCR 
in this family. We can also not totally exclude that another gene in the linkage 
region is involved or that the linkage found happened by chance. The parametric 
multipoint LOD score of 2.7 which was found in the family should be considered 
as ‘suggestive linkage’. However, assuming that there is true linkage, we consider 
that MAB21L2 is the best candidate gene in the linkage interval. 
 
Rare variants in known HSCR genes  
Hedgehog signaling 
In one branch of this family, in the patient V-4, we detected not only the rare 
variant in LRBA, but also variants in the Indian hedgehog (IHH) gene 
(NM_002181.3:c.151C>A), Neuron Navigator 2 (NAV2) 
(NM_001244963.1:c.2569C>T), Arginine Vasopressin Receptor 2 (AVPR2)   
(NM_000054.4:c.1110_1112delATC) and GLI family zinc finger 3 (GLI3) 
(NM_000168.5:c.2119C>T). The IHH, LRBA, NAV2 and GLI3 variant were inherited 
from the father (IV-4), while the deletion in AVPR2 was inherited from the mother 
(IV-5).  

NAV2 (Neuron Navigator 2) is a protein-coding gene, which plays a role 
in cellular growth and migration. It has  been shown that Nav2 is important for 
normal development of cranial neuronal fibres in mice during embryonic 
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development and regulation of blood pressure42. AVPR2 gene encodes the 
vasopressin receptor, belonging to seven-transmembrane-domain G protein-
coupled receptor (GPCR) superfamily, type 2. Mutations in AVPR2 are associated 
with nephrogenic diabetes insipidus43. GLI3 is a protein coding gene for one of the 
transcriptional factor and mediator of Hh signaling. It has a dual function, acting 
as an activator and repressor, and is known to play an important role during 
embryogenesis and limb development. Loss of function mutations in GLI3 have 
been described in patients with Pallister Hall syndrome44 (PHS, MIM 146510) and 
in Greig cephalopolysyndactyly syndrome45 (GCPS, MIM 175700).  

Recently, mutations in GLI3 have also been identified in HSCR patients 
and it was also shown that disruption of Gli activity in mice interrupts with the 
ENS development46. The GLI3 variant (c.2119C>T) present in patient V-4 is 
inherited from the father (IV-4). Remarkably, neither IV-4 nor V-4 has mesoaxial 
or postaxial polydactyly, bifid epiglottis, hypothalamic hamartoma, genitourinary, 
lung or skeletal anomalies seen in patients with PHS9,44. This could be due to the 
mild nature of the variant, however we also cannot exclude that the variant is 
non-causative. 

IHH is part of the Hedgehog (Hh) signaling pathway which is known to 
play a diverse and important role in embryogenesis, including the development of 
the gastrointestinal tract. A Xenopus model for ihh indicates that this is a crucial 
gene for neural crest cell formation, maintenance and migration of neural crest 
cells47. Ramalho et al. showed that 50% of Ihh knock out mice develop a HSCR-
like phenotype48, confirming the importance of this gene  for ENS development. 
However, Ihh depletion in mice is not fully penetrant, indicating that additional 
mutations in other gene are required for the ENS phenotype.  Activation of Hh 
signaling activates GLI transcriptional factors, which are crucial in expression and 
regulation of many important ENS genes such as SOX10, a well-known 
transcription factor for ENS development  found mutated in syndromic HSCR 
cases. All this evidence makes the IHH variant in exon 1 (NM_002181.3:c.151C>A) 
the perfect candidate for HSCR development. This is further corroborated by the 
fact that this variant is located in the active site (N-terminal) of the IHH protein 
and is predicted to be damaging, possibly by disturbing the secretion or stability 
of IHH, and hence disturbing the Hh signaling pathway. Our results confirmed the 
pathogenic nature of the IHH variant identified, showing that it disturbs Hh 
signaling via GLI1 (Figure 7). 

Our zebrafish in vivo results further support an evolutionarily conserved 
role for IHH in ENS development. Sonic hedgehog signaling has been previously 
shown to be required for normal ENS development in zebrafish29. Hedgehog 
pathway signaling is required in two phases of zebrafish ENS development, an 
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early migratory phase as well as during a proliferative phase. The precise role of 
ihh in ENS development has yet to be elucidated. In zebrafish ihh has been found 
to play a critical role in esophageal and swim bladder development and was 
shown to interact with fgf1022. The swim bladder arises as an outgrowth of 
foregut endoderm49. Further studies are required to determine if the zebrafish 
ENS defect is due to a failure of migration of the enteric neural crest precursors 
from the vagal neural crest region to the anterior end of the gut tube, similar to 
loss seen when either Hedgehog signaling is perturbed or whether IHH is 
required for proliferation of ENCCs once they are in the GI tract29. 

As patient V-4 inherited all but one variant from the unaffected father, 
along with mutation in LRBA, we reasoned that there might be a chance of strong 
de novo mutation. Therefore, we screened the patient and his parents via exome 
sequencing for such a mutation. We identified de novo mutations in 3 genes 
including one in GDNF, the gene encoding the ligand of RET. 
 
RET/GDNF signaling 
We identified a heterozygous rare variant in the coding region of RET (c.1196C>T, 
p.P399L) in patient V-1 a mutation previously missed by our DGGE screen6. 
Segregation analysis showed that her two affected siblings (V-2, V-3), the 
unaffected mother (IV-2) and the affected maternal uncle (IV-3) also have the 
same heterozygous RET variant, while the grandmother (III-2) does not. The 
mother (IV-2) and grandfather (III-1) are considered to be unaffected, but they 
were reported to suffer from severe constipation in childhood. Most likely, this 
RET variant was inherited from the grandfather (III-1), but since his DNA was 
unfortunately not available, we were unable to confirm our suspicions. Previous 
study on this family reported that all the three affected siblings (V-1,V-2,V-3) 
inherited a heterozygous common risk haplotype in RET from their father9. This 
common risk haplotype is marked by 14 SNPs scattered from 2 kb upstream of 
RET until the beginning of exon 27. The heterozygous variant in the exon 20 of 
LRBA and common risk haplotype in RET might therefore, contribute to the 
development of HSCR and enhance the penetrance of the RET coding variant 
(c.1196C>T) to their offspring (V-1, V-2, V-3), possibly explaining why all of their 
children are affected. We performed functional analysis for this RET coding 
variant and could show that the identified RET variant disturbs RET glycosylation 
(Figure 6) Non-glycosylated RET proteins do not generally get transported to the 
plasma membrane, and as a consequence, cannot be activated by GDNF. We were 
able to confirm this effect with our in vitro assays (Figure 6), proving that the 
RET-P399L variant is pathogenic and results in RET dysfunction.  
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As mentioned in V-4 we identified a de novo mutation in GDNF, comprising a six 
base pair deletion.  It is an in-frame deletion resulting in the loss of two amino 
acids. At this moment we cannot be certain whether this variant is truly 
pathogenic. However, the chance of finding in a de novo mutation in a well-known 
HSCR gene in a HSCR family is extremely low, making this mutation very 
suspicious. 

CONCLUSIONS 

This study used a combination of linkage analysis and whole exome sequencing 
to determine the genetic cause of HSCR in a multigenerational Dutch family. It 
perfectly shows the complexity of HSCR genetics. We have identified a number of 
possible causal variants and have demonstrated, for most of them, their 
contribution for ENS development. In addition, our studies have highlighted the 
role of Hh signaling for the development of HSCR in humans and reiterates the 
role of RET signaling. A complete understanding of the genetics of an inherited 
complex disease is a major challenge requiring substantial efforts, and it is the 
combination of genetics and functional studies that has given us these new 
insights. 
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SUPPLEMENTARY FIGURES 
 

 
Figure 1.  lrba expression pattern from 24-96 hpf. In situ hybridization showing that lrba has a 
very discrete expression pattern through all time points observed (Arrows indicate intestinal bulb 
expression). Expression is present along the yolk sack and weakly in the hindbrain at 24 hpf (A). 
Weak expression in the hindbrain continues throughout all times observed. Strong expression 
appears in the intestinal bulb from 72-96 hpf (C-D). 
 

 

 
Figure 2. mab21l2 expression pattern from 24-96 hpf. In situ hybridization showing that mab21l2 
has a very strong expression pattern through all time points observed (arrowhead indicates 
expression in hindbrain and pharyngeal arches and arrows indicate gut mesoderm expression). 
Expression is present in the hindbrain, cranial neural crest and pharyngeal arches (A-D). Strong 
expression appears in the gut mesoderm from 48 hpf onwards (B-D). 
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SUPPLEMENTARY TABLES 
 
Supplementary Table 1. Primers used for site-directed mutagenesis 

Gene/ 
Construct Forward Reverse 

pCMV-RET-
WT/Mut 5’-CGTGTCGGTGCTGCTGGTCAGCCTGCAC-3’ 5’-GTGCAGGCTGACCAGCAGCACCGACACG-3’ 
pCMV-IHH-
FLAG WT/Mut 5’-CGCTCGCCTACAAGAAGTTCAGCCCCAATG-3’ 5 ’-CATTGGGGCTGAACTTCTTGTAGGCGAGCG-3’ 

 
Supplementary Table 2. Primers used for in vitro splicing assay 
SD6 5'-TCTGAGTCACCTGGACAACC-3’ 
SA2 5'-ATCTCAGTGGTATTTGTGAGC-3’ 

 
Supplementary Table 3. Antibodies used in Western blot 
 Antibodies Host Dilution Supplier 

Primary 
 

RET Rabbit 1:1000 Santa Cruz Biotechnology 
p-RET Rabbit 1:1000 Santa Cruz Biotechnology 
β-Actin Mouse 1:500 Santa Cruz Biotechnology 
GFP Rabbit 1:1000 Abcam 

 Flag Mouse 1:1000 Sigma 

Secondary 
IRDDye 800 Goat 1:10000 Licor 
IRDDye 680 Goat 1:10000 Licor 

 
Supplementary Table 4. Primers used for qRT-PCR 
Gene Forward  Reverse 
GLI1 5’-TCCCCATGACTCTGCCCG-3’ 5’- CCAGCATGTCCAGCTCAGA-3’ 
CLK2 5’-TCGTTAGCACCTTAGGAGAGG-3’ 5’-TGATCTTCAGGGCAACTCG-3’ 
 
Supplementary Table 5. Summary statistics of the exome sequencing data 
Exome data V-1 V-4 IV-4 IV-5 
Fraction of targets covered ≥ 10X (%) 97.6 97.2 97 96 
Fraction of targets covered ≥ 20X (%) 92.1 90.5 92 89 
Fraction of targets covered ≥ 30X (%) 84.1 81.1 85 80 
 
Supplementary Table 6. Primers used for PCR amplification and Sanger sequencing 
Gene Forward Reverse 
LRBA 5’-CCACATAACTTAAGGTTGATTC -3’ 5’-GATATAAGGAGATGTGGCTG-3’ 
RET 5’-CTGGCCAGCCCATCTTGG -3’ 5’- CCGAGTCACCATATGCAGATTTACC-3’ 
IHH 5’-ATCAGCCCACCAGGAGACC -3’ 5’-CATCAGCCCACCAGGAGACC-3’ 
AVPR2 5’-CCACCAGCCATCCTGAACC -3’ 5’-CAGCTGGGGATGTGGAGACC-3’ 
NAV2 5’-CAGCCCTCGGCTCCAAGC -3’ 5’-CTGGCCAAGCCTGGACTACC-3’ 
TMEM144 5'-GTGAGCCACTGCGCTCTGC-3' 5’-CACAGAGGATGGCTTTGTTTCC-3’ 
GLI3 5'-AGTGGCCAGCTCCATTCACC-3’ 5’-GGTTACAGCGTCATTTTAGGACTGG-3’ 
NRP2 5'-GAATTGCAAACTGATACTAATTAC-3’ 5’-CAAGGCCCTCTCTCCTGTAG-3’ 
GDNF 5'-TTTCAAACCCTAATGCACTTTTATTCC-3’ 5’-TGACCTGGAAAAGGCCAAGG-3’ 
ALMS1 5’-GGCAAACATTTCCTGGGAACC-3’ 5’-GGCTGGTGAGTGACAAAGTAGGG-3’ 
ST18 5’-GCCTAAGCTGGGCCACAACC-3’ 5’-GGGGCCCGTAGTGAGAGTCG-3’ 
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ABSTRACT 
 
Hirschsprung disease is a congenital disorder characterized by a lack of enteric 
innervation of the distal gastrointestinal tract. Identification of genes causing 
HSCR mainly focused on the identification of coding variants. Collectively, the 
identified coding mutations explain approximately 25 % of the overall genetic 
risk on HSCR. The identification of pathogenic, non-coding DNA variants linked to 
complex diseases has been difficult, although many non-coding SNPs have been 
linked to human diseases. To identify novel non-coding DNA variants that alter 
regulatory elements involved with ENS development and hence potentially 
candidate variants for HSCR, we used existing epigenome atlas datasets. With a 
computational approach we catalogued all the active gene enhancers of sigmoid 
colon and fetal large intestine and intersected them with candidate HSCR gene 
involved with ENS development. These active enhancer regions can be further 
investigated for screening non-coding mutations and could be applicable in 
targeted sequencing approaches for understanding yet unexplained HSCR 
genetics.  
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Graphical Abstract: Schema of identifying gut specific active enhancers for ENS 
genes. 
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INTRODUCTION 
 
Hirschsprung disease (HSCR) is one of the most common congenital disorders of 
the gastrointestinal (GI) tract, it caused by a partial absence of the enteric 
nervous system (ENS), called aganglionosis, in the most distal part of the GI tract. 
This aganglionosis results in functional obstruction of the bowel and in life 
threatening constipation. HSCR is an inherited disorder with a high recurrence 
risk for sibling. This recurrence risk depends on the length of the aganglionosis 
and the gender of the affected patient within the family. The recurrence risk 
ranges from 1 to 33%1. Moreover, familial occurrence is seen in approximately 
10% of all cases and chromosomal abnormalities in 12 % of all cases. Finally, co-
occurrence of additional malformations and syndromes and the finding of 
naturally occurring animal models all point to the involvement of inherited 
factors. Disease transmission in families can be either dominant or recessive, 
with incomplete penetrance and variable expressivity1. In sporadic HSCR the 
disease the inheritance is thought to be non-Mendelian (polygenic). 

In the last two decades all kinds of genetic studies have been conducted 
ranging from linkage analysis in multigenerational (syndromic) families, sibpair 
analysis on smaller families, haplotype sharing studies in founder populations 
(for an overview see  Brooks et al. 2005, Alves et al. 2013). These studies resulted 
in coding mutations in 16 genes that can cause, or contribute to the development 
of HSCR2,3. Besides these studies also association studies, including genome wide 
association studies (GWAS) on sporadic patients have been performed and these 
resulted in association with a locus with a 25 Kb region in 5’end of RET. 
Comparative genomic approaches identified a conserved enhancer region within 
intron1 of RET and within this enhancer region reside two strongly disease 
associated non-coding SNPs (rs2435357 and rs2506004) that negatively 
influence the enhancer activity leading to lower RET expression4,5. It pointed 
towards the involvement of non-coding variants in the development of HSCR.  

This was not the first indication for the involvement of non-coding 
variants in HSCR. Bolk et al. conducted a linkage analysis study on 12 multiplex 
HSCR cases and found that 11 the families have linkage to the RET locus, but only 
half of them carry RET coding variants6. So, it was hypothesize that non-coding 
variants in RET should be present to explain the linkage to the RET locus. Genetic 
studies in HSCR altogether don’t explain more than 25% of the overall genetic 
risk. The inability to understand and find genetic aberrations in HSCR, suggests 
that coding variants in not yet screened genes or variants in the unscreened 
regulatory genome should be searched for to unravel the genetic based of HSCR. 
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In the human genome, protein coding genes account for only 1.5% of the genome 
which increases to 2% if untranslated regions (UTRs) are also included7. Multiple 
studies outline the importance of the vast information hidden in the non-coding 
DNA, especially in the regulatory elements (such as enhancers) for gene 
regulation at the level of transcription and translation. Enhancers are genomic 
elements that regulate gene expression. Enhancers can be proximal or distal to 
the transcriptional start sites (TSS) of a gene and work independently of position 
and orientation8,9. They function as binding platforms for transcription factors 
and are characterized by specific epigenetic modifications10. Mutations in cis-
regulatory genome have to date only been identified in a few known human 
diseases, for example in cancers, preaxial polydactyly, pancreatic agenesis, 
congenital heart disease and Parkinson’s disease11-15. Historically, the search for 
mutations contributing to human diseases, as just describe for HSCR, had been 
limited to the coding part of genes and non-coding sequences remained poorly 
investigated.  

