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Chapter 1 

General introduction and scope of the thesis 

1.1. General introduction to prostate cancer 

The prostate is a gland of the male reproductive system that is highly dependent on the 

androgens testosterone (T) and dihydrotestosterone (DHT) for its development and 

homeostasis. Prostate cancer (PCa), mostly affects men above the age of fifty and has been 

associated with „Western‟ lifestyle and diet (1, 2). PCa is the most frequently occurring 

gender-specific carcinoma for men, with an estimated 417,000 new cases and 70,100 cancer-

related deaths in Europe in 2014 (3, 4). As these numbers indicate, a large discrepancy 

between diagnosed cases and fatalities exists. Many of the detected tumors are growing 

slowly and many men die with PCa, rather than from PCa. However, men can suffer from 

aggressive forms that are metastasizing and require early treatment. These highly 

heterogeneous outcomes highlight the necessity of well-powered risk stratification to 

discriminate insignificant from aggressive tumors. 

If localized, PCa is treated with curative intent and clinical protocols usually involve either 

surgical removal of the prostate via radical prostatectomy (RP) or a radiation-based therapy 

(5). In case of tumor-regrowth after RP, a systemic therapy is applied to prevent the tumor 

from growing and spreading further (6). Since prostate cells require T or DHT for their 

growth, the androgen receptor (AR) pathway plays a crucial role in PCa development and 

progression. Androgen deprivation therapy (ADT) has been established as the standard 

treatment strategy for metastatic PCa (7, 8). During ADT, androgen production is actively 

suppressed via surgical or chemical castration, leading to a reduction in hormone levels and 

tumor size (7). However, ADT is criticized as provisional treatment strategy due to the 

inevitable occurrence of castration-resistant prostate cancer (CRPC) after treatment, a 

phenotype that no longer relies on normal androgen blood levels (9, 10). Once PCa has 

become castration-resistant, it is highly unlikely to be cured and treatment options mainly 

focus on chemotherapy and second line hormone therapies as palliative care. Here, it is 

important to note that although CRPC does not respond to ADT, AR signaling is still active 

and can be acted on (11). For this reason, potent anti-androgens such as enzalutamide or 

abiraterone, an inhibitor of androgen synthesis that blocks CYP17, are still effective in many 

patients, albeit only for a limited time (12–14). 

The described therapy options pose a burden on both patients and healthcare systems, and as a 

result, it is crucial to know upfront which patients will benefit from the different treatment 

regiments, often referred to as „personalized healthcare or „precision medicine‟. Despite many 

efforts, assigning an appropriate treatment course remains one of the major challenges in PCa 

therapy, as current clinical protocols lack reliable biomarkers with sufficient performance 

(discussed below). Therefore, novel biomarkers with better diagnostic, prognostic and 

predictive potential are urgently needed. 
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1.2. Current and emerging strategies for diagnosing and staging prostate cancer 

Usually, PCa is diagnosed via a combination of different approaches to avoid 

misclassification based on initial test results. In Western societies, digital rectal examination 

(DRE), and examining blood serum levels of the prostate-specific antigen (PSA, also known 

as kallikrein-3 / KLK3) provide the first indication of presence of prostate cancer (15, 16). 

During DRE, a urologist examines the posterior side of the prostate by rectal insertion of a 

finger to feel for abnormalities such as bumps, indurations or increased size (17). Since DRE 

is limited to physiological alterations on the dorsal side of the prostate, complimentary 

approaches such as PSA testing have been developed, however, discussions about the 

currently used cutoff values for PSA serum concentration are still continuing as additional 

data is published (18). Moreover, despite being a highly sensitive measure of prostate tissue 

growth, increased PSA serum levels are not specific to PCa and can be caused by other benign 

conditions such as benign prostate hyperplasia (BPH) and prostatitis (19). This lack of PCa-

specificity leads to the diagnosis of insignificant tumors and subsequent treatment of patients 

with insignificant localized disease due to PSA testing (15, 20–22). Moreover, as it is 

common practice to perform a prostate biopsy upon positive DRE or abnormal PSA testing to 

confirm presence of PCa, a substantial number of avoidable biopsies is performed every year 

(20, 23, 24).  

Biopsies are often guided by ultrasound-based transrectal ultrasonography (TRUS) (25) and 

most commonly performed transrectally, though it is also possible to access the prostate tissue 

through the urethra or through the perineum (26). The sampled tissue is subsequently 

examined microscopically by a pathologist and graded according to the Gleason grading 

system for prognostic evaluation (27). Here, the final Gleason score consists of two grades, 

with the first score representing the most common tumor pattern, while the second score 

represents the second most common pattern found in the sample. Both grades range from 1 to 

5 indicating decreasing tissue differentiation and worsening prognosis, where a combination 

of 4+3=7 is considered worse than 3+4=7 (27).  Although guiding technologies are 

improving, side effects such as general discomfort during the procedure, bleeding and 

infections can occur due to biopsy sampling (28, 29). Moreover, biopsies may miss the area 

containing tumor tissue, which can lead to a false negative patient diagnosis. 

In case of a negative initial tumor biopsies, additional biopsies or a urine test for the long non-

coding RNA (lncRNA) PCA3 are accredited steps to validate the initial screening results (30–

32). Generally, lncRNAs are similar in structure and cellular processing to messenger RNAs 

of protein-coding genes, however, by definition they do not harbor a functional open reading 

frame that is actively translated (see Chapter 2 for more information). This family of RNAs 

also shows highly tissue-specific expression, which in the case of PCA3 is associated with 

PCa development and can be used as diagnostic biomarker (30). Other recently introduced 

diagnostic tools for PCa include the gene fusion TMPRSS2-ERG (31, 33), the PSA-based 

Prostate Health Index (PHI) and 4Kscore (34–36), a combination of TMPRSS2-ERG and 

PCA3 called MiPS (37), the mitochondrial DNA-based Prostate Core Mitomic Test, as well 

as ConfirmMDx, an epigenetic test measuring DNA methylation of three marker genes to 

predict the results of repeat biopsies after initial negative biopsies (38, 39).  
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Moreover, imaging based methods such as magnetic resonance imaging (MRI), computed 

tomography (CT), positron emission tomography (PET) and single-photon emission 

computed tomography (SPECT) could be used as potential diagnostic tools. However, their 

application for PCa diagnosis is often limited by their soft tissue resolution or a lack of 

appropriate tracer compounds, and hence they are mainly used for cancer staging by (bone) 

metastases detection at this point in time (25), with the exception of MRI (40–42). Further 

methodologies aiming to improve PCa prognosis are currently under development and include 

radiolabelled antibodies against prostate-specific membrane antigen, PSMA (ProstaScint 

(43)), radiolabelled bombesin analogues (44), 18F-fluoro-deoxy-glucose (FDG) (45, 46), or 

targeting CXCR4 (47). 

Lastly, prognostic PCa classifiers based on measuring gene panels have also been under 

development and some have become commercially available, such as Oncotype DX 

(Genomic Health Inc.), Prolaris (Myriad Genetics Inc.), Decipher (GenomeDx Biosciences 

Inc.), ProMark (Metamark Genetics Inc), SelectMDx (MDxHealth Inc) and ExoDx Prostate 

IntelliScore (Exosome Diagnostics Inc) (36, 38, 39, 48, 49). It has to be noted though, that the 

mentioned tests represent a number of recently released products that have not yet been 

widely applied in a clinical context and are still under evaluation. Other promising PCa 

markers yet to be clinically utilized include miRNA profiles (50–52), the PTEN tumor 

suppressor (23, 53) and cMYC oncogene (54–56), as well as recurring copy number 

alterations (57, 58). 

1.3. Molecular characteristics of prostate cancer 

Cancer is defined as uncontrolled proliferation of abnormal cells that is termed „malignant‟ 

once the involved cells are able to cross tissue borders and spread to adjacent tissues or 

disseminate to distant sites via the bloodstream or lymphatic vessels. Before reaching this 

abnormal stage, a cell has to overcome several obstacles posed by the human body and its 

immune system. According to Hanahan and Weinberg (2000 (59)), features required for the 

formation of a cancer cell are: 

 Self-sufficiency in growth signals 

 Insensitivity to growth-inhibitory signals 

 Evasion of programmed cell death (apoptosis) 

 Limitless replicative potential 

 Induction of angiogenesis 

 Tissue invasion and metastasis 

This list has since been expanded to include other characteristics commonly observed in 

cancer (60): 

 Evasion of immune responses 

 Deregulated metabolism 

 Inflammation 

 Unstable DNA 
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Although these general properties may appear directed, they are the result of an accumulation 

of somatic mutations and chromosomal abnormalities that occur throughout life and mostly 

lead to cell death once vital functions are disrupted. However, aberrations in specific 

regulatory genes may also provide selective advantages by loss-of-function of tumor 

suppressor genes or gain-of-function of tumor promoting genes (oncogenes). Generally, the 

most commonly mutated genes in cancer include JAK2, BRAF, KRAS, TP53, EGFR, FLT3 

and PIK3CA, with mutation frequencies varying greatly depending on the particular type of 

cancer (see The Cancer Gene Census available via http://cancer.sanger.ac.uk) (61). Other 

known genes include APC, RB1, BRCA1, BRCA2, PTEN as well as members of the RAS 

and MLL gene families, totaling around 150 to 200 recurrently affected genes, depending on 

the source (61, 62). These genes cluster in important cellular pathways such as DNA damage 

control (TP53, BRCA1 and BRCA2), cell survival (PIK3/AKT/mTOR and 

RAS/RAF/MEK/ERK) and cell fate (APC, Notch signaling) (62). 

In contrast to other cancers, prostate cancer is generally characterized by a low number of 

somatic point mutations (single nucleotide polymorphisms and small indels) (62). 

Nevertheless, recurrent mutations in approximately 80 genes have been identified, including 

the aforementioned TP53, PTEN, EGFR and PIK3CA (COSMIC mutation frequencies when 

including all PCa samples: 14%, 7%, 3% and 2%, respectively) as well as AR pathway related 

genes (AR, SPOP, FOXA1; 4%, 9%, 5%) (61, 63–65). In addition, amplifications of the 

MYC oncogene on chr8q (2%-20%) as well as deletions of tumor suppressor genes located on 

chr8p (NKX3-1, 35%-86%) and chr16q (CDH1, 15%–27%) are common (54, 66–71). 

Moreover, fusions of the AR-regulated gene TMPRSS2 and members of the ETS 

transcription factor family are common events, with ERG being the most frequent fusion 

partner (approximately 50% of all PCa cases depending on study cohort) (33). However, 

despite its prevalence, the prognostic potential of TMPRSS2-ERG has not yet been fully 

clarified and conflicting results prevent a clinical application for PCa staging if one exists (39, 

72). 

It is also known that cross-talk of androgen signaling and other pathways such as 

MAPK/ERK, Wnt signaling and phosphatidylinositol 3-kinase (PI3K)/Akt pathway can play 

important roles in cancer development and progression (73–80). Lately, the cyclic AMP 

(cAMP) cAMP-dependent pathway has been gaining interest in PCa research (81–84), after 

numerous studies showed association of cAMP signaling and various conditions (85–89). In 

humans, cAMP functions as a second messenger molecule that can activate a variety of 

different targets after being converted from ATP by the enzyme adenylyl cyclase. As such, 

cAMP is part of a signaling cascade starting at G-protein coupled receptors (GPCRs), which 

allows various cellular responses to extracellular signals depending on the type of GPCR and 

its activation by an external stimulus (90). Among the many target molecules, protein kinase 

A (PKA) plays an important role, as it is able to phosphorylate numerous other proteins and is 

thereby directly involved in the regulation of processes such as glycogen conversion, muscle 

contraction and transcription in a cell type specific manner (91–93). Moreover, recent 

evidence suggests that PKA is also able to interact with AR, hinting at cross-talk between 

both signaling pathways (81–83, 94). 

http://cancer.sanger.ac.uk/


  General introduction and scope of the thesis 

13 

Since accumulating cAMP would lead to continuous activation of downstream targets, its 

concentration is controlled by phosphodiesterases (PDEs) that hydrolyze cAMP (81, 95). 

Individual PDE isoforms are known to contain domains that enable precise subcellular 

localization, allowing a tight spatial and time-dependent regulation of cAMP gradients around 

specific intracellular locations (95). Due to this crucial role, PDEs are being investigated (and 

utilized) as therapeutic targets for many conditions, such as erectile dysfunction, stroke, brain 

injury and Alzheimer‟s disease  (96–99), making them potentially interesting for prostate 

cancer research. 

1.4. Technology developments and bioinformatics 

Many of the described molecular characteristics of cancers were discovered using genome-

wide screenings, with the first commercially available screening platforms being based on 

microarray technology. Microarrays consist of a substrate (e.g. a glass slide) that provides a 

surface for chemical attachment of short nucleotide sequences, the so-called probes, which are 

complementary to the target sequences of interest. By using labeled target sequences and 

hybridizing them to the probes under stringent conditions, it is possible to quantify the target 

concentration in a sample. Target sequences are usually DNA-based and hence a reverse 

transcriptase step is involved to produce complementary DNA molecules from individual 

RNAs. This flexible approach allowed a broad range of applications such as measuring 

chromosomal copy number using known biallelic single-nucleotide polymorphisms (SNPs) 

(100) or profiling expression of thousands of genes in parallel (101). 

Further technological advances in the field of nucleotide sequencing led to a massively 

parallelization of sequencing reactions, which is commonly referred to as next generation 

sequencing (NGS) (102). Initially developed for fast and cost-effective DNA sequencing, 

NGS found broad application in many fields, including studies of the exome (via DNA 

capture technologies), transcriptome (RNA-sequencing), DNA binding proteins (e.g. using 

chromatin immunoprecipitation (ChIP-seq)), and epigenetic factors such as DNA methylation 

(e.g. bisulphite sequencing). All of these NGS variations are based on the fragmentation of 

longer sequences such as chromosomes or mRNA transcripts into smaller pieces. These short 

sequences are then amplified and sequenced in a massively parallel fashion, resulting in 

millions of short nucleotide stretches that span between 35 and several hundred of 

nucleotides, depending on the sequencing technology used. After a sequencing run, the 

“reads” of sequence information are aligned back to a time-stamped reference genome (e.g. 

human genome build hg19) to allow feature quantification and identification of mutations. 

Along with sequencing technology, bioinformatics solutions for data analysis have been 

developed at an ever increasing pace, allowing rapid hypothesis testing in various 

applications. For instance, while DNA-based alignment still plays an important role in 

modern applications and programs are continuously evolving (103–106), introduction of 

RNA-seq required development of splicing-aware aligners such as GSNAP, STAR, 

TopHat/TopHat2 and MapSplice (107–110). To quantify gene expression, early approaches 

relied on read counting and were not able to distinguish different RNA isoforms (111, 112), a 

shortcoming that subsequent methods tried to address (113, 114). Most recent developments 

in RNA-seq quantification use k-mer indexing and pseudo-alignments to avoid the mapping 
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step altogether and thereby reduce processing time for well-annotated transcriptomes (115–

117). 

1.5. New research insights in prostate cancer from next generation sequencing and 

bioinformatics 

Transcriptome sequencing not only allows quantifying the expression of known genes, but 

can also be used to identify novel unannotated genes. Programs such as Cufflinks (118) are 

able to assemble the likely gene structure by utilizing information of canonical splice sites 

found in sequencing reads. This feature was applied to a large cohort of RNA-seq samples 

from prostate cancer patients, resulting in 121 previously unknown prostate cancer-associated 

transcripts referred to as PCATs (119). Interestingly, several of these transcripts showed a 

remarkable specificity for PCa. Additional validation steps showed that many of the identified 

transcripts were indeed long non-coding RNAs (lncRNAs), highlighting the importance of 

this RNA class as potential biomarkers (for more information on lncRNAs in urological 

cancers, see Chapter 2). 

Similar to the discovery of PCa-associated lncRNAs, RNA-sequencing of small non-coding 

RNAs revealed that many small non-coding RNAs known as micro RNAs (miRNAs) are 

deregulated in PCa and can be combined in a biomarker signature (50). Furthermore, a 

subsequent study focusing on small nucleolar RNAs (snoRNAs) found that snoRNA-derived 

RNA fragments (sdRNAs) are upregulated in PCa and show association with malignancy and 

metastatic progression (120). These findings hint at altered RNA processing in cancerous 

conditions and underline the potential of NGS applications in PCa research. 

DNA-sequencing was also crucial in recent studies that focused on studying tumor clonality 

in various cancers by identifying shared and distinct somatic mutations among the sequenced 

samples (121). As suggested by Peter Nowell in 1976 (122), a common observation was that 

several distinct subclones could be found in primary tumors and similarly, metastases could 

be linked to their progenitor clones due to mutual somatic events. This effectively allows the 

recreation of PCa progression and its spreading throughout the body, as has been performed 

in a recent study in PCa, which was able to trace the lineage of metastases in several PCa 

patients (123, 124). By identifying distinct mutational patterns between different metastatic 

sites, a temporal order of somatic alterations during the disease course could be created. For 

instance, it was confirmed that mutations in the AR were mostly present in late stage 

metastases and could be explained by increased selective pressure on AR signaling due to 

ongoing treatment strategies targeting the AR pathway. 

As the presented examples illustrate, NGS technology and the associated bioinformatics data 

analyses not only provide many opportunities for clinical applications, but also enable 

research to gain further insights into the molecular foundations of prostate cancer. 
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1.6. Scope of this thesis 

Prostate cancer is one of the most prevalent cancers in men and represents a severe burden on 

both patients and healthcare systems in western societies. To address the limitations of current 

risk stratification methods, the aim of this thesis was to identify novel biomarkers, such as 

RNA molecules that can discriminate PCa from non-cancerous conditions with high 

specificity and/or allow accurate prediction of disease outcome. Moreover, we aimed to 

advance next generation sequencing in clinical applications by addressing and simplifying 

some of the associated bioinformatics challenges. 

To familiarize the reader with the concept of non-coding RNAs and the different classes 

found in mammalian cells, we provide an extensive review of current literature in chapter 2. 

The focus is on long non-coding RNAs and their potential functions and clinical applications 

in urological malignancies, as increasing evidence shows that expression or repression of 

many lncRNAs has functional consequences for the cell. Moreover, their tissue and even 

condition-specific transcription makes them ideal targets when searching for novel 

biomarkers. 

Since many genomic regions are still poorly characterized and lncRNAs have often been 

described to reside between known genes or in so called “gene deserts”, in chapter 3, we set 

out to investigate whether we could find any evidence of PCa-specific expression originating 

from such unnannotated regions. Taking into account the limitations of the PSA serum test, 

our aim was to discover transcripts that showed high PCa-specificity and little to no 

expression in normal control samples. We therefore adapted a cancer outlier profile analysis 

(COPA) approach first introduced by Tomlins et al. when describing the recurrent 

TMPRSS2-ETS fusions in PCa (33). Due to the fact that sequencing datasets of patient 

samples are still rather rare and raw data is often inaccessible, we made use of existing 

datasets based on a genome-wide microarray with probes targeting in silico predicted genes. 

This study design proved successful, as 334 candidate transcripts were identified and 15 

uncharacterized RNAs were subsequently PCR validated, showing excellent power when 

combined into a gene panel for molecular diagnostic purposes. 

In chapter 4, we evaluated the biomarker potential of PDE4D7, a phosphodiesterase isoform 

that was recently shown to be highly expressed in androgen-sensitive PCa cell lines, but not in 

androgen-insensitive cell lines. Since these in vitro experiments hinted at a possible predictive 

value, we made use of a large panel of existing datasets to confirm both its diagnostic as well 

as prognostic potential. Additionally, we investigated associations with existing clinical 

parameters and found that high PDE4D7 expression is associated with good clinical outcome 

and generally increased in samples harboring the TMPRSS2-ERG fusion gene or exhibiting 

ERG over-expression. 

Encouraged by our PDE4D7 findings, we aimed to comprehensively study the behavior of all 

nine canonical human PDE4D isoforms in PCa development and progression. In chapter 5, 

we therefore again used a compilation of different expression datasets covering various 

disease stages from normal adjacent prostate to castration-resistant disease. After discovering 

a distinct isoform switch in localized primary disease, we set out to uncover possible 
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regulatory mechanisms that could explain such behavior. Utilizing copy number, DNA 

methylation, as well as ChIP-seq data, we found evidence that the isoform switch is actively 

controlled by hyper-methylation of specific regulatory sites as well as androgen signaling due 

to AR and ERG binding in the PDE4D locus. To show that PDE4D is also a potent 

biomarker, we created two signatures for diagnostic and prognostic purposes and 

demonstrated a direct clinical application in improving needle biopsies. 

Once a malignant tumor has been identified, it is crucial to identify key driver mutations in 

the cancer cells that can be targeted with existing drugs, allowing a „personalized treatment‟. 

This approach, also commonly referred to as „precision medicine‟, requires sequencing of the 

patient‟s genome using NGS. To lower the associated cost, it is possible to restrict the 

genomic input for sequencing to sites for which appropriate drugs exist by DNA capture 

technologies. However, current methods of data analysis are not adapted to this approach and 

rely on whole genome mapping, resulting in an increased data processing time. In chapter 6, 

we addressed this bioinformatics challenge and investigated whether it is possible to decrease 

the time needed for alignment by using only the target regions as search space. Since such an 

approach was not feasible with traditional DNA mappers, we implemented a novel solution 

based on the usage of a priori knowledge derived from a capture technology in development. 

Our results were encouraging and proved the feasibility of such endeavor by outperforming 

commonly used programs both in terms of speed and resource requirements. 

To address the clinical need for prostate cancer biomarkers, we identified several novel RNA 

transcripts with good biomarker potential. Furthermore, we showed that the use of a priori 

knowledge in targeted sequencing enables a rapid data processing in an attempt to advance 

the utilization of next generation sequencing in precision medicine. In chapter 7, we discuss 

the relevance of our findings in context of basic research as well as clinical relevance. 
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Abstract 
 

Context: Genomic regions without protein-coding potential give rise to millions of protein-

noncoding RNA transcripts (noncoding RNA) that participate in virtually all cellular 

processes. Research over the last 10 yr has accumulated evidence that long noncoding RNAs 

(lncRNAs) are often altered in human urologic cancers. 

Objective: To review current progress in the biology and implication of lncRNAs associated 

with prostate, bladder, and kidney cancer. 

Evidence acquisition: The PubMed database was searched for articles in the English 

language with combinations of the Medical Subject Headings terms long non coding RNA, 

long noncoding RNA, long untranslated RNA, cancer, neoplasms, prostate, bladder, and 

kidney. 

Evidence synthesis: We summarise existing knowledge on the systematics, biology, and 

function of lncRNAs, particularly these involved in prostate, kidney, and bladder cancer. We 

also discuss the possible utilisation of lncRNAs as novel biomarkers and potential therapeutic 

targets in urologic malignancies and portray the major challenges and future perspectives of 

ongoing lncRNA research. 

Conclusions: LncRNAs are important regulators of gene expression interacting with the 

major pathways of cell growth, proliferation, differentiation, and survival. Alterations in the 

function of lncRNAs promote tumour formation, progression, and metastasis of prostate, 

bladder, and kidney cancer. LncRNAs can be used as noninvasive tumour markers in urologic 

malignancies. Increased knowledge of the molecular mechanisms by which lncRNAs perform 

their function in the normal and malignant cell will lead to a better understanding of tumour 

biology and could provide novel therapeutic targets for the treatment of urologic cancers. 