The integrative analysis of the human epigenomic landscape for primary 
cells and tissues has revealed a genome-wide map of regulatory regions. 
Approximately 5% of each reference epigenome has enhancer and promoter 
signatures16. Imputation and annotation of epigenome marks to predict different 
chromatin states across various reference genomes has opened new applications 
that were previously not possible17. Disease-causing regulatory mutations at 
enhancer sequences are increasingly recognized, drawing attention to their 
importance in complex diseases, such as HSCR. 

In this study, we shortlisted candidates HSCR genes, and by using the 
epigenetic information from the Roadmap project, we identified gut specific 
enhancers within the genomic regions in which these genes reside. Furthermore, 
we performed transcription factor (TF) enrichment analysis on gut enhancers to 
identify putative master TFs, which could regulate the expression of ENS genes. 
The identified gut enhancers can be screened in HSCR patients in conjunction 
with exome sequencing to interrogate the role of non-coding enhancer sequences 
in the etiology of HSCR. 
 
METHODS 
 
Selection of the ENS gene set 
All the genes known to be associated with HSCR, genes involved in ENS 
development from previous expression studies in mouse and all known animal 
models were selected and combined to generate a list of ENS genes (data not 
shown). The entire gene coordinates, TSS (transcription start site) and strand 
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details were mapped using Biomart tool 
(http://www.ensembl.org/info/data/biomart). 
 
Enhancer datasets of the ENS genes 
We used publically available dataset consisting of imputed epigenome from 
roadmap epigenomics project that has predicted target marks of epigenetic 
regulation of different cells and tissue types based on the reference epigenome 
(http://egg2.wustl.edu/roadmap/web_portal/imputed.html)17. We downloaded 
imputed data consisting of 25 states and 12 marks for sigmoid colon (E106), fetal 
intestine large (E084) fetal thymus (E093) and fetal lung tissue (E088). H3K27ac 
data (EnhA1, EnhA2 and EnhAF), that marks active enhancers was then filtered 
out for further analysis and termed as active enhancer hereon. Hg38 assembly 
and annotation was used for all the analysis. Custom perl scripts were used to 
couple the ENS genes to their prospective active enhancers by scanning +/- 1MB 
distance from the TSS of the gene, generating enhancer-gene couplets.  
 
Transcription factor identification and enrichment 
One enhancer region bed-file was generated by combining the sigmoid colon and 
fetal large intestine active enhancer datasets. Similarly, one control region bed-
file was generated by combining enhancer region files of fetal thymus and fetal 
lung. These bed-files were then converted to BAM files using the bed to BAM 
converter on the Galaxy platform18. The BAM files were uploaded into the 
ChipSeq workflow of Partek Genomics Suite 6.6 (Partek Incorporated, 624 Trade 
Center Boulevard, St. Louis, Missouri 63005, USA).  We used the workflow that 
incorporates the JASPAR database19 for transcription factor recognition sites, in 
order to identify significantly enriched TFs for the active enhancers of colon and 
fetal large Intestine tissues as compared to the control dataset (fetal thymus and 
fetal lung tissues enhancers). To identify enriched functions associated with the 
uniquely identified TFs for the colon and fetal large intestine enhancers, we 
analyzed these genes using the Ingenuity Pathway Analysis (IPA) tool (Qiagen 
Silicon Valley, 1700 Seaport Blvd, 3rd Floor, Redwood City, CA 94063). 
 
 
RESULTS 
 
Mapping and integration of gut enhancers 
For our studies, we selected 115 ENS genes consisting of known HSCR genes, 
genes from associated HSCR loci and genes known to be involved in ENS 
development from previous expression studies and animal models. The majority 
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of these genes are enriched for biological functions related to neural crest, such as 
neural crest cell development, cell fate and neuronal differentiation (Figure 1).  

To identify active enhancers of the selected ENS genes in the gut 
(sigmoid colon and fetal large intestine), we used a chromatin state model, based  

 
Figure 1. Gene Ontology of candidate ENS genes that were mapped to identify gut specific enhancers. 
The majority of genes are involved in neural crest development, cell fate determination and neuronal 
differentiation. 
 
on the imputed epigenomic data for 12 specific marks (H3K4me1, H3K4me2, 
H3K4me3, H3K9ac, H3K27ac, H4K20me1, H3K79me2, H3K36me3, H3K9me3, 
H3K27me3, H2A.Z, and DNase), and by doing so extracted all active enhancers 
(EnhA1, EnhA2 and EnhAF) that are marked by H3K27ac17. We used criteria of 
+/- 1MB distance from the TSS of the ENS genes and coupled all the active 
enhancers to ENS genes. We identified 7297 unique active enhancers for the 
sigmoid colon and 10127 enhancers for fetal large intestine (data not shown). 
 
Transcription factor binding sites specific to active gut enhancers  
We hypothesized that interrogation of DNA sequence motifs, that are most 
recurrent at gut enhancers compared to the control data set, would reveal 
enriched TFs driving ENS specific gene expression. Five TFs (Bcl6, JUN, RAP1, 
MSC and Ddit::Cebpa) motifs are significantly overrepresented (p ≤ 0.0000001) 
in the gut datsets compared to the control datasets. When lowering the p value to 
≤0.00001 the number increases to 20 TFs (Table 1). The majority of the TF 
binding sites represent enhancers associated with either the ATF-2 or the AP-1 
pathways, respectively (Figure 2A). To identify the biological activities associated 
with these TFs, IPA was used, it was found that most of the TFs are either 
associated with cell proliferation or cell differentiation (Figure 2B). Some of them 
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were also involved with cell adhesion (JUNB, JUN and RAP1A) and neuronal 
mislocalization (HSF2 and ZNF423). 

 
Figure 2. (A) Gene Ontology based functions of TFs enriched on gut enhancers as compared to the 
control dataset. (B) IPA pathway analysis of the enriched TFs, showing their association with cell 
proliferation, differentiation, adhesion and mislocalization of neurons. 
 
Table 1. Transcription factors highly enriched on active enhancers compared to control 
dataset 
 

S.No. Transcription factor Actual number of occurrences p value 
1 Bcl6 80 6.7342E-10 
2 JUN 194 7.45125E-9 
3 RAP1 275 1.30309E-9 
4 MSC 150 1.6584E-8 
5 Ddit3::Cebpa 323 1.37263E-13 
6 pha-4 677 3.84999E-15 
7 POU2F1 270 8.84969E-11 
8 Nr2f6 9 1.60626E-10 
9 POU3F4 383 2.72565E-9 
10 Foxk1 55 6.97314E-9 
11 NR3C1 75 2.65751E-8 
12 POU5F1B 723 7.12749E-8 
13 achi 3634 1.4113E-7 
14 SP4 12 2.1961E-7 
15 Znf423 35 2.38229E-7 
16 TCF7L2 167 8.3263E-7 
17 HSF2 38 1.17006E-6 
18 dl 143 2.44125E-6 
19 MYF6 171 3.67337E-6 
20 JUNB 313 5.28966E-6 
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Upstream regulator analysis identifies key TFs  
With the upstream regulator IPA tool, we predicted all the upstream regulators of 
the selected 116 ENS genes. The TF binding sites overrepresented in the gut 
specific enhancers were intersected with these predicted upstream regulators of 
the ENS genes to identify shared TFs. JUN and TCF7L2 were identified as 
significantly (p<0.005) enriched. The transcription factor JUN is associated with 
ERK/JNK pathway. 
 

DISCUSSION 

Using publically available Roadmap epigenomics project datasets and 
computational analysis of the data, we have catalogued thousands of predicted 
gut-specific enhancers that could potentially contribute to ENS gene expression. 
Here we present shortlisted regions of non-coding sequences that could be 
further investigated for identifying causal regulatory SNPs or novel variants 
associated with HSCR. The computational framework and the methods used can 
be also applied to other cell type/tissue and screens for active enhancers 
regulating gene expression.  

By comparing transcription factor enrichment on the gut enhancers and 
control datasets (fetal thymus and fetal lung) for same set of ENS genes, we 
identified 20 TFs that are overrepresented on gut enhancers. During 
development TFs regulate gene expression by binding to enhancers and recruit 
coactivators and RNA polymerase II to target genes20,21 One the highly significant 
TF JUN (c-Jun in combination with c-Fos, forms the AP-1 early 
response transcription factor) has been implicated in a large variety of biological 
processes including cell differentiation, proliferation, apoptosis oncogenic 
transformation, embryogenesis and organogenesis22. The JUN gene encodes 
protein c-Jun and the c-Jun N-Terminal Kinase (JNK) pathway is known to be 
involved in ENS Development (for review see23,24). Upstream regulator analysis of 
the set of ENS genes and an overlap with highly enriched TF on gut enhancer also 
resulted in identification of JUN along with another TF, TCF7L2. TCF7L2 is a 
central transcription factor in the canonical wingless-type MMTV integration site 
(WNT) signaling pathway, and genetic variants in TCF7L2 are associated with 
type 2 diabetes25.  Early NCC migration is regulated by non-canonical Wnt 
signaling and dysregulation of non-canonical Wnt signaling inhibits NCC 
migration26 Moreover TCF7L2 (previously known as TCF4) is also associated 
with Pitt-Hopkins syndrome (PHS) a rare syndromic form of HSCR27.  
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Genetic variants identified by GWAS usually explain only a small fraction of 
complex disease susceptibility with limited success in explaining genetic variance 
and its relation to phenotypic variability (giving rise to the concept of 'missing 
heritability')28 Epigenomics facilitates interpretation of previously unsolved 
GWAS studies and many new tools and bioinformatics approaches have also been 
developed to understand functional relevance of non-coding mutations29. Our 
studies offer datasets for functional follow-up of GWAS loci, including fine 
mapping of GWAS signal(s), prioritization of putative disease causing SNPs by 
looking into enhancer mutations, which could potentially dysregulate ENS gene 
expression and contribute to HSCR development. It also offers genomic 
coordinates to screen non- coding modifier mutations or rare or private variants 
associated with HSCR. 
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ABSTRACT  
 
Hirschsprung disease (HSCR) is characterized by the absence of enteric ganglia in 
the distal region of the gastrointestinal tract, leading to severe intestinal 
obstruction. Around 12% of patients with HSCR have a chromosomal 
abnormality, the most of which have Down Syndrome (DS), trisomy 21. 
Moreover, individuals with DS have a >100 fold higher risk of developing HSCR 
than the general population. This suggests that overexpression of human 
chromosome 21 (Hsa21) genes contribute to the etiology of HSCR. To identify the 
gene(s) contributing to HSCR in DS, we overexpressed candidate genes in a 
reporter zebrafish, Tg(-8.3bphox2b:Kaede) where neural crest derived cells 
express the fluorescent kaede protein. We prioritized 21 genes and 
overexpressed them by microinjecting capped mRNAs in single-cell stage 
zebrafish embryos and scored them at 5 days post fertilization (dpf). We show 
that overexpression of ATP5O (ATP synthase, H+ transporting, mitochondrial F1 
complex, O subunit) leads to a disturbed enteric nervous system (ENS) with a 
reduced number of enteric neurons, strongly implicating ATP5O as a contributor 
to a HSCR phenotype. The ATP5O gene encodes a component of the F-type ATPase 
found in the mitochondrial matrix and participates in ATP synthesis coupled 
proton transport. ATP5O does not link to the known HSCR pathways, and 
although we show expression of the protein in the enteric ganglia, its 
involvement in disease development and ENS development is yet to be 
uncovered.  
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INTRODUCTION 
 
Hirschsprung disease (HSCR, MIM #142623) is a complex congenital gut motility 
disorder resulting from a failure in the development of the enteric nervous 
system (ENS) of the gastrointestinal (GI) tract. It is characterized by the absence 
of enteric ganglia in a variable length of the distal gut. HSCR is recognized by a 
failure to pass meconium in the first 48 hr after birth, abdominal distention, 
vomiting, and neonatal enterocolitis. It leads to severe intestinal obstruction and 
life threatening constipation. The prevalence of HSCR is 1 in 5000 live births and 
there is an unexplained sex bias of four males to one female1. The lack of neurons 
in the distal part of the GI tract results from a failure of enteric neural crest cells 
(NCC) to migrate, differentiate, proliferate or survive and thereby colonize the gut 
and form a functional network of neurons and glia (reviewed by Sasselli et al., 
20122). 

HSCR is considered as an inherited disease, based on the fact that there 
are familial cases (~5%), and the 200-fold increased risk of HSCR to siblings of 
patients3. Highly penetrant, coding mutations, in approximately 15 genes, have 
been identified to cause or contribute to HSCR (for review see4). The major gene 
in HSCR is RET, with a mutation prevalence of 50% in familial HSCR and 15% in 
sporadic HSCR5,6. However, cumulatively all the mutations in HSCR-associated 
genes explain only a small fraction of cases. In addition to the high penetrant 
coding mutations, common low-penetrance polymorphic variants at RET, in the 
region containing SEMA3C/SEMA3D and in NRG1 are also associated with HSCR7-

10. However, all together the heritability of the vast majority (~80%) of HSCR 
cases is still to be uncovered. Finding genetic factors that may explain the missing 
heritability could come from analysis of known HSCR linkage regions, syndromic 
HSCR cases, or from the chromosomal abnormalities often identified in HSCR 
patients.  

HSCR is associated with chromosomal abnormalities in 12% of all cases. 
In this study we focused on the most common chromosomal abnormality found in 
HSCR, Trisomy 21. Trisomy 21, leading to Down Syndrome (DS), is the most 
frequent cause of learning difficulties with an incidence of 1 in 750 live births11. 
The incidence of DS among HSCR patients ranges from 2% to 10%3. Moreover, DS 
patients have >100 fold higher risk of developing HSCR than the general 
population3. This suggests that overexpression of one or more genes on 
chromosome 21 may have a substantial contribution to HSCR development in DS 

5 
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associated HSCR cases. However, none of the established HSCR genes are 
localized on chromosome 21. Existing animal models for DS have not, as yet, been 
explored in detail for any ENS related defects and despite the vast knowledge 
available, this association still remains poorly understood. 

Here we aimed to identify the gene(s) on chromosome 21 that could 
contribute to the HSCR phenotype. We injected mRNA of selected Hsa21 genes 
into a transgenic zebrafish reporter model, and found that elevated levels of one 
of the chromosome 21 genes, ATP5O, resulted in altered ENS development and a 
HSCR-like phenotype. Moreover, we show that ATP5O is expressed in the 
zebrafish gut and in the myenteric and submucosal ganglia of human postnatal 
colon sections.  
 
METHODS 
Prioritizing Hsa21 candidate HSCR Genes  
In this study we first prioritized candidate genes based on genetic data and 
literature. The genetic data we used was: conservation of the genes between 
human and mouse12,13; expression of the genes in mouse enteric NCC (in-house 
RNA sequencing data); whether genes encode transcription factors and; presence 
of the genes in segmental duplicated regions of chromosome 21 in DS/HSCR 
patients14. In our literature search we took in consideration: previous studies on 
associations between DS and HSCR; Hsa21 genes that are involved in ENS and gut 
development; genes related to neuronal development; genes involved in neuronal 
signaling; known animal models of DS. 
 
Hsa21 clone sets  
To be able to microinject capped human mRNAs into 1-cell stage Tg(-
8.3bphox2b:Kaede) zebrafish, the set of prioritized Hsa21 genes were sub-cloned 
in pCS2+ and were grown overnight followed by plasmid isolation and 
purification using the NucleoBond® Xtra plasmid purification system (Marchery-
Nagel, Nagel, 2012). All the constructs were verified by DNA sequencing. A pSG5-
huAPP-695 construct was used for the APP clone. 
 