Patient summary: In this paper we reviewed current knowledge of long noncoding RNAs 

(lncRNAs) for the detection and treatment of urologic cancers. We conclude that lncRNAs 

can be used as novel biomarkers in prostate, kidney, or bladder cancer. LncRNAs hold 

promise as future therapeutic targets, but more research is needed to gain a better 

understanding of their biologic function. 
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Introduction 
 

Definition of noncoding RNA 

The sequencing of the human genome led to the astonishing discovery that protein-coding 

genes compose <3% of human DNA. Yet >80% of our genome is actively transcribed to a 

versatile group of RNA transcripts without protein-coding potential (1, 2). Such transcripts 

are referred to as noncoding RNAs (ncRNAs). Based on their size and the arbitrary cut-off of 

200 nucleotides (nts), they are classified into long ncRNAs (lncRNAs) and small ncRNAs. 

Although small ncRNAs, in particular microRNAs (miRNAs), have been extensively studied 

over the last two decades and many facets of their biology have been elucidated, still very 

little is known about the functional role of lncRNAs. 

First evidence of the existence of long noncoding RNAs and their involvement in 

urologic cancers 

The first suggestion that not all long RNA transcripts are messenger RNAs (mRNAs) that 

merely pass information from DNA to protein came >20 yr ago with the discovery of the 

paternally imprinted maternally expressed transcript (H19) gene, encoding a foetal-specific 

lncRNA deregulated in embryonic and adult tumours, particularly in bladder carcinoma (3, 4). 

Shortly after, the identification of the X inactive specific transcript (XIST) proposed a 

regulatory and structural function for ncRNAs (5). Evidence for the importance of protein-

noncoding gene regions was also provided by the discovery of several transcripts, such as 

tumour suppressor growth arrest-specific 5 (GAS5), which is also a host gene for small 

nucleolar RNA (snoRNA) (6). The idea that lncRNAs may exhibit cancer-specific expression 

was strengthened by the discovery of prostate cancer antigen 3 lncRNA (PCA3 [DD3]) 

specifically overexpressed in malignant prostate tissue (7). 

How many long noncoding RNAs are there? 

The thorough annotation of the human genome by the ENCODE (1) and GENCODE (8) 

projects demonstrated that human DNA is pervasively transcribed, including regions that 

overlap protein-coding loci and regions previously assumed to be transcriptionally silent, and 

that many of these transcription products are in fact lncRNAs. Within 4 yr, the number of 

identified lncRNA genes increased from 6000 to >14 000. It is likely that hundreds of 

thousands if not millions of lncRNAs are yet to be discovered because 15% of the human 

genome remains to be annotated, and lncRNAs arising from overlapping protein-encoding 

loci still remain to be analysed (8). 

Although the function of most lncRNAs is still unknown, their increasing numbers and the 

accumulating evidence for their involvement in many biologic processes provide compelling 

arguments in support of their importance in the normal and malignant cell. 

Here we summarise existing knowledge on the systematics, biology, and function of 

lncRNAs, particularly these involved in prostate, kidney, and bladder cancer. We also discuss 

the possible utilisation of lncRNAs as novel biomarkers and potential therapeutic targets in 
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urologic malignancies and describe the major challenges and future perspectives of ongoing 

lncRNA research. 

Evidence acquisition 
 

The PubMed database was searched for articles in the English language published up to July 

2013 with a combination of the following Medical Subject Headings terms: long non coding 

RNA, or long noncoding RNA, or long untranslated RNA, and cancer or neoplasms, and 

prostate or bladder or kidney. 
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Evidence synthesis 
 

Features of long noncoding RNA 

The GENCODE annotation project established the largest catalogue of human lncRNAs to 

date and provided comprehensive information regarding several common features of their 

structural organisation and genome processing (8). The following information is now known: 

 LncRNAs are independent transcriptional units without protein-coding potential and 

not just unrecognized extensions of neighbouring protein-coding transcripts. 

 Expressed lncRNA genes have the typical histone modifications associated with active 

transcription, but show generally lower and more tissue-specific expression compared 

with protein-coding genes. 

 LncRNA- and protein-coding genes share similar length, processing, and splicing 

signals. 

 LncRNA genes belong to evolutionary conserved families evolving faster than 

protein-coding genes where sequence similarity seems to be preserved mainly in 

regions involved in secondary structure formation 

Overview of noncoding RNAs classes 

The increasing numbers of newly discovered ncRNAs required the establishment of uniform 

nomenclature for long and small ncRNAs, which was introduced in 2011 by the HUGO Gene 

Nomenclature Committee (9). At present, lncRNAs are categorised based mainly on their 

location in respect to protein-coding genes because their functional classification is largely 

hampered by the lack of known function. In contrast, small ncRNAs are relatively well 

studied, and different subclasses are recognised based on their structural features and biologic 

function (10). For example, the best known small RNAs, miRNAs, are 20–22 nt in length and 

act as negative posttranscriptional regulators of gene expression (Table 1, Fig. 1). 

Biologic functions of long noncoding RNAs in urologic cancers and their interaction 

with major cancer pathways 

Accumulating evidence demonstrates that lncRNAs function as versatile regulators at each 

step during genetic information processing in the living cell. As such, lncRNAs interact with 

major cellular pathways controlling proliferation, differentiation, or apoptosis, and alterations 

in their function are involved in the pathogenesis of many human malignancies including 

prostate, kidney, and bladder cancer. Recent advances in transcriptome sequencing led to the 

discovery of many new lncRNAs (11, 12) associated with urologic malignancies and allowed 

the reexamination of other long-known cancer-associated lncRNAs with a function that has 

remained enigmatic for decades (Table 2). 
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Table 1 - Human noncoding RNA nomenclature 

Type of ncRNA Abbreviation Symbol Function/Description 

Ribosomal RNA   Protein synthesis 

Genomic rRNA RN18S, RN28S, 

RN5–8S, RN5S 

 

Mitochondrial mit-rRNA   

Long ncRNA    

Antisense 

transcripts 

Opposite strand 

HOXA/B/C/D 

clusters 

Antisense 

RNA 

-AS 

-OS 

HOXA/B/C/D 

Reside on the opposite strand of protein-

coding genes and intersect their exons 

Overlapping 

transcripts 

 -OT Contain a coding gene within an intron 

on the same strand 

Intronic transcripts  -IT Reside within introns of a coding gene 

but do not intersect any exons 

Host genes  -HG Primary hosts of small ncRNA genes 

nested within their introns 

Intergenic 

lncRNAs 

lincRNA LINC Originate from protein noncoding 

genomic regions 

lncRNA 

paralogues 

 TTTY, HCG, 

FAM, DGCR 

Share homology with each other 

Ultraconserved 

transcripts 

ucRNA Not assigned yet Originate from genomic regions with 

100% conservation between human, rat, 

and mouse 

Circular RNAs circRNA Not assigned yet Form during splicing by chemical 

bonding of two neighbouring exons. 

Function as 

miRNA sponges 

Enhancer RNAs eRNA Not assigned yet Originate at genomic enhancer regions. 

Boost gene transcription in tissue-

specific and temporal manner. 

Sno-related 

lncRNAs 

Sno-lncRNA Not assigned yet Generated when the sequences between 

intronically encoded snoRNAs are not 

degraded. Sno-lncRNAs are flanked by 

snoRNAs instead of 5‟-cap and 3‟-

poly(A) tail 

Pseudogenes  -P Highly similar to rotein-coding genes 

that have lost their coding potential. 

Generally untranscribed and/or 

untranslated but can be activated in 

different tissues or in cancer. 

Small ncRNAs sncRNA   

MicroRNA miRNA MIR Posttranscriptional regulators 

Transfer RNA 

Genomic, 

mitochondrial 

tRNA TRNA, MT-T Protein synthesis 
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Spliceosomal RNA splRNA RNU RNA splicing/maturation 

Small nucleolar 

RNA 

H/ACA box, C/D 

box 

Cadjal body 

specific 

snoRNA SNORA, SNORD 

SCARNA 

Ribosomal maturation, alternative 

splicing 

PiWi-interacting 

RNA 

piRNA PIRC Posttranscriptional retrotransposon 

silencing 

RNase P/MRP 

RNA components 

 RPPH1; RMRP tRNA and mitochondrial RNA 

processing 

U7 snRNA  RNU7 Histone pre-mRNA processing 

Vault RNA  VTRNA Components of the vault RNP; possible 

role in drug resistance 

7SK RNA  RN7SK Regulates Pol II transcription 

7SL RNA  RN7SL Transmembrane transport of proteins 

YRNAs  RNY Assist the structural specificity of Ro 

PNPase 

Telomerase RNA  TERC Prevents erosion of chromosome ends 

mRNA = messenger RNA; ncRNA = noncoding RNA. 

 

 

Figure 1: Genomic organisation of different long noncoding RNA (lncRNA) classes. A 

grey and black line represents DNA strands. Grey boxes represent protein- or lncRNA-coding 

genomic exons. Thin black lines represent spliced introns. Arrows indicate direction of 

transcription. Protein-coding transcripts (messenger RNAs) are orange. Noncoding transcripts 

(lncRNAs) are green. Pseudogenes have a diagonal stripe pattern. Intron boundaries of 

circular RNA precursors are shown in red (-5‟) and yellow (-3‟). 

 

Long noncoding RNAs are epigenetic regulators of gene expression 
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Many lncRNAs reside in the nucleus where they actively interact with chromatin remodelling 

complexes (CRCs) to regulate the expression of genes residing on the same chromosome (in 

cis) or on another chromosome (in trans) through fine-tuning of chromatin architecture (2, 8). 

 

 

 

Table 2 – Long noncoding RNAs in prostate, bladder, and kidney cancer 

Name Cytoband Cancer 

type 

Association with cancer 

CBR3-AS1 21q22.2 Prostate Oncogene; putative therapeutic target  (70) 

CTBP1-AS 4p16.3 Prostate Oncogene (71) 

GAS5 1q25.1 Kidney Tumour suppressor  (100) 

  Prostate Tumour suppressor; (34) putative oncogene host (38) 

H19 11p15.5 Bladder Prognostic marker (83); low-risk marker (85) 

Oncogene (4,45–47,50,51); targeted therapy agent (91) 

  Kidney Tumour suppressor (42); tumour suppressor host (37) 

  Prostate Putative susceptibility and diagnostic marker (43,44) 

HIF1A-AS1, AS2 14q23.2 Kidney Diagnostic and discriminative marker (81,82) 

KCNQ1OT1 11p15 Kidney Oncogene (40,41) 

MALAT1 11q13.1 Bladder Oncogene (59,60) 

  Kidney Oncogene (63,63) 

  Prostate Putative marker (61) 

MEG3 14q32 Bladder Tumour suppressor (54) 

  Kidney Tumour suppressor (55) 

PCA3 9q21-q22 Prostate Diagnostic marker (7,74) 

PCAT1 8q24.21 Prostate Putative marker and oncogene (11) 

PCGEM 2q32 Prostate High-risk (17,18,86) and predictive marker (78,79) 

Oncogene (19,21) 

PRNCR1 8q24 Prostate Susceptibility marker (20); oncogene (20,21) 

PTENP1 9p21 Prostate Oncogene; tumour suppressor (28,29) 

SNHG16  Bladder Putative diagnostic, prognostic, and predictive marker 

(80) 

TUG1 22q12.2 Bladder Putative diagnostic and prognostic marker; oncogene 

(65) 

UCA1 19p13.12 Bladder Diagnostic marker (66); oncogene (67–69) 

ucRNAs Multiple Prostate Putative oncogenes (73) 

XIST Xq13.2 Prostate Putative diagnostic and prognostic marker (76,77) 

ucRNA = ultraconserved RNA. An extended version of Table 2 is provided as Supplemental 

Table 1. 

 

Cis-acting repressor long noncoding RNAs. 
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The most prominent epigenetic cis-regulatory lncRNA is the XIST that controls the X-linked 

gene dosage compensation between XY males and XX females. XIST is exclusively 

expressed from the future inactive X chromosome in females, accumulates in large quantities, 

and coats its host X chromosome (5). This causes the exclusion of RNA polymerase II and a 

rapid gain of repressive histone marks. In this way, XIST silences in cis the expression of the 

entire X chromosome. In male cancers with an X chromosome gain (eg, testicular germ cell 

tumours [TGCTs]), hypomethylation and reexpression of XIST can occur (14). 

Trans-acting repressor long noncoding RNAs. 

The first example of a trans-acting lncRNA came from the powerful breast cancer oncogene 

HOX transcript antisense RNA (HOTAIR). In normal cells, HOTAIR binds the chromatin 

remodelling polycomb repressor complex 2 (PRC2) and targets it to the HOXD locus (located 

on a different chromosome) where PRC2 performs the silencing of embryonic transcription 

factors. Overexpression of HOTAIR in cancer causes the genome-wide relocalisation of 

PRC2 and the epigenetic silencing of metastasis suppressor genes that drives cancer 

progression (15). 

Similar to HOTAIR in breast cancer, in prostate cancer (PCa) the lincRNA prostate cancer 

associated transcript 1 (PCAT1) complexes with PRC2. PCAT1 is markedly overexpressed in 

a subset of metastatic cancers, suggesting that PCAT1 is a transcriptional regulator and may 

function as a prostate-specific transcriptional repressor of tumour suppressor genes 

controlling cell proliferation that may have an important role in PCa progression (11). By 

now, thousands of lincRNAs have been shown to complex with PRC2 and other repressive 

CRCs to supply them with the specificity needed to target distinct gene sets (16, 17). 

Activating long noncoding RNAs. 

LncRNAs can also function as transcriptional activators as demonstrated for prostate cancer 

non-coding RNA 1 (PRNCR1) and prostate-specific transcript 1 (PCGEM1). PCGEM1 is a 

highly prostate-specific, androgen-regulated lncRNA (18), with expression significantly 

higher in PCa specimens from African American and Chinese men (12, 19). Its 

overexpression in PCa cells promotes cell proliferation, attenuates doxorubicin-induced 

expression of p53 and p21, and inhibits apoptosis (19, 20). PRNCR1 is upregulated in 

precursor lesion prostatic intraepithelial neoplasia, and it is positively associated with the 

viability of PCa cells (21). Yang et al. recently demonstrated that PRNCR1 and PCGEM1 

successively interact with the androgen receptor (AR) bound at DNA-enhancer regions in a 

ligand-dependent fashion and facilitate the chromosomal looping between AR-bound 

enhancers and the promoter sequences of androgen-responsive genes. Interestingly, in 

castration-resistant PCa cells, the overexpressed PCGEM1 and PRNCR1 can further cause the 

ligand-independent activation of (truncated) AR and promote cellular proliferation. This 

proposes both lncRNAs as possible therapeutic drug targets in advanced PCa (22). 

Enhancer-originating RNAs (eRNAs) may also act as epigenetic cis-activators that maintain 

an active chromatin state at transcribed gene loci. In PCa cells, bidirectional eRNA production 

is induced after binding of AR to responsive enhancers, and it is concomitant with sustaining 

of open chromatin structure and indirect activation of gene expression (23) possibly via the 
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mechanism described above. Additionally, the transcription of unidirectional intergenic 

eRNAs can also lead to direct activation of adjacent genes (24). At present, a cis-activating 

role and an enhancer-like function is also anticipated for a large set of lncRNAs located 

adjacent to cancer-related protein-coding genes that act a step further in gene transcription by 

promoting transcriptional elongation (25). 

Long noncoding RNAs and transcribed pseudogenes as competing endogenous RNA 

The single-stranded nature and the native (self-)complementarity constitute the functionality 

of RNA. These features enable the rapid and specific contact between different RNAs (eg, 

between mRNA and miRNA during repression of protein synthesis). In this process, miRNAs 

in complex with effector proteins recognise and bind complementary sequence stretches 

(binding sites) in multiple mRNA targets. This leads to mRNA degradation or translational 

repression of the encoded protein. It iswell established that miRNAs have an essential 

regulatory role in virtually all cellular processes and that altered miRNA levels are implicated 

in many human cancers including urologic malignancies (26). Nevertheless, the mechanisms 

controlling the cellular levels of active miRNAs remained enigmatic until recently when 

several publications demonstrated that mRNAs, pseudogenes, and circular RNAs (circRNAs) 

compete endogenously for shared effector miRNAs. Such competing endogenous RNAs 

(ceRNAs; also called miRNA decoys or miRNA sponges) provide yet an additional 

regulatory level in the RNA network controlling gene expression (27). 

 

Figure 2: The expression of tumour suppressor phosphatase and tensin homolog (PTEN) 

is regulated by a complex noncoding RNA (ncRNA) network representing many long 

ncRNA (lncRNA) functions. 1) The PTEN gene encoded at chromosome 10 is transcribed to 
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PTEN messenger RNA (mRNA; in brown), which is exported to the cytoplasm and translated 

to PTEN protein that acts as a negative regulator of cell growth. The 30-untranslated region of 

PTEN mRNA contains binding sites (red/black dashed line) for microRNAs (miRNAs) from 

the miR-106b-93-25 cluster. 2) PTENP1 pseudogene, highly homologous to PTEN, is 

encoded at chromosome 9 and coexpressed with PTEN in normal and malignant prostate 

tissues. Three lncRNAs (in green) are simultaneously transcribed from PTENP1: one in 

sense: PTENP1-C, and two in antisense: PTENP1-ASa and PTENP1-ASb. The PTENP1-C 

sequence is similar to PTEN mRNA and also contains binding sites for the miR-106b-93-25 

cluster. 3) Two protein-coding genes, CNOT6L and VAPA (in orange), encoded at 

chromosomes 4 and 18, respectively, contain binding sites for the miR-106b-93-25 cluster. 4) 

The miRNA cluster miR-106b-93-25 (in red) targeting PTEN mRNA is intronically encoded 

at the MCM7 gene at chromosome 7. When overexpressed, miRNAs from the miR-106b-93-

25 cluster are exported to the cytoplasm where they associate with the RNA-induced silencing 

complex (RISC) (in blue), cause the downregulation of PTEN mRNA, and promote prostate 

tumorigenesis. A) In the nucleus, PTENP1-ASa acts as a trans-acting epigenetic repressor that 

localises to the PTEN promoter and recruits the chromatin repressive protein complex EZH2 

(in yellow). EZH2 silences the transcription of PTEN by introducing repressive histone marks 

(lollypops) at the PTEN promoter. B) The structure of PTENP1-c is stabilised by PTENP1-

ASb by the formation of a double-stranded RNA:RNA tandem, which is exported to the 

cytoplasm. C) In the cytoplasm, this tandem functions as a miRNA sponge and sequesters 

miR-106b, miR-93, and miR-25. This leads to the de-repression of PTEN mRNA, higher 

levels of PTEN protein, and subsequent growth inhibition. In addition, independently of their 

coding potential, the VAPA and CNOT6L mRNAs can also function as miRNA sponges for 

PTEN. 

 

Functional pseudogenes and coding-independent function of messenger RNAs.  

A functional role for an expressed pseudogene acting as a ceRNA was first described for the 

regulatory RNA network that tidily controls the cellular levels of the phosphatase and tensin 

homolog (PTEN) (Fig. 2). PTEN is a haploinsufficient tumour suppressor, commonly lost in 

advanced PCa and other cancers, that antagonises cell growth signalling mediated by the 

PI3K-AKT pathway. PTEN mRNA is negatively regulated by the intronically encoded 

miRNA cluster miR-106b-93-25. Overexpression of miR-106b-93-25 causes downregulation 

of PTEN and initiates prostate tumourigenesis (28). Excess levels of miR-106b-93-25 can be 

sequestered by the miRNA sponge structure formed by two lncRNAs (PTENP1-ASb and 

PTENP1-C) produced from the pseudogene PTENP1 highly homologous to PTEN (29, 30), 

as well as by at least two other protein-coding RNAs (31). 

The regulatory system that controls PTEN expression is probably not an exception because 

miRNA target sites in genes and their pseudogenes are well conserved and have been detected 

in the pseudogenes of gap junction protein, alpha 1, 43kDa (CX43), cyclin-dependent kinase 

4 pseudogene (CDK4PS), forkhead box O3B pseudogene (FOXO3B), E2F transcription 

factor 3 pseudogene 1 (E2F3P1), POU class 5 homeobox 1 (OCT4), and Kirsten rat sarcoma 

viral oncogene homolog (KRAS). Notably, the four OCT4 pseudogenes are exclusively 
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expressed in cancer tissues and KRAS and Kirsten rat sarcoma viral oncogene homolog 

pseudogene 1 (KRAS1P) are positively correlated in PCa, suggesting a putative proto-

oncogenic role for KRAS1P (29). 

MicroRNA sponges.  

Besides pseudogenes and mRNA, a newly emerging class of ceRNAs are the circRNAs. 

CircRNAs were first discovered in testis tissue (32), but their functionality was questioned 

until recently when transcriptome sequencing demonstrated the existence of thousands of 

well-expressed, tissue-specific stable circRNAs. Among these, a prominent example is the 

human circRNA antisense to the cerebellar degeneration-related protein 1 transcript CDR1 

antisense RNA (CDR1-AS, ciRS-7). CDR1-AS harbours >70 conserved binding sites for the 

tumour suppressor miR-7 and binds miR-7 associated with its effector proteins with a 

capacity 10 times higher than any other known transcript (33, 34). 

Sequence versus structure: protein-interacting competing endogenous RNAs.  

The primary RNA sequence is the base of miRNA sponge activity. However, specific 

secondary RNA structures can be recognised by DNA/RNA interacting proteins (eg, nuclear 

transcription factors), even when the primary sequence is not quite conserved. This allows 

some lncRNAs to function as protein-interacting ceRNA exemplified by function of the 

GAS5 lncRNA. Although the primary sequence of the spliced GAS5 transcript is not 

preserved, its secondary structure mimics the genomic glucocorticoid receptor (GR) response 

element. In arrested cells, GAS5 binds GR and prevents it from interacting with responsive 

downstream genes. Thereby GAS5 functions as a riborepressor of cell survival that sensitises 

arrested cells to apoptosis. It has been suggested that GAS5 can also suppress the 

transcriptional activity of the progesterone receptor (PR) and androgen receptor (AR) in a 

ligand-dependent fashion (35). 

Sno-related lncRNAs (sno-lncRNAs) can also serve as ceRNAs. In HeLa and human 

embryonic stem cells, sno-lncRNAs associate strongly with the RNA-binding FOX family 

splicing regulators and alter the splicing patterns of other transcripts (36). Of note, FOX2 

binds the human oestrogen receptor a (ERa), as well as GR and PR, in a ligand-independent 

manner and inhibits tamoxifen-mediated Era transcriptional activation. At the same time, 

mutations in the FOX2 RNA binding domain allow ERα antagonists to manifest agonist 

activity (37). This suggests that sno-lncRNAs may be an important factor in the tissue-

specific agonist activity of steroid receptor ligands. 

Multifunctional long noncoding RNAs are host genes for small noncoding RNAs 

deregulated in cancer 

The miR-106b-93-25 cluster described earlier is an example of a protein-coding miRNA host 

gene and efficient use of genome space where the activation of a single gene locus leads to the 

production of multiple transcripts with different functions. Similarly, lncRNAs can function 

as hosts of miRNAs and other small ncRNAs. It has been estimated that at least 4% of 

lncRNAs host small ncRNAs (8). For example, H19 is a primary precursor for the tumour 

suppressor miR-675 that inhibits cell proliferation in response to stress or oncogenic signals 
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(38); GAS5 hosts 10 different snoRNAs in its introns (6). Interestingly, some but not all of the 

GAS5-encoded snoRNAs are upregulated in progressing PCa (39), suggesting that separate 

mechanisms control the posttranscriptional levels of RNA products derived from the same 

precursor transcript. 

Gene expression at complex long noncoding RNA loci is disturbed in bladder and kidney 

cancer 

The 11p15.5 locus.  

The 11p15.5 locus encodes several lncRNAs and transcription factors often affected in 

urologic malignancies. For example, KCNQ1 opposite strand/antisense transcript 1 

(KCNQ1OT1) is a cis-regulatory lncRNA associated with multiple balanced chromosomal 

rearrangements in Beckwith-Wiedemann syndrome (BWS) (40). Loss of maternal-specific 

methylation is the most frequent defect in BWS, resulting in activation of KCNQ1OT1 and 

silencing of the negative regulator of cell proliferation and tumour suppressor cyclin-

dependent kinase inhibitor 1C (CDKN1C, p57, Kip2) (41, 42). 

H19, the oldest known lncRNA, is situated only few hundred kilobases away from 

KCNQ1OT1 next to the conversely imprinted insulin-like growth factor 2 (IGF2) gene. H19 

is a paternally imprinted, maternally expressed transcript abundant in the developing embryo. 

Disturbed imprinting at the IGF2/H19 locus is associated with several urologic malignancies 

(Fig. 3). In Wilms tumours, childhood renal neoplasms often occurring in BWS, H19 is 

silenced on both chromosomes and that causes biallelic expression of IGF2, thereby 

conferring a growth advantage to the affected cells (43). Interestingly, loss of imprinting 

(LOI) and biallelic expression of IGF2 is also observed in the human prostate and in 

urothelial cellular models of aging and senescence (44) as well as in histologically normal 

human prostate tissues, and it is more extensive in men with associated cancer (45). 

In contrast, hypomethylation of the paternal H19 allele is reported in bladder cancer (46) 

where H19 functions as a trans-acting repressor that promotes cell metastasis in vitro and in 

vivo by repressing the transcription of the cell–cell adhesion glycoprotein CDH1 (E-cadherin) 

and the antagonist of WNT-signalling naked cuticle homolog 1 (NKD1). This results in loss 

of cellular adhesion, and the indirect activation of the WNT-signalling pathway promoting 

epithelial-mesenchymal transition (47). Simultaneously, H19 increases bladder cancer growth 

by activating the inhibitor of DNA binding 2, dominant negative helix-loophelix protein (ID2) 

(48).  

The 14q32.3 locus. 

H19 expression is directly induced by the v-myc avian myelocytomatosis viral oncogene 

homolog (c-MYC) (49) and loss of the p53 tumour suppressor (50), further supporting the 

importance of H19 as a potent oncogene. Notably, hypoxia-induced H19 levels in 

hepatocellular and bladder carcinoma increase the levels of genes promoting angiogenesis, 

cell survival, and proliferation (48, 51, 52). In contrast, the H19-encoded miR-675 is a tumour 

suppressor that inhibits cellular proliferation in response to stress or oncogenic signals by 
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decreasing the levels of insulin-like growth factor 1 receptor Igf1r (38), demonstrating the 

multiple functionality of transcripts derived from the H19 locus. 

The 14q32.3 locus is also associated with urologic malignancies and displays an organisation 

very similar to 11p15.5. Two coexpressed and reciprocally imprinted genes are located at 

14q32.3: the maternally expressed 3 (MEG3) and the paternally expressed delta-like 1 

homolog (DLK1). MEG3 is a tumour suppressor that activates p53 in cancer via inhibition of 

MDM2, stimulation of p53 promoter, and selective regulation of p53 targets (53). The 

expression of MEG3 lncRNA is lost in many primary tumours due to gene deletion, promoter 

hypermethylation, or hypomethylation of the corresponding imprinting control region. MEG3 

expression is lost in bladder cancer cells and PCa cells (54). In bladder cancer tissues, MEG3 

levels are significantly reduced compared with normal controls, causing autophagy activation 

and increased cellular proliferation (55). 

 

 

Figure 3: Genomic imprinting at the 11p15.5 locus harboring the insulin-like growth 

factor 2 (IGF2) and imprinted maternally expressed transcript (H19) genes in normal 

cells, Wilms tumours, and bladder carcinomas. Either silencing or overexpression of H19 

can cause tumour growth. In normal cells, IGF2 and H19 are separated by the genomic 
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imprinting control region (ICR) recognised by the transcriptional regulator CTCF. IGF and 

H19 demonstrate monoallelic coexpression during embryogenesis and are under the control of 

the same enhancer elements (E) located downstream of H19. ICR is methylated on the 

paternal chromosome (lollypops), which blocks binding of CTCF, prevents transcription of 

H19, and allows activation of IGF2 by the distal enhancer. Instead, CTCF binds to the 

maternal chromosome and promotes H19 transcription. In this way, the methylation status of 

H19 balances in cis the expression of IGF2 residing on the same chromosome. In Wilms 

tumours, H19 is methylated at both chromosomes, which leads to expression of IGF2 from 

both alleles, accumulation of IGF2 protein, and cell growth stimulation. In bladder cancer, the 

H19 promoter region and ICR are hypomethylated, which blocks expression of IGF2 and 

causes the accumulation of H19 lncRNA. 

 

The imprinted partner of MEG3, DLK1, is a candidate tumour suppressor in kidney cancer. 

DLK1 expression is maintained in normal kidney, but it is lost in most primary renal cell 

carcinomas (RCCs) and RCC-derived cell lines. Reintroduction of DLK1 increases 

anchorage-independent cell death and suppresses tumour growth in nude mice. The 

inactivation of DLK1 in RCCs is caused by gain of methylation upstream of MEG3 (56). 

Downstream of MEG3, the 14q32.3 locus encodes one of the largest intergenic miRNA 

clusters (composed of 54 miRNAs) often deregulated in prostate, bladder, and other cancers, 

and several imprinted lncRNAs with unknown function(57). Interestingly, one of these 

lncRNAs, MEG8, hosts 31 snoRNAs and displays a genomic organisation resembling sno-

lncRNAs (58). 

Long noncoding RNAs are oncogenes in urologic cancers. 

The metastasis associated lung adenocarcinoma transcript 1 (MALAT1/NEAT2) (59) is 

specifically upregulated in bladder, kidney, and a subset of PCas (12, 60–62). In urothelial 

carcinoma, MALAT1 is overexpressed; induces cell proliferation, migration, and survival; 

and promotes epithelial-mesenchymal transition by activating WNT signalling in vitro (60, 

61). In RCC, MALAT1 is a fusion partner of TFEB, a transcription factor that regulates key 

developmental pathways in several cell lineages. The MALAT1 gene is fused to the TFEB 

gene, preserving the entire TFEB coding sequence and leading to a dramatic increase of 

TFEB protein levels and cancer progression (63, 64). MALAT1 is also involved in indirect 

activation of gene expression. Together with the lncRNA encoded by the taurine upregulated 

gene 1 (TUG1) (16), MALAT1 mediates the shuttling of the polycomb repressive complex 

between nuclear compartments leading to the activation or repression of growth-control genes 

(65). Interestingly, TUG1 is also overexpressed in urothelial carcinomas, and high TUG1 

expression is associated with high grade and stage. Silencing of TUG1 in urothelial carcinoma 

cells causes proliferation inhibition and apoptosis induction, supporting an oncogenic function 

for TUG1 (66). 

Urothelial cancer associated 1 (UCA1) is another lncRNA upregulated in bladder cancer (67–

70). Overexpression of UCA1 enhances ERK1/2 MAPK and PI3-K/AKT kinase activity, 
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causing increased expression of the transcriptional coactivator p300 that regulates 

transcription via chromatin remodelling and both expression and phosphorylation of its 

interacting protein CREB, which in turn promotes cell cycle progression, carcinogenesis, and 

cancer invasion (68, 70). Overexpression of one of the UCA1 isoforms (UCA1a, CUDR) in 

bladder cancer cells antagonises cisplatin-induced apoptosis and promotes tumourigenicity in 

vivo, suggesting that UCA1a can serve as a new therapeutic target for bladder cancer (69). 

In PCa, two androgen-responsive lncRNAs, CBR3-AS1 and CTBP1-AS, have been shown to 

indirectly regulate the expression of AR and downstream genes. CBR3-AS1 is one of three 

lncRNAs encoded in antisense to the carbonyl reductase 3 gene (CBR3). Expression of 

CBR3-AS1 is significantly elevated in primary tumours and PCa cells compared with normal 

tissues and benign prostatic hyperplasia. Silencing of CBR3-AS1 in androgen-responsive and 

nonresponsive LNCaP cells results in downregulation of AR, reduces cell proliferation, and 

induces apoptosis suggesting that CBR3-AS1 could be a novel therapeutic target in PCa (71). 

CTBP1-AS is an androgen-responsive lncRNA encoded in antisense to the novel AR 

corepressor C-terminal binding protein 1 (CTBP1). CTBP1-AS is upregulated in PCa and 

promotes both hormone-dependent and castration-resistant tumour growth by antagonising 

the expression of CTBP1. In PCa cells, CTBP1-AS recruits the RNA-binding transcriptional 

repressor PSF that induces histone deacetylation of the CTBP1 promoter and transcriptional 

repression of CTBP1. Analysis of common CTBP1-AS/PSF target genes suggests that the 

CTBP1-AS/PSF tandem functions as a global androgen-controlled trans-repressor of tumour 

suppressor genes, thus promoting cell cycle progression (72). 

Ultraconserved RNAs 

Frequently originating from fragile genomic loci, ultraconserved RNAs (ucRNAs) are also 

candidate oncogenes with tissue- and disease-specific expression thought to function as 

transcriptional enhancers and regulators of alternative splicing that may interfere with the 

function of other RNAs through RNA-to-RNA loop interactions (73). In PCa some ucRNAs 

demonstrate altered expression associated with Gleason score and extraprostatic extension. In 

PCa cells, transcription of several ucRNAs is controlled by epigenetic mechanisms and/or 

androgens and correlates negatively with miRNA expression. UcRNA target analysis in PCa 

identified >1000 possible ucRNA-to-mRNA interactions, with enrichment of ucRNA targets 

in pathways related to calcium binding and RAS signalling (74). 

Role of long noncoding RNAs in the treatment of patients with prostate, bladder, or 

kidney cancer 

The altered expression of lncRNAs in urologic malignancies and their demonstrated 

involvement in cancer-associated cellular processes present them as attractive noninvasive 

biomarker candidates and open the possibility for the developing of novel therapeutic 

strategies. 

Long noncoding RNA biomarkers 
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One of the oldest known lncRNAs, PCA3 (DD3), is an approved diagnostic urinary 

biomarker for PCa and shows potential in PCa diagnostics prior to biopsy (75). Likewise, 

nonmethylated DNA fragments originating from the XIST promoter have been proposed as a 

noninvasive serum marker in TGCT (76) and PCa (77, 78). Accumulation of UCA1 in urine 

sediments could be used as a sensitive and specific diagnostic and follow-up marker for 

patients with transitional cell carcinoma (67). 

The highly tissue- and cancer-specific expression of lncRNAs and ucRNAs (11, 73) suggests 

that they possess diagnostic, prognostic, and/or predictive potential in urologic malignancies. 

For example, PCGEM1 has been characterised as a high-risk PCa marker and a potential 

biomarker for neoplasms responsive to chemoprevention by phytosterols (19, 79, 80). 

SNHG16 is positively associated with aggressive bladder cancer and chemotherapy resistance 

(81). Overexpression of hypoxia-inducible factor-1α antisense transcripts (HIF1A-AS) 

discriminates between papillary and nonpapillary RCC (82, 83). Finally, H19 in situ 

hybridisation in biopsies is prognostic for the early recurrence of bladder cancer (84); LOI at 

the H19/IGF2 locus is age associated with PCa susceptibility and could assist diagnosis (44, 

45). Besides lncRNA expression, cancer risk is also associated with an enrichment of single 

nucleotide polymorphisms (SNPs) in lncRNA genes in PCa (85). A SNP in H19 is associated 

with a decreased risk of non–muscle-invasive bladder cancer (86); SNPs in PCGEM1 and 

PRNCR1 contribute to PCa susceptibility (21, 87). 

Long noncoding RNA therapeutic concepts 

Different therapeutic concepts targeting lncRNAs are currently under investigation. A direct 

method to “correct” the cellular levels of overexpressed oncogenic lncRNAs, widely used for 

research purposes, is silencing by small interfering RNA (siRNAs). SiRNAs designed to 

target lncRNA successfully reduce lncRNA expression (16, 73) and have been used to 

sensitise human fibroblasts to apoptosis in vitro and in vivo (88, 89). A similar approach 

implies the use of synthetic antisense DNA oligonucleotides (ASOs) complementary to 

lncRNA regions interacting with DNA, RNA, or proteins. ASOs can be effective agents that 

correct RNA gain-of-function effects and modulate the expression of expanded repeats, 

lncRNAs, and other mutant transcripts residing in the nucleus (89). Other possible lncRNA-

targeting agents are DNAzymes, single-stranded DNA molecules able to cleave 

complementary sequences, engineered after the naturally occurring RNA-based ribozymes. 

Both classes carry future therapeutic potential as demonstrated by their use in muscle and 

brain diseases (90). 

Although silencing oncogene expression is a logical approach for cancer therapy, one can also 

imagine using ceRNAs as molecular modulators of „„defective‟‟ oncogenic miRNAs and 

transcription factors. Two examples described earlier are the miRNA sponge CDR1-AS (33, 

34) and the protein decoy GAS5 sequestering GR (35). However, the successful application of 

ceRNAs in future clinical practice will require a detailed understanding of the secondary 

structure and functional elements of lncRNAs that is yet to be achieved. 

Research has now demonstrated that regulatory elements that control lncRNA expression can 

be used in targeted anticancer therapy. For instance, the BC-819 DNA plasmid, which 
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contains H19 regulatory sequences, was evaluated as a promising and safe targeted therapy 

agent in phase 1 and 2 studies on pancreatic cancer (91). A similar vector is under 

consideration for bladder cancer therapy, where animal studies demonstrated effective tumour 

growth inhibition (92). Future research will have to elucidate whether any of these approaches 

can be successfully implemented in clinical practice. 

Current challenges and future perspectives of long noncoding RNA research 

The rapidly rising number of newly discovered lncRNAs and the accumulating experimental 

evidence elucidating their multifaceted functionality hold promise for a better understanding 

of cancer biology and future use in clinical practice. However, current investigations aiming 

at the comprehensive portrayal of lncRNA are confronted by several challenges. 

At present, most novel transcripts are discovered via next-generation sequencing technologies 

that face computational limitations in terms of short sequence length, mapping, and de novo 

assembly of (fusion) transcripts originating from cancer genomes with complex structural 

rearrangements (eg, large deletions or insertions, chromosomal fusions, chromothripsis, or 

chromoplexy) (93–96). These challenges will be overcome in the near future because 

experimental sequencing protocols are already advancing towards their third and fourth 

generation where an individual transcript is analysed in its full length without the need of 

assembly and quantified in single cells on the background of a complex tissue (96). Recent 

developments in fluorescence probe design, imaging technology, and image processing enable 

the determination of (sub)cellular localisation and the measurement of absolute expression of 

endogenous transcripts in individual cells with single-molecule resolution in situ (97, 98). 

The elucidation of lncRNAs function is hampered by their relatively low sequence 

conservation. However, the main functionality of RNA may reside in its tertiary structure 

determined by conserved sequence motives that assist RNA folding and are essential for 

protein binding. This is demonstrated by the sequential assembly of PRNCR1 and PCGEM1 

with the AR (22), the structure of MEG3 imperative for its tumour suppressor functionality 

(54), or the multidomain organisation of steroid receptor RNA activator SRA (99). The 

identification and characterisation of such sequence motives and functionally active RNA 

domains, as opposed to individual transcripts, would provide the basis for better 

understanding and prediction of lncRNA activity (100). 

Another key question that remains to be answered is what causes the strikingly specific 

expression of most lncRNAs in normal and cancerous tissues (8, 11, 73). At present, only a 

few reports have provided evidence for the genetic or epigenetic targeting of specific 

lncRNAs, for example by deletions, amplifications, fusion events, or methylation, some of 

which were discussed earlier. The genetic/epigenetic aberrations controlling lncRNA 

expression should be investigated in the future to apprehend the commonality of lncRNAs as 

drivers of tumourigenesis. 

Conclusions 
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LncRNAs emerged rapidly as a diverse group of essential regulators of genetic information 

flow that interact with the epigenetic, transcriptional, and posttranscriptional pathways of cell 

proliferation, differentiation, and survival. Functional alterations of specific lncRNAs 

promote tumour formation, progression, and metastasis in many human malignancies 

including prostate, bladder, and kidney cancer. The tissue- and cancer-specific expression of 

lncRNAs demonstrates their potential as attractive noninvasive markers in urologic 

malignancies. A better understanding of the molecular nature of lncRNAs and the 

mechanisms by which they function in the normal and malignant cell will lead to better 

understanding of tumour biology and could provide novel therapeutic targets for the treatment 

of urologic cancers. 
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Abstract 

 

Current prostate cancer (PCa) biomarkers such as PSA are not optimal in distinguishing 

cancer from benign prostate diseases and predicting disease outcome. To discover additional 

biomarkers, we investigated PCa-specific expression of novel unannotated transcripts. Using 

the unique probe design of Affymetrix Human Exon Arrays, we identified 334 candidates 

(EPCATs), of which 15 were validated by RT-PCR. Combined into a diagnostic panel, 11 

EPCATs classified 80% of PCa samples correctly, while maintaining 100% specificity. High 

specificity was confirmed by in situ hybridization for EPCAT4R966 and EPCAT2F176 

(SChLAP1) on extensive tissue microarrays. Besides being diagnostic, EPCAT2F176 and 

EPCAT4R966 showed significant association with pT-stage and were present in PIN lesions. 

We also found EPCAT2F176 and EPCAT2R709 to be associated with development of 

metastases and PCa-related death, and EPCAT2F176 to be enriched in lymph node 

metastases. Functional significance of expression of 9 EPCATs was investigated by siRNA 

transfection, revealing that knockdown of 5 different EPCATs impaired growth of LNCaP and 

22RV1 PCa cells. Only the minority of EPCATs appear to be controlled by androgen receptor 

or ERG. Although the underlying transcriptional regulation is not fully understood, the novel 

PCa-associated transcripts are new diagnostic and prognostic markers with functional 

relevance to prostate cancer growth. 
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Introduction 

 

Despite continuous research efforts over the past decades, prostate cancer (PCa) remains one 

of the leading causes of male cancer deaths, with an estimated 70,100 deaths in Europe in 

2014. Incidence rates are highest in countries of the western hemisphere including Europe, 

North America and Oceania, which can be partly explained by the widely applied blood test 

for prostate specific antigen (PSA) [1,2]. Although the serum PSA level offers high sensitivity 

for PCa detection, its specificity is limited as PSA levels can also be elevated in benign 

prostate diseases such as benign prostate hyperplasia (BPH) and prostatitis. Thus, the most 

important drawback of PSA screening is a high number of false positives leading to 

unnecessary biopsies and overtreatment of patients due to a lack of prognostic markers. Up to 

date this remains a challenge and additional prognostic factors, such as disease associated 

genes, are needed [3]. 

Earlier studies discovered several other PCa- associated genes, among them two long non-

coding RNAs (lncRNAs) that show disease-associated overexpression, PCGEM1 and PCA3 

(DD3) [4,5]. The latter has since been extensively studied as diagnostic urine marker for PCa, 

offering better performance for detecting PCa when compared to PSA [6]. With the 

introduction of high throughput technologies, such as tiling arrays and next generation 

sequencing, several other PCa-associated lncRNAs such as PRNCR1, PCAT1, PCAT18, 

PCAT29 and SChLAP1 were identified [7–14]. 

LncRNAs have been associated with several functions, including epigenetic regulation of 

gene expression by acting as regulatory factors in cis, as well as in trans by involvement in 

chromatin remodeling [15–18]. Additionally, direct binding to active androgen receptor (AR) 

and recruitment of additional factors for AR-mediated gene expression has been reported [19]. 

However, a recent study found contradicting evidence for these findings and thus further 

research is required to clarify lncRNA involvement in AR activity [20]. Still, many functional 

relationships of lncRNAs as well as their tissue-specific regulation remain unclear. Currently, 

lncRNAs are gaining more interest as potential biomarkers for various malignant diseases, 

due to their highly tissue-specific expression profiles [17,21]. 

In this study, we set out to discover novel PCa-specific lncRNAs based on Affymetrix Human 

Exon Arrays by adapting a cancer outlier profile analysis (COPA, [22]). Our approach made 

use of the unique design of these arrays, which include probes against predicted sequences 

(„full‟) next to probes targeting known sequences („core‟ and „extended‟). This type of 

microarray has recently been successfully adapted for lncRNA profiling, showing the general 

potential of the platform in lncRNA studies [11]. To increase reliability of our results, we 

combined three Affymetrix Human Exon Array datasets and searched for reoccurring outlier 

patterns indicating novel transcripts. We then used RNA-sequencing (RNA-seq) data to refine 

our transcript definitions and subsequently validated them via RT-PCR. Computational 

evaluation of the validated transcripts confirmed absence of protein coding potential, 

suggesting that these transcripts are indeed lncRNAs. Two transcripts were chosen for 

staining of tissue microarrays using in situ hybridization and successfully discriminated PCa 
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from normal adjacent prostate (NAP) and benign prostate tissue. 
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Results 

 

334 candidate PCa-associated transcripts were identified 

Novel transcript candidates were identified by searching for unannotated Affymetrix Human 

Exon Array transcript clusters (TCs) that showed a PCa-specific outlier profile using a COPA 

transformation [22]. After removing all TCs targeting known genes, we discarded TCs with 

fewer than 5% outliers in cancerous samples and with outliers in control groups. All 

remaining TCs were then grouped into „EPCATs‟ (Erasmus MC PCa-associated transcripts) 

based on proximity, strand and similarity in expression (see Figure 1). EPCAT names were 

assigned to directly indicate genomic location and are based on chromosome, strand and a 

unique identifier. For instance, EPCAT2F176 (SChLAP1) is located on the forward strand of 

chromosome 2. EPCATs had to be present in at least two datasets to be considered for further 

analysis. Differences between datasets (i.e. missing parts in one or the other) were resolved by 

a union of all TCs involved in a particular EPCAT to maximize its size. Our meta-analysis of 

three available Exon Array datasets resulted in 334 EPCATs comprising 2086 TCs that 

exhibited a prostate cancer-specific expression profile (see Supplementary Tables 1 – 2). We 

observed that combining several datasets severely reduced the number of EPCATs identified 

by one dataset alone, suggesting a reduction in false positives in doing so (see Figure 2a). 

Next, we classified the identified EPCATs based on their genomic origin with regard to UCSC 

known genes, and observed that 75 EPCATs were being classified as intergenic or antisense 

transcripts. The majority of EPCATs (259) overlapped / extended either 5‟ or 3‟ ends or was 

located in intronic regions of genes known to LNCipedia [23] or UCSC (see Figure 2b). 

 

Figure 1: Principle steps of EPCAT identification. Affymetrix transcript clusters that had 

no annotation assigned were grouped into one locus if they were located on the same strand in 

close proximity (<250 kb) and showed a similar PCa-specific outlier profile (transcript 

clusters TC2 and TC3). Transcript clusters that did not meet these criteria were not included in 

the particular EPCAT. 
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Figure 2: Total number and classification of EPCATs. a) Total number of EPCATs 

identified by each individual dataset as well as a combination of at least two datasets (shaded 

area, 334 EPCATs). b) Classification of these 334 EPCATs based on their relative position to 

LNCipedia [23] genes. UCSC known gene annotations were selected if no overlap with 

LNCipedia was found. Overlaps include cases in which an EPCAT overlaps and extends the 5' 

or 3' ends of known genes or resides in an intron. 