Zebrafish husbandry and strains 
The Tg(-8.3bphox2b:Kaede) zebrafish line expresses the fluorescent Kaede 
protein in phox2b expressing cells, including those of the ENS15. retsa2684/+  
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zebrafish line was obtained directly from Zebrafish International Resource Center 
(ZIRC)16. Both the Tg(-8.3bphox2b:Kaede) and  retsa2684/+ zebrafish lines were 
maintained by pairwise mating. A cross between retsa2684/+ and Tg(-
8.3bphox2b:Kaede) was performed to generate Tg(-8.3bphox2b:Kaede); retsa2684/+ 
fish. Zebrafish were maintained at 28°C according to the standard zebrafish 
laboratory protocols17. Embryos were scored for ENS defects and abnormal 
phenotypes at 5 dpf as described below. The institutional review board for 
experimental animals of Erasmus MC, Rotterdam approved the use of zebrafish 
embryos for this study. All procedures and fish experiments were performed in 
accordance with Dutch animal welfare legislations and those of the Erasmus 
Dierexperimenteel Centrum (EDC).  
 
In vitro transcription of mRNA and microinjections into zebrafish embryos 
In order to generate capped mRNA for microinjections, the plasmids were 
linearized with an appropriate restriction enzyme. After digestion, the plasmid 
DNA was cleaned using a phenol chloroform extraction method followed by 
ethanol precipitation. The linearized plasmids were used for in vitro synthesis of 
capped mRNA using the mMEssage mMachine SP6 kit (Ambion Inc., AM1340). 
Total RNA was purified using the RNeasy mini kit (Qiagen,Inc., 74104) and loaded 
on a 2% agarose gel to assess RNA quality and integrity. Capped mRNA 
quantification was done using the Nanodrop8000 (Thermo). RNA samples were 
stored at -80°C. Capped mRNA was diluted in nuclease free water and 
microinjections were done in 1-cell stage zebrafish embryo to overexpress the 
genes, as described previously18. Different dosages of each mRNA (5pg, 10pg, 
50pg, 100pg, 150pg, 200pg and 250pg) were injected to determine their effect on 
ENS development. The mRNA-injected animals were raised in E3 media until 5dpf 
at 28°C. Non-injected control (NIC) embryos served as positive controls for 
survival. 
 
Imaging and neuronal counting in zebrafish 
Zebrafish embryos injected with capped mRNA and NIC were scored using a Leica 
MZ16FA microscope for any visible phenotype under bright field and by using a 
GFP filter to image phox2b-positive enteric NCC. To analyze the zebrafish 
embryos, they were anesthetized using tricaine in E3 media and then mounted on 
0.3% agarose gel for capturing the images. The digital images were made using a 
Leica MZ16FA microscope. Fluorescent imaging was made under the same 
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settings for each image. Images were processed with Leica LAS and Adobe 
Photoshop CS software. To count the number of enteric neurons, we used an in-
house made algorithm with image analysis software from FIJI in a semi-
automated way (Figure 1C, D). 
 
Whole mount in situ hybridization in zebrafish 
A fragment of 686bp of zebrafish atp5o cDNA was amplified using RT-PCR using 
primer pair 5’-TTTCATCCCAGACCAGTACG-3’ (forward) and 5’-
GGTATCCCTGATCAGCTTGG-3’ (reverse). The amplified PCR product was ligated 
directly into the pCR®II-TOPO vector using the Dual Promoter TA cloning kit 
(Invitrogen). Positive clones were confirmed by DNA sequencing for the 
orientation and the correct sequence and used to generate antisense and sense  

 

Figure 1. Schematic overview of experimental procedure. A) Schema for overexpression of 
prioritized candidate genes from Hsa21. B) Tg(-8.3bphox2b:Kaede) zebrafish line in bright field and 
under GFP filter, phox2b expressing neural crest cells are marked with fluorescent kaede protein. C) 
The enteric neurons of the intestinal region corresponding to 8 myotomes from the urogenital 
opening were selected as shown. D) Using FIJI software, the enteric neurons were counted as 
represented in the picture.  
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probes to detect atp5o mRNA expression. Whole-mount in situ hybridization was 
carried out as previously described19. We used the DIG RNA labelling kit (Roche) 
to generate digoxygenin-labeled riboprobes against atp5o. Stained embryos were 
mounted in 70% glycerol. The images were acquired using a Leica MZ16FA 
microscope. 
 
Zebrafish genotyping 
Tg(-8.3bphox2b:Kaede); retsa2684/+ embryos were grown until 5dpf for 
phenotyping. DNA was extracted from individual embryos and genotyping PCR 
was performed to distinguish mutants from wildtype using the gene-specific 
primers ret-wt-F1 (5’GATCTCGTTCGCCTGGC3’), ret-mut-F1 
(5’GATCTCGTTCGCCTGGT3’) and ret-wt- R1 (5’GGGGGCGTGTGACTAATTT3’). 
 
Immunohistochemistry on human colon material  
Control postnatal human colon tissues were obtained from the Pathology 
Department repository of the Erasmus University Medical Center. 
Immunohistochemical (IHC) staining was performed using the Ventana 
Benchmark Ultra automated staining system (Ventana Medical System, Tuscon, 
AZ, USA). Briefly, after deparaffination the sectioned specimens for IHC detection 
of ATP50 were processed for 60 min antigen retrieval using Cell Conditioning 
Solution (CC1, Ventana 950-124). After 30 minutes incubation with the primary 
antibody at 36°C (ATP5O 1:200), detection with UltraView Universal DAB 
detection kit (Ventana 760-500) was performed after amplification with 
Ultraview amplification kit (Ventana 760-080). The sections were counterstained 
with hematoxylin II (Ventana 790-2208).  
 
Epistasis between ATP5O and ret in zebrafish 
1 ng of translation-blocking antisense morpholino against ret20 and 50 pg of 
ATP5O capped mRNA were co-injected in 1 cell-stage Tg(-8.3bphox2b:Kaede) 
embryos. Embryos injected with either ret morpholino or ATP5O capped mRNA 
served as controls. At 5 dpf, embryos were imaged and enteric neurons present in 
the three myotome-length long, distal-most intestine were counted and 
compared.  
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Cell culture and transfections 
The SK-N-SH Neuroblastoma cell line (ATCC # HTB-11) was cultured according to 
the ATCC’s protocol (LGC Standards, Middlesex, UK) and incubated at 37oC, 
supplied with 5% of CO2. Approximately 106 cells were cultured in 1 well of a 6-
wells plate for 24 hr prior to transient transfections. Cells were transfected with 
1µg of DNA construct containing ATP5O (pCS2+/ATP5O) or empty vector (pCS2+) 
and we used untransfected (UT) cells as a negative control. Transfections were 
done using 4µl GeneJuice transfection reagent (Novagen, 70967, Millipore) 
according to the manufacturer’s instructions. Cells were starved in serum free 
media for 48 hr prior to harvesting and analysis. 
 
Cell apoptosis and cell proliferation assay 
Cell apoptosis was assessed by FACS analysis using PE Annexin V Apoptosis 
Detection Kit I (BD PharmingenTM) as per manufacturer’s instructions. Cells were 
washed with PBS. Early apoptotic cells were identified as PE Annexin V-positive 
and 7AAD-negative, while cells positive for both, PE Annexin V and 7AAD were 
marked as apoptotic cells. For cell cycle staining assays, ethanol fixed cells were 
stained with propidium iodide (PI) for 30 min at room temperature. Stained cells 
were analyzed on a FACS flow cytometer (BD Biosciences, San Jose, CA) and for 
both assays data analysis was performed using FlowJo. 
 
Statistical analysis 
Results are presented as means ± standard deviation (SD). Data were analyzed by 
unpaired two-tailed t-test (comparisons of two groups) for the statistical 
significance. 
 
RESULTS 
 
Prioritization of candidate genes and generation of cDNA clones  
To test which gene(s) on chromosome 21 contribute(s) to HSCR in DS patients, a 
selection of the most promising candidate genes was made. A total of 169 genes 
were initially assembled for screening. They consisted of 149 Hsa21 genes that 
are conserved between human and mouse and another 20 genes that are non-
conserved, but are potentially interesting, and human specific12,13. From these 
169 candidates we selected genes encoding transcription factors, genes involved 
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in neuronal development and genes reported as involved in DS with or without 
gut abnormalities (such as HSCR). Following these criteria, we generated a subset 
of 65 candidate genes and among them we further prioritized the genes based on 
their expression in E14.5 mouse enteric NCC (in-house RNA sequencing data), 
and based on functional evidence from studies in other model organisms. This 
pipeline resulted in a shortlist of 28 genes (Table 1) and we were able to 
synthesize 21 capped mRNAs (technical difficulties made us exclude 7 genes). A 
list of prioritized genes is presented in Table 1. A schematic of the experimental 
design is shown in Figure 1A. 
 
Table 1. List of prioritized 28 genes in Hsa21 for overexpression. 

No. Gene Name Gene Start 
(hg19) (bp) 

Accession 
number 

Conservation in 
zebrafish 

Microinjection 
status 

1 APP 27252861 NM_201414 Yes Yes 
2 ATP5O 35275757 NM_001697 Yes Yes 
3 BACH1 30566392 BC063307 Yes Yes 
4 BRWD1 40556102 NM_001007246 Yes Yes 
5 BTG3 18965971 NM_001130914 Yes Yes 
6 CBR1 37442239 NM_001757 Yes Yes 
7 CHAF1B 37757676 NM_005441 Yes Yes 
8 CHODL 19165801 NM_024944 Yes Yes 
9 DSCAM 41382926 AB384859 Yes Yes 

10 DYRK1A 38739236 BC156309 Yes Yes 
11 HMGN1 40714241 NM_004965 No Yes 
12 PCBP3 47063608 BC012061 Yes Yes 
13 PDE9A 44073746 NM_001001567 Yes Yes 
14 PIGP 38435146 NM_153681 Yes Yes 
15 PKNOX1 44394620 NM_004571 Yes Yes 
16 RCAN1 35885440 BC002864 Yes Yes 
17 RUNX1 36160098 BC069929 Yes Yes 
18 SH3BGR 40817781 NM_001001713 Yes Yes 
19 SIM2 38071433 NM_005069 Yes Yes 
20 SOD1 33031935 NM_000454 Yes Yes 
21 SUMO3 46191374 NM_006936 Yes Yes 
22 DSCR3 38591910 BC110655 Yes No 
23 ETS2 40177231 NM_005239 Yes No 
24 HLCS 38123493 NM_000411 Yes No 
25 ITSN1 35014706 BC116186 Yes No 
26 TIAM1 32361860 BC117196 Yes No 
27 TTC3 38445571 BC137345 Yes No 
28 WRB 40752170 NM_004627 Yes No 

 

Overview of the 28 prioritized genes for overexpression. mRNA was injected into the Tg(-8.3bphox2b:Kaede) 
zebrafish for the first 21 genes. The last 7 genes were omitted due to failed mRNA generation.  
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Tg(-8.3bphox2b:Kaede); retsa2684/+ mutants display ENS defect 
In humans, loss of function mutations in the RET gene result in HSCR. In this 
study we used the retsa2684/+ zebrafish that was identified in an ENU mutagenesis 
project as a positive control for a HSCR-like phenotype16. The retsa2684/+ line was 
crossed with the Tg(-8.3bphox2b:Kaede) reporter zebrafish line and the number 
of enteric neurons was scored at 5dpf followed by genotyping. The retsa2684/+ 
mutant embryos contained significantly less enteric neurons in the gut, indicating 
an HSCR-like phenotype, when compared to control animals (Figure 2A-D). The 
quantification of enteric neurons, corresponding to 8 myotomes from the 
urogenital opening, demonstrated a significant reduction in number of enteric 
neurons in retsa2684/+ fish (88 ± 41) compared to WT fish (158 ± 23) (p<0.0001, 
Figure 2G). These data show that the Tg(-8.3bphox2b:Kaede) is a suitable animal 
model for HSCR-like aganglionosis.  
 
Overexpression of selected candidate gene mRNA in a zebrafish model 
Capped mRNAs of the 21 selected Hsa21 genes were injected into Tg(-
8.3bphox2b:Kaede) zebrafish (Figure 1A,B), which were subsequently examined 
at 5 dpf (as described in the Methods section). The mRNA dosage was titrated in a 
range of 5pg to 250pg, to find the optimal dosage for each mRNA based on the 
lethality and phenotype observed. Injections of mRNAs resulted in normal ENS 
phenotypes for all mRNAs, except one. Only when overexpressing ATP5O 
(100pg), a reduction in the number of enteric neurons was observed along the 
entire intestine with normal gross morphology when compared to the non-
injected controls (Figure 2E,F).  
 
Figure 2. Reduced numbers of enteric neurons in the retsa2684/+ mutant fish and ATP5O mRNA 
injected fish. A,B) The control Tg(-8.3bphox2b:kaede) fish at 5 dpf in the bright field and under GFP 
filter showing fluorescently tagged phox2b expressing cells and the gut is completely colonized with 
enteric neurons until the urogenital opening. The asterisk indicates the urogenital opening. C,D) 
Enteric neurons along the gut of the Tg(-8.3bphox2b:Kaede); retsa2684/+. Heterozygous ret mutant 
displayed less neurons in the gut at 5dpf and discontinuity of colonization of the gut is indicated by 
arrowhead. E,F) The zebrafish injected with ATP5O mRNA at 100pg dosage show less enteric neurons 
in the gut. G) Quantification of enteric neurons in the intestine corresponding to 8 myotomes of 5dpf 
ret mutant compared to the control fish, marked significant reduction. H) Quantification of enteric 
neuronal count of non-injected controls compared to the ATP5O overexpressed embryos. A total of 
37.5 % of embryos injected with 100pg of ATP5O displayed reduction in enteric neurons. 
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The percentage of zebrafish displaying reduction in enteric neurons remained 
similar at higher dosage (150pg). Counting the enteric neurons within the gut, 
corresponding to 8 myotomes from the urogenital opening, the average count for 
the controls was 178 ± 23 neurons (Figure 2H). We classified a gut as hypo-
neuronal when the fish contained 2 SD less enteric neurons compared to the 
average control zebrafish. For the fish injected with ATP5O mRNA we found that 
37.5% (15/40) of the embryos displayed such a reduction in the number of 
enteric neurons in the gut. The enteric neuron count in the affected embryos 
displaying reduced enteric neurons was 113 ± 18 (Figure 2H), showing that 
elevated levels of ATP5O interfere with normal development of the ENS. 
 
Expression of atp5o in zebrafish 
Whole mount in situ hybridization (ISH) was used to determine the spatio-
temporal expression pattern of atp5o between 1dpf and 5dpf of zebrafish 
development. RNA in situ hybridization revealed expression of atp5o in different 
organs at different developmental stages. At 1dpf, atp5o expression was seen 
ubiquitously (Figure 3B,C). At 2dpf the expression was restricted to the 
cerebellum, the otolith and the whole gut (Figure 3E,F). Between 3dpf to 5dpf 
atp5o was predominantly expressed in the intestine and cerebellum (Figure 
3E,F,H,I,K,L,N,O). At 5dpf, high atp5o expression was observed in the proximal 
and mid intestine along with the caudal vein (Figure 3N). The sense probe did not 
show any staining at 1dpf – 5dpf stages (Figure 3A,D,G,J,M), confirming the 
specificity of the probe. 
 
Expression of ATP5O in postnatal human colon 
To assess whether ATP5O is also expressed in the human colon, 
immunohistochemistry was performed on postnatal colon from healthy 
individuals. ATP5O was specifically detected in the ganglia present in the 
submucosal (Figure 4A,B) and myenteric plexuses (Figure 4C,D). In addition, 
ATP5O was also detected in the colon epithelium. These results suggest that 
ATP5O may be important for ENS development in humans as well. 
 
In vitro assays for cell apoptosis and cell cycle analysis 
To examine whether ATP5O overexpression affects early apoptosis or the cell 
cycle and thereby leads to less neurons in zebrafish gut, we used a human 



Overexpression of ATP5O results in fewer enteric neurons; the link between DS and HSCR? 

139 
 

5 
 

neuroblastoma cell line (SK-N-SH) and assayed cell apoptosis and cell cycle. SK-N-
SH cells expressing ATP5O were cultured in the absence of serum for 48 hr and 
tested for both alterations in apoptosis and cell cycle. Flow cytometry analysis 
didn’t indicate any significant changes in the early and late apoptosis in cells 
expressing ATP5O, when compared to other conditions (Supplementary Figure 
1A).  