 

Visual inspection of these results confirmed that similar PCa-specific expression patterns 

occurred in all three datasets with TCs grouped into one EPCAT following the same PCa-

specific outlier profile (see Figure 3 and Supplementary Figures 1 – 6 for a subset of 15 

EPCATs that were subsequently PCR-validated). We also inspected EPCAT expression in 

other publicly available datasets comprising samples from lung, brain, breast, colorectal and 

gastric cancer tissue as well as several normal tissues. For most of the EPCATs, expression 

was very low in virtually all samples, indicating a PCa-specific expression of these transcripts 

similar to other previously reported lncRNAs ([12,24], see Supplementary Figures 3 – 6). 

However, some EPCATs such as EPCAT5R633 and EPCATXR234 were detected in multiple 

lung, colorectal and breast tumors and appear deregulated in different cancer types. To gain 

insight into their transcriptional regulation, we tested whether any EPCATs are androgen 

regulated by incorporating a publicly available dataset of R1881 treated LNCaP cells. We 

observed that out of 301 EPCATs expressed in LNCaP 31 were significantly associated with 

androgen treatment and showed more than 50% increase or decrease in expression (p < 0.05; 

13 up-, 18 downregulated, see Supplementary Figure 7). In addition, we tested for 

coexpression with known outlier genes ERG and ETV1 [22] by Spearman‟s correlation 

coefficient, and found that 17 EPCATs showed significant correlation with ERG (Spearman's 

ρ ≥ 0.5 and p < 0.05, see Supplementary Figure 8), while no significant coexpression with 

ETV1 was observed. Public ChIP-seq data [25] targetting AR and ERG was used as second 
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source of evidence for AR and ERG regulation. We found that 15 of the 33 differentially 

expressed EPCATs (including 50 kb flanks) had overlapping AR peaks, whereas ERG peaks 

were found for 4 of the 17 coexpressed EPCATs (see methods). 

 

Figure 3: Expression of 15 RT-PCR validated EPCATs in EMC Exon Array samples. 

EMC (GSE41408, [27]), comprised localized prostate cancer obtained via radical 

prostatectomy (PCa), transurethral resection of the prostate (TURP), lymph node metastasis 

(LNPCa) and normal adjacent prostate (NAP) tissue. 

 

To gather more evidence for the existence of our transcript candidates, we performed a 

reference guided assembly of RNA-seq data obtained from 18 patients with localized PCa as 

well as 5 samples from lymph node metastases. We used Cufflinks [26] to predict intron-exon 

boundaries in the genomic regions of the EPCATs while masking known annotated genes, 

which resulted in 222 predicted transcripts. We chose 20 well defined candidates that showed 

high expression and added additional candidate exons after manual evaluation of several 

genomic loci. We also included EPCAT8R190, which was initially filtered out due to its 

presence in only one dataset (EMC), but was subsequently discovered as a candidate due to its 

high expression in castration resistant prostate cancer (CRPC). We were able to design 

working RT-PCR primers for 15 out of these 21 candidates and validated their expression in 6 
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prostate cancer cell lines (see Figure 4 and Supplementary Table 3). The primers were 

designed intron spanning, allowing us to PCR from exon to exon, and validated exons were 

Sanger sequenced. Individual exons of an EPCAT showed the same expression pattern 

throughout our cell line panel, whereas expression patterns differed between different 

EPCATs, indicating independent expression and regulation. To obtain full length sequences, a 

λgt11 library containing cDNA from the LNCaP cell line was used (see Materials and 

Methods). 

 

Figure 4: Validation of 15 EPCATs in 6 prostate cancer cell lines. Intron-spanning primers 

were designed for each EPCAT. Exons of one transcript followed similar expression patterns 

(left side). Only the most representative and optimal primer set for an EPCAT is shown in the 

right panel. These primers were also used to design Taqman probes (see Supplementary Table 

9 – 10). AR and TMPRSS2-ERG status for each cell line are indicated as present (+) or absent 

(-). 

 

EPCATs can serve as diagnostic markers in patient tissues 

TaqMan RT-PCR was used to quantify expression of the 15 EPCATs in two separate patient 

cohorts, however, only 11 EPCATs had working TaqMan probes and were subsequently 

quantified. The first cohort comprised a subset of patients also present in the EMC Exon 

Array dataset and allowed comparison between qRT-PCR and Exon Arrays for the EPCATs. 

Therefore, we treated this cohort as a training set and used the second, independent cohort as 

validation set. Comparing expression measurements of qRT-PCR with the averaged 

expression values of all TCs of an EPCAT yielded varying concordance between both 
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techniques (average R
2
 = 0.58, see Supplementary Figure 9). These results indicated that not 

all EPCATs were sufficiently represented by Affymetrix TCs and that RNA-seq data is 

essential for defining gene structures. Next, a receiver operator characteristic (ROC) was 

created using the test cohort to maximize area under curve (AUC) by weighing each EPCAT 

in the diagnostic panel. When applying the same panel to the validation cohort, an AUC of 

0.87 confirmed high specificity and sensitivity for PCa diagnosis (see Supplementary Figure 

10). 

Two lncRNAs in 2q31.3 are associated with prostate cancer progression 

To evaluate possible prognostic value of the 15 validated EPCATs from our EMC Exon Array 

dataset, we characterized their expression profiles in 54 patients with clinical follow-up (see 

[27] for further information). We performed a retrospective analysis for prediction of prostate 

cancer-related death (PCaD), development of clinical metastases (PCaMets) after radical 

prostatectomy (RP) as well as biochemical recurrence (BCR) defined by PSA progression 

after RP. Samples were clustered into two groups using Partition Around Medoids (PAM) and 

significant association with clinical endpoints was tested using a bootstrapping analysis and 

label permutation to calculate p-values (see methods). Using FDR correction, we observed 

that EPCAT2R709 and EPCAT2F176 (SChLAP1) showed significant association with 

PCaMets and PCaD. To evaluate whether any EPCAT could discriminate poor clinical 

outcome, we used a Kaplan-Meier analysis for the same clinical endpoints. Again, 

EPCAT2F176 and EPCAT2R709 showed a significant association with PCaMets and PCaD 

(see Supplementary Figures 11 – 14 and Supplementary Tables 4a – 4d). Interestingly, both 

EPCAT loci are located in chromosome 2q31.3, with EPCAT2R709 being found on the 

antisense strand, approximately 120 kb upstream of the first exon of EPCAT2F176. 

Additionally, both EPCATs show similar expression profiles (Spearman's ρ = 0.79 for all 

samples analyzed via qRT-PCR, ρ = 0.93 for EMC Exon Arrays). 

Evaluation of coding potential and conservation 

We evaluated if any of the 15 PCR-validated EPCATs exhibits protein coding potential using 

two approaches: iSeeRNA and PhyloCSF [28,29]. iSeeRNA classified all processed EPCATs 

as non-coding, however, EPCAT13F999 did not pass minimum length requirements (200 bp). 

We used all known coding RefSeq genes (36,818) as positive control, of which 34,476 

(93.64%) were classified as protein coding and 2342 (6.36%) as non-coding. For PhyloCSF, 

known coding genes GAPDH and ERG were used as positive controls. Both genes were 

assigned high positive scores by PhyloCSF, as compared to negative scores for all EPCATs 

indicating no coding potential (see Supplementary Figure 15). Sequence conservation of the 

EPCATs was evaluated using per-base conservation scores from UCSC (PhyloP) for several 

genome panels. 1000 randomly picked coding genes in the UCSC RefSeq table as well as 

1000 Repeat regions served as controls. The results illustrate that EPCAT sequences are 

overall less conserved than protein coding sequences, while being more conserved than most 

Repeat regions, which is concordant with previous findings ([17,24], see Supplementary 

Figure 16). 
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In situ hybridization revealed diagnostic power and prognostic value 

To investigate whether EPCATs can serve as potential pathological tissue markers markers 

and specifically distinguish cancerous from normal prostate tissues, we stained tissue 

microarrays (TMAs) for presence of the two EPCATs showing highest expression among our 

11 qRT-PCR quantified transcripts (EPCAT2F176 / SChLAP1 and EPCAT4R966). Due to 

their non-coding nature, we used in situ hybridization (ISH) to directly target the RNA 

molecules. All four TMAs comprised a total of 418 PCa samples from RPs, 120 transurethral 

resections of the prostate (TURP, 65 hormone refractory, 55 hormone sensitive), 119 lymph 

node metastasis (LNPCa) and 113 normal adjacent prostate samples (NAP), as well as normal 

prostate obtained via 81 TURPs, 5 total pelvic exenterations (TE) and 48 radical 

cystoprostatectomies (RCP). Normal tissue samples from kidney, liver, placenta as well as a 

sample containing urothelial cell carcinoma served as control (see Supplementary Tables 5a – 

5b). After TMA scoring, we observed that all 4 control tissues on TMA 1 and 2 were indeed 

negative (score = 0) for both EPCATs, which showed PCa-specific expression as expected 

from our previous findings (see Figure 5a – 5j and Supplementary Table 6). Moreover, we 

found significant association with pathological stage, whereas other clinical parameters 

(Gleason score, surgical margins, pre-treatment PSA) were not significantly associated (see 

Supplementary Table 7a – 7d). Normal prostate samples of patients without prostate cancer 

showed complete absence of EPCAT expression (see Supplementary Figure 16), whereas 12 

NAP samples (10.62%) exhibited higher expression levels compared to samples from normal 

prostate (Figure 6). In a ROC analysis, both EPCATs showed high specificity and limited 

sensitivity in distinguishing cancerous samples when used individually (28.61% PCa samples 

positive, AUC = 0.66 for EPCAT2F176 / SChLAP1 and 28.01% PCa samples positive, AUC 

= 0.65 for EPCAT4R966). Combining both EPCATs, we were able to correctly classify 39.4% 

of the cancer samples in our cohort while maintaining a specificity of 100% (AUC = 0.71). 

Using ISH also allowed us to study subcellular localization of the EPCATs, revealing that 

both transcripts are present in the cytoplasm as well as the nucleus, with EPCAT2F176 

showing a tendency to be more nuclear than cytoplasmic, consistent with previous findings 

[12]. Furthermore, we also identified several prostate intraepithelial neoplasia (PIN) lesions 

that showed positive staining for the EPCATs (7 / 21 lesions for EPCAT2F176 (33.3%), 1 / 21 

lesion for EPCAT4R966 (4.8%), see Figure 6g – 6j). 

We used our third TMA comprising 119 samples to evaluate EPCAT expression in lymph 

nodes of patients undergoing a lymph node exploration in addition to RP. We found that out 

of 73 samples containing tumor tissue, 46 were positive for EPCAT2F176 (63.0%), 

representing a significant increase in number of positive samples compared to localized PCa 

(p = 0.0404, Fisher‟s exact test). For EPCAT4R966, tumor was present in 71 of the sliced 

cores, of which 16 were stained positive (22.5%; p = 0.3866, Fisher‟s exact test). 

Furthermore, all tumor free samples were found to be negative. 
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Figure 5: In situ hybridization of two EPCATs in prostate cancer tissues. (a – d) Both 

EPCAT2F176 as well as EPCAT4R966 show highly specific expression in PCa cells, whereas 

surrounding stromal tissue scored negative. (e – f) Lymph node metastases also scored 

positive for both EPCATs and complementary expression could be observed when comparing 

the same tissue cores, highlighting their added diagnostic potential. (g – j) PIN lesions were 

also found positive, indicating EPCAT expression as an early event in cancer development. 

 

As for our fourth TMA comprising hormone refractory and hormone sensitive patient 

samples, we did not observe a significant correlation of hormonal status with any EPCAT nor 

a combination of both. EPCAT2F176 was found positive in 61 out of 109 TURP samples 

containing tumor tissue (55.9%), whereas 41 out of 103 tumor containing samples were 

positive for EPCAT4R966 (39.8%, see Supplementary Table 6). 
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Figure 6: In situ hybridization of two EPCATs in normal prostate tissues. Both 

EPCAT2F176 as well as EPCAT4R966 showed no expression in normal prostate tissue 

obtained via radical cystoprostatectomy. However, normal cells (1) adjacent to prostate cancer 

(2) were found positive for both EPCATs. 

 

Knock-down of EPCATs impedes growth of prostate cancer cells 

To investigate their functional impact on PCa growth, we performed siRNA-directed 

knockdown of 9 PCR-validated EPCATs (EPCAT1F273, EPCAT2F176, EPCAT2R709, 

EPCAT3R522, EPCAT4R966, EPCAT5R633, EPCAT8R190, EPCAT15F850, EPCATXR234) 

in LNCaP and 22RV1 cells. Cell viability was assessed by MTT-assay, and transfections with 

two scrambled RNAs were used to evaluate unspecific treatment effects of siRNA 

transfection. We observed significant reductions in cell viability for 6 of these 9 EPCATs 

(EPCAT1F273, EPCAT3R522, EPCAT4R966, EPCAT8R190, EPCAT15F850, 

EPCATXR234), 5 of which were showing consistent effects in both LNCaP and 22RV1 (see 

Figure 7). 
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Figure 7: Cell viability measured by MTT assay after treatment of LNCaP and 22RV1 

cells. All measurements were performed in triplicates and a t-test was used to determine 

significant differences (p < 0.05) between treatment and scrambled control RNA. * denotes a 

significant difference at day 7 / 8, ** at both day 5 and 8 / day 4 and 7 for LNCaP and 22RV1, 

respectively. Experiment were performed twice and representative results are displayed. 
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Discussion 

 

We successfully set out to identify novel transcripts with PCa-specific expression profiles 

using unannotated transcript clusters of Affymetrix Human Exon Arrays. The large number of 

transcript candidates identified shows that we do not yet have a full overview of all the 

transcribed genomic regions. With efforts such as ENCODE and GENCODE, it has become 

clear that the number of protein coding genes is reaching a plateau of about 21,000 [30]. On 

the contrary, the number of non-coding transcripts is increasing rapidly, as particularly deep 

RNA-sequencing of many normal and diseased tissues reveals a wealth of novel small and 

long transcripts. Our 334 EPCATs add to this pool of newly identified RNAs. 10 EPCATs 

were also identified by Prensner et al., while 196 EPCATs, of which 9 validated transcripts 

overlapped with the 32,183 human transcripts present in the LNCipedia [23] database. 

In previous studies, several lncRNAs have been associated with PCa development and 

progression, emphasizing their role as potential markers and therapy targets in cancers [17]. 

Various mechanisms of lncRNA dependent activation and repression of expression have been 

reported in PCa, among them are post-transcriptional regulation of BRCA2 by PCAT-1 [31], 

post-translational regulation of SNF5 protein by SChLAP1 binding [12] as well as mediation 

of enhancer-promoter looping by interaction with AR (PCGEM1 and PRNCR1, [19]), which 

is currently disputed and requires further research for clarification [20]. Other described 

mechanisms include regulation of alternative splicing by MALAT1 and silencing of antisense 

genes by CDKN2B-AS1 / ANRIL [32]. Furthermore, PCAT29 (EPCAT15F849) has been 

recently suggested as tumor suppressor in PCa, although its mechanism of action is still 

unclear [13]. 

Despite these promising findings, the value of the newly identified lncRNAs in PCa 

prognostic profiles has not yet been established. To address the need for novel prognostic 

markers, we investigated whether EPCAT expression on three Affymetrix Exon Array cohorts 

is related to poor prognostic outcome and found that at least two transcripts (EPCAT2F176 / 

SChLAP1 and EPCAT2R709) are associated with development of metastasis and PCa-related 

death. EPCAT2R709 is located approximately 100 kb upstream in antisense direction to 

EPCAT2F176, making the genomic region on chromosome 2q31.3 a highly interesting target 

for further studies. Using the RNAscope ISH technology, we independently validated the 

diagnostic accuracy and power to predict pathological stage of EPCAT2F176 and 

EPCAT4R966. The association of EPCAT2F176 with development of metastasis and PCa-

related death was not confirmed using the TMA, which could be due to differences in sample 

cohorts and detection technologies. Nevertheless, we did observe a significant increase in 

number of positive LNPCa samples compared to localized PCa for EPCAT2F176, which 

could indicate an involvement in formation of metastasis and supports our earlier results. 

Both EPCAT2F176 and EPCAT4R966 were found expressed in some PIN lesions by ISH, 

suggesting that their expression might be an early event in PCa development. Moreover, both 

transcripts were expressed in approximately 10% of NAP tissue samples, whereas normal 

prostate controls were completely negative, suggesting that normal adjacent tissue might 
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differ from truly normal tissue as previously reported [33–35]. Therefore, lncRNA biomarkers 

such as our EPCATs enable a morphology-independent, molecular-based identification of 

potentially malignant prostate tissue. Taken together, these findings highlight the high 

specificity of EPCAT expression and pose questions as to how these lncRNAs are regulated 

and why they are expressed in subsets of patients only. 

We chose three transcription factors with known involvement in PCa to investigate EPCAT 

regulation, namely AR, ERG and ETV1. Using public Affymetrix Exon Array [36] and ChIP-

seq data [25] we found evidence for 4 ERG and 15 AR regulated EPCATs, of which 3 had 

been PCR-validated. Since the majority of EPCATs does not appear to be AR or ERG 

regulated, other regulatory mechanisms such as DNA methylation, chromatin restructuring or 

combinations of transcription factors could play a role. Thus, whether an interplay between 

these factors will explain the outlier PCa-specific expression of EPCATs is a new and 

challenging field of research. 

In addition to their reported diagnostic and prognostic potential, siRNA-directed knockdown 

in combination with an MTT-assay revealed that 6 EPCATs (EPCAT1F273, EPCAT3R522, 

EPCAT4R966, EPCAT8R190, EPCAT15F850, EPCATXR234) are involved in PCa cell 

viability and growth. Like the recently identified PCAT1, SChLAP1 and PCAT29, the 

expression of some of the novel EPCATs is functionally relevant and therefore, cancer-

associated lncRNAs should not entirely be seen as transcriptional noise due to aberrant 

regulation. 

Despite unknown regulation and of most EPCATs, they offer high specificity in 

discriminating malignant disease from benign prostate tissues. With the exemplary lncRNA 

PCA3 being used as clinical diagnostic marker in a urine-based test [6], one can envision that 

a combination of EPCATs can supplement PCA3 and TMPRSS2-ERG based diagnostic 

panels. If EPCATs are present in urine, such an assay might help to improve specificity of 

diagnosis of current markers and reduce the number of unnecessary prostate biopsies. 

In conclusion, we present evidence for the existence of novel prostate cancer-specific 

transcripts that demonstrate diagnostic and prognostic value and might serve important roles 

in tumor development and progression. A subset of EPCATs is Androgen Receptor or ERG 

regulated, but for most novel transcripts their unique transcriptional regulation in cancer is 

still not fully resolved and poses a new challenging research question. 
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Methods 

 

Public Exon array datasets 

We used three independent publicly available datasets of Affymetrix Human Exon Arrays to 

discover novel prostate cancer-associated transcripts; referred to as 'Taylor' (GSE21034, [37]) 

and 'Brase' (GSE29079, [38]) and 'EMC'. 'EMC' contains 48 previously published prostate 

cancer samples (GSE41408, [27]) as well as additional cancerous and control samples, 

accessible via GEO accession number GSE59745. The datasets comprised samples from 

normal adjacent prostate (NAP), localized prostate cancer obtained via radical prostatectomy 

(PCa) and transurethral resection of the prostate (TURP, EMC only), as well as metastasis in 

lymph node (LNPCa, EMC and Taylor) and other tissues (MetPCa, Taylor only). 

Public datasets of other tissues were used for validation of PCa-specific expression and 

contained samples of lung cancer (GSE12236, [39]), gastric cancer (GSE13195), brain cancer 

(GSE9385, [40]) as well as breast, colorectal and lung cancer tissue  (GSE16534, [41,42]). 

Androgen regulation of novel transcripts was investigated using a public dataset of LNCaP 

cells grown in androgen depleted medium or in presence of 10 nM R1881 (GSE32875, [36]). 

Patient samples used for gene expression microarray, qRT-PCR and tissue microarray 

analysis 

We used normal and tumor samples of patients from the frozen tissue bank of the Erasmus 

Medical Center (Rotterdam, the Netherlands, obtained between 1984 and 2001). Further 

information concerning these patient samples were previously published [43,44]. 

Experimental protocols were approved by the Erasmus MC Medical Ethics Committee 

following the Medical Research Involving Human Subjects Act. 

For usage on Exon Arrays, 12 NAP and 8 PCa samples were obtained via radical 

prostatectomies (RP) and histologically evaluated by an uropathologist after 

haematoxylin/eosin staining of tissue sections. 10 cancer samples obtained by TURP and 12 

LNPCa samples obtained via lymphadenectomy were also added to the cohort. 

For quantitative real-time RT-PCR, an additional 40 PCa, 43 TURP, 1 LNPCa and 5 NAP 

samples were chosen along with 3 PCa-negative TURP and 2 lymph node samples that served 

as controls (see Supplementary Table 2). 

Hybridization of exon arrays for clinical samples from normal adjacent prostate 

RNA isolation from snap-frozen PCa and NAP samples was performed using RNAbee 

(Campro Scientific, Berlin, Germany). GeneChip Human Exon 1.0 ST arrays (Affymetrix, 

Santa Clara, CA, USA) were used to determine expression profiles of each sample. 

Experiments were performed at the Center for Biomics, Erasmus MC, Rotterdam, the 

Netherlands and at ServiceXS, Leiden, the Netherlands, according to the manufacturer's 

instructions [27]. 
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Discovery of novel prostate cancer-associated transcripts 

All datasets were normalized via RMA as implemented in the aroma.affymetrix Bioconductor 

R-package ([45]; CDF used: HuEx-1_0-st-v2,fullR3,A20071112,EP.CDF, see 

http://www.aroma-project.org/) and summarized transcript cluster (TC) expression values 

were obtained for the “full” evidence level. An adapted COPA [22] was performed on log2 

expression values and a threshold of 
2 ∙𝑀𝐴𝐷 (𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑧−𝑠𝑐𝑜𝑟𝑒𝑠)

0.6745
 was used to detect 

outlier samples (as suggested by [46,47]). TCs with known gene assignment based on 

Affymetrix NetAffx annotation (NA32, based on hg19), outliers in normal tissue samples or 

less than 5% outliers in cancer samples were removed. All remaining TCs were grouped 

based on proximity (less than 250 kb apart), same strand and similarity in outlier profile 

(Spearman‟s ρ ≥ 0.5), after which the combined TCs are referred to as EPCATs (see Figure 1). 

EPCATs that were detected in only one dataset or that comprised less than 12 physical probes 

on the array were removed. In case EPCATs differed between datasets, all involved TCs were 

merged into a single EPCAT in order to maximize size and complete the transcript. 

Independent validation via RNA-seq data 

Independent validation was performed using RNA-seq data of 27 organ-confined PCa 

samples from 18 patients obtained via laser capture micro dissection and 5 LNPCa samples. 

RNA-sequencing was performed on a Genome Analyzer II platform using TruSeq adapters 

(Illumina, San Diego, CA, USA) at Aros Applied Biosciences (Aarhus, Denmark). 