 
Figure 3. Spatio-temporal expression of atp5o in zebrafish. atp5o expression at indicated 
developmental stages ranging from 1–5dpf in zebrafish embryos (lateral view) detected using ISH. 
atp5o is expressed along the GI tract in all the stages. It is expressed ubiquitously at 1dpf (B,C) and the 
expression becomes restricted to cerebellum, otolith and whole gut by 2dpf (E,F). Arrowheads 
indicate expression in the brain and arrow marks indicate expression in the gastrointestinal tract (E, 
F, H, I, K, L, N, O). The sense probe shows no staining at 1–5dpf developmental stages as shown (A, D, 
G, J, and M). 
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In order to identify the impact of ATP5O overexpression on the cell cycle using 
flow cytometry, we observed a slight increase in the fraction of cells in the G1 
phase as a result of ATP5O overexpression (Supplementary Figure 1B). Although 
the observed difference is not statistically significant, it could indicate that there 
can be some effect on the cell cycle arrest in ATP5O-overexpressing cells.  
 
Epistasis between ATP5O and ret in zebrafish  
To investigate whether ATP5O interacts with RET during the development of the 
ENS and in the pathogenesis of HSCR in DS, we knocked down ret and 
overexpressed ATP5O simultaneously by co-injecting ret translation-blocking 
morpholino (1 ng) and ATP5O capped mRNA (50 pg) and compared enteric 
neurons in distal intestine at 5 dpf to controls injected with either ret morpholino 
or ATP5O mRNA alone (Figure 5). The doses were chosen so that neither was 
sufficient to induce severe ENS defect by itself, and any synergistic effect between 
ret knockdown and ATP5O overexpression would readily be observed. The ret 
morpholino caused a mild decrease in enteric neuron number in the distal 
intestine compared to ATP5O mRNA control. However, co-injection of ret 
morpholino and ATP5O mRNA did not result in further significant reduction, 
suggesting limited or no synergistic effect between ret knockdown and ATP5O 
overexpression. 
 
Other phenotypic effects of injection of DSCAM and SIM2 mRNA 
The use of this zebrafish model and its optical transparency allowed us to detect 
other gross developmental abnormalities upon overexpression of the prioritized 
genes. Injection of two candidate genes (SIM2 and DSCAM) resulted in an 
abnormal phenotype. Overexpression of SIM2 (100 pg) resulted in notochord 
defects in 66% of the injected embryos at 5dpf (Figure 6A,C) and 33% among 
them also displayed craniofacial abnormalities (Supplementary figure 2A,B). 
Overexpression of DSCAM (200 pg) resulted in deformed notochord and 
myotomes in 68% of the embryos at 5dpf (Figure 6B,D). The majority of these 
embryos also lacked the swim bladder. Microinjection of higher dosages (>200 pg 
for DSCAM and >100 pg for SIM2) of these mRNAs induced lethality. 
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DISCUSSION 
 
This study reports a role for a chromosome 21 gene, ATP5O, in the development 
of the ENS in zebrafish using an mRNA overexpression screen, as overexpression 
of ATP5O results in reduced numbers of enteric neurons in the zebrafish gut. This 
phenotype is comparable to that of the retsa2684/+ zebrafish line that carries a 
mutation in ret, a known HSCR gene in humans. This makes us hypothesize that 
elevated levels of ATP5O, as likely in the case of DS, could contribute to the high 
prevalence of HSCR among DS patients. 
 

 
Figure 4. Expression of ATP5O in postnatal human colon. Expression of ATP5O detected by 
immunohistochemistry on paraffin embedded post-natal colon sections. Arrowheads indicate 
expression of ATP5O in submucosal plexus (A, B) and myenteric plexus (C, D). ATP5O is also expressed 
in the gut epithelia as shown by arrows (A, B). 
 
The zebrafish as a model organism for human enteric neuropathies 
The intestinal architecture and anatomy of zebrafish closely resembles that of 
mammals21. The zebrafish gut undergoes rapid development and by 5dpf the 
whole GI tract is functional22. In contrast to amniotes, the zebrafish gut is simpler, 
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it lacks submucosal layer and myenteric neurons are arranged as neuronal pairs 
or single neurons21. The zebrafish ENS is also derived from NCC, as in other 
vertebrates23. In zebrafish, NCC migrate as two parallel chains of cells to colonize 
the whole gut and differentiate into enteric neurons and glia24. Despite these 
differences, the organization of the ENS, which modulates functions such as 
motility, homeostasis and secretion, is comparable but less complex compared to 
mammals making it a good model for human GI diseases25. Previous studies have 
shown that perturbation of zebrafish orthologues of known human HSCR genes 
using morpholino mediated knockdown, but also some mutant zebrafish for 
genes not connected to HSCR, leads to loss of enteric neurons in zebrafish gut and 
recapitulates the human HSCR phenotype10,20,24,26-29. In particular RET is known to 
be the major player in HSCR and in ENS development4,30. For these reasons we 
included the retsa2684/+ mutant zebrafish line as positive control. Indeed when 
quantifying the number of neurons in the hindgut, the most distal part of 
zebrafish intestine, the region in which mostly the aganglionosis in HSCR patients 
is observed, the number of neurons in this mutant fish was reduced. 
 
ATP5O overexpression results in reduced enteric neurons  
Microinjection of ATP5O mRNA resulted in reduced numbers of enteric neurons 
in the zebrafish gut comparable to what was found in case of the Tg(-
8.3bphox2b:Kaede); retsa2684/+ zebrafish (Figure 2A-H). ATP5O was the only gene 
for which overexpression resulted in ENS defects. The fact that overexpression 
results in fewer enteric neurons might not be a real surprise as mouse Atp5o is 
highly expressed in mouse enteric NCC (in-house RNA sequencing data). ATP5O is 
also expressed in the ganglia of submucosal and myenteric plexuses as shown in 
our studies using control postnatal colon sections. Similarly, atp5o is also 
expressed in the zebrafish gut during early embryonic development and the ENS 
also forms during this period. Furthermore, meta-analysis of DS phenotypes in 
segmental trisomy’s and its association with congenital gut abnormalities such as 
HSCR, duodenal stenosis and intestinal atresia suggested a critical GI region of 
<13 MB. This region also includes ATP5O14. Previous identity-by-descent (IBD) 
and association mapping in a large (inbred) Mennonite population also showed 
that ATP5O is within the IBD region associated with HSCR31. All these data 
suggest that ATP5O might well be responsible, or at least contribute to, the HSCR 
phenotype often seen in DS patients. 



Overexpression of ATP5O results in fewer enteric neurons; the link between DS and HSCR? 

143 
 

5 
 

The role of ATP5O in HSCR  
ATP5O is a mitochondrial gene, which encodes the ATP synthase H+ transporting, 
mitochondrial F1 complex, O subunit protein and is also known as Oligomycin 
Sensitivity Conferral Protein (OSCP). It is a component of ATP synthase (F(1)F(0) 
ATP synthase or Complex V) found in the mitochondrial matrix. ATP synthase is 
composed of an extramembranous catalytic core (F1) and a peripheral 
membrane proton channel (F0). The encoded protein appears to be part of the 
connector linking these two subunits and may be involved in transmission of 
conformational changes or proton conductance. It produces ATP from ADP via 
oxidative phosphorylation in the presence of a proton gradient across the 
mitochondrial membrane. Electron transport complexes of the respiratory chain 
generate this gradient32,33. The gene ontology (GO) annotation of ATP5O 
associates it with drug binding and transporter activity. It was hypothesized that 
overexpression of ATP5O could interfere with the normal subunit composition of 

 
Figure 5. Epistasis between ATP5O and ret. Quantification of enteric neurons at 5dpf in the distal 
most intestine corresponding to 3 myotomes of zebrafish embryos for epistatic interaction between 
ATP5O and ret. Embryos were injected with ATP5O (50ng), ret MO (1ng) and a combination of both 
and the enteric neuronal count is plotted in the graph. There are no significant differences between 
ATP5O (50pg) vs 1 ng ret MO (p=0.6587), 1 ng ret MO vs ATP5O (50pg) + 1ng ret MO (p=0.5437) and 
ATP5O (50pg) vs ATP5O (50pg) + 1 ng ret MO (p=0.2146). 
 
ATP synthase, resulting in an impairment of oxidative phosphorylation34. An 
imbalance of expression, as generated in our zebrafish, could potentially impair 
the subunit composition of ATP synthase, leading to oxidative phosphorylation 
disruption and eventual perturbed proliferation of these cells. We found a slight 
but not significant effect on cell cycle arrest (G1 phase) upon overexpression of 
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ATP5O in SK-N-SH cells. It has also been shown that disruption of oxidative 
phosphorylation can have a neurotoxic effect on neuronal progenitor cells35, and 
overproduction of ATP synthase in Escherichia coli has already been implicated in 
cell division and growth36. During early ENS development, the enteric NCCs 
migrate, proliferate extensively and differentiate into neurons and glia. ATP5O 
overexpression could potentially affect enteric NCC proliferation and lead to 
fewer neurons in zebrafish gut, as observed in our experiments.  

 
Figure 6. Notochord defects in SIM2 and DSCAM mRNA injected zebrafish. Overexpression of 
SIM2 and DSCAM lead to defects in the notochord, as represented by arrows in the bright field images 
of 5dpf embryos as compared to respective controls (A, B). The notochord is discontinuous and 
deformed in embryos in which SIM2 and DSCAM are overexpressed (C, D). 
 
ATP5O does not interact with ret 
A previous study showed over-representation of the enhancer 
polymorphism RET+9.7 (rs2435357:C>T) in DS-HSCR37. The disease-associated 
allele was significantly different between individuals with DS alone, HSCR alone, 
and those with HSCR and DS, demonstrating an association and interaction 
between RET and chromosome 21 gene dosage. However, our zebrafish data did 
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not demonstrate any interaction between ret and ATP5O in ENS development, 
suggesting that they acted independently in separate pathways. 
 
Additional phenotypes due to overexpression of Hsa21 genes 
In this overexpression screen of 21 candidate genes from Hsa21, we also 
identified phenotypic defects other than that of the ENS for DSCAM and SIM2. 
Zebrafish dscam is highly expressed in the developing brain. It is thought to be 
involved in shaping the nervous system and early morphogenesis of the zebrafish 
embryo38. The expression pattern of sim2 in zebrafish has been reported using 
whole mount ISH; it is expressed mainly in the diencephalon, the midbrain and 
the pharyngeal arches39.  Overexpression of DSCAM and SIM2 in zebrafish 
displayed defects mainly in notochord development and in the floor plate, 
exhibiting discontinuity with some twists and folds upon overexpression of these 
genes. The notochord is essential for proper vertebrate development by 
producing secreted factors that signal to the surrounding tissues. It is also 
important for specification of the ventral fates in the CNS and it plays an 
important role in patterning and in a proper structural integrity. The defects in 
notochord development are possibly due to uneven cell patterning or selective 
cell death or defects in signaling pathways required for normal notochord 
development (reviewed by Stemple, 200540). Moreover, besides notochord 
defects we also observed craniofacial abnormalities on overexpression of SIM2 in 
a subset of embryos at 5dpf along with notochord defects, (Supplementary Figure 
2A, B) indicating its prospective contribution to the phenotype observed in DS 
affected individuals.  

To our surprise, some candidates (such as DSCAM, SIM2, and APP) 
already associated with ENS phenotypes, based on previous genetic studies and 
murine models did not display any visible ENS phenotype following their 
overexpression in the zebrafish model. DSCAM has been highlighted as a 
predisposing locus to HSCR in patients with DS14,31,41. Our previous studies, using 
in vitro methods, have shown that overexpression of SIM2 leads to a down 
regulation of the RET gene8. Similarly, a transgenic APP mouse model displayed 
reduction in myenteric neuronal density and delay in gut transit42. These are 
characteristic features of HSCR in humans, but we were not able to recapitulate 
similar phenotypes in the zebrafish model upon their overexpression. This could 
be due to the fact that the regulatory mechanism required for efficient translation 
of certain human RNAs was not equally efficient in zebrafish, or that the human 
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protein does not have the same effect as the zebrafish protein or alternatively the 
threshold dosage of RNA required resulting in a phenotype may not have been 
achieved in our study. Furthermore, we cannot rule out the presence of 
overexpressed mRNA in the embryos at critical stages of zebrafish ENS 
development or any unknown feedback mechanisms resulting in the net 
neutrality of overexpression. On the other hand, a phenotypic effect may simply 
require a combinatorial overexpression of more than one gene. 

Within the list of 21 genes we did not include COL6A4 although it was 
recently shown that overexpression of Col6a4 in transgenic mice could lead to a 
HSCR-like phenotype43. The reason for not including it was the fact that we had 
not found any direct or indirect evidence for the involvement of Col6a4 with ENS 
development nor did we see the gene being expressed in the mouse enteric NCC 
at E14.5 (in-house RNA sequencing data).  

 
CONCLUSIONS 
Although the association of DS with HSCR is well recognized, the causative link 
between them is not well understood. The majority of DS affected individual 
exhibit GI abnormalities44, which might be related to abnormal ENS development. 
Here, we used a transgenic zebrafish line, whose ENS is marked with the 
fluorescent Kaede protein, to assay the functional effects of overexpression of 
Hsa21 candidate genes. We found that ATP5O affects ENS development in 
zebrafish. The use of a vertebrate model to find the missing link between DS and 
HSCR opens the door for larger screens and better understanding of this complex 
association.  
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SUPPLEMENTARY INFORMATION 
 

 
Supplementary Figure 1. In vitro apoptosis and cell cycle assays. SK-N-SH neuroblastoma cells 
were transected with construct containing ATP5O and the cells were starved for 48 hours and assayed 
for apoptosis and cell cycle assays by FACS analysis. Data are represented as mean ± SD for two 
independent experiments. A) Cells that were PE Annexin V-positive and 7AAD-negative were 
classified as early apoptotic, while cells positive for both PE Annexin V and 7AAD were marked as 
apoptotic. There were no differences between ATP5O-transfected cells and controls. B) Cell cycle 
analysis using propidium iodide (PI) DNA staining indicated no major differences between the cell 
phases, but there was a slight increase in G1 phase for ATP5O-transfected cells as compared to the 
controls.  
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Supplementary Figure 2. Craniofacial abnormalities by SIM2 overexpression. A) Control embryo 
at 5dpf. (B) SIM2 (100pg) overexpressing embryo at 5dpf displaying craniofacial abnormality as 
shown by arrows in 33% of them along with the notochord phenotype. The lower jaw appears 
dislodged compared to the control.  
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ABSTRACT 
  
Zebrafish has emerged as a prominent vertebrate model for studying 
development processes and modeling human diseases. Next generation 
sequencing technology has been able to explain the genetics of many diseases, but 
many variants could not be linked to disease. Here we describe the utility of 
zebrafish (Danio rerio) for validating the newly identified genes involved with 
ENS development and HSCR. We then discuss different available methods to 
study ENS development and perform functional genetics in zebrafish by 
traditional methods and emphasize on newly developed genome editing 
techniques to query the gene activity. Finally, we discuss current methods and 
assays for phenotypic analysis in zebrafish ENS.  
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INTRODUCTION 
 
The enteric nervous system (ENS) is one of the most complex subdivisions of the 
peripheral nervous system (PNS) composed of an intermeshed network of 
neurons and glial cells1. The enteric neurons and glial cells are organized to form 
enteric ganglia along entire length of gastrointestinal (GI) tract and ENS is the 
intrinsic nervous system of the GI tract. Enteric ganglia are arranged along the GI 
tract in two concentric plexi, the outer myenteric (Auerbach’s) plexus between 
the circular and longitudinal smooth muscle layer wall and second is submucosal 
(Meissner’s) plexus. The GI tract is essential for transporting, absorbing, digesting, 
and excreting food and waste, but also for protecting the host from ingested 
pathogens, allergens, and toxins. A complete ENS is essential to regulate gut 
motility and perform all these tasks of GI tract2.  

In vertebrates, ENS is entirely derived from the multipotent stem cells of 
neural crest. Specifically, neural crest cells (NCC) migrate extensively from the 
hindbrain, the vagal region of the neural tube, into and along the entire length of 
the GI tract3. A second contribution to the ENS arises from sacral neural crest 
cells. In both mouse and chick it has been shown that these cells colonize the 
distal part of the GI tract4-7. In zebrafish there is no evidence to support a sacral 
neural crest cell contribution to the ENS8. The NCC differentiates into various cell 
types during vertebrate development. These include bones; tendons; neurons; 
glia; melanocytes and connective, endocrine and adipose tissues.  

Abnormality in the development of neural crest results in myriad of 
neurocristopathies. The enteric NCC must differentiate into different neuronal 
subtypes and glial cells to form a proper ENS. One of the most common diseases 
affecting the ENS is Hirschsprung’s disease (HSCR)9. It is attributed to the failure 
of neural crest cells to migrate, differentiate, proliferate or survive and thereby 
form a functional ENS network. HSCR research is concentrated on gaining a 
better understanding of the underlying pathophysiology of enteric neuropathies, 
including the genetics. 
 
HIRSCHSPRUNG DISEASE 
 
HSCR is one of the most common causes of life threatening intestinal obstruction 
in neonates. The prevalence of HSCR is 1 in 5000 newborns and it affects more 
males than females (4:1)10. It is characterized by the absence of enteric ganglia in 
the distal part of the gastrointestinal (GI) tract due to an incomplete colonization 
of intestine by enteric NCC. The length of the aganglionic segment among HSCR 
patients differs. In the vast majority of cases (80%) only the most distal part of 
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the GI tract is affected and is termed short segment HSCR (S-HSCR) when only the 
rectum and sigmoid colon is aganglionic. In a smaller group (approximately 20% 
of cases), the aganglionosis extends proximal to include the sigmoid colon and is 
termed long segment HSCR (L-HSCR). In rare cases the aganglionosis can extend 
to the whole colon (total colonic aganglionosis - TCA), or the entire bowel (total 
intestinal aganglionosis)11.  

While in most cases patients only have HSCR (non-syndromic), in 
approximately one third of children HSCR is accompanied with other congenital 
anomalies. However, in only a minority of these children is a syndrome diagnosis 
established. Syndrome diagnosed in HSCR patients includes those caused by 
chromosomal abnormalities (like trisomy 21) and monogenic inherited disorders.  
Some of the best-known syndromes for which HSCR is part of the diagnosis are 
Waardenburg-shah type 4, congenital central hyperventilation syndrome, 
Goldberg-sphrintzen syndrome and Down syndrome11. 
 
HSCR genetics 
HSCR is considered an inherited disease as familial cases occur in ~5% of all 
cases, there is an elevated risk for sibs (ranging from 1 to 44%), chromosomal 
abnormalities are found, and HSCR can be part of a syndrome. Although the 
disease can be inherited, the majority (80%) of cases occur sporadically. The 
recurrent risk for a second child with HSCR within a family ranges from 1% to 
33% depending on the gender and the length of the aganglionic gut of the affected 
child10. Chromosomal abnormalities are seen in 12% of HSCR cases11. The mode 
of inheritance for the familial cases, in particular those in families where HSCR is 
the only disease entity seen, is autosomal dominant (with reduced penetrance). 
However, in families with syndromic HCSR the mode of inheritance is mostly 
autosomal recessive. The sporadic cases are believed to have a more complex 
mode of inheritance, with involvement of multiple genetic and non-genetic 
factors.  

To date 16 genes have been reported as disease contributing. Most 
mutations are in genes belonging to the RET or Endothelin signaling pathways. 
The major gene by far is RET. Mutations are found in half of the familial cases and 
in around 15% of sporadic cases. Altogether, mutations in these 16 genes explain 
no more than 20-25% of all cases. The RET and Endothelin pathways are known 
to be involved in ENS development and are well conserved between human and 
mice12,13.  

However, not only do these mutations not explain most of the total 
disease risk for the entire patient population, they also only explain part of the 
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disease risk for individual patients. Genetic interactions between genes, for 
instance between RET and the Endothelin Receptor B gene, also play a major role 
in disease development14-18. This is further corroborated by the observed 
phenotypic variability.  
 
Identifying new genes for HSCR 
To find the missing heritability in HSCR next generation sequencing (NGS) 
techniques, such as whole exome sequencing (WES) and whole genome 
sequencing (WGS), are being used19191919. The list of candidate genes associated 
with HSCR has increased in the last decade and the quest is still ongoing20-26.  

Pinpointing the functional relevance of newly identified genetic variants 
in HSCR and ENS development has been challenging. Nevertheless, genetic 
studies in vivo and in vitro have been extremely helpful. In particular the 
zebrafish has proven to be powerful tools with many genes such as ret, phox2b, 
sox10, gfrα1 and gdnf have been shown to be involved in ENS development8,27-32. 
 
 
ZEBRAFISH MODEL 
 
Despite significant advances in the post genomic era, the elucidation of numerous 
pathogenic variants identified from NGS-based approaches needs a robust 
screening method to assign genes as disease causing. Given that HSCR is 
considered to be a disorder of ENS development that arises during early 
embryonic stages, it is necessary to study the processes involved in vivo rather 
than exclusively using cell culture techniques that present a poor indication of 
ENS development. Modeling of human disease phenotypes using murine models 
has been eminent due to many conserved developmental pathways and available 
genetic tools (such as conditional knockouts). Despite these advantages, using a 
murine model is time consuming, expensive, labor intensive and not well suited 
for large scale high-throughput genetic screens.  

Zebrafish (Danio rerio) emerged as an attractive vertebrate model for the 
geneticists almost 3 decades ago33. Zebrafish belong to the group of lower 
vertebrate organisms with a relatively simple developmental plan. Compared to 
higher vertebrate models, the zebrafish is better suited for genetic analysis and in 
vivo studies because the embryonic development is ex utero and embryos can be 
grown in a culture dish. The embryos are virtually transparent allowing 
visualization of internal organs in a non-invasive way through early development. 
The zebrafish has high fecundity and one breeding pair can produce around 100-
150 embryos. It is much closer to human than yeast, worms and flies and its 
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genome has been sequenced, well annotated and around 71.4% of human genes 
have at least one zebrafish orthologue34. These features have made zebrafish a 
tractable vertebrate model for genetics and developmental biology studies. In fact 
many human defects of heart, pigmentation, kidney, and retina, and diseases such 
as cancer, neurological disorders and many other congenital disorders have 
already been modeled using zebrafish and are reviewed elsewhere35,36. 
 
Zebrafish gut and ENS 
The intestinal architecture and anatomy of the zebrafish closely resembles that of 
mammals. 37 The zebrafish gut undergoes rapid development and by 5 days post 
fertilization (dpf) the entire GI tract is functional. 38 In contrast to amniotes, the 
zebrafish gut is simpler: it lacks a submucosal layer and myenteric neurons are 
arranged as neuronal pairs or single neurons. 37 Like other vertebrates, the 
zebrafish ENS is also derived from the neural crest. 31 In zebrafish, neural crest 
cells (NCC) migrate as two parallel chains of cells to colonize the whole gut and 
differentiate into enteric neurons and glia8. The zebrafish ENS is also comparable 
to the mouse ENS based on the gene expression and function studies 13. By 4dpf, 
regular anterograde and retrograde contractions are already being generated in 
the intestine and can be easily visualized 39. The enteric innervation is well 
developed by 4dpf and already functional by 5dpf, when they start feeding 
(Figure 1).  

 
 Figure 1. Zebrafish cartoon model for studying HSCR. (A) The enteric neurons are shown in dots 
along the zebrafish intestine. In normal zebrafish neural crest cells migrate until the anus (shown by 
star mark) and differentiate into enteric neurons demonstrating normal colonization of the intestine. 
(B) In HSCR model of zebrafish, the intestine doesn’t get fully colonized (aganglionosis) and distal part 
of intestine is affected (as shown by arrow head). Comparing an affected (HSCR) zebrafish with 
unaffected zebrafish can be done by screening for enteric neurons. 
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Major neurotransmitters, such as serotonin 5-hydroxytryptamin (5HT), 
neurkinin A (NKA), vasoactive intestinal polypeptide (VIP), pituitary adenylate 
cyclase activating peptide (PACAP), nitric oxide (NO) and calcitonin gene-related 
peptide (CGRP) are also present in the zebrafish gut 40,41. This combination of 
above mentioned features and presence of a functional gut containing an ENS 
derived from NCC make zebrafish as a good vertebrate model for studying 
gastrointestinal diseases including those affecting ENS development. (reviewed 
elsewhere12,42). Such studies have enabled the identification of new genes and 
characterization of known ENS development genes to better understand 
underlying molecular mechanisms in more detail8,31,32,43. These attributes qualify 
its utility for modeling HSCR and ENS development.  
 
 
METHODS FOR STUDYING ZEBRAFISH ENS 
 
Zebrafish reporter lines for ENS 
Detection of enteric NCC and enteric neurons in zebrafish is the vital first step to 
determine if the ENS develops normally or abnormally (presence of HSCR-like 
phenotype). This is conventionally done by whole mount in situ hybridization or 
immunohistochemistry using markers such as sox10, phox2b, ret and elavl3 (huc). 
However, lengthy protocols, poor resolution at tissue and cellular levels, and lack 
of antibodies against zebrafish proteins hinder the efficacy of these methods. 
Transgenic zebrafish reporter lines, mostly making use of promoter and 
regulatory element of the phox2b or sox10 genes to drive expression of 
fluorescent proteins, provide an alternative to conventional cell labeling methods 
(Table 1). For example, the Tg(-4.8phox2b:kaede) line, with green fluorescent 
protein kaede expressed in migrating enteric NCC and differentiated enteric 
neurons, allows the rapid detection of mature ENS cells from 4 dpf onwards. The 
photoconvertible nature of the kaede protein also makes live cell tracing and 
imaging possible44. All in all, ENS specific reporter zebrafish lines greatly enhance 
the phenotypic analysis and their use should be encouraged.  
 
Zebrafish mutant models for HSCR 
Large-scale forward genetic screens in zebrafish have led to the identification of 
new genes and pathways for vertebrate development45,46. One of the earliest 
zebrafish mutants of the ENS, cls (colourless) mutant, was identified in a genetic 
screen for pigmentation defects. cls serves as a Waardenburg-shah syndrome 
model since fish lack pigment cells, and have reduce enteric neurons as well as 
additional NCC defects 31. Subsequently, it was shown that the cls locus mapped to 

6 
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the sox10 gene which is known to be required for neural crest development30. 
Forward genetic screens have identified a number of other zebrafish mutants 
mimicking the HSCR phenotype. Specifically, two studies have mainly focused on 
 
Table 1. Transgenic zebrafish reporter lines for studying neural crest derivatives. 

Reporter line construct Reference 
egfp w37tg phox2b:egfp (Boer et al., 2015) 
 ba2tg sox10:egfp (Uribe and Bronner, 2015) 
 bu1tg spon1b:egfp (Akle et al., 2012) 
 jh102tg sox10:egfp* (Seiler et al., 2010) 
 jh105tg sox10:egfp* (Seiler et al., 2010) 
 jh109tg sox10:egfp* (Seiler et al., 2010) 
 knu3tg HuC/D:egfp (Olden et al., 2008) 
 (Reichenbach et al., 2008) 
 (Park et al., 2000) 
 zf15tg foxd3:egfp (Alves et al., 2010) 
DsRed zf148tg NBT:DsRed (Davuluri et al., 2010) 
 (Seiler et al., 2010) 
 (Peri and Nusslein-Volhard, 2008) 
kaede em2tg phox2b:kaede (Harrison et al., 2014) 
mCherry c264Tg; gmc607Et N.D (Kok et al., 2012) 
mrfp N.D sox10:mrfp (Uribe and Bronner, 2015) 

 N.D:  Not defined 

 
genes essential for ENS development and normal gut function by examining the 
distribution of enteric neurons47,48. Pietsch et al. isolated 6 mutations and 
described the lessen mutant which has a reduction in enteric neurons in the distal 
intestine. lessen was  subsequently mapped to the med24 gene42,45. Recently,  it 
was shown that lessen displayed delayed onset of motility and disturbed 
interstitial cell of cajal (ICC) in addition to the  ENS defects46. Similar genetic 
screens performed by Kulhman et al. isolated 13 mutations affecting zebrafish 
ENS with 4 mutants displaying ENS-specific defects and the other 9 displaying 
pleiotropic effects along with ENS defects. Of note among the ENS mutants 
identified by Kulhman et al. was gutwrencher, which had fewer enteric neurons 
and less coordinated waves of contraction along the gut in mutants at 5.5dpf47.  
 
 
ENS FUNCTIONAL GENETICS 
 
Morpholino-mediated gene knockdown 
Antisense morpholinos (MO) are synthetic oligonucleotides that can be used to 
knockdown target genes by blocking either protein translation48 or splicing49 and 
have been widely used in developmental biology research. MO knockdown in 
zebrafish for genes known to be involved in HSCR have reproduced the 
absence/loss of enteric neurons observed in HSCR patients and murine 
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models8,29,32,50. The same approach has been used in reverse genetics to study the 
function of newly identified candidate genes identified through genetic analysis 
of HSCR patients21,51. Recently our group evaluated the function of 20 genes, in 
which de novo mutations were discovered in HSCR patients, by MO knockdown in 
zebrafish and confirmed 4 of them were important for ENS development 
(manuscript submitted). Despite its proven usefulness in research, there are still 
potential problems with the use of MO52, notably off-target effects where any 
phenotype observed could be caused by the unintended knockdown of an 
irrelevant gene. In addition, there is an ongoing debate on how well MO 
knockdown and mutant phenotypes in zebrafish are correlated53,54. Therefore it 
is recommended that while deciding to use MO to interrogate gene function in 
ENS development in zebrafish, the experiments have to be carefully designed 
with all necessary controls included to enable one to distinguish between target 
gene-specific and off-target effects. Ideally, the MO knockdown phenotype should 
be verified by an independent experiment, such as mutant or knockout by 
targeted genome editing.  
 
Targeted genome editing 
Targeted genome editing is a relatively new technique which can be used to 
induce random insertion or deletion mutation (indel) at target coding sequences 
and thereby knock out genes as truncated proteins that are very often non-
functional. The latest generation of targeted genome editing utilizes the 
Crispr/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-
associated) system55-58 and has already been successfully adopted to knockout 
target genes in zebrafish59. The protocol has since been modified to induce 
biallelic indel in F0 progeny60. The first report using Crispr/Cas9 to study the ENS 
came when Bernier et al.61 knocked out the autism associated gene chd8 in 
zebrafish and reproduced the phenotype of reduced number of enteric neurons 
as observed in chd8 MO knockdown. Due to the high knockout efficiency by 
Crispr/Cas9, it is feasible to analyze the phenotype in F0 and hence replace MO 
with Crispr/Cas9 as a loss-of-function approach to study gene function. Based on 
this idea, rapid, high-throughput screening methods using Crispr/Cas9 in 
zebrafish with low off-target effect have been developed62,63. These methods will 
be useful for the HSCR research field, as more candidate genes are identified from 
NGS of patient genome a robust and reliable method is needed for their functional 
analysis. As a proof of principle we injected gRNAs targeting ret or sox10 together 
with Cas9 protein to 1 cell-stage Tg(phox2b:kaede) embryos and in both scenarios 
observed loss of enteric neurons at 5 dpf (Figure 2). This data demonstrates the 
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potential of Crispr/Cas9-mediated knockout as a primary tool for the functional 
study of HSCR genes.  

In addition to generating random indel, Crispr/Cas9 can be used to knock 
in specific SNP to target regions in human and mouse cells55,58. The protocol was 
adopted to correct the nonsense mutation in slca45a2b4/b4 mutant zebrafish and 
rescue the pigmentation defect64. The possibility of targeted knock-in SNP in 
zebrafish is valuable for analyzing variants identified from HSCR patients, 
especially in the case of missense mutations when loss-of-function approach by 
MO knockdown and Crispr/Cas9 knockout might not accurately reflect the 
functional consequences of the mutations.  