Sequencing reads were aligned to a pre-indexed hg19 human reference genome using TopHat 

2.0.4 [48]. Resulting BAM files were pooled based on tissue type (PCa and LNPCa) to 

increase resolution for less abundant transcripts and genomic regions covered by EPCATs 

including 10 kb flanks were extracted. Cufflinks 2.0.2 was executed in reference guided 

fashion [26,49] and results were curated manually using IGV [50], linking single exons into 

transcripts and further adding candidates that were missed by Cufflinks. Curated exon-intron 

boundaries were used to design junction spanning PCR primers. 

cDNA synthesis and RT- PCR analysis 

RNA-Bee reagent (Campro Scientific, Veenendaal, The Netherlands) was used for total RNA 

isolation according to manufacturer's protocol. RNA quality was checked on 1% agarose gel 

and cDNA was synthesized using MMLV-reverse transcriptase kit, according to 

manufacturer's instructions. EPCAT expression was validated in 6 cell lines (VCaP, 22RV1, 

LNCaP, PC3, PC346c, DU145 [51–56]) using RT-PCR. Custom PCR primers and TaqMan 

probes were designed using Primer 3 [57]. Primers were ordered by Sigma Aldrich (St. Louis, 

MO, USA), probes were ordered at IBA-Lifesciences (Göttingen, Germany, see 

Supplementary Tables 9 – 10). ABsolute QPCR ROX Mix from Thermo Scientific (Waltham, 

MA, USA) was used to perform TaqMan real-time PCR analysis on a 7500 Fast Real-Time 

PCR System from Applied Biosystems (Foster City, CA, USA). Two housekeeping genes, 

GAPDH (assay ID Hs99999905_m1, Applied Biosystems Foster City, CA, USA) and HMBS 

were used as endogenous references and a mixture of cDNAs from prostate carcinoma 

xenografts as calibrator. Quantification of HMBS was performed using 0.33 µM of primer 
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solution (forward: 5‟ CATGTCTGGTAACGGCAATG 3‟ and reverse: 5‟ 

GTACGAGGCTTTCAATGTTG 3‟) in Power SybrGreen PCR Master Mix (Applied 

Biosystems), according to thermocycling protocol recommended by the manufacturer. 

Transcript quantities for each sample were normalized against the average of two endogenous 

references and relative to a calibrator. 

Determining full length sequences of novel transcripts 

RT-PCR validated exons were Sanger sequenced using ABI Prism BigDye Terminator v3.1 

Ready Reaction Cycle Sequencing Kit. After PCR processing, samples were analyzed using 

ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, California, United 

States). 

To identify the 5' and 3' ends of PCR-validated EPCATs, a nested primer approach was used 

on a λgt11 full length cDNA library of the LNCaP prostate cancer cell line. The λgt11 outer 

primers were: 5‟ TTCAACATCAGCCGCTACA 3‟ (forward) and 5‟ 

AAATCCATTGTACTGCCGGA 3‟ (reverse). The λgt11 inner primers were: 5‟ 

ACTGATGGAAACCAGCCATC 3‟ (forward) and 5‟ CCGTATTTCGCTAAGGAAA 3‟ 

(reverse). For amplification of the 5' end of an EPCAT, 0.15 µl of outer forward λgt11 primer 

and 0.15 µl outer reverse EPCAT primer were used. For amplification of the 3' end of an 

EPCAT, 0.15 µl of the outer reverse λgt11 primer and 0.15 µl outer forward EPCAT primer 

were used. The first reaction template was a 1:10 diluted λgt11 cDNA library preheated to 

95°C for 5 minutes. For the second reaction, all quantities were doubled and inner primers as 

well as 1 µl of PCR product from first reaction were used. PCR products were loaded on 1% 

agarose gel in 1x TBE and the specific band was extracted using GeneJETGel extraction kit 

(Thermo Fisher Scientific Inc, Waltham, Massachusetts) following manufacturer‟s 

instructions. Specific products were directly used for sequencing and product concentration 

was determined using a Nanodrop Spectrophotometer ND-1000 (Thermo Fisher Scientific 

Inc, Waltham, Massachusetts). Sequencing reaction was the same as for RT-PCR products. 

Investigation of transcriptional regulation of EPCATs 

Androgen regulation of EPCATs was investigated via a public dataset comprising LNCaP 

cells grown in androgen depleted medium (DCC) or in 10 nM R1881 supplemented medium 

(GSE32875, [36]). Averaged log2 transformed expression values of all TCs for each EPCAT 

were used for all analyses. Welch‟s t-test was used for comparison of both conditions and p-

values were corrected using Benjamini & Hochberg [58]. ERG and ETV1 regulation was 

evaluated using Spearman‟s correlation coefficient. AR and ERG binding in EPCAT regions 

was further investigated using public ChIP-seq data [25]. Peaks called by Yu et al. were 

converted to hg19 using liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) and 

overlapped with previously identified candidate EPCATs via bedtools [59] including 50 kb 

flanks. Potential regulation was assumed if at least one peak was falling into the candidate 

region. For coexpression analysis of genes overlapping EPCATs on the same strand, genes 

from the UCSC known genes table were intersected with EPCAT regions using bedtools. 

HGNC symbols for overlapping genes were obtained via biomaRt [60] and median expression 

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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values of associated TCs were correlated with EPCAT expression (Spearman‟s correlation 

coefficient). 

Computational evaluation of coding potential 

Evaluation of coding potential was performed for hg19 build sequences using iSeeRNA 

(1.2.1) [28] and PhyloCSF (downloaded 22.11.2013) [29]. For iSeeRNA, all RT-PCR 

validated exon locations were supplied in BED12 format and known coding genes retrieved 

from the UCSC RefSeq table served as positive controls. For PhyloCSF, a FASTA file 

containing multiple species alignments for each EPCAT was obtained via the Galaxy „Stitch 

Gene blocks‟ tool (http://usegalaxy.org/). Alignments were based on a 46 way Multiz 

alignment of hg19. All genome builds were converted to common names and intersected with 

a panel of 29 mammals offered by PhyloCSF. After splitting the FASTA file by gene, 

PhyloCSF was run using options --frames=3 –aa for each gene. Two known coding genes, 

GAPDH and ERG, served as controls. 

Computational evaluation of conservation 

For each EPCAT‟s exons, we downloaded base-wise conservation scores (PhyloP) based on 

Multiz alignments of 100 vertebrates from the UCSC Genome Browser 

(http://genome.ucsc.edu). Per EPCAT, PhyloP basewise scores were averaged in 50 bp 

windows and the highest of these averages was used as overall representative score of the 

gene locus. 1000 randomly selected coding RefSeq genes as well as 1000 randomly selected 

Repetitive elements (RepeatMasker, UCSC Genome Browser) served as controls. 

Tissue microarray construction 

A total of four tissue microarrays (TMAs) was used to evaluate expression of two EPCATs 

(EPCAT4R966 and EPCAT2F176) in patient tissues, xenografts and cell lines (see 

Supplementary Tables 5a – 5b).  

The first TMA consisted of 481 patient samples from radical prostatectomies for PCa and 

several control specimens as described previously [61]. Controls comprised normal prostate 

tissues from radical cystoprostatectomies (RCP, n = 7), urothelial cell carcinomas (n = 5), 

invasive ductal mammary adenocarcinomas (n = 5), palliative transurethral resection of the 

prostate (TURP, n = 10), prostate cancer lymph node metastasis (LNPCa, n = 10) and placenta 

(n = 1). Additionally, PCa cell lines (n = 7) and prostate cancer xenografts models (n = 22) 

were included.  

The second TMA, comprised 127 triplicate patient samples of nonneoplastic prostate tissue. 

We performed a search in PALGA (Pathologisch anatomisch landelijk geautomatiseerd 

archief, Houten, the Netherlands) and selected 53 patients who had undergone RCP or pelvic 

exenteration (PE), due to bladder cancer. TURP samples from 74 patients with clinical BPH 

were included in the TMA as well. All operations had taken place between 2003 and 2013. In 

RCP and PE specimen, we selected prostate glands from the peripheral zone, whereas 

transition zone was selected in TURP samples. All slides were histopathologically reviewed to 

http://usegalaxy.org/
http://genome.ucsc.edu/
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exclude presence of prostate adenocarcinoma. Several tissues were added to the TMA as 

landmarks:  placenta (n = 1), kidney (n = 1), ovary (n = 1) and spleen (n = 1). 

The third TMA contained 119 LNPCa samples from patients who underwent RP combined 

with a lymph node exploration, obtained between 1989 and 2006 at the Erasmus MC. 

The fourth TMA comprised a total of 120 PCa samples, operated between 1982 and 2009 in 

the Erasmus MC. 35 samples were obtained after RP and 85 samples contained TURP 

material. 65 of 120 patients were hormone refractory prostate cancers (CRPC), 55 patients 

were hormone sensitive. After patient selection, all TMAs were constructed using an 

automated TMA constructor (ATA-27 Beecher Instruments, Sun Prairie, WI, USA) available 

at the Department of Pathology, Erasmus MC. 

In situ hybridisation and quantification - RNAscope 

RNA in situ hybridisation on FFPE tissue was performed with RNAscope (Advanced Cell 

Diagnostics, Inc, Hayward, California). One week old 5 µm sections were dewaxed and 

treated with heat and protease antigen retrieval according to manufacturer‟s protocol. Specific 

target probes for EPCAT2F176 (targeting 466 nt) and EPCAT4R966 (targeting 1152 nt) 

provided by Advanced Cell Diagnostics were hybridized on the tissue (see Supplementary 

Table 8 for EPCAT sequences). Signal amplification on the probe was followed by 

visualisation with fast-red and counterstaining with haematoxylin. Probes for housekeeping 

gene ubiquitin C and bacterial gene dapB served as positive and negative controls. Scoring of 

TMAs was performed in-house by a trained uropathologist. Only counts above 0 were 

considered as positive. 

Assessment of diagnostic potential 

Diagnostic potential was assessed by creating a receiver operator characteristic for 11 

EPCATs for which working TaqMan probes were available. Samples that were present in the 

EMC Exon Array dataset were used as discovery cohort, while the remaining 47 samples (40 

PCa, 5 NAP) were used for validation. The R package „optAUC‟ was used for AUC 

maximization in the test cohort and ROC-curves were created using the „ROC‟-package.  

Kaplan-Meier survival analysis and evaluation of prognostic potential 

Samples of localized PCa from the 'EMC' dataset were used to determine prognostic potential 

of the 15 validated EPCATs. For each EPCAT, TC intensity values were averaged and used as 

representative measures of gene expression. Partition Around Medoids (PAM, R-package 

„cluster‟) was used to define two groups of samples with high and low expression of an 

EPCAT. Overrepresentation of three clinical endpoints was evaluated for 54 patients with 

available clinical information using a bootstrapping approach. The clinical endpoints were: (i) 

biochemical recurrence, defined as a rise in serum PSA level from undetectable to ≥0.2 ng/ml 

in at least two consecutive measurements (at least three months apart) after RP; (ii) clinical 

progression, defined by occurrence of metastasis in lymph nodes or other organs (iii) prostate 

cancer related death. For bootstrapping, class labels (clinical endpoints of patients) were 
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permuted, sampled and assigned to two groups with PAM defined sizes. Sampling was 

repeated 10,000 times for each EPCAT to create a sample distribution and p-values were 

calculated as the number of samplings having more positive associations with a clinical 

endpoint than the original EPCAT entry, divided by the number of iterations. In addition, 

Kaplan-Meier curves (R package „survival‟) were created for each EPCAT and clinical 

endpoint. 

siRNA knockdown and cell viability 

Silencer Select siRNA probes were designed by and purchased from Ambion (Life 

Technologies, Carlsbad, CA, USA). SiRNA probes consisted of a sense and an antisense 

siRNA for each target transcript with the following sequences:  

EPCAT1F273: GGGAAGCAUUGAAAUAGUAtt (sense siRNA), 

UACUAUUUCAAUGCUUCCCag (antisense siRNA); EPCAT3R522: 

CAGCUAAGCUGAAAAAGCAtt (sense siRNA), UGCUUUUUCAGCUUAGCUGtc 

(antisense siRNA); EPCAT4R966: GGCUUGUCGUGUGAUCUAAtt (sense siRNA), 

UUAGAUCACACGACAAGCCta (antisense siRNA); EPCAT8R190: 

CCAUGUCCUUGAGAUAAAAtt (sense siRNA), UUUUAUCUCAAGGACAUGGga 

(antisense siRNA); EPCAT15F850: GAAUGAGAGUCAUCAUGUAtt (sense siRNA), 

UACAUGAUGACUCUCAUUCag (antisense siRNA); EPCATXR234: 

CCUUAACAAUGGAUCUGCAtt (sense siRNA), UGCAGAUCCAUUGUUAAGGtt 

(antisense). PCa cells LNCaP (12*10
3
 cells) and 22RV1 (8*10

3
 cells) were transferred to 96 

wells plates and kept in RPMI 1640 and 5% FCS. After one day, cells were transfected in 

triplicate with 500 nM siRNA using DharmaFECT 3 Transfection Reagent (GE Healthcare, 

Little Chalfont, UK) according to the manufacturers‟ instructions (20 µl siRNA mix and 80 µl 

5% DCC medium per well). 100 µl 5% FCS medium was added to all wells not measured at 

day 0. Proliferation was subsequently measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) at indicated time points (LNCaP: 0, 5, 8 days; 22RV1: 

0, 4, 7 days). All experiments were performed twice. 
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Human phosphodiesterase 4D7 (PDE4D7) expression is increased in TMPRSS2-ERG 

positive primary prostate cancer and independently adds to a reduced risk of post-

surgical disease progression 
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Abstract 

 

Background: There is an acute need to uncover biomarkers that reflect the molecular 

pathologies, underpinning prostate cancer progression and poor patient outcome. We have 

previously demonstrated that in prostate cancer cell lines PDE4D7 is downregulated in 

advanced cases of the disease. To investigate further the prognostic power of PDE4D7 

expression during prostate cancer progression and assess how downregulation of this PDE 

isoform may affect disease outcome, we have examined PDE4D7 expression in 

physiologically relevant primary human samples. 

Methods: About 1405 patient samples across 8 publically available qPCR, Affymetrix Exon 

1.0 ST arrays and RNA-sequencing data sets were screened for PDE4D7 expression. The 

TMPRSS2-ERG gene rearrangement status of patient samples was determined by 

transformation of the exon array and RNA-seq expression data to robust z-scores followed by 

the application of a threshold 43 to define a positive TMPRSS2-ERG gene fusion event in a 

tumour sample. 

Results: We demonstrate that PDE4D7 expression positively correlates with primary tumour 

development. We also show a positive association with the highly prostate cancer-specific 

gene rearrangement between TMPRSS2 and the ETS transcription factor family member 

ERG. In addition, we find that in primary TMPRSS2-ERG-positive tumours PDE4D7 

expression is significantly positively correlated with low-grade disease and a reduced 

likelihood of progression after primary treatment. Conversely, PDE4D7 transcript levels 

become significantly decreased in castration resistant prostate cancer (CRPC). 

Conclusions: We further characterise and add physiological relevance to PDE4D7 as a novel 

marker that is associated with the development and progression of prostate tumours. We 

propose that the assessment of PDE4D7 levels may provide a novel, independent predictor of 

post-surgical disease progression.  
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Introduction 

 

Prostate cancer is the most commonly occurring non-skin malignancy in men, with an 

estimated 900 000 new cases diagnosed world-wide in 2013 (1). However, reactive clinical 

intervention after routine diagnosis often leads to significant overtreatment of non-aggressive 

tumours. This has severe negative impacts on both patient quality of life and the medical 

resources of healthcare institutions (2, 3). Therefore, the characterisation of new biomarkers 

and methods of clinical assessment is of significant importance when assessing the need for 

different forms of clinical intervention. 

Previous studies have shown that signalling pathways mediated by the second messenger 

cAMP have various roles in the development and progression of prostate cancer (4). Cyclic 

nucleotide phosphodiesterases (PDEs) (5, 6) provide the sole means of degrading cAMP and 

cGMP in cells, and are pivotally placed to regulate cAMP signalling by virtue of their 

intracellular location and post-translational modification (7, 8). Each of the 11 PDE genes 

encode for a series of isoform variants, thereby greatly increasing the diversity of unique 

regulatory mechanisms, intracellular targeting and kinetic properties, which define 

functionally independent and unique signalling roles within the cell (8–10). This diversity 

underpins a paradigm of compartmentalised, temporally gated cyclic nucleotide signalling. 

Due to the complexity of these orchestrated signalling events, any change in PDE isoform 

expression or regulation can functionally contribute to disease onset (11–15). The molecular 

characterisation of these changes can be expected to provide means for the development of 

novel therapeutics and diagnostics (8, 16). 

Members of the PDE4D subfamily have been implicated as underpinning the molecular 

pathology of various diseases including prostate cancer (17, 18), stroke (19), acrodysostosis 

(14) and COPD (15). The PDE4D gene encodes a cohort of isoforms that are classified as 

long, short and super-short. Long isoforms possess two conserved regulatory domains, called 

UCR1 and UCR2, which allow long isoforms to be phosphorylated and activated by PKA 

(30,50 cAMP-dependent protein kinase) after cAMP elevation in cells (20), as well as being 

functionally regulated through phosphorylation by activated forms of ERK, MK2 and AMPK 

(21, 22). PDE4D7 is a long isoform member of this subfamily (23). We have demonstrated 

that PDE4D7 exhibits a specific pattern of intracellular localisation in prostate cancer cells, 

where it is functionally targeted to the sub-plasma membrane compartment (18). Spatially 

constrained PDE4D7 appears to perform a pivotal role in these cells by desensitising sub-

plasma membrane-localised cAMP signalling (18), as well as providing a node for crosstalk 

with signalling pathways that elicit the activation of Erk, MK2 and AMPK (21, 22, 24, 25). 

PDE4D7 activity is also regulated by PKA phosphorylation within its unique N-terminal 

region (26). Interestingly, susceptibility markers for ischaemic stroke also map to the region 

of Chr5q12, where PDE4D7 and the androgen-regulated PART1 exons are located (19). We 

have previously demonstrated that PDE4D7 is highly expressed in androgen-responsive 

prostate cancer cell lines and xenografts, while being downregulated in castration resistant 

samples (18). Indeed, the ectopic overexpression of PDE4D7 in castration resistant prostate 

cancer (CRPC) cell lines reduced cellular proliferation, while specific knockdown of the PDE 
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isoform in androgen-sensitive cells lead to an increase in cellular proliferation, indicating a 

functional role of PDE4D7 downregulation during the progression to CRPC growth. Here, we 

set out to assess whether the changes in PDE4D7 expression we observed in model systems 

have clinical relevance. To do this, we analysed 1405 tumour samples sourced from 8 

independent patient cohorts that were enrolled at different clinical centres (Supplementary 

Table 1). Our analyses of clinical samples highlight an increase in PDE4D7 expression during 

initial tumorigenesis and further support our contention that PDE4D7 levels then fall 

profoundly in CRPC, suggesting that PDE4D7 transcripts may provide a potentially useful 

biomarker and therapeutic target. 
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Methods 

 

Human tissue samples.  

Human tissues samples were obtained under local laws and regulation to obtain and handle 

patient material for research purposes. Sample descriptions are depicted in Figure 1A. 

Molecular biology (RNA extraction, cDNA synthesis and primer design). 

If not otherwise indicated RNA isolation, cDNA conversion and Real-Time PCR were 

performed using RNeasy Kit (QIAGEN GmbH, Hilden, Germany, 74004), iScript cDNA 

synthesis kit (Bio-Rad Inc, Hercules, CA, USA, 170–8890), GeneAmp Fast PCR Master Mix 

(Applied Biosystems Inc, Foster City, CA, USA, 4362070) respectively, according to the 

manufacturer’s instruction. Real-Time PCR probe and primer sets were developed by 

targeting isoform-specific intron-spanning regions of genetic code (Supplementary Table 3). 

Quantitative RT–PCR (qRT–PCR). 

To enable the comparison of qPCR data across different experiments, we normalised the Ct 

value for PDE4D7 against the mean of the Ct values for the reference genes (Supplementary 

Table 3) to generate a normalized PDE4D7 expression value. We use the following formula to 

normalise the raw Ct values: 

 (                  )      (          )                         

Where N(Ctgene of interest) is normalised gene expression value for a gene of interest; where 

Mean(Ctref gene) is the arithmetic mean of the PCR Cq values of the selected combination of 

reference genes; where (Ctgene of interest) is the PCR Cq value of the gene of interest. Note: in 

case DNA microarray or RNA-seq technologies was used to measure PDE4D7 expression, the 

qPCR Ct value was replaced by a normalised measurement of the respective technology, for 

example, an robust multi-array average (RMA) normalised gene expression value for DNA 

microarrays, or a TPM (transcript per million) normalised gene expression value for RNA-

sequencing. 

Analysis of Affymetrix Human Exon Arrays. 

Raw CEL files were downloaded from Gene Expression Omnibus for the publically available 

data sets (Supplementary Table 1). Data processing and RMA normalisation were performed 

using the aroma.affymetrix R-package (Affymetrix Inc, Santa Clara, CA, USA;(27)) and 

transcript isoform expression was measured by averaging log2-transformed intensity values of 

the following isoform-specific probe sets: PDE4D7 (2858406, 2858407 and 2858408); Note: 

for data set Erho et al. (2013) (Supplementary Table 1) only probe set 2858408 was used in 

the analysis as probe sets 2858406 and 2858407 showed relatively limited signal intensities 

compared with probe set 2858408. 

RNA-seq data analysis. 
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RNA-seq data of 193 prostate cancer clinical samples (36 normal, 157 tumour) was 

downloaded from The Cancer Genome Atlas (TCGA) Data Portal (4 September 2013) and the 

expression value of genes and isoforms (TPM-transcript per million) was estimated as 

previously described (28). 

Positive TMPRSS2-ERG fusion status was estimated in general by transformation to robust z-

scores. Positive TMPRSS2-ERG fusion status was estimated by transformation to robust z-

scores, utilising robust statistical measures, namely median and median absolute deviation, to 

replace mean and SD, which are sensitive to outliers. Thus, log2-transformed expression 

values were converted by z-score = (expression-median(expression))/(MAD(expression)), and 

a threshold of >3 was applied to define samples with positive fusion events. Subsequently, a 

threshold of >3 was applied to define samples with positive fusion events. For the Erho et al. 

(2013) data set, we applied a supervised clustering algorithm (Partitioning Around Medoids) 

to assign prostate cancer samples in one of the two clusters (high ERG or low ERG) based on 

the log2-transformed expression values of ERG. High ERG expression was subsequently 

assumed as representative for the presence of a positive TMPRSS2-ERG fusion event. 

To assess whether any evidence of ERG binding in the genomic region of PDE4D could be 

observed, we utilised public ChIP-seq data (GSE14092) from the VCaP prostate cancer cell 

line after liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to hg19 and found 43 peaks 

overlapping PDE4D when including 50-kb flanking regions. One of these peaks overlapped 

the PDE4D7 promoter region, while another was located in close proximity (<200 bases 

distance), which may hint towards an involvement of ERG binding in regulation of PDE4D7 

expression. 

Statistical data analysis 

For ROC analysis, calculation of AUC under the ROC, ROC P-values and Box-and-Whisker 

plots the statistical software package MedCalc (MedCalc Software BVBA, Ostend, Belgium) 

was used. P-values for differences of mean expression were calculated by using Wilcoxon–

Mann–Whitney testing unless mentioned otherwise. 