 
Figure 2. Crispr/Cas9 mediated knowndown in Tg(phox2b:kaede) zebrafish display aganglionosis of 
the distal intestine. The observed phenotype is similar to the phenotype seen on morpholino 
knockdown and that of ret mutant zebrafish. 
        
mRNA overexpression 
Most variants identified in HSCR patients are predicted to have loss-of-function 
effects and therefore gene knockdown or knockout in zebrafish will be the 
obvious choice to interrogate functional consequences. In certain scenarios, such 
as in Down syndrome-associated HSCR cases, a different approach is required. 
Down syndrome is the chromosomal anomaly most frequently associated with 
HSCR (2 to 10% of total HSCR cases)11. It has been hypothesized that over-
expression of gene(s) on chromosome 21 leads to a higher risk for developing 
HSCR. To prove this hypothesis a gain-of-function, over-expression model is 
required and this can be achieved by injecting in vitro transcribed mRNA of 
interest to zebrafish embryos65. Using this method our group investigated a 
selection of genes from human chromosome 21 and the effect of their 
overexpression in ENS development. We discovered that overexpression of 
ATP5O, encoding a sub-unit of ATP synthase complex, resulted in fewer enteric 
neurons, a phenotype that could explain the missing heritability of Down 
syndrome-associated HSCR. The same approach will also be useful to test the 
recently proposed mechanism that excessive deposition of extracellular matrix 
molecules along migration pathways within the gut delays enteric NCC migration 
and hence could be a potential cause of HSCR66. Although, one of the key issue 
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with mRNA overexpression is the stability of the overexpressed mRNA and for 
how long does it lasts in the embryo.   
 
Chemical Genetics 
Although genetic defects undoubtedly contribute to HSCR, to date known genetic 
variants only account for less than half of the cases. Furthermore, incomplete 
penetrance and difference in expressivity remain unexplained. These facts have 
led to the hypothesis that non-genetic factors might also be involved in disease 
development. To identify drugs that could disrupt ENS development, Lake et al.67 
used zebrafish embryos to screen a library of 1508 compounds. One drug, 
mycophenolate, was singled out as its administration to zebrafish led to 
incomplete gut colonization by enteric NCC and impaired ENS development. The 
same research group later published another report which used zebrafish 
embryos to screen common medicines frequently taken by women during early 
pregnancy and discovered ibuprofen caused HSCR-like absence of enteric 
neurons68. 

Chemical screening using zebrafish might also help the development of 
new HSCR therapeutic strategies. Autologous cell transplantation has recently 
become the focus of research on novel therapies for HSCR69,70. The idea is to 
isolate ENS stem cells from the gut and, after in vitro expansion, transplant these 
cells back into the patient’s aganglionic distal colon. However, HSCR-causing 
genetic variants may adversely affect the ability of the ENS stem cells to re-
populate the intestine. The gut microenvironment of HSCR patients could also be 
suboptimal for the transplanted cells to colonize the intestine. One possible 
solution is to pre-treat the stem cells before transplantation with 
pharmacological compounds that can facilitate re-population by promoting cell 
migration, proliferation, or differentiation. Through chemical screening using 
human pluripotent stem cell-derived ENS progenitor cells in culture, pepstatin A 
was identified to be capable of improving colonization of gut by transplanted cells 
in vitro and in vivo71.  Using existing mutant zebrafish lines that exhibit a HSCR-
like phenotype, similar chemical screens could be conducted and the results may 
be more informative as the complex ENS developmental process would be more 
accurately mimicked in vivo in zebrafish.  
 
PHENOTYPIC ANALYSIS OF ZEBRAFISH ENS 
 
Here we provide a snapshot of different assays for screening the zebrafish ENS 
and for the study of homologs of human genes identified to be associated with 
HSCR or other ENS defects. These tools can be utilized to gain a better insight of 
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the pathogenic mechanisms and might help to establish the connection between 
the genetic mutations identified in HSCR patients with that of the functionality of 
the ENS.  
 
Neuronal count and microscopy 
Enteric neurons must be generated in correct numbers for the development of 
normal gut function. In the developing zebrafish, the enteric precursors migrate 
along the gut and start differentiating into enteric neurons by 2dpf as shown by 
expression of the pan neuronal marker HuC/D8,39.  The migration of enteric 
precursors in the zebrafish gut is complete by 3dpf72. During ENS development, 
defects in the migration, differentiation or survival of enteric precursors could 
lead to alteration in neuronal number and distribution resulting in abnormal 
intestinal motility. Studies from several laboratories have shown that zebrafish 
ENS can be analyzed by comparing the enteric neuronal count of control embryos 
with that of treated or mutant embryos32,45,47.  

 
Figure 3. Enteric neuronal count in zebrafish embryos (A) Transgenic reporter line embryos 
displaying enteric neurons in the gut, ret mutants display aganglionosis and hypoganglionosis. (B, C) 
In order to count the enteric neurons in the zebrafish gut a selection can be made and image analysis 
tools can be used for counting. (D) Comparative analysis of neuronal count in wild type and to ret 
mutant lines, which display fewer enteric neurons in the most distal part of intestine. 
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Figure 4. Gastrointestinal motility assay performed in (A) Control zebrafish gut and (B) ret 
knockdown. . In vivo video recording of zebrafish gut from control (C) and ret knockdown (D) was 
performed followed by generating spatio temporal map from the video sequences. (E) Anterograde 
contraction seen in control zebrafish. (F) No anterograde contraction in ret knockdown. The lacks of 
enteric neurons in ret knockdown zebrafish affects the gut motility patterns as seen in the 
spatiotemporal map. 
 

 
Figure 5. Transit assay in zebrafish using microgavage. Shown in the panel is a comparison between 
WT and ret mutant zebrafish embryos at 7dpf. Fluoroscent beads were injected directly into the 
intestinal lumen and screened under fluoroscent microscope at 3 time points (0,3 and 24 hours post 
gavage). At 24 hours post gavage, the ret mutant still retains the fluoroscent beads (shown by arrow), 
while the WT fish don’t have any beads left. 
 
Manual counting of enteric neurons in the zebrafish intestine is laborious and 
time consuming. To overcome the difficulty of counting the enteric neurons in 
whole mount zebrafish intestine, Simonson et al. developed a semi- automated 
cell counting program based on MATLAB to effectively count and analyze co-
expression of different neuronal markers using 3D confocal image stacks73. We 
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have also developed a straightforward way to count the number of enteric 
neurons of zebrafish intestine in a semi-automated fashion using digital images 
captured by fluorescent microscopy. In-house developed algorithms with image 
analysis software from FIJI can be used for quantitative scoring of enteric 
neurons on a selected portion of intestine (Figure 3 B, C). 
 
Gut motility  
Gut motility is controlled by the ENS and modulated by different 
neurotransmitters. Functional and immunohistochemical studies demonstrated 
that the zebrafish intestine expresses a range of neurotransmitters including 5HT, 
NKA, VIP, PACAP, NOS and CGRP40,41. Gastrointestinal motility comprises a range 
of processes including (1) standing contraction; mixing food in stomach; (2) 
peristaltic movements in anterograde ( oral to anal) and retrograde (vomiting or 
regurgitation) directions and (3) phasic contraction of sphincters74. The zebrafish 
offers the possibility of imaging gut motility patterns in vivo using real time video 
microscopy41,47. Erratic and spontaneous contraction waves are observed by 3dpf 
(before the onset of feeding) and later (4dpf-7dpf), distinct anterograde, 
retrograde and rectal contractions are observed39. The zebrafish is stomach less 
prominent, so the retrograde contractions in the anterior intestine may take over 
the function of food mixing, whereas retrograde and anterograde contractions 
spread in both directions from mid intestine to mainly transport contents along 
the gut39.  
These zebrafish gut movements can be recorded and analyzed from video 
recordings to investigate the functioning control of gut motility patterns and the 
data  shown as  spatiotemporal maps of gut movement75. As an example, we show 
the gut motility assay in WT and ret knockdown zebrafish embryo (Figure 4). 
 
Gut transit assay 
The functional consequence of coordinated contractions of the zebrafish intestine 
can be measured by the intestinal transit assay76. Field et al. developed a method 
to visualize intestinal transit in zebrafish larvae in real time by feeding fish with 
normal larval feed mixed with fluorescent microspheres, which are non-
absorbable, non-digestible and thus traceable using fluorescent microscopy. This 
method is performed by immersing zebrafish larvae in a solution containing feed-
coated microspheres. Although individual larvae exhibit differences in their 
feeding such that they may ingest different amounts of food, pre-sorting is 
performed before an experiment to reduce variability. To overcome this shortfall, 
a newly established method known as microgavage was performed, which 
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utilizes the microinjection of microspheres directly into the lumen of the anterior 
intestine of larval zebrafish77. In both the methods, larvae are screened for the 
fluorescent microspheres in the intestine at different time points under 
fluorescent microscopy and the transit time measured by the time taken to expel 
the fluorescent beads (Figure 5).  
 
The microgavage method appears to be more consistent compared to the former, 
but it is equally time consuming and labor intensive. Nevertheless GI motility can 
be monitored in zebrafish larvae by using either of these methods and a 
comparison can be made between wild type and mutant/morphant zebrafish to 
identify and assess the effect of any gene on gut motility and transit time. Using 
such assays, it has already been shown that the degree of enteric neuron loss in 
zebrafish larvae correlates with the extent of intestinal transit deficits61,76. 
 
Cell tracking and live imaging 
The high-resolution study of embryonic development and disease modeling 
requires analysis of individual cells in context of an organism. The zebrafish 
provides an excellent model to study cell fate and track individual cell types 
during their cell division and progressive development. Genetic manipulation to 
express fluorescent or even photoconversible proteins by labeling specific cells 
allows cell lineage tracing for a particular cell type and live imaging in a particular 
organ or tissue in real time. Using two-photon confocal microscopy, it is possible 
to differentially label any cell and to fate map the photoactivated cell78. 
Transgenic reporter lines used for studying the ENS development of zebrafish in 
vivo have provided the ability to track any particular cell using photoconversible 
proteins44. Live image profiling of neural crest lineages in zebrafish using 
transgenic lines have been also performed and could be implemented for other 
transgenic lines as well as to better understand cell dynamics78. Altogether, such 
approaches can be used to visualize the migrating NCC population in time until 
they colonize the zebrafish gut.  
 
 
CONCLUSIONS AND FUTURE PROSPECTS 
Despite many years of research on ENS development, we still lack a complete 
understanding of the genetic basis of HSCR. Human genetic studies using NGS 
approaches have revealed many new HSCR genes and the list of candidate genes 
is increasing. To better understand the pathogenicity of mutations in the novel 
genes and how these genes control ENS development demands rapid and robust 
methods to functionally validate their effects on ENS development. The zebrafish 
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is an excellent model for the study of HSCR as rapid transgenic techniques, high-
resolution fluorescent in vivo imaging, and well-characterized promoters for 
tissue-specific expression already exist. Furthermore, the zebrafish provides a 
medium throughput system for the assay of potential treatment strategies using 
genome-editing technologies. Zebrafish genes can be customized to study their 
effects on the ENS by evaluating the neuronal count, gut motility and intestinal 
transit time. 
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Hirschsprung disease (HSCR) is a congenital intestinal motility disorder 
characterized by a lack of enteric ganglia (aganglionosis) of variable lengths of 
the gastrointestinal tract. Aganglionosis in HSCR is caused by a failure of enteric 
neural crest cells (NCC) to migrate, differentiate, proliferate or survive and form a 
functional network of neurons and glia, called the enteric nervous system (ENS)1. 
HSCR is a complex inherited disease and can be caused by (combinations of) 
mutations in distinct genes all affecting ENS development. Numerous studies 
have been performed to find genes involved in HSCR development, linkage 
studies and genome wide association studies (GWAS) have revealed a number of 
common disease-associated genes and variants. All the mutations and variations 
identified in HSCR cases explain approximately 30% of the overall genetic risk2. 
However, the vast majority of (sporadic) HSCR cases cannot yet be explained by 
the identified mutations or associations. This has led to the hypothesis that, in 
patients with HSCR, the majority of the disease risk may be explained by 
combinations of rare coding or non-coding variants in the identified and other 
unknown genes.  
 
 
GENOMIC APPROACHES TO STUDY GENETICS OF HSCR 
 
Since only a part of the overall genetic risk of HSCR can be explained by identified 
variants the question is how to proceed next? Should GWAS studies be performed 
further in the search for the missing heritability? GWAS and subsequent meta-
analysis has identified many robustly replicating common variants associated 
with many complex diseases. In HSCR, three GWAS have been performed mainly 
on sporadic HSCR cases from different ethnicities to identify additional HSCR 
genetic loci that could contribute to the disease risk3-5. However, in general the 
variants identified by GWAS usually explain only a small fraction of complex 
disease susceptibility6.  

One could indeed increase the number of patients and aim to identify 
additional loci. This is a common approach for common diseases, and provides 
good results. However, we have learned from these studies that the number of 
patients needed for such meta-studies are at a magnitude of what has been done 
so far for HSCR. Indeed thousands of patients are needed to obtain some 
additional loci6. Moreover, these additional loci will add only slightly to the 
overall genetic risk. In addition, as HSCR is a rare disease collecting thousands of 
patients is extremely difficult. Therefore, it is questionable whether this should 
be the focus of research for the missing heritability.  



General Discussion and Future Perspectives 
 

175 

7 
 

Should we then focus on rare disease associated variants? Variants have been 
categorized on the basis of allele frequencies as well as effect sizes, namely very 
common (5 – 50%), less common (1 -5%), rare (<1%) and private (restricted to 
probands and immediate relatives)7. It was postulated that rare mutations of 
severe effect can explain a substantial portion of complex human diseases8. These 
rare variants cannot be identified via GWAS studies, but with the advent of next 
generation sequencing (NGS) technology they are detectable in a large scale 
manner by looking at the exome or whole genome sequencing data. There are 
multiple examples of rare and low frequency variants associated with complex 
diseases as already summarized by Schork et al. in 20099. Assuming that indeed 
rare variants are involved it is worthwhile to search for them to decipher the 
complexity of HSCR.  

However such causative rare variant research poses difficulties as well. 
Finding rare inherited variants can be performed by exome or whole genome 
sequencing on individual patients. However, the difficulty is in how to confirm 
that the identified variants are associated with or causative for the disease? As in 
GWAS studies one relies on statistics. Commonly, burden tests are performed to 
determine whether identified variants in gene or gene networks are 
overrepresented in patients compared to the controls. As for GWAS studies, this 
requires large numbers of patients and controls. The numbers needed depend 
largely on the frequency of the variants in genes. For less common variants (1 -
5%) or rare (<1%) variants the numbers are within the hundreds and for private 
variants the numbers increase to thousands. Although possible, these types of 
studies are difficult to perform as well. An often-accepted argument for causality 
is the finding of a second family with a variant in the same gene. Whether this is 
always ‘statistically sound proof’ remains questionable. The same holds true for 
the search for de novo mutations. The chance of finding de novo mutations in 
genes connected to the disease process is low and finding these is often seen as 
additional evidence for disease causality. However, the fact that a variant is de 
novo is, on its own, not sufficient proof for causality.  In chapter 2 (and the next 
paragraph) we describe how additional evidence might be collected to make 
causality more likely. 
 
Identification of de novo mutations in HSCR 
Over the last few years, de novo mutations have been implicated in the etiology of 
several complex genetic diseases, including intellectual disability, autism and 
schizophrenia10. The rarest variants are de novo mutations and analysis of whole 
exome sequencing data from unaffected parents-affected child trios can identify 
such de novo variants. L-HSCR is highly heritable and follows mostly a dominant 
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mode of inheritance with incomplete penetrance11. Based on this fact, we exome 
sequenced 24 sporadic, non-syndromic HSCR patients to identify rare variants 
that had large contribution in manifestation of L-HSCR phenotype. (Chapter 2) In 
total, we found 28 de novo mutations distributed among 21 genes and 8 of them 
were found in RET, the major HSCR gene, corroborating the contributions made 
by de novo mutations in the etiology of L-HSCR. We carried out an unbiased in 
silico analysis of these newly identified de novo mutated genes for their 
prospective role in ENS development. In silico analysis revealed that RET and 
CKAP2L were enriched for rare variants in HSCR patients compared to controls, 
but only RET was confirmed in an independent cohort. None of the genes, besides 
RET, were linked to known ENS signaling pathways, although all of them were 
expressed by mouse ENCCs (E14.5) or NCC derived from human iPS cells.  

As mentioned above, a de novo appearance of a variant is on its own can’t 
prove causality. Therefore, we first searched for inherited mutations in our HSCR 
cohorts. This initial search did not give us statistical proof for causality (larger 
studies are ongoing). Did this mean that the variants found were not disease 
associated? We hypothesize that some might be associated, based on expression 
studies and we therefore decided to add functional proof instead of statistical 
proof. We tested all the de novo mutated genes (N=12) with a zebrafish 
orthologue by knockdown experiments in zebrafish. Morpholino (MO) mediated 
knockdown was done in Tg (-8.3phox2b:Kaede) transgenic zebrafish embryos that 
express the fluorescent protein Kaede in enteric neuron precursors and 
differentiated enteric neurons12. We found that 4 genes (DENND3, NCLN, NUP98 
and TBATA) displayed aganglionosis in the zebrafish intestine mimicking HSCR 
like phenotype. Is this proof enough? There is an ongoing debate on concordance 
between MO knockdown and mutant phenotypes in zebrafish13,14. In order to rule 
out this issue, we have been able to recapitulate similar phenotypes using the 
Crispr/Cas9 gene editing system for some of these genes (Cheng unpublished 
data).  