Kaplan–Meier Survival curves have been generated by the medical statistical software 

package MedCalc based on the time to event for those patients who experienced the 

respective event (e.g., biochemical recurrence (BCR) or clinical recurrence (CR) of disease 

after surgery) and for those patients who did not suffer from the event at the time of follow-up 

(censored data). Further, to segregate the analysed patient cohort into two survival groups we 

determined a cut-off of PDE4D7 expression from a ROC curve analysis. The respective cut-

off was objectively determined from the ROC curve at the unique point in the curve, where 

the sum of sensitivity and specificity reached a maximum. 
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Results 

 

We have recently provided evidence, suggesting that PDE4D7 may play an important role in 

regulating cAMP signalling during prostate cancer progression (18). To further explore this 

finding, we have evaluated the expression of PDE4D7 in a total of eight clinically relevant 

patient data sets. These data sets comprised a total of 1405 patient samples stratified into 8 

sample categories listed in Figure 1A. Three different technology platforms were also 

leveraged to ensure reproducibility and significance of the gene expression data for PDE4D7, 

namely: (1) qPCR; (2) Affymetrix Human Exon Array 1.0 ST; (3) RNA-seq (see 

Supplementary Table 1). More details of the data sets used within this study can be found in 

Supplementary Tables 1 and 2. 

PDE4D7 expression correlates with primary localised prostate tumours and is significantly 

downregulated in CRPC.  

Our previous investigation in cell lines and xenograft material found that PDE4D7 was 

differentially expressed between androgen sensitive/responsive and CRPC cells (18). To 

assess if this finding is physiologically relevant, we thought it prudent to examine PDE4D7 

transcript expression in primary patient samples. We selected three prostate cancer exon array 

data sets (Taylor et al., 2010; Boormans et al., 2013; Böttcher et al., 2015; J Schalken, 

Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands, Personal 

Communication; Supplementary Table 1) and analysed a range of primary prostate cancer 

samples including tissues collected from patients who developed biochemical or clinical 

tumour progression after primary treatment, as well as metastases and CRPC (Figure 1B–D; 

Supplementary Table 5). We observed a striking downregulation in PDE4D7 expression 

between primary prostate cancer without tumour progression (Primary PCa, NP) and primary 

prostate cancer tissue with either progression to BCR (Primary PCa, BCR) or CR (Primary 

PCa, CR). The ROC analysis for the group-wise comparisons revealed AUCs are between 

0.61 and 0.82 (Supplementary Table 5). In line with our previous findings, the most 

significant downregulation was observed between tissues representing primary prostate cancer 

vs. CRPC (data sets Taylor et al., 2010 and J Schalken, Personal Communication; P-values 

for differential PDE4D7 expression 5.80E-04, and 1.90E-05, respectively; AUCs for PDE4D7 

ROC analysis 0.82, 95% CI 0.73–0.88 and 0.81, 95% CI 0.71–0.90, respectively; 

Supplementary Table 5). In contrast to the comparison between primary tumours and CRPC, 

a differential expression of PDE4D7 between primary prostate cancer and metastatic tissue 

could not be confirmed in the data set from Taylor et al. (2010) (P=1.60E-01; AUC=0.65; 

95% CI 0.55–0.74) nor in Boormans et al. (2013); Böttcher et al. (2015) (P=1.10E-01; 

AUC=0.67; 0.49–0.82); however, in the data set produced by J Schalken, Personal 

Communication the expression difference was significant (P=4.6E-04) with a very large AUC 

(0.91; 95% CI 0.81–0.97). Overall this data confirms our original observation made in in vitro 

models of prostate cancer; PDE4D7 is significantly downregulated in aggressive and 

advanced forms of prostate cancer.  
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Figure 1: Expression of PDE4D7 splice variant in primary, metastatic and castration 

resistant cancerous prostate tissues. Box-and-Whisker plots of the normalised PDE4D7 

transcript expression in various prostate cancer tissues. For all data sets, and all P-values and 

AUCs see Supplementary Table 5. (A) Disease stage annotation for this study. (B) Data: 

Taylor et al, 2010; P-values of group comparison for difference of mean PDE4D7 expression: 

(Primary PCa, NP) vs (Primary PCa, BCRandCR), P=7.2E−02; (Primary PCa, NP&BCR) vs 

(Primary PCa, CR), P=5.90E−03; (Primary PCa, all) vs (Metastases), P=1.60E−01; (Primary 

PCa, all) vs (CRPC), P=5.8E−04; (C) Data: Boormans et al, 2013; Böttcher et al, 2015; P-

values of group comparison for difference of mean PDE4D7 expression: (Primary PCa, NP) 

vs (Primary PCa, BCR&CR), P=6.50E−02; (Primary PCa, NP) vs (Primary PCa, CR), 

P=1.30E−03; (Primary PCa, all) vs (Metastases), P=1.1E−01; (D) Data: J Schalken, Personal 

Communication; P-values of group comparison for difference of mean PDE4D7 expression: 

(Primary PCa, low grade) vs (Primary PCa, high grade), P=2.0E−01; (Primary PCa, all 

grades) vs (Metastases), P=4.60E−04; (Primary PCa, all grades) vs (CRPC), P=1.90E−05. 

**P<0.01 and ***P<0.001. 

 

PDE4D7 expression is upregulated in localised primary prostate tumours and correlates with 

TMPRSS2-ERG gene fusion. 

To assess the significance of PDE4D7 expression within the context of the normal prostate 

epithelia, we extended the exon array analysis to include patient tissue taken from areas 

adjacent to prostate tumours (NAT). We examined 850 patient samples across seven 

independent data sets (Supplementary Tables 1 and 2). Interestingly, we observed a 



   Results 

85 
 

significant upregulation of PDE4D7 in primary prostate cancer vs. NAT (Figure 2A–D; 

Supplementary Table 6). This suggests that PDE4D7 upregulation in prostate tissue may be 

involved with initial tumorigenesis. 

 

Figure 2: Expression of PDE4D7 splice variant in normal, benign vs cancerous prostate 

tissues. Box-and-Whisker plots of the normalised PDE4D7 transcript expression in various 

prostate cancer tissues. For all data sets and all P-values see Supplementary Table 6. (A) Data: 

Origene; P-values of group comparison for difference of mean PDE4D7 expression: (NAT) vs 

(Primary PCa), P=6.86E−02; (NAT&BL&BPH) vs (Primary PCa), P=1.31E−04; (BL&BPH) 

vs (Primary PCa), P=4.0E−04; (BPH) vs (Primary PCa), P=3.2E−02; (B) Data: Taylor et al, 

2010; P-values of group comparison for difference of mean PDE4D7 expression: (NAT) vs 

(Primary PCa), P=3.30E−02; (C) Data: Boormans et al, 2013; Böttcher et al, 2015; P-values 

of group comparison for difference of mean PDE4D7 expression: (NAT) vs (Primary PCa), 

P=3.50E−03; (D) Data: Brase et al, 2011; P-values of group comparison for difference of 

mean PDE4D7 expression: (NAT) vs (Primary PCa), P=1.00E−03. *P<0.05, **P<0.01 and 

***P<0.001. 

 

To investigate this further, we set out to establish if there was any correlation between 

PDE4D7 expression and factors known to regulate initial tumorigenesis in the prostate. The 

TMPRSS2-ERG gene fusion has previously been reported as a clinical indicator for prostate 

cancer formation. Since its discovery, this prostate cancer-specific fusion event has been 

described in B50% of prostate cancer patients and has become a molecular hallmark of 

prostatic tumours (29). Given the status of TMRSS2-ERG as the most relevant genomic 

fusion event so far identified in prostate cancer, we tested the expression of PDE4D7 in 1106 

patients with (Primary PCa, TMPRSS2-ERG positive; Figure 3) and without (Primary PCa, 
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TMPRSS2-ERG negative; Figure 3) this gene fusion. Figure 3A–C shows the PDE4D7 

expression across three exon array data sets (data sets (30–33); Supplementary Table 1), 

which we picked for graphical illustration (all data sets where we had information on 

TMRPSS2-ERG rearrangement information available can be found in Supplementary Table 

7). Intriguingly, we observed a significantly higher PDE4D7 expression in tumour samples 

that harboured the TMPRSS2-ERG gene fusion when compared with TMPRSS2-ERG 

negative samples or when compared with NAT (2-fold median increase, with some samples in 

excess of 30-fold upregulation; P-values of group-wise comparisons between TMPRSS2-

ERG negative vs. positive tumours: 3.33E-08; 8.60E-03; 3.80E-06, respectively). At the same 

time there was no significant expression difference observed between TMPRSS2- ERG gene 

fusion negative cancer samples and NAT (Figure 3A–C; Supplementary Table 7). 

 

Figure 3: Correlation of PDE4D7 expression in normal and cancerous human prostate 

tissues to TMPRSS2-ERG gene fusion status. (A) Box-and-Whisker plots of the normalised 

PDE4D7 transcript expression in various prostate cancer tissues. For all data sets, and all P-

values see Supplementary Table 7. Positive TMPRSS2-ERG fusion status was estimated by 

transformation to robust z-scores (Materials and Methods). Subsequently, a threshold of >3 

was applied to define samples with positive fusion events. Samples were divided into three 

different groups: (1) normal adjacent tissue without TMPRSS2-ERG fusion events (NAT 

TMPRSS2-ERG negative); (2) prostate tumour tissue without TMPRSS2-ERG fusion events 

(Primary PCa, TMPRSS2-ERG negative), and (3) prostate tumour tissue with TMPRSS2-

ERG fusion events (Primary PCa, TMPRSS2-ERG positive). (A) Data: Taylor et al, 2010; P-

values of group comparison for difference of mean PDE4D7 expression: (NAT TMPRSS2-

ERG negative) vs (Primary PCa, TMPRSS2-ERG negative), P=9.00E−01; (NAT TMPRSS2-

ERG negative) vs (Primary PCa, TMPRSS2-ERG positive), P=1.10E−05; (Primary PCa, 

TMPRSS2-ERG negative) vs (Primary PCa, TMPRSS2-ERG positive), P=3.33E−08. (B) 

Data: Boormans et al, 2013; Böttcher et al, 2015; P-values of group comparison for difference 

of mean PDE4D7 expression: (NAT TMPRSS2-ERG negative) vs (Primary PCa, TMPRSS2-

ERG negative), P=5.90E−01; (NAT TMPRSS2-ERG negative) vs (Primary PCa, TMPRSS2-

ERG positive), P=5.60E−03; (Primary PCa, TMPRSS2-ERG negative) vs (Primary PCa, 

TMPRSS2-ERG positive), P=8.60E−03. (C) Data: Brase et al, 2011; P-values of group 

comparison for difference of mean PDE4D7 expression: (NAT TMPRSS2-ERG negative) vs 

(Primary PCa, TMPRSS2-ERG negative), P=7.80E−01; (NAT TMPRSS2-ERG negative) vs 

(Primary PCa, TMPRSS2-ERG positive), P=5.10E−07; (Primary PCa, TMPRSS2-ERG 

negative) vs (Primary PCa, TMPRSS2-ERG positive), P=3.80E−06. **P<0.01 and 

***P<0.001. 
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PDE4D7 expression is positively correlated with low-grade TMPRSS2-ERG-positive prostate 

tumours. 

Having discovered a strong correlation between TMPRSS2-ERG fusion and PDE4D7 

expression, we then set out to ascertain if cancer aggressiveness is correlated with PDE4D7 

expression. We compared the transcript levels of PDE4D7 against pathology-graded cancer 

samples utilising three exon array data sets (Taylor et al., 2010; Brase et al., 2011; J Schalken, 

Personal Communication; Supplementary Table 1), as well as the TCGA prostate 

adenocarcinoma RNA-seq Data Set Prostate Cancer (Release September 2013). We 

categorised Gleason score (pGleason) into the following four groups of increasing grade: (1) 

pGleason 3+3, (2) pGleason 3+4, (3) pGleason 4+3, (4) pGleason ≥4+4. A total of 264 

patients were included in this stratification, and Supplementary Table 8 provides an overview 

of various group-wise comparisons of these different pGleason groups. Amazingly, a 

significant downregulation of PDE4D7 between low grade (pGleason≤ 3-4) vs. high grade 

(pGleason ≥4+3) tumours was only observed in patients possessing the TMPRSS2-ERG gene 

fusion (Figure 4A and B; Supplementary Table 8). The initial increase in PDE4D7 expression 

in low-grade prostate cancer is in keeping with our observations from Figure 3. It is 

significant that in TMPRSS2- ERG-positive tumour samples the expression of PDE4D7 is 

negatively correlated with increasing pGleason, highlighting the transient nature of PDE4D7 

upregulation. This finding bears a striking resemblance to our previous observations in cell 

lines and xenografts (18). 

 

Figure 4: Correlation of PDE4D7 expression to pathology gleason score. (A and B) Box-

and-Whisker plots of the normalised PDE4D7 transcript expression in various prostate cancer 
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tissues. For all data sets, and all P-values see Supplementary Table 8 (data sets Taylor et al, 

2010; Brase et al, 2011) and Supplementary Table 9 (data set Erho et al, 2013). For estimation 

of positive TMPRSS2-ERG fusion status see Materials and Methods. Patient cohorts were 

categorised according to their pGleason on histology as indicated. (A) Data Taylor et al, 2010; 

P-values of group comparison for difference of mean PDE4D7 expression: (pGleason 3+3 & 

3+4 (TMPRSS2-ERG negative)) vs (pGleason 4+3 & greater than or equal to4+4 

(TMPRSS2-ERG negative)), P=4.80E−01; (pGleason 3+4 & 3+4 (TMPRSS2-ERG positive)) 

vs (pGleason 4+3 & greater than or equal to4+4 (TMPRSS2-ERG positive)), P=2.40E−03; 

(B) Data Brase et al, 2011; P-values of group comparison for difference of mean PDE4D7 

expression: (pGleason 3+3 & 3+4 (TMPRSS2-ERG negative)) vs (pGleason 4+3 & greater 

than or equal to4+4 (TMPRSS2-ERG negative)), P=8.20E−01; (pGleason 3+4 & 3+4 

(TMPRSS2-ERG positive)) vs (pGleason 4+3 & greater than or equal to4+4 (TMPRSS2-ERG 

positive)), P=4.20E−02; (C) Data Erho et al, 2013; progression after primary treatment (i.e., 

surgery) is indicated as BCR (+) or absence (−) of BCR. P-values of group comparison for 

difference of mean PDE4D7 expression: (pGleason 7 (TMPRSS2-ERG negative), NP) vs 

(pGleason 7 (TMPRSS2-ERG negative, BCR)), P=1.10E−01; (pGleason 7 (TMPRSS2-ERG 

positive), NP) vs (pGleason 7 BCR (TMPRSS2-ERG positive), BCR), P=4.60 E−02. 

 

PDE4D7 expression is correlated with clinical outcome in patients expressing the TMPRSS2-

ERG gene fusion. 

To test our hypothesis that PDE4D7 expression can predict clinical outcome in patients with 

positive TMPRSS2-ERG gene rearrangement, we used an exon array data sets covering 527 

eligible patient samples where longitudinal outcome data was available (30, 32, 34). The data 

allowed for prediction of BCR after primary treatment. The patients were grouped according 

to their TMPRSS2-ERG gene fusion status, as well as according to pGleason (5 and 6, 7, 8, 

and 9 and 10). We then compared the PDE4D7 expression in patient groups with vs. without 

BCR during 5-years follow-up after primary treatment (Figure 4C and Supplementary Table 

9). We could not detect a significant change in the expression of PDE4D7 in any of the 

TMPRSS2-ERG-negative pGleason groupings. However, for patient significant differential 

expression in the pGleason 7 group between no progression and BCR during follow-up, while 

this was not the case for the pGleason scores 47. Unfortunately, there is only a single patient 

sample in the pGleason 5 and 6 group with positive TMPRSS2-ERG status and progression to 

BCR so we could not calculate a P-value. However, this particular sample shows a very low 

PDE4D7 expression value compared with the samples in this pGleason group but without 

post-treatment progression (Figure 4C). We concluded from this that low PDE4D7 expression 

values in patient samples with low pGleason scores (6 and 7) are associated with an increased 

likelihood of biochemical failure after primary intervention. 

A graphical representation of PDE4D7 expression in various cell and tissue types including 

AR negative/AR positive cell lines and xenografts, primary prostate cancer with and without 

progression to biochemical or CR, metastases and CRPC is shown in Figure 5A (cell lines and 

xenograft samples) and Figure 5B (patient samples; Supplementary Table 4). The samples are 

ordered based on their normalised PDE4D7 expression. For the cell lines, xenografts, primary 
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tumours without progression and primary tumours with progression to BCR or CR, as well as 

CRPC tumours, the status of the TMPRSS2-ERG rearrangement is indicated. In general, the 

more aggressive type of samples are represented by low expression levels of PDE4D7, while 

less aggressive samples show elevated PDE4D7 expression. It is evident from the depicted 

cell lines and xenografts that the expression level of PDE4D7 is largely influenced by its 

TMPRSS2-ERG rearrangement status rather than its AR expression status, where AR positive 

cell lines without gene fusion show low PDE4D7 expression, while cell lines of the same 

category but positive gene translocation demonstrate high PDE4D7 expression levels (Figure 

5A). It is also of importance to note that this effect seems to be very specific to the ERG 

translocation as cell lines or xenograft samples with ETV1 or ETV4 translocations do not 

show elevated PDE4D7 transcription (Figure 5A). Also, looking at the samples collected from 

patients without disease progression during follow-up reveals that those samples that were 

positively tested for TMPRSS2-ERG in general show increased expression of PDE4D7 

(Figure 5B). This was also the case for primary tumour samples where patients progressed to 

either biochemical or CR as well as for CRPC. We further annotated for patients who 

experienced a biochemical relapse the time to PSA recurrence as two categories—relapse <24 

months vs. relapse >24 months after primary treatment. We observed a clear association 

between an increased PDE4D7 expression level and an elevated time to recurrence (P=1.72E-

02; eight out of nine patients with normalised PDE4D7 expression >0 had a BCR recurrence 

event >24 months after primary therapy; Figure 5B). Furthermore, we noticed that from eight 

patients with clinical disease recurrence during follow-up seven patients showed normalised 

PDE4D7 expression values <0 (Figure 5B) while only in one patient tissue we could measure 

PDE4D7 expression values 40 (Figure 5B). 
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Figure 5: Correlation of PDE4D7 expression in cancerous human prostate tissues to 

patient outcome. A range of prostate Cancer Cell lines, xenografts, as well as patient prostate 

cancer tissues (data Taylor et al, 2010; Boormans et al, 2013; Böttcher et al, 2015; 

Supplementary Table 1) are ranked according to PDE4D7 expression in the respective cells or 

tissues. The normalised PDE4D7 expression value of each sample was adjusted by 

subtracting the mean of all expression values of the sample set. Details of cell lines, 

xenografts and patient samples can be found in Supplementary Table 4. (A) PDE4D7 

expression in cell lines and xenograft tissues; 
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(B) PDE4D7 expression in patient samples. For all samples its rank as well as the TMPRSS2-

ERG, −ETV1 or −ETV4 fusion status is indicated. The BCR progression free survival (BCR 

PFS) after surgery (<24 months vs >24 months) is indicated. Further the biopsy Gleason score 

(Bx_Gleason) as well as the pathology Gleason (pGleason) is given. Samples are categorised 

into the following groups: AR+ cell lines—androgen-sensitive cell lines; AR− cell lines—

androgen-insensitive cell lines; AR+ xenografts—androgen-sensitive xenografts; AR− 

xenografts—androgen-insensitive xenografts; CRPC—castration resistant prostate cancer; 

metastases—metastatic tumour; primary PCa—primary prostate cancer, no progression during 

follow-up; primary PCa BCR—primary prostate cancer, progression to BCR during follow-

up; primary PCa CR—primary prostate cancer, progression to CR during follow-up. 

 

To further confirm this, we investigated the PDE4D7 expression in samples of patients that all 

underwent BCR during follow-up in one data set (30). To segregate the patients into two 

survival groups, we applied a PDE4D7 expression value which was derived from a ROC 

analysis between patients who had BCR <24 months vs. patients with BCR >24 months. We 

determined the unique point of PDE4D7 expression in the ROC curve where the sum of the 

sensitivity and the specificity becomes a maximum (i.e., <0.51) and used this factor for the 

Kaplan–Meier analysis. By this we could separate two patient cohorts (HR=0.29; P=6.0E-04) 

with a median time to BCR after primary treatment of <10 months vs. a median time to BCR 

of >30 months (Figure 6A). When applying the same cut-off of <0.51 in an analysis of an 

independent data set (32), we could verify this correlation to time to BCR after surgery 

(HR=0.36; P=1.6E-03) in this patient cohort with either a median time to BCR of o10 months, 

or a median time to recurrence >50 months (Figure 6B). The correlation of low PDE4D7 

expression to time to BCR after primary treatment was further re-enforced in the second data 

set (32), where time to CR demonstrated a fivefold increased risk of reaching the endpoint of 

metastatic disease within a median of 18 months after surgery when applying a cut-off <0.26 

for PDE4D7 expression compared with a median time to CR of 95 months if PDE4D7 

expression was >0.26 (HR=0.2; P=2.0E-03) (Figure 6C). This data strongly supports our 

hypothesis that low expression of PDE4D7 correlates with increased short-term biochemical 

reoccurrence, as well as manifestation of metastatic disease. Most samples collected from 

CRPC patients demonstrated low PDE4D7 expression levels while again those samples that 

were positive for the TMPRSS2-ERG fusion gene were measured with increased PDE4D7 

transcription (Figure 5B). Whether CRPC patients with positive gene fusion and PDE4D7 

expression 40 will survive longer compared with patients with negative TMRPSS2-ERG 

fusion and PDE expression <0 is a very interesting subject for further research. 
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Discussion 

 

Analysis of data from large scale genome sequencing projects like TCGA has uncovered a 

potential role of the PDE4D gene in various types of cancer  (35). Indeed, loss of PDE4D was 

noted as one of the 10 most relevant gene deletion events in 1 study cohort (36). Although 

PDE4D copy number and, to a lesser degree, mutational status correlates with cancer 

incidence the role of PDE4D isoform expression has not been studied in a clinical context. 

Recent studies have implicated individual PDE4D transcripts in the development of prostate 

cancer (17, 18). Specifically, we reported for the first time the downregulation of PDE4D7 in 

hormone-refractory prostate disease represented by a wide range of both cellular and 

xenograft models (18). Here, we set out to discern whether the differential regulation of 

PDE4D7 could be verified in human tissue samples collected from primary, as well as 

metastatic and castration resistant tumours. Encouragingly, across multiple data sets we were 

able to detect a clear and significant downregulation of PDE4D7 transcript abundance 

correlating with increasing prostate disease aggressiveness (as assessed by increasing 

pGleason score and disease stage). 

We previously demonstrated that selective knockdown of PDE4D7 expression in androgen-

sensitive cell line models led to a more aggressive phenotype, while its overexpression in 

CRPC cells had the opposite effect (18). The precise details of the cAMP signalling pathways 

regulated by PDE4D7 during the development of aggressive prostate cancer remain to be 

uncovered and are subject to future research. However, we would like to propose that 

PDE4D7 has a contributing role in initial prostate cancer cell states rather than having a 

‘passenger effect’ occurring as a consequence of the molecular changes induced by other 

factors. To understand the baseline for PDE4D7 expression, and thereby contextualise the 

differential regulation of this particular PDE isoform during prostate cancer development and 

progression, we examined its expression status in normal prostate tissue compared with 

primary and advanced prostate cancers. Notably, the expression of the PDE4D7 transcript was 

significantly lower in normal, as well as tissue of benign origin compared with low-grade 

prostate tumours. This leads us to propose a model, where PDE4D7 expression becomes 

upregulated in primary disease. This, perhaps, reflects an attempt by cells to counteract the 

proliferative phenotype, before the failure/overcoming of this response leads to PDE4D7 

downregulation, which characterises the more aggressive prostate tumours. Thus PDE4D7 

appears to be functionally involved in the primary development of prostatic tumours. 

However, our data suggests that future cellular and molecular studies could usefully be 

directed to ascertain whether the initial upregulation of PDE4D7 is intimately involved in the 

initial stage of prostate tumorigenesis. 