After finding functional proof that 4 genes might well be disease 
associated we are still left with the question whether we have enough convincing 
evidence to call these genes to be disease causing and associated with HSCR. Is 
our functional evidence comparable with the finding of a second family with a 
mutated gene?  All the evidence makes us propose that the 4 genes found 
contribute to disease development. Nonetheless, their contribution remains to be 
determined. We do think that our approach, genetics in combination with in vivo 
modelling, could be considered in the diagnostics of other rare diseases in which 
a private variant is found. Besides that, we plan to interrogate the role of these 
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four genes in ENCCs migration, proliferation, differentiation or survival using in-
vitro assays to establish their specific roles during ENS development. 
 
Family-based study to identify new HSCR genes 
To circumvent the problem of large numbers of patients, one might perform 
linkage analysis on (large) multigenerational families. Linkage analysis has again 
emerged as an extremely useful method for the genomic analysis of complex 
traits15. Both linkage analysis on families with Mendelian inheritance as well as 
sibpair analysis on smaller families has already been performed for HSCR. 
Linkage analysis resulted in the identification of the major HSCR associated loci 
and genes, RET and EDNRB16-20. Moreover, linkage and sibpair analysis resulted 
in the identification of additional HSCR susceptibility loci at 9q31, 3p21,   19q12, 
13q21 and 4q31.3-q32.3 respectively21-24.  

Nowadays these studies are not often performed any more as most 
families have already been used in such studies. However, the current technology 
to perform such studies is much better than 10 years ago. Linkage analysis is 
easier with the development of high density SNP arrays, and finding mutations 
has also become easier with NGS. Therefore, it may be worthwhile to rescreen 
unsolved families. This is what we did with a family in which a  previous study 
revealed HSCR linkage to 4q31.3-q32.324. (Chapter 3) We performed exome 
sequencing and variant prioritization to determine the genetic cause of HSCR in 
this family. We identified one main candidate in the linkage interval in exon 20 of 
LRBA. This variant was present in all five affected family members. Functional 
proof of the LRBA variant could not be established and we can’t ignore the fact 
that there might be another variant present in the non-coding DNA within the 
linkage region. We do show that MAB21L2, a gene embedded within an intron of 
LRBA, is important for enteric neural crest cell (ENCC) differentiation during ENS 
development in a zebrafish model. Whether MAB21L2 is the gene that contributes 
to disease development is however yet unclear. It shows that although exome 
sequencing facilitates finding mutations, pinpointing the real disease-causing 
gene is still difficult, and we are still not sure if we have identified the disease 
contributing variant. One could even argue that there is no such variant as linkage 
still is a matter of chance.  

The incomplete penetrance of the disease in the family suggests the 
involvement of other (rare) variants elsewhere in the genome. Therefore, we 
searched for variants present especially in known HSCR genes and genes 
associated with ENS development. We identified several candidates, among 
which was a rare RET coding variant in one branch of the family and inherited 
IHH, GLI3 variants along with a de novo mutation in GDNF (RET ligand) in the 
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second branch of the family. Functional studies confirmed the pathogenic nature 
of the variants identified in RET and IHH, confirming the importance of RET and 
Hedgehog signalling for ENS development. This study demonstrates that rare 
variants in multiple genes could lead to the development of HSCR, further 
illustrating the complexity of HSCR genetics.  

Finding multiple variants is due to the fact that we did a rigorous search 
for them. Many similar studies stop after finding a good candidate disease variant. 
It could be that for most diseases one could find multiple disease contributing 
variants when one would search better as we did in our studies.  
 
Identification and integration of predictive regulatory sequences for HSCR 
Until now, HSCR research has identified variants mainly in the protein coding 
DNA. In the human genome, protein coding genes are well studied sequences 
although they account for only 1.5% of the genome and  2% if untranslated 
regions (UTRs) are also included25. 80% of common human variants found in 
GWAS studies localize in the non-coding sequences26. Multiple studies outline the 
importance of the vast information hidden in the non-coding DNA, especially in 
the DNA regulatory elements (such as enhancers) for gene regulation at the level 
of transcription and translation.  

For HSCR we also have been searching for such non-coding variants. 
Comparative genomics approaches have identified a multispecies conserved 
enhancer region in intron1 of RET and within this enhancer region two strongly 
disease associated SNPs (rs2435357 and rs2506004) negatively influence the 
enhancer activity leading to lower RET expression27,28. These findings show that 
non-coding DNA variants play a role in the etiology of HSCR. So far the number of 
non-coding variants involved in HSCR is limited. This is due to the small sample 
size used for the GWAS analysis performed which makes finding common 
variants in these regions impossible and because we have not examined non-
coding regions for rare or private variants. The reason for this is that we do not 
know where to look and how to deal with the possible non-coding variants. As a 
first step in the identification of rare and private non-coding variants which 
contribute to HSCR, we searched for enhancer regions in a set of known and 
candidate genes for HSCR.  

The integrative analysis of the human epigenomic landscape for primary 
cells and tissues has revealed a genome-wide map of regulatory regions. 
Approximately 5% of each reference epigenome has enhancer and promoter 
signatures29. These signatures were made for many different tissues and for 
different developmental stages. 
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In chapter 4, we extracted gut-specific active enhancers from the human 
epigenome atlas for a set of genes known to be involved in ENS development. 
These gut specific enhancer regions for the most important ENS genes can be 
further investigated for mutation screening in HSCR patients. Moreover, we also 
searched for significantly enriched TF binding sites within these enhancer 
regions. We did this by using data for the sigmoid colon and from fetal large 
Intestine and compared this to control datasets (fetal thymus and fetal lung). 
Furthermore, in order to identify enriched functions for the identified TFs for the 
colon and fetal large intestine, we analyzed these genes using the Ingenuity 
Pathway Analysis (IPA) tool. An overlap between TF binding sites, identified from 
gut specific enhancers and upstream regulators of ENS genes, resulted in 
identification of the TFs JUN and TCF7L2 as significantly (p<0.005) enriched. 
These transcription factors, JUN and TCFL2, are associated with ERK/JNK and 
Wnt signaling pathways, respectively. Both these pathways have a role in ENS 
development.  

Having identified the enhancers for the most important ENS associated 
genes makes it possible to screen for non-coding DNA variations in HSCR 
patients. It should be noted however that the gut specific enhancer dataset is 
derived from data sets of only two individuals (one adult and one fetal).  It would 
be good to include more individuals at different stages of ENS development to be 
sure that we identified all important enhancers. The sequencing of these regions 
can be utilized by targeted sequencing followed up by reporter 
assays/ChIP/ATAC-seq as described by28, to determine possible functional effects 
of the identified non-coding variants.   
 
 
MODELLING HSCR: IN VIVO STUDIES 
 
In parallel to linkage and association studies, syndromic diseases have been 
crucial in identifying disease associated genes and understanding disease 
processes. HSCR occurs as an isolated trait in 70% of the cases, associated with a 
chromosomal abnormality in 12% of cases, and the occurrence of additional 
congenital anomalies in 18% of the cases30. Trisomy 21 leading to Down 
syndrome (DS) is the most frequent chromosomal abnormality associated with 
HSCR. The overall incidence of DS ranges from 2-10% in all HSCR cases30-32. DS 
patients have >100 fold higher risk of developing HSCR than the general 
population30.  

None of the established HSCR genes are localized on chromosome 21 
suggesting that overexpression of one or more genes on chromosome 21 may 
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have a substantial contribution to HSCR development. In chapter 5, we 
overexpressed mRNA of selected, highly conserved genes of chromosome 21 into 
a transgenic zebrafish reporter line Tg (-8.3phox2b:Kaede) embryos that express 
the fluorescent protein Kaede in ENS progenitors and found that elevated levels 
of one of the chromosome 21 genes, ATP5O resulted in altered ENS development 
and an HSCR-like phenotype. Moreover, we show that ATP5O is expressed in the 
zebrafish gut and in the myenteric and submucosal ganglia of human postnatal 
colon sections. This is the first demonstration of altering the expression of 
chromosome 21 genes in a zebrafish model to investigate their potential role in 
ENS development. Moreover, we also carried out a study to find any epistatic 
interaction of ATP5O with ret in zebrafish to investigate their potential 
interaction during ENS development, however our zebrafish data suggests that 
they act independently. 

Our data suggest that ATP50 might well be the link between DS and 
HSCR. However, strong evidence of ATP5O involvement with HSCR in humans is 
still lacking. We have not found any mutations in ATP50 gene in isolated HSCR 
cases nor did we find any association of a variant to the disease. However, ATP50 
is localized in the HSCR-Down syndrome critical region.  

 
Functional analysis of HSCR genetic data  
As mentioned already, proving that the variants found by NGS are disease 
associated is difficult. A combination of in vitro and in vivo work can greatly help 
in proving causality. The use of animal models is possible as the pathways and 
mechanisms involved in ENS development are highly conserved33,34.  

Within our studies we opted for the zebrafish as our model system. 
Zebrafish (Danio rerio) emerged as an attractive vertebrate model for the 
geneticists almost 3 decades ago35. It has proven to be a powerful tool due to high 
fecundity, ex utero development, transparent embryos and the ease of genome 
manipulation and editing (Morpholinos and Crispr/Cas9). In chapter 6, we 
review the use of the zebrafish model in HSCR research. We discuss the use of 
zebrafish mutants, transgenic reporter lines and different available methods for 
conducting ENS functional screens using reverse genetics. Nearly all the HSCR 
genes involved with HSCR are required for ENS development in zebrafish as 
well36. In silico programs can predict the pathogenicity of the variant and in vitro 
assays also help to a certain extent, but the use of in vivo models is indispensable 
in understanding disease (HSCR) pathogenesis. 
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FUTURE PERSPECTIVE 
 
Although previous human genetic studies and recent implementation of NGS has 
greatly transformed our understanding on HSCR, validating causality still 
remains challenging as is the identification of the genes mutated in the yet 
unexplained HSCR cases.  We propose future research to focus on: 
 
Coding mutations and Non-coding mutations 
By screening larger cohorts by exome or whole genome sequencing one will be 
able to statistically prove the involvement of coding variants and non-coding 
variants in new genes. We hypothesize that non-coding mutations are far more 
important than we currently can prove. The identified gut regulatory regions 
(enhancers) as described in Chapter 4 can be screened for non-coding DNA 
variants. The sequencing of the active enhancers of these ENS genes, to identify 
rare variants in the non-coding DNA, can greatly improve our understanding of 
noncoding genetic contributions to HSCR. 
 
Somatic mutations  
Besides coding and non-coding mutations it can be hypothesized that somatic 
mutations also play a significant role. So far, there is no comprehensive study on 
somatic mutations, mutations only present in the progenitors of the ENS. 
Comparison of exome sequencing data derived from blood DNA compared to 
exome sequencing data derived from ENCC of HSCR patients can reveal such 
somatic mutations.  
 
Pathway disturbances  
In a complex disease such as HSCR, disease development is caused by multiple 
genes in concert. During ENS development, NCC undergo extensive migration to 
colonize the most distal part of the colon and potentially these progenitor cells 
interact with many different molecular pathways, which may all  influence their 
migratory potential.  Genes, proteins and small molecules could interact to form a 
complex network known as modules or subnetworks. We can study these 
interacting partners using a network biology based approach to identify 
dysregulated pathways affecting ENS development. Functional annotation and 
validation of HSCR genes using a zebrafish model provides a quick and efficient 
method to determine their pathogenic effect on ENS development (as described 
in chapter 5, 6). We can also design similar experiments for epistatic interaction 
of newly identified genes to get an insight into disrupted pathways/mechanisms 
involved with ENS development. 
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CONCLUSIONS 
 
In this thesis we describe various approaches which we undertook to better 
understand and unravel the complexity of HSCR genetics: implementation of NGS 
in HSCR research; the contribution of rare de novo genetic variants in HSCR; non-
coding DNA variants associated with HSCR using in silico approaches; reverse 
genetic approaches in zebrafish and a possible genetic link between HSCR and DS. 
Taken together the ultimate goal of deciphering the complexity of HSCR is far 
from complete and requires further investigations using a wide range of study 
designs. HSCR is no longer a lethal condition due to the implementation of 
modern surgical procedures, but a better understanding of HSCR genetics and the 
mechanisms involved in the disease pathogenesis would improve diagnosis, 
prevention and future treatment. This will benefit patients directly when they 
undergo genetic screening for their condition and will potentially offer 
scientists/clinicians new targets for the development of novel therapies to treat 
HSCR.  
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Summary 
 
The enteric nervous system (ENS) innervates the wall of gastrointestinal (GI) 
tract and governs many functions such as gut motility, local blood flow, and 
mucosal transport. It is composed of a meshwork of neurons and glial cells that 
are organized in ganglia, which are found throughout the entire gut. The ENS is 
embryologically derived from the neural crest and failure of neural crest cells 
(NCC) to migrate, differentiate, proliferate or survive and thereby form a 
functional ENS leads to Hirschsprung disease (HSCR), also known as intestinal 
megacolon. HSCR is a congenital disease characterized by life threatening 
constipation, abdominal distention and vomiting or neonatal enterocolitis. The 
incidence of HSCR is approximately 1:5000 live births and varies with ethnicity.  
 HSCR is a complex genetic disorder that shows clinical variability, and 
Mendelian and non-Mendelian inheritance. In most cases HSCR occurs as an 
isolated trait, however, it is found associated with many other diseases or 
syndromes in 30% of cases. In ~90% of all cases the disease it not present in any 
family member (sporadic form), although in around 10% of all cases the disease 
occurs more often in a family (familial form). Many different genetic studies have 
been performed and have resulted in the identification of mutations in 16 genes 
and in 5 HSCR susceptibility loci. Mutations is RET (the major HSCR gene) have 
been found in around 50% of familial patients and 10-15% of sporadic patients. 
Mutations in genes other than RET occur predominantly in syndromic cases. 
However, all the mutations and variations identified in HSCR cases explain 
approximately 30% of the overall genetic risk. This has led to our hypothesis that 
there are probably several other yet unknown genes contributing to HSCR 
development. Thus the aim of this thesis is to finding novel HSCR genes, mutation 
within these genes and other non-coding regulatory regions that could explain 
part of the missing heritability. 

Chapter 2 of this thesis describes the identification of novel genes 
harbouring de novo mutations in sporadic HSCR patients. In recent years, de novo 
mutations have been implicated in the etiology of several complex genetic 
diseases, including intellectual disability, autism and schizophrenia. Exome 
sequencing studies of 24 sporadic, non-syndromic HSCR patients led to the 
identification of 28 de novo mutations among 21 genes and 8 of them were 
present in RET. None of the newly identified genes, besides RET, were linked to 
known ENS signaling pathways or present in our HSCR cohorts. For functional 
validation of these genes, we tested them using morpholino mediated knockdown 
in Tg (-8.3phox2b:Kaede) transgenic zebrafish embryos that express the 
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fluorescent protein Kaede in ENS progenitors. Knockdown of 4 genes (DENND3, 
NCLN, NUP98 and TBATA) resulted in gut aganglionosis in the zebrafish intestine 
mimicking a HSCR-like phenotype. In short, we have identified 4 candidate genes 
for HSCR that are known to be involved in CNS development and our studies now 
suggest that they are also involved in ENS development. 
 Historically, most of the HSCR genes and loci have been identified using 
linkage studies in multigenerational families. Such studies are even more suited 
in cases of rare diseases, where it is difficult to perform large scale GWAS studies 
due to the requirement of thousands of cases and controls. Linkage analysis has 
again emerged as an extremely useful approach for the genomic analysis of 
complex traits. A linkage study previously performed on a large Dutch multi-
generational HSCR family revealed linkage to 4q31.3-q32.3.  