Interestingly, we uncover here a novel link between AR signalling and PDE4D7 expression 

by correlating the incidence of TMPRSS2-ERG gene fusion and PDE4D7 transcript levels. 

The TMPRSS2-ERG gene fusion between the prostate specific serine protease TMPRSS2 and 

the ETS transcription factor family member ERG was first detected in 2005 by a statistical 

outlier approach (29). Subsequently, this gene fusion has been shown to be present in B50% 
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of prostate cancer patients and is, consequently, one of the most prominent genomic fusion 

events reported in prostate cancer  (37). This translocation results in androgen-regulated ERG 

expression such that the androgen-responsive promoter of TMPRSS2 now drives TMPRSS2-

ERG expression, resulting in an upregulation in both the expression and activity of the 

transcription factor, ERG (29). However, despite numerous studies the clinical implications 

and functional consequences of the genomic fusion remain to be fully understood (38–41). 

Here, we uncover a remarkably significant difference in PDE4D7 expression between 

TMPRSS2-ERG-negative and TMPRSS2-ERG-positive tumour samples. Indeed, when 

stratified by TMPRSS2-ERG incidence it is clear that PDE4D7 is most significantly 

upregulated in low-grade TMPRSS2-ERG-positive tumours. This raises the possibility that 

PDE4D7 expression may be directly or indirectly regulated by the aberrant transcriptional 

activity of the TMPRSS2-ERG fusion protein. Inspection of the PDE4D gene reveals several 

putative binding sites for ERG, one within the promoter region of PDE4D7 (Materials and 

Methods). It would therefore seem logical that if PDE4D7 is regulated by ERG transcription, 

an increase in the expression of the androgen-regulated TMPRSS2-ERG factor would lead to 

a concurrent androgen-driven increase in PDE4D7 expression. 

To date, most newly detected prostate cancer cases are clinically classified low-risk diseases 

(42). It is crucial to understand the natural history of these tumours as it is under considerable 

debate whether and to what extent low-risk Gleason 6 tumours are able to progress to higher 

grade tumours leading to metastatic spread or even cancer-specific death (43, 44). 

Interestingly, our data may indicate that reduced expression of PDE4D7 in low to 

intermediate Gleason tumours is correlated to progression after primary treatment. Although 

initially positively correlated with tumour development, the expression of PDE4D7 actually 

appears to be protective against further disease progression, which is in line with the data 

previously obtained regarding the cellular functioning of PDE4D7 (18). As new strategies for 

targeted pharmacological manipulation of specific PDE4D transcripts become available then 

PDE4D7 likely provides a promising future target in the treatment of primary and/ or 

advanced prostate cancer. Our data indicate that during tumour progression the risk of fast 

recurrence to clinical endpoints like biochemical or clinical disease is correlated to the level 

of PDE4D7 expression in the primary tumour. Consequently, patients with a low expression 

level of PDE4D7 in their primary cancers after surgical resection may very well be candidates 

for immediate adjuvant treatment like radiotherapy and/or androgen ablation. Furthermore, 

the manipulation of PDE4D7 suggests a strategy to selectively treat TMPRSS2-ERG fusion-

positive prostate cancers. However, the success of such strategy may depend on the 

stratification into molecular sub-types according to the status of the TMPRSS2-ERG gene 

translocation. 

The data presented here demonstrates the relevance of PDE4D7 as a potential biomarker for 

more accurate prostate cancer diagnostics. In particular, we have demonstrated the potential 

role of this specific splice variant of the PDE4D gene for prognosis of aggressive prostate 

cancer in the molecular sub-type of TMPRSS2-ERG-positive prostate tumours as well as its 

role as a putative target gene for therapy of primary vs. late-stage, hormone-refractory 

disease.  
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Abstract 

 

Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized 

prostate cancer, raising the question as to which regulatory mechanisms are involved and 

whether other isoforms of this gene family (PDE4D) are affected under the same conditions. 

We investigated PDE4D isoform composition in prostatic tissues using a total of seven 

independent expression datasets and also included data on DNA methylation, copy number 

and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D 

transcription. 

We show that expression of PDE4D isoforms is consistently altered in primary human 

prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 

and PDE4D9 are down-regulated. Disease progression is marked by an overall down-

regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively 

unaffected. While these alterations seem to be independent of copy number alterations in the 

PDE4D locus and driven by AR and ERG binding, we also observed increased DNA 

methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the 

isoform composition in prostate cancer tissues. 

We propose two independent metrics that may serve as diagnostic and prognostic markers for 

prostate disease: (             ) provides an effective means for distinguishing PCa 

from normal adjacent prostate, whereas          (                    ) 

offers strong prognostic potential to detect aggressive forms of PCa and is associated with 

metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate 

cancer biomarker and potential drug target. 
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Introduction 

 

With an estimated 417,000 new cases in 2014 in Europe, prostate cancer (PCa) remains the 

most often diagnosed gender-specific carcinoma for men (1). The current routine of 

diagnosing PCa results in a significant number of unnecessary biopsies and treatments of non-

cancerous, benign prostate conditions and non-aggressive cancers, leading to severe negative 

effects for both men and healthcare systems (2, 3). 

Next to well-studied pathways such as androgen receptor (AR) and PI3K/AKT, cyclic AMP 

(cAMP) has been shown to play a role in the development and progression of PCa (4). The 

metabolism of cAMP in cells is complex and tailored by spatial and signalling cross-talk 

considerations involving both a large family of adenylyl cyclases responsible for its synthesis, 

and a large family of cyclic nucleotide phosphodiesterases (PDEs) responsible for its 

degradation (5). It is now well recognized that when particular cAMP degrading PDEs are 

recruited to specific signalling complexes they create and control cAMP gradients around 

them, allowing spatially compartmentalised and time-dependent regulation of localized cAMP 

signalling (6, 7). Protein domains involved in subcellular localization as well as independent 

regulatory mechanisms play a pivotal role in these processes, granting PDE isoforms the 

ability to fulfil functionally independent and unique roles in the cell (6, 8). Thus, changes in 

the expression of distinct PDE isoforms can be expected to reprogram downstream signalling 

pathways during disease development and progression, providing potential targets for novel 

markers and therapeutic interventions (6). Indeed, cAMP-degrading PDEs have been 

associated with several diseases in recent years, including stroke, acrodysostosis and COPD 

(9–14), and more recently, expression of a specific PDE4D isoform (PDE4D7) has been 

related to prostate cancer (15, 16). 

The PDE4D7 transcript comprises the open reading frame for a long PDE4D isoform that 

contains both the UCR1 and UCR2 regulatory domains (17). These protein domains are 

common to all long PDE4D isoforms with UCR1 being phosphorylated by PKA (cAMP 

dependent protein kinase A), when cAMP levels within the cell are elevated, leading to 

enzyme activation (18, 19). Indeed, activation of long PDE4 isoforms, such as PDE4D7, by 

PKA provides a fundamental part of the cellular desensitization process to cAMP (6). Long 

PDE4 isoforms can also be dynamically regulated through phosphorylation by other key 

signalling system kinases, namely, by ERK (20), MK2 (21), Cdk5 (22) and AMPK (23). 

Additionally, PDE4D7 has been shown (15) to be specifically targeted to the sub-plasma 

membrane compartment in prostate cancer cells where it regulates local cAMP levels that are 

linked to cell proliferation (15).  

We have previously shown that PDE4D7 is specifically overexpressed in both androgen 

sensitive PCa cells and in samples from patients with early androgen sensitive prostate 

disease (15, 16). However, in marked contrast to this, once PCa cells become androgen 

insensitive/independent (castration resistant), expression of PDE4D7 declines (15, 16). 

Here, we show that PDE4D isoform composition is altered in localized prostate cancer and 

that it can be used both as a diagnostic as well as a prognostic biomarker. In conjunction with 
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our previous studies, we see that the long transcript isoform PDE4D7 is up-regulated in 

localized disease compared to normal adjacent prostate (NAP), while its expression 

diminishes with tumour progression. In contrast to PDE4D7, two other long isoforms, 

PDE4D5 and PDE4D9, do not undergo an initial up-regulation in primary PCa and instead are 

increasingly down-regulated during disease progression. Moreover, we suggest that this 

change in isoform composition may be influenced by the DNA methylation of specific 

regulatory elements of the PDE4D locus. These findings highlight the potential of using 

condition-specific mRNA isoforms of the PDE4D gene as biomarkers and potential novel 

therapy targets to restore benign conditions. 
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Results 

 

The long isoforms PDE4D5 and PDE4D9 are significantly down-regulated in primary 

prostate cancer, independent of copy number alterations in the PDE4D gene locus 

 

After previously identifying PDE4D7 as a novel biomarker candidate (16), we wanted to 

investigate the behaviour of other PDE4D transcript isoforms in PCa development and 

progression. Therefore, we focused on the nine major human PDE4D isoforms described in 

RefSeq and conducted a meta-analysis of six publicly available patient cohorts. Our analysis 

revealed that many PDE4D isoforms are seemingly expressed at stable levels when using 

Exon Arrays, whereas only PDE4D1/2, PDE4D5, PDE4D7, and PDE4D9 were detectable at 

higher levels in our independent qRT-PCR cohort of prostate tissues (see Figure 1 and 

Supplementary Figures 1-5). These findings were supported by the TCGA PRAD RNA-seq 

cohort, which mostly agreed with RT-PCR results, despite few outlier samples showing 

expression of other isoforms (Supplementary Figure 6). Based on these findings, we focused 

on the above mentioned PDE4D isoforms, as they showed consistent expression profiles in all 

used cohorts. Using these criteria, we found that both PDE4D5 and PDE4D9 are significantly 

down-regulated in primary localized PCa when compared to benign samples. Moreover, 

patient samples derived from castration-resistant prostate cancer (CRPC) showed further 

down-regulation of both isoforms, in line with our previous findings for PDE4D7 (16).  

Likewise, PCa metastasis samples followed this trend, but often displayed higher variance in 

PDE4D isoform expression, as can be expected given their very heterogeneous genomic 

background (24). 

Since, partial or complete deletions of one or both alleles of the PDE4D gene have been 

reported previously in prostate cancer (25–27) we utilized TCGA SNP array data of matching 

patient samples to assess the potential impact of deletions occurring in PDE4D on isoform 

expression. Although we did observe a significant reduction in gene expression upon loss of 

genetic material, both isoforms were also expressed at significantly lower levels in PCa 

samples that did not harbour a deletion when comparing to matching normal samples (Figure 

2). 
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Figure 1: Overview of PDE4D isoform expression in prostatic tissues. Normalized 

PDE4D isoform expression in the EMC dataset across different prostate conditions. CR – 

clinical recurrence, BCR – biochemical recurrence, CPRC – castration resistant prostate 

cancer. Significant differences (p < 0.05, Wilcoxon-Mann-Whitney test) are indicated with *. 

 

Androgen receptor and ERG are implicated in transcriptional regulation of PDE4D 

 

Our previous work suggested an association between PDE4D7 expression and the presence of 

the TMPRSS2-ERG fusion gene (16). We therefore set out to investigate whether there was 

any comparable ERG involvement in the expression of PDE4D5, PDE4D7 and PDE4D9 in 

prostate disease. In order to do this, we assigned localized PCa samples to one of two groups 

based on an unsupervised clustering of ERG expression values by Partitioning Around 

Medoids and used available ERG IHC information of the EMC cohort to confirm the validity 

of this approach. Clustering based grouping showed good concordance with IHC results, 
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assigning four additional samples (10.2%) to the ERG positive group (Supplementary Figure 

7).  

 
 

Figure 2: Relation of copy number events and PDE4D expression in the TCGA cohort. 

32 normal adjacent prostate samples are compared to PCa samples with (n=12) and without 

(n=171) loss of genetic material in the PDE4D locus to investigate whether decreased 

expression occurs independently of PDE4D deletions. Significant differences in expression 

are denoted with * (p < 0.05, Wilcoxon-Mann-Whitney test). 

 

Interestingly, while we were able to confirm PDE4D7 overexpression in ERG positive PCa 

samples, PDE4D1/2 and PDE4D9 seemed unaffected by ERG, whereas PDE4D5 expression 

was altered significantly in two out of five datasets, suggesting that any connection between 

PDE4D5 and ERG is weak at best (see Figure 3). Of note, the Erho dataset consistently 

showed significant changes for all isoforms, however, these likely do not reflect real events, 

as absolute log2 fold changes were small (|log2FC| < 1) except for PDE4D7 (data not shown). 

Therefore, ERG linkage discriminates between PDE4D7 and the grouping of PDE4D1/2, 



  

108 
 

PDE4D5 and PDE4D9, where we see differences between these two groups in the change of 

their expression in prostate disease. 

 
 

Figure 3: Investigating potential ERG regulation of PDE4D isoforms. Since only 

PDE4D7 has been previously reported as up-regulated in ERG positive PCa samples (16), 

expression of PDE4D1/2, PDE4D5, PDE4D7 and PDE4D9 was tested in ERG negative and 

ERG positive samples across five Exon Array datasets (* = p < 0.05, ** = p < 0.001, 

Wilcoxon-Mann-Whitney test). 

 

To investigate androgen-dependence of PDE4D isoform expression, we incorporated a public 

dataset of LNCaP cells measured after being kept either in androgen stripped medium (using 

dextran-coated charcoal - DCC) or after addition of the synthetic androgen R1881 (28). While 

PDE4D9 expression was not altered after treatment, both PDE4D5 and PDE4D7 showed 

significant differences in expression after R1881 addition (Figure 4). Specifically, PDE4D5 

expression appeared to be inhibited upon AR stimulation, while PDE4D7 was up-regulated in 

DCC by the synthetic androgen R1881 in LNCaP cells. 
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Figure 4: Investigation of androgen receptor involvement in PDE4D expression. 

Expression of PDE4D isoforms in LNCaP cells with or without addition of the synthetic 

androgen R1881 (28). 

 

Next, we made use of public ChIP-seq data from the VCaP PCa cell line (29) treated with 

R1881 in order to gather further evidence of AR involvement in PDE4D expression. In ChIP-

seq, DNA binding proteins and associated chromatin are cross-linked, followed by 

immunoprecipitation of a protein of interest and subsequent sequencing of the associated 

DNA fragments, allowing a genome-wide localisation of its DNA binding sites. Overall, we 

found 31 ChIP-seq peaks for AR in PDE4D, two of which were near the first exon of 

PDE4D7 (~2 kb and 3 kb upstream), while another was partially overlapping the first exon of 

PDE4D5 (see Supplementary Table 1). No peaks could be found in proximity to the PDE4D9 

transcription start site (TSS), as the closest upstream and downstream peaks were found at an 

approximate distance of 85.5 kb and 44.2 kb, respectively. Since VCaP harbours the 

TMPRSS2-ERG gene fusion and ChIP-seq data for ERG was available from the same source, 
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we included it in our analysis and found 43 ERG peaks in the PDE4D gene locus, of which 

some were found to partially overlap the first exon of each of the long isoforms PDE4D5, 

PDE4D7 and PDE4D9 (see Figure 5 and Supplementary Table 2). Since the number of ChIP-

seq peaks located in PDE4D appears to be rather high, we were wondering whether binding of 

AR and/or ERG within the gene locus occurs more often as compared to other regions. For 

this reason, we counted the number of AR and ERG peaks in 21,209 RefSeq gene loci and 

used these counts to construct empirical cumulative distribution functions (ECDFs) for both 

transcription factors. These ECDFs model the background distribution of the counts for both 

AR and ERG across all genes and enable us to calculate in which percentile the peak counts 

for AR and ERG in PDE4D are falling. Surprisingly, both AR and ERG were among the top 

99.9% of all genes (99.953
th

 and 99.995
th

 percentiles, respectively), suggesting a very strong 

enrichment in AR and ERG binding within the PDE4D gene locus (see Supplementary Figure 

8a). However, since PDE4D is a comparably large gene and spans approximately 1.5 Mb of 

genomic space, we repeated this analysis using more than three million randomly sampled 

genomic regions of 1.5 Mb size across all major chromosomes. Again, we found that PDE4D 

was highly enriched in AR and ERG binding peaks (95.151
th

 and 87.624
th

 percentiles, 

respectively) compared to random genomic stretches of comparable size (Supplementary 

Figure 8b). As a whole, these data support the observed expression profiles and suggest an 

involvement of both AR and ERG in overall PDE4D isoform regulation. 

 
 

Figure 5: AR and ERG binding peaks in PDE4D in the VCaP cell line. To visualize AR 

and ERG binding in PDE4D, genomic locations of ChIP-seq peaks (GSE14092) denoting AR 

binding sites are coloured blue, while ERG peaks are coloured in red. If peaks of both 

transcription factors overlap, the affected genomic regions are coloured in black. A genomic 

region surrounding each transcription start site (TSS) is used to highlight binding events that 

could influence transcription.  
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DNA methylation of defined regions in PDE4D is altered in prostate cancer 

 

To further study transcriptional regulation of the PDE4D locus, we obtained public data of 

DNA methylation in PCa patients from Gene Expression Omnibus (GEO) and TCGA and 

performed statistical analyses to identify hyper- and hypo-methylated regions in PCa as 

compared to normal adjacent prostate (NAP). The results of three different platforms 

determining DNA methylation patterns consistently detected hyper-methylated regions, 

indicating active silencing of several PDE4D promoters in PCa, involving the transcription 

start site (TSS) of a total of five PDE4D isoforms, namely the short PDE4D1/2 isoforms and 

the long PDE4D4, PDE4D5 and PDE4D8 isoforms (see Supplementary Figure 9). 

To estimate the impact of these differentially methylated regions (DMRs) on isoform 

expression, we used Affymetrix Human Exon Array samples obtained from the same patients 

as the MeDIP-seq cohort (30, 31) and calculated Spearman's correlation coefficient for each 

of the differentially methylated regions (DMRs) and the associated PDE4D isoform. Of the 

five T regions involved, PDE4D5 showed the strongest negative association ( = -0.571, 

Supplementary Table 3), while the four DMRs near the PDE4D4 TSS showed varying 

agreement between methylation and expression measurements, ranging from  = -0.215 to  

= -0.394. These results follow the expected behaviour, as increased DNA methylation 

impedes transcription (32). Since the PDE4D1 and PDE4D2 expression could not be 

independently measured with the Exon Arrays, a negative correlation ( = -0.517) was found 

for both. Lastly, PDE4D8 expression did not show any association with DNA methylation ( 

= -0.233), agreeing with our observation that this isoform is not consistently expressed in 

prostate tissues (see Supplementary Figure 1). 

 

PDE4D isoforms can be used as diagnostic and prognostic signature for prostate cancer: 

application to prostate biopsies 

 

Since PDE4D7 and PDE4D5 show opposing behaviours in prostatic tissues, we created a 

diagnostic signature based on the expression of PDE4D7 relative to that of PDE4D5 

expression (             ). In order to evaluate its performance in distinguishing PCa 

and non-PCa samples, we carried out ROC analyses in all compatible datasets and compared 

the resulting AUCs with PCA3 (Supplementary Table 4). Overall, our diagnostic signature 

performed on par with PCA3, with AUCs ranging from 0.839 to 0.934 compared to 0.857 to 

0.921. 

In order to evaluate the value of PDE4D as a clinical biomarker, we used surgical resection 

materials of eighteen patients and subjected them to needle biopsies to obtain material from 

distinct areas, simulating both true positive and false negative biopsies (see Supplementary 

Table 5). In total, four biopsies with gradually increasing distance from the tumour were taken 

per patient (within tumour, edge of tumour, 5 mm from edge, and 10 mm from edge) and 

PDE4D5 as well as PDE4D7 expression were measured by qPCR. Ct values of both isoforms 

were normalized to several reference genes (see Methods) and adjusted to baseline expression 

in NAP tissue (10 mm from edge). Both expression profiles showed inverse correlation, with 

PDE4D5 expression decreasing in the vicinity of the tumour, while PDE4D7 expression as 

well as the diagnostic signature gradually increasing (see Figure 6), confirming our earlier 
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findings. Additionally, a transient change of PDE4D isoform expression at the tumour edge 

might suggest that nearby adjacent normal tissue is influenced by tumour presence through a 

‘field effect’, but could also be due to averaging signals from normal and cancerous cells. 

Notably, expression of all long PDE4D isoforms including PDE4D5 and PDE4D7 appears to 

decrease during PCa progression (see Figure 1 and Supplementary Figures 2-3), while 

expression of the super-short PDE4D isoforms PDE4D1 and PDE4D2 seemed to be affected 

to a lesser extent. On this basis, we decided to create a prognostic signature based on the 

expression level of PDE4D1/2 relative to the sum of the expression levels of the long 

PDE4D5, PDE4D7 and PDE4D9 isoforms (         (              

      )). The performance of this signature was then evaluated in the Exon Array cohorts. 

Since, three datasets had appropriate follow-up available, we used clinical recurrence (CR) 

defined as development of metastases after RP as clinical endpoint. Overall, our signature 

performed well in distinguishing patients with CR from those without, yielding AUCs of 

0.826, 0.794 and 0.614 for the EMC, Taylor and Erho cohort, respectively (Supplementary 

Table 4). Since the EMC dataset offered time to biochemical recurrence (BCR), metastases-

free as well as overall survival time as follow-up information, we performed a Kaplan-Meier 

analysis for this dataset using our prognostic PDE4D signature. Two categories (signature 

high and low) were defined by Partitioning Around Medoids (PAM) and left-censoring was 

applied, resulting in well separated curves for both metastases-free and overall survival (p < 

0.05, see Figure 6). Subsequently, we used Cox proportional hazards regression model to 

evaluate whether our PDE4D signature is an independent predictor for clinical metastasis, 

BCR and overall survival, taking into account the pre-operational PSA, Gleason score, 

pathological stage, surgical margins and patient age. For both metastases-free as well as 

overall survival, the prognostic PDE4D signature was found to be an independent predictor (p 

< 0.1), though confidence intervals were large due to low numbers of samples and events 

(Supplementary Table 6). 
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Figure 6: Applying the diagnostic PDE4D signature in needle biopsies. Expression of 

PDE4D5 and PDE4D7 in relation to distance to the tumour as measured by qRT-PCR in 

prostate tumour biopsies (n = 18). Error bars represent standard error of the mean. 
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Figure 7: Survival analysis for prognostic PDE4D signature. Using the prognostic PDE4D 

signature to distinguish between outcomes, Kaplan Meier curves for three clinical endpoints 

were created based on the EMC dataset. Assignment of samples to the high and low signature 

group was performed by clustering of samples according to their signature values using 

Partitioning Around Medoids (PAM). 
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Discussion 

 

Our investigation of the transcriptional dynamics of the PDE4D gene locus revealed a 

previously undescribed promoter switch involving the major contributors of PDE4D activity 

in normal prostate, namely the PDE4D5 and PDE4D9 long forms, as well as the prostate 

cancer-associated long isoform PDE4D7 (15, 16). Unique promoters for each PDE4D 

isoform, located upstream of the exon(s) encoding their unique N-terminal regions allow for 

the independent regulation of the different mRNA and corresponding protein expression (6, 9, 

33). Here in this study we provide the first evidence of condition-specific PDE4D promoter 

switching in a cancer context. 

Isoform switching in various genes (such as PKM, CXCR3 and FGR2 (34–36)) during cancer 

development has been described in several cancer types including prostate cancer (37–40), 

and likewise tumour-specific isoforms of known genes have been identified previously (41). 

Indeed, the androgen receptor variant 7 (AR-V7) provides a particularly important example of 

a PCa-specific isoform that is constitutively active and ligand-independent, contributing to 

castration resistance of prostate cancer cells (42, 43). Furthermore, alternative promoter usage 

of the androgen-regulated gene TMPRSS2 as part of the TMPRSS2-ERG fusion gene also has 

been associated with clinical outcome (44, 45). 