Chapter 3 describes our exome sequencing study used to determine the 
genetic cause of HSCR in this family and the identification of a possible disease-
causing mutation(s) in the linkage region. We identified one main candidate in 
the linkage interval in exon 20 of the LRBA gene. In silico prediction suggested an 
effect on mRNA splicing, but functional assays did not confirm this. We postulated 
that it could be an enhancer mutation for MAB21L2 (a gene embedded within an 
intron of LRBA), but could not confirm that either. However, mab21l2 is 
important for ENS development of zebrafish. Incomplete penetrance of HSCR in 
this family suggests the involvement of other (rare) variants elsewhere in the 
genome. Therefore, we searched for variants present especially in HSCR genes 
and genes associated with ENS development. We identified several candidates, 
among which were a rare RET coding variant in one branch of the family and 
inherited IHH, GLI3 variants along with a de novo mutation in GDNF (RET ligand) 
in the second branch of the family. Functional studies confirmed the pathogenic 
nature of the variants identified in RET and IHH, confirming the importance of 
RET and Hedgehog signalling for ENS development. This study demonstrates that 
rare variants in multiple genes lead to the development of HSCR, further 
illustrating the complexity of HSCR genetics. 

Most of the HSCR research has focused on the identification of coding 
variants in the genes associated with HSCR, although coding mutations do not 
explain more than ~30 % of all  cases. The identification of non-coding DNA 
variants linked to complex diseases has been difficult, although many non-coding 
SNPs have been linked to human diseases. Chapter 4 describes our strategy to 
identify novel regulatory elements involved in ENS development and potentially 
with HSCR. We used existing epigenome atlas datasets in conjunction with a 
computational approach to catalogue all the active enhancers of the sigmoid 
colon and the fetal large intestine. We mapped them to a set of 115 candidate 
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HSCR genes. We identified 20 transcription factors (TF) that are overrepresented 
in gut enhancers compared to the control dataset. Upstream regulator analysis of 
the ENS genes and an overlap with highly enriched TFs on gut enhancers resulted 
in identification of JUN and TCF7L2 as highly enriched TFs. Our studies offer 
datasets for screening non-coding mutations in regulatory regions of candidate 
HSCR genes. These datasets can be utilized for functional follow-up of GWAS loci, 
including fine mapping of GWAS signal(s).  

HSCR occurs as an isolated trait in 70% of the cases, associated with a 
chromosomal abnormality in 12% of cases, and the occurrence of additional 
congenital anomalies in 18% of the cases. Trisomy 21, leading to Down syndrome 
(DS) is the most frequent chromosomal abnormality associated with HSCR. None 
of the established HSCR genes are localized on chromosome 21 suggesting that 
overexpression of one or more genes on chromosome 21 may contribute to HSCR 
development. Chapter 5 describes our study to test this hypothesis. We 
overexpressed mRNA of selected, highly conserved chromosome 21 genes into a 
transgenic zebrafish reporter model Tg (-8.3phox2b:Kaede). We prioritized 21 
genes and overexpressed them by microinjecting in vitro transcribed capped 
mRNAs into 1-cell-stage zebrafish embryos and scored the phenotypes at 5 days 
post fertilization (dpf). We showed that overexpression of ATP5O (ATP synthase, 
H+ transporting, mitochondrial F1 complex, O subunit) leads to a disturbed ENS 
with a reduced number of enteric neurons, strongly implicating ATP5O as a 
contributor to a HSCR phenotype. ATP5O gene is highly expressed in mouse 
enteric NCC (E14.5), zebrafish gut and in enteric ganglia of human post-natal 
colon sections. Our findings suggest that an extra copy of this gene may 
contribute to HSCR development in patients with DS.  

Use of NGS in solving the complex genetics of HSCR provides a list of 
many variants present in many different genes. Pinpointing the functional 
relevance of newly identified genetic variants in HSCR is rather difficult. Use of 
animal models has greatly helped in unravelling the function of many genes in 
development and disease. The zebrafish has emerged as a prominent vertebrate 
model for studying development processes and modeling human diseases and we 
therefore chose this model animal for our studies. In chapter 6, we review the 
use of the zebrafish model in HSCR research. We discuss the development of gut 
and ENS in zebrafish, the use of transgenic reporter lines and zebrafish mutants 
in understanding HSCR genetics. The zebrafish genome can be easily manipulated 
to knock-out target genes or induce point mutations. We also discuss the different 
available methods for conducting phenotypic analysis of the ENS in the zebrafish 
gut. A range of assays, such as enteric neuronal counts, gut motility studies, 
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intestinal transit and live cell tracking and imaging can be used to screen and 
assess the ENS.  

Finally in chapter 7, we discuss the inference drawn from the research 
described in this thesis. We emphasize the role of rare coding and non-coding 
DNA variants in the etiology of HSCR and the use of a zebrafish model for 
studying ENS development. We conclude that although deciphering the genetic 
complexity of HSCR is not easy, our work, and that of others, has increased our 
understanding of the genetics of this disease.  
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Samenvatting 

 
Het enterische zenuwstelsel (EZS) innerveert de wand van het maagdarmkanaal 
en reguleert vele functies zoals darmmotiliteit, lokale doorbloeding en mucosale 
transport. Het bestaat uit een vlechtwerk van neuronen en gliacellen die door 
ganglia georganiseerd zijn, deze bevinden zich overal in de gehele darm. Het EZS 
is embryologisch afgeleid van de neurale lijst en het falen van neurale cellen 
(NCC) bij het migreren, differentiëren, prolifereren en overleven waardoor er een 
functionele EZS leidt tot de ziekte van Hirschsprung (HSCR), ook wel bekend als 
intestinale megacolon. HSCR is een aangeboren ziekte die wordt gekenmerkt 
door levensbedreigende verstopping, opgezette buik en braken of neonatale 
enterocolitis. De incidentie van HSCR is ongeveer 1:5000 levendgeborenen en 
varieert met etniciteit. 

HSCR is een complexe genetische aandoening die klinische variabiliteit 
laat zien en Mendeliaanse en niet-Mendeliaanse overerving. In de meeste 
gevallen treedt HSCR als een geïsoleerd eigenschap, maar het wordt vaak 
geassocieerd met vele andere ziekten of syndromen, in 30% van de gevallen. In ~ 
90% van alle gevallen is de ziekte niet aanwezig in een familielid (sporadische 
vorm), hoewel de ziekte bij ongeveer 10% van alle gevallen vaker voorkomt bij 
een gezin (familiale vorm). Veel verschillende genetische studies zijn uitgevoerd 
en hebben geleid tot de identificatie van mutaties in 16 genen en in 5 HSCR 
gevoelige loci. In het RET gen (het major HSCR gen) zijn er mutaties gevonden in 
ongeveer 50% van familiale patiënten en in 10-15% van sporadische patiënten. 
Mutaties in andere genen dan RET zijn voornamelijk gevonden in syndromatische 
gevallen. Echter, alle mutaties en variaties die in HSCR gevallen zijn gevonden 
verklaren ongeveer 30% van het totale genetische risico. Dit heeft geleid tot onze 
hypothese dat er waarschijnlijk andere verschillende en tot nog toe onbekende 
genen bijdragen aan de ontwikkeling van HSCR. Het doel van dit onderzoek is het 
vinden van nieuwe HSCR genen, mutatie in deze genen en andere niet-coderende 
regulerende gebieden die de ontbrekende erfelijkheid deels kunnen verklaren. 

Hoofdstuk 2 van dit proefschrift beschrijft de identificatie van nieuwe 
genen die de novo mutaties havens in sporadische HSCR patiënten. De laatste 
jaren zijn de novo mutaties betrokken geweest in de etiologie van verscheidene 
complexe genetische ziekten, waaronder verstandelijke beperking, autisme en 
schizofrenie. Exome sequencing studies van 24 sporadische, non-syndromale 
HSCR patiënten heeft geleid tot de identificatie van 28 de novo mutaties in 21 
genen en waarvan 8 aanwezig waren in RET. Geen van de nieuw geïdentificeerde 
genen naast RET, waren gekoppeld aan bekende EZS signaalwegen of waren 
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aanwezig in onze HSCR cohorten. Voor de validatie van deze genen, hebben we ze 
getest met behulp van morfolino gemedieerde knock-down in Tg (-
8.3phox2b:Kaede) transgene zebravis embryo's die het fluorescente eiwit Kaede 
produceren in EZS voorlopers. Knockdown van 4 genen (DENND3, NCLN, NUP98 
en TBATA) resulteerde in aganglionosis in de darm van de zebravis waarin het 
HSCR-achtige fenotype werd nagebootst. Kortom, we hebben 4 kandidaatgenen 
geïdentificeerd voor HSCR waarvan bekend is dat ze betrokken zijn bij de 
ontwikkeling van het centrale zenuwstelsel en onze studies suggereren nu dat ze 
ook betrokken zijn bij de ontwikkeling van EZS. 

Historisch gezien zijn de meeste HSCR genen en loci geïdentificeerd via 
linkage studies in multi generatie families. Dergelijke studies zijn zelfs geschikter 
in het geval van zeldzame ziekten, waarbij het moeilijk is om grootschalige GWAS 
studies te verrichten vanwege het vereiste van duizenden patiënten en controles. 
Linkage analyse is weer naar voren gekomen als een zeer nuttige benadering 
voor de genomische analyse van ingewikkelde eigenschappen. In een linkage 
studie, eerder uitgevoerd op een grote Nederlandse multi-generatie HSCR familie, 
is er een koppeling gevonden van 4q31.3-q32.3. 

Hoofdstuk 3 beschrijft onze exome sequencing studie die gebruikt is om 
de genetische oorzaak van HSCR in deze familie en de identificatie van een 
mogelijke ziekte-veroorzakende mutatie(s) in de linkage regio te bepalen. We 
hebben een belangrijke kandidaat geïdentificeerd in de koppeling interval in exon 
20 van het gen LRBA. In silico voorspelling suggereerde een effect op mRNA-
splitsing, maar functionele testen hebben dit niet bevestigd. We veronderstelden 
dat het een enhancer mutatie voor MAB21L2 (een gen ingebed in een intron van 
LRBA) zou kunnen zijn, maar dat konden we niet bevestigen. Echter is mab21l2 
belangrijk voor EZS ontwikkeling bij de zebravis. Incomplete penetratie van HSCR 
in deze familie suggereert de betrokkenheid van andere (zeldzame) varianten 
elders in het genoom. Daarom zochten we naar varianten die vooral aanwezig 
zijn in HSCR genen en genen die geassocieerd zijn met EZS ontwikkeling. We 
identificeerden een aantal kandidaten, waaronder een zeldzame RET coderende 
variant in een tak van de familie en geërfde IHH, GLI3 varianten samen met een de 
novo mutatie in GDNF (RET ligand) in de tweede tak van de familie. Functionele 
studies bevestigden de pathogene aard van de varianten die in RET en IHH zijn 
geïdentificeerd, waarmee het belang van de RET en Hedgehog signalering voor 
EZS ontwikkeling werd bevestigd. Deze studie toont aan dat zeldzame varianten 
in meerdere genen tot de ontwikkeling van HSCR leiden, die de complexiteit van 
HSCR genetica illustreren. 

Het meeste HSCR onderzoek richt zich op de identificatie van coderende 
varianten in genen geassocieerd met HSCR, hoewel coderende mutaties niet meer 



192 

dan ~30% van alle gevallen kunnen verklaren. De identificatie van niet-coderend 
DNA varianten gekoppeld aan complexe ziekten is moeilijk, alhoewel veel niet-
coderende SNPs zijn gekoppeld aan menselijke ziekten. Hoofdstuk 4 beschrijft 
onze strategie om nieuwe regulerende elementen te identificeren die betrokken 
zijn bij de ontwikkeling van EZS en mogelijk met HSCR. We hebben bestaande 
epigenome atlas datasets gebruikt in combinatie met een computationele 
benadering om alle actieve enhancers van de sigmoïde colon en foetale dikke 
darm te catalogiseren. We hebben hen toegewezen aan een set van 115 
kandidaat-HSCR genen. We hebben 20 transcriptiefactoren (TF) geïdentificeerd 
die overgerepresenteerd zijn in de darm enhancers vergeleken met de controle 
dataset. Opwaartse regulator analyse van de EZS genen en een overlap met 
hoogverrijkt TF's op darm enhancers leidde tot de identificatie van JUN en 
TCF7L2 als hoogverrijkt TF. Onze studies hebben datasets voor het screenen van 
niet-coderende mutaties in regulerende gebieden van kandidaat HSCR genen. 
Deze datasets kunnen worden gebruikt voor functionele follow-up van GWAS 
loci, inclusief het in kaart brengen van GWAS signaal. 

HSCR komt voor als een geïsoleerde eigenschap in 70% van de gevallen, 
gepaard met een chromosomale afwijking in 12% van de gevallen en het 
voorkomen van bijkomende aangeboren afwijkingen bij 18% van de gevallen. 
Trisomie 21, wat leidt tot het syndroom van Down (DS), is de meest 
voorkomende chromosomale afwijking geassocieerd met HSCR. Geen van de 
vastgestelde HSCR genen zijn gelokaliseerd op chromosoom 21, suggererend dat 
overexpressie van één of meer genen op chromosoom 21 zouden kunnen 
bijdragen aan de ontwikkeling van HSCR. Hoofdstuk 5 beschrijft onze studie om 
deze hypothese te testen. mRNA van geselecteerde, sterk geconserveerd 
chromosoom 21 genen in een transgeen zebravis reporter model Tg (-8.3phox2b: 
Kaede) werden in overexpressie gebracht. We prioriteerden 21 genen en 
brachten ze in overexpressie door in vitro getranscribeerd afgetopte mRNAs te 
injecteren in 1-cel-stadium zebravis embryo’s en scoorden de fenotypes in 5 
dagen na de bevruchting). We hebben aangetoond dat overexpressie van ATP5O 
(ATP synthase, H + transport, mitochondriaal F1 complex, O subunit) leidt tot een 
verstoord EZS met een verminderd aantal enterische neuronen en sterk 
betrokken ATP5O als bijdrage aan een HSCR fenotype. Het ATP5O gen komt hoog 
tot expressie in het enterische NCC (E14.5) van de muis, darm van de zebravis en 
in enterische ganglia van menselijke postnatale colon secties. Onze resultaten 
suggereren dat een extra kopie van dit gen kan bijdragen aan HSCR ontwikkeling 
bij patiënten met DS. 

Het gebruik van NGS in het oplossen van de complexe genetica van HSCR 
geeft een overzicht van de vele varianten die aanwezig zijn in vele verschillende 
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genen. Het aanwijzen van de functionele relevantie van nieuw geïdentificeerde 
genetische varianten in HSCR is nogal moeilijk. Het gebruik van dierlijke 
modellen heeft enorm geholpen in het ontrafelen van de functie van vele genen in 
de ontwikkeling en ziekte. De zebravis heeft zich ontpopt als een prominent 
gewerveld model voor het bestuderen van de ontwikkeling van processen en het 
modelleren van ziekten bij de mens en daarom hebben we dus voor dit diermodel 
gekozen voor onze studies. In hoofdstuk 6 bespreken we het gebruik van het 
zebravis model in HSCR onderzoek. We bespreken de ontwikkeling van darmen 
en EZS in zebravissen, het gebruik van transgene reporter lijnen en 
zebravismutanten voor het begrijpen van de HSCR genetica. Het zebravis genoom 
kan gemakkelijk worden gemanipuleerd om knock-out doelwit genen of 
puntmutaties te induceren. We bespreken ook de verschillende beschikbare 
methoden voor het uitvoeren van een fenotypische analyse van het EZS in de 
darmen van een zebravis. Een reeks assays, zoals enterische neuronale tellingen, 
darmmotiliteit studies, darmpassage en live cell tracking en imaging kunnen 
worden gebruikt voor het screenen en beoordelen van het EZS. 

Tot slot in hoofdstuk 7, bespreken we de conclusie die is getrokken uit 
de in dit proefschrift beschreven onderzoek. Wij benadrukken de rol van 
zeldzame coderende en niet-coderende DNA varianten in de etiologie van HSCR 
en het gebruik van een zebravis model voor de studie van de ontwikkeling van 
het EZS. We concluderen dat, hoewel het ontcijferen van de genetische 
complexiteit van HSCR niet gemakkelijk is, heeft ons werk en dat van anderen ons 
begrip voor de genetica van deze ziekte vergroot. 
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