Interestingly, mounting evidence suggests crosstalk between AR and cAMP signalling 

pathways, with important cAMP downstream targets such as PKA and ERK interacting either 

with the AR or AR target genes (4, 46–48). PDEs, in providing the sole route for degrading 

cAMP are poised to play a key regulatory role, particularly so as the targeting of particular 

isoforms to distinct signalling complexes confers a spatial aspect that allows particular 

isoforms to have specific functional roles (6). Therefore, it is particularly intriguing to find 

that specific PDE4D isoforms expressed in prostatic tissues appear to be androgen regulated 

(PDE4D7 and PDE4D5), suggesting a complex network of interactions that links both 

pathways. We should, however, mention that studies of PDE4D7 expression in the VCaP 

prostate cancer cell line implied that it was not directly regulated by AR (15). However, VCaP 

harbours genomic rearrangements on chr5q that are characteristic of chromothripsis, and more 

importantly, PDE4D is reportedly involved in gene fusions with FAM172A and C5orf47 (49). 

With regards to the AR-induced up-regulation of PDE4D7 observed in LNCaP cells, these 

structural rearrangements in VCaP could be involved in a loss of AR-mediated regulation of 

PDE4D7 due to relocation or deletion of regulatory elements such as AR binding elements. 

An alternative explanation could be that PDE4D7 expression is indirectly linked to AR 

activity, as its promoter region overlaps PART1, a known AR target gene that showed clear 

association with androgen treatment in VCaP (15, 50, 51). In the Exon Array datasets that we 

analysed, both genes seem to be co-expressed in prostatic tissues (mean Spearman’s rho = 

0.7269). However, given the fact that PDE4D5 was significantly down-regulated in LNCaP 

upon AR stimulation as well, we believe that AR directly influences PDE4D isoform 

expression through interaction with proximal or distal regulatory elements (52, 53). This 

hypothesis is supported by the ChIP-seq data for AR, which identifies numerous binding 

peaks for AR in the PDE4D gene locus, including the PDE4D5 and PDE4D7/PART1 

promoter regions. 
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Similarly, ERG seems to have a major contribution on PDE4D isoform expression, with us 

previously reporting that PDE4D7 is up-regulated in TMPRSS2-ERG positive PCa (16). 

Here, we provided further ChIP-seq support for ERG involvement in PDE4D expression. 

However, the Exon Array datasets analysed here do not provide conclusive evidence for a link 

of ERG overexpression with other isoforms, such as PDE4D5. It appears therefore plausible 

that ERG overexpression may be specifically linked to PDE4D7 expression, highlighting a 

connection of the latter to the AR pathway, as well as its potential oncogenic role (15). 

To investigate whether DNA methylation could be involved in the promoter switch uncovered 

in this study, we analysed three independent datasets based on different technologies, 

whereupon we discovered consistent increases of DNA methylation near the PDE4D5 TSS in 

PCa samples. In conjunction with the observed AR-mediated down-regulation of PDE4D5, 

these results could well explain the profound down-regulation of PDE4D5 in localized and 

advanced PCa and could hint at a protective function in normal prostate that is inhibited by 

gene silencing in PCa. In addition, we found increased DNA methylation near the PDE4D1/2 

TSS that could not be linked to significantly altered gene expression, while other isoforms 

showing differential methylation (PDE4D4, PDE4D8) do not seem to be consistently 

expressed in prostatic tissues. Indeed, it is even possible that the increased DNA methylation 

in the promoter regions of specific PDE4D isoforms might induce promoter switching to 

PDE4D7 by inhibiting expression of other PDE4D isoforms. 

Unlike PDE4D5, PDE4D9 does not show signs of androgen regulation despite being down-

regulated in PCa and we could not find evidence for DNA methylation-mediated regulation of 

PDE4D9 expression in PCa. Thus, its transcriptional regulation in PCa remains unclear at this 

point and solicits further study. 

Taken together, the observed switch in isoform usage might imply that regulatory 

mechanisms of PDE4D-catalyzed cAMP degradation are subjected to AR signalling in PCa 

cells that, in turn, indicates that PDE4D7-specific protein domains are necessary to regulate 

cAMP signalling in an androgen-dependent manner, offering a potentially new drug target 

(15, 16, 18). Moreover, with the transition to an androgen-independent state, expression of 

long PDE4D isoforms seems to fade, reaching its minimum in castration-resistant conditions 

and distant metastases, while expression of the super-short isoforms PDE4D1 and PDE4D2 

appears to remain rather stable. Importantly, these super-short isoforms contain the catalytic 

domain of PDE4D but lack the UCR1/UCR2 domains seen in long PDE4D isoforms, a 

module that confers regulation by various kinases and influences intracellular targeting (6, 

18).  

Hence, this effective loss of regulation of PDE4D activity can be expected to generate 

profound changes in compartmentalized cAMP signaling due to altered spatial localization 

and cross-talk governing cAMP degradation, and may thereby contribute to cancer 

aggressiveness similarly to mechanisms suggested for MAPKs (54) and AR in form of its 

splice variant AR-V7 (43).  

PDE4D isoform composition appears to have merit in being used as a diagnostic signature 

following the expression of both PDE4D7 and PDE4D5, as well as serving as a prognostic 

signature following the difference between the expression of long and short PDE4D isoforms. 

Evaluating both signatures, we found that they exhibited good performance in distinguishing 

PCa from normal tissue and progressive from non-progressive samples, respectively. 
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Importantly, diagnostic performance was robust to differences in technology, data processing, 

as well as potential differences in composition and patient characteristics of the used cohorts, 

demonstrating a high cross-platform reproducibility of PDE4D isoforms as PCa biomarker 

and yielding results comparable to the established PCa-marker PCA3 in all tested cohorts. 

Hence, with further optimization to an appropriate test platform prior to clinical utilization, 

we could imagine that such signatures might provide a valuable addition to complement 

existing test procedures. When applying our diagnostic signature to prostate biopsies, PDE4D 

isoform expression appeared to return to its ‘normal’ state with increasing distance from the 

tumour, whereas the tumour edge showed an intermediate signal. This observation could hint 

at a ‘field effect’ of the tumour on and/or crosstalk of the tumour cells with the surrounding 

microenvironment (55–58). It would therefore be fascinating to further explore in the future 

whether such a ‘field effect’ indeed influences PDE4D isoform composition, effectively 

increasing the target area for biopsies, or whether our observations were caused by averaging 

signals from adjacent tumour and normal cells. If validated, an increased target area could 

boost accuracy of prostate biopsies, reducing the number of false negative tests. Furthermore, 

it would be highly interesting to see whether reversing the isoform composition to its normal 

state has an influence on prostate cell phenotype and behaviour. 

While our study focused on PDE4D isoform expression in primary PCa samples, genomic 

alterations of the PDE4D locus such as microdeletions have been observed in other cancers 

(27). Moreover, a recent study found that mutations in other members of the PDE family 

could be related to PCa by affecting intracellular cAMP and/or cGMP levels (59). 

Considering the large number of PDE genes and isoforms as well as the tight regulation of 

cAMP signalling and its degradation, it is very well possible that PDEs such as PDE4D are 

key players in other conditions, as the broad panel of associated diseases underscores (10–14). 

Therefore, it is worthwhile to extend the presented study and screen the expression profiles of 

all known PDEs in various tissues and conditions to define basal expression levels and reveal 

potential alterations and novel targets for drug interventions. 

Taken together, our findings highlight the potential of PDE4D isoforms to be promising new 

biomarkers and potential therapeutic targets for localized and advanced prostate cancer. 
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Materials and Methods 

 

Analysis of PDE4D isoform expression in prostate tissues 

 

Quantification of PDE4D isoforms in patient materials was performed by qRT-PCR as 

described in (16). In addition, six independent Exon Array datasets were used in this study 

and raw CEL files were obtained via Gene Expression Omnibus (GEO) or personal 

communication. The datasets comprised GSE21034 (25), GSE29079 (30), GSE46691 (60), 

GSE32875 (28) as well as patient samples from GSE41410 (61, 62) and samples published in 

(63). These datasets are referred to as 'Taylor', 'Brase', 'Erho', 'Rajan', 'EMC', and 'Nijmegen', 

respectively. 

Of note, patients PCA0041, PCA0042 and PCA0119 of the Taylor dataset were marked as 

‘treated with salvage radical prostatectomy (RP)’, meaning they previously failed 

radiotherapy treatment and were subsequently treated with RP. Therefore, Exon Array 

expression data for PCA0119 were not used for survival analysis. 

Raw data were processed and RMA normalized using the aroma.affymetrix R-package ((64), 

CDF used: HuEx-1_0-stv2,extendedR3,A20071112,EP.CDF, see http://www.aroma-

project.org/). Expression of transcript isoforms was measured by using log2-transformed 

intensity values of isoform-specific probesets: PDE4D1/2 (2858166); PDE4D3 (2858290, 

2858291); PDE4D4 (2858368, 2858369, 2858370); PDE4D5 (2858345, 2858346, 2858347); 

PDE4D6 (2858155, 2858156); PDE4D7 (2858406, 2858407, 2858408); PDE4D8 (2858257, 

2858258); PDE4D9 (2858240, 2858241). These intensity values were normalized to a set of 

reference genes (HPRT1, PUM1, TBP, POLR2A, TUBA1B) by using the mean intensity of 

‘core’ probesets of each gene’s transcript cluster (3991698, 2404254, 2937984, 3453732, 

3708704) to estimate gene expression and then using the average reference gene expression as 

normalization factor. This normalization factor was subtracted from the probeset intensity 

values, and normalized probeset expression was subsequently averaged per PDE4D isoform. 

In addition, expression of the PCa associated genes was normalized the same way as PDE4D, 

using ‘core’ and ‘extended’ probesets of transcript cluster 3175538 to measure PCA3 as well 

as 3931765 for ERG and 2811145 for PART1. 

Lastly, level 3 processed RNA-seq expression values for PRAD samples were obtained from 

TCGA (https://tcga-data.nci.nih.gov/tcga/) via the TCGA-Assembler R-package (65). For 

each sample, the RSEM 'scaled estimate' values were used and multiplied by 10
6
 to convert 

the values to transcripts per million (TPM). Error bars in plots represent standard deviation 

unless stated otherwise. 

 

Analysis of deletions of PDE4D and impact on isoform expression 

 

Gene-level copy number alterations were obtained from TCGA via the TCGA-Assembler R-

package (65) and a cut-off of ±log2(1.5/2) was used to call gains and losses of genetic 

material, respectively. A Wilcoxon-Mann-Whitney test was used to identify significant 

changes in expression of PDE4D isoforms between samples with and without alterations. 

 

http://www.aroma-project.org/
http://www.aroma-project.org/
https://tcga-data.nci.nih.gov/tcga/
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Evaluation of AR and ERG expression / binding on PDE4D transcription 

 

To determine the (TMPRSS2-)ERG status of patient samples in Exon Array cohorts, we used 

relative ERG expression values and applied Partitioning Around Medoids (PAM, R-package 

'cluster', k = 2) to assign the patient samples to the ERG positive or negative group based on 

expression. Lastly, a Wilcoxon-Mann-Whitney-test was used to detect statistically significant 

differences (p < 0.05) between the ERG positive and ERG negative samples. Likewise, 

differences between R1881 treated and untreated LNCaP cells (28) were tested using a 

Wilcoxon-Mann-Whitney-test. To investigate transcription factor binding, public ChIP-seq 

peaks for AR and ERG were obtained from GEO (GSE14092) and overlapped with PDE4D 

TSS ± 2 kb regions using bedtools (66) after conversion to hg19 coordinates using the 

liftOver executable (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Distances of the nearest 

AR and ERG peaks to each PDE4D isoform TSS were calculated by 'bedtools closest' using 

the options '-k 5 and -d'. Data visualization was based on the ggBio R-package (67). 

Enrichment of AR and ERG peaks in the PDE4D gene locus was investigated by counting the 

number of ChIP-seq peaks of each transcription factor within 21,209 RefSeq gene loci (hg19) 

as well as randomly sampled genomic regions of 1.5 Mb. Unique gene loci were defined by 

the minimum and maximum chromosomal coordinates of RefSeq NM and NR transcripts 

belonging to the same gene identifier after associating them to HGNC gene symbols using 

biomaRt (68) and excluding minor chromosomes and haplotypes. For each chromosome, 

random regions were sampled according to: 

                   (                            ) and any regions overlapping the 

PDE4D gene locus were excluded. Counting was performed by bedtools (66) annotate using 

the option '-counts' and empirical cumulative distribution functions for both transcription 

factors were created by using the ecdf() function of R-package stats. Hexbinplots were 

generated using the BoutrosLab.plotting.general R-package (http://labs.oicr.on.ca/boutros-

lab/software/bpg). 

 

Investigation of PDE4D promoter methylation 

 

Public methylation data were downloaded from GEO and TCGA data portal and comprised 

three different technologies. 1) Deduplicated and extended MeDIP-seq reads (200 nt) 

deposited under accession number GSE35342 (31) were downloaded from Gene Expression 

Omnibus (GEO) and processed via the MEDIPS R-package (69). Using genomic bins of 100 

nt for chromosome 5, reads were counted for every sample and differential methylation status 

of each bin was tested using the following MEDIPS settings as suggested by the authors upon 

request: 'diff.method = "edgeR", prob.method = "poisson", MeDIP = F, CNV = F'. Bins 

covering the genomic region of PDE4D including 50 kb flanks and with a Bonferroni-

adjusted p-value below 0.01 were selected and merged into larger regions of interest (ROIs) if 

they were directly adjacent. 2) Pre-processed public bisulfite sequencing (BiS-seq) data 

available from GEO (GSE41701, (70)) were downloaded, and measured positions found in 

the genomic region of PDE4D including 50 kb flanks were extracted. For each position, the 

percentage of reads indicating methylation was calculated by #base calls C / (#base calls C + 

#base calls T) based on the number of reads covering a particular base. Next, the limma R-

https://genome.ucsc.edu/cgi-bin/hgLiftOver
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package (71, 72) was used to identify positions with significant differences in methylation 

between PCa vs. benign, as well as CRPC vs. PCa. Positions with FDR < 0.05 were selected 

and merged into larger regions if they were within 100 nts of each other. 3) TCGA level 3 

data for Illumina Infinium HumanMethylation450 BeadChips were downloaded from TCGA 

data portal and only patients with available clinical information were used for further analysis. 

Pre-calculated beta values for chromosome 5 were imported into Minfi (73) and annotated 

using 'ilmn12.hg19'. Analysis of differential methylation was performed via bumphunter 

using 100 permutations and 'cutoff=0.15'. Lastly, any significant probes located within the 

genomic region of PDE4D including 50 kb flanks were extracted and methylation profiles 

were correlated to RNA expression via Spearman’s correlation coefficient. Visualisation of 

methylated regions was performed using ggBio (67). 

 

Analysis of signature performance, survival and independent predictor variable 

 

We created a diagnostic signature based on PDE4D7 expression relative to PDE4D5 

expression (PDE4D7-PDE4D5) as well as a prognostic signature for the Exon Array cohorts 

based on PDE4D1/2 relative to PDE4D5, PDE4D7 and PDE4D9 ((PDE4D1/2) - 

(PDE4D5+PDE4D7+PDE4D9)). Subsequently, the R-packages ‘ROC’ and ‘survival’ were 

used to carry out ROC analyses and perform a Cox regression as well as Kaplan-Meier 

analysis based on available survival data of the EMC dataset (61, 62). 

 

Quantification of diagnostic PDE4D signature in prostate biopsies 

 

Several biopsy punches (approximately 1 x 2 mm) were taken in a representative tumour area 

after surgical prostate resections in eighteen different men with prostate cancer. Experimental 

protocols were approved by the Erasmus MC Medical Ethics Committee following the 

Medical Research Involving Human Subjects Act. For each patient, these punches were 

performed within the tumour, at the edge of the tumour area, at 5 and at 10 mm distance to the 

tumour region. RNA was extracted and qRT-PCRs (quantitative real-time PCR) for PDE4D5 

and PDE4D7 were performed as described in (16), using ACTB, HPRT1, TUBA1B, 

POLR2A, PUM1 and TBP as reference genes. The expression of PDE4D5 and PDE4D7 in 

each biopsy tissue was normalized as follows: mean(Ct(reference genes)) – Ct(PDE4DX). For 

each of the eighteen different patients, the normalized expression of PDE4D transcripts within 

the tumour was set to 1 and expression values for biopsies taken at various distances from the 

tumour were calculated relative to the expression in the tumour. Lastly, average relative 

expression and standard error of the mean of PDE4D transcript expression were plotted for 

each of the respective biopsy locations. 
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Abstract 

 

The use of a priori knowledge in the alignment of targeted sequencing data is investigated 

using computational experiments. Adapting a Needleman–Wunsch algorithm to incorporate 

the genomic position information from the targeted capture, we demonstrate that alignment 

can be done to just the target region of interest. When in addition use is made of direct string 

comparison, an improvement of up to a factor of 8 in alignment speed compared to the fastest 

conventional aligner (Bowtie) is obtained. This results in a total alignment time in targeted 

sequencing of around 7 min for aligning approximately 56 million captured reads. For 

conventional aligners such as Bowtie, BWA or MAQ, alignment to just the target region is 

not feasible as experiments show that this leads to an additional 88% SNP calls, the vast 

majority of which are false positives (~ 92%). 
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Introduction 

 

Since the introduction of so-called next-generation sequencing in 2005, developments in the 

field of DNA sequencing proceed at a very rapid pace (1). Initially, in the newer sequencing 

technologies based on massively parallel sequencing (2), the time required to complete a 

sequencing study was around three weeks, equally divided among sample preparation, the 

actual sequencing and the bioinformatics analysis. New sequencing technologies are 

emerging, which promise to reduce the actual sequencing time from the present one week to 

much shorter. Ultimately, nanopore-based sequencing methods may reduce sequencing run 

time to matters of seconds (3). Hence, it would be desirable to speed up also the time required 

in the sample preparation as well as the bioinformatics analysis. 

Sequence alignment is a challenge in biology since the first DNA sequences have been 

determined in the 1970s, with the earliest approaches utilizing dot plots to compute the 

optimal alignment of the sequences (4). Because of their complexity, dot plots were replaced 

by the dynamic programming (DP) approach developed by Bellman and Viterbi, first 

implemented for biological use by Needleman and Wunsch (5, 6). Since then, the 

Needleman–Wunsch algorithm has been modified several times to adapt it to other problems 

and to improve its performance (7, 8). Nevertheless, DP requires too much computation time 

and space to handle the increasing amount of sequencing data. Therefore, heuristic 

approaches for searching sequence databases such as BLAST and FASTA were developed to 

overcome this problem (9, 10). Though these programs and their successors are still 

commonly used, the upcoming of next-generation sequencing requires new software (11) to 

process the immense amount of short reads created, which lead to the development of hash 

table based aligners, as for example ELAND and MAQ (12, 13). Since then, considerable 

further effort has been made to reduce the alignment time. One of the most successful ones is 

the implementation of a Burrows– Wheeler transform to index the genome and speed up the 

alignment (14). Common examples of aligners utilizing the Burrows–Wheeler transform are 

Bowtie and BWA (15, 16). 

In many branches of electronic data processing the use of a priori information is a proven 

method to improve data analysis. Thus far such an approach has not been adopted in the field 

of DNA sequencing, although it is conceivable that information arising from so-called 

targeted sequencing (17–19) could be used to this effect. Typically in targeted sequencing 

using on-array hybridization (17, 18), the fragments of the DNA sample are hybridized to a 

microarray with probes designed to capture the fragments of interest. After washing away any 

non-bound fragments, the DNA fragments of interest for the biological or clinical question at 

hand are eluted from the array and are further processed to be sequenced. In current practice 

the resulting eluate is a random mixture of the captured DNA fragments. Moreover, the 

subsequent alignment of the sequencing reads is done to the whole genome as, at the current 

specificity of the enrichment methods, aligning to just the target region introduces an 

unacceptably high error rate, as we will show. In targeted sequencing, one in principle can 

retain the capture probe information of the micro-genomic selection array, for instance by 

conducting the sequencing step directly on the capture spot (20) or by using labeled capture 
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beads. Specifically, the very recently proposed oligonucleotide-selective sequencing (OS-Seq) 

by Myllykangas et al. (20) enables this approach. In this method of targeted resequencing 

target-specific oligonucleotides are used to create ‘primer-probes’. These primer-probes are 

immobilized on the surface of a flow cell and serve both as capture probes and sequencing 

primers i.e. after capturing the complementary targets from the library, these primer probes 

are extended. Subsequently, bridge PCR cluster formation is performed. These clusters can be 

sequenced twice to determine the captured target and subsequently the OS-Seq primer probe 

sequence (20). This enables the identification of the exact OS-Seq primer that mediated the 

targeting. Myllykangas et al. (20) have used this approach to facilitate the assessment of the 

performance of individual primer probes. 

Here, we would like to investigate the potential benefit of this approach to improve the speed 

of sequence alignment. To do so we have performed computational experiments to investigate 

what benefit such an approach of using a priori information might bring to sequence 

alignment and to see whether this can reduce the still sizeable part of the time needed to 

perform DNA analysis. This investigation has been done by computer-generating a set of 

sequencing reads that contain the a priori known genomic position of their capture probes. 

These reads are then aligned with an implementation of the Needleman–Wunsch algorithm 

that uses the a priori information to map only to the corresponding sequence fragment. The 

required alignment time is compared to the time needed by a number of state-of-the-art 

aligners, which do not use this prior knowledge and which align to the whole genome. 

Although one could argue that conventional aligners would also be speeded up by aligning 

only to the target region, we will first show that this is not a viable option by analysis of real 

enrichment sequencing data, as this yields many false positive SNP calls. 
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Methods 

 

Evaluation of the error introduced by alignment to just the target region by 

conventional aligners 

In targeted sequencing, capture arrays are used to reduce the total amount of bases to be 

sequenced. This reduction is achieved by capturing only the sequences of interest, known as 

target region. Since enrichment methods do not have a specificity of 100% but typically of 

around 70% (17, 18, 21), a considerable amount of off-target reads are generated. 

Consequently, data from targeted sequencing are aligned to the whole genome, using aligners 

such as Bowtie, BWA or MAQ, and not just to 

the target region. To evaluate the error introduced by aligning only to the target region, data 

(50 bp reads) from a previously published study (21) were used. The sequencing reads were 

aligned against the whole genome as well as to the target regions (including 100bp flanks) to 

evaluate the errors introduced. Subsequently, SNP calling was performed using filtering with 

the following criteria: 

(1) Positions with lower than 20× and higher than 2000× coverage were excluded. 

(2) Bases with quality below 10 were excluded from SNP calling. 

(3) No more than five reads that have identical mapping position and strand were 

included. 

(4) Each of the non-reference alleles has to be supported by reads mapping to the forward 

as well as by reads mapping to the reverse strand of the reference genome. 

(5) The non-reference allele should be observed in 20% or more reads covering the 

polymorphic position. 

(6) Sites with more than four alleles were excluded as representing positions with 

increased error rate. 

Positions that passed this filtering were called as candidate SNPs (or small indels). 

Including a priori knowledge in sequence alignment 

As the capture probes of hybridization arrays are designed to catch specific sequences, their 

position on the genome must be known in advance. Therefore, if the location of a capture 

probe on the array as well as its position on the genome are known, the corresponding 

sequencing read of the captured fragment can be associated with the sequence of its expected 

mapping position within the target region, provided that this information is retained during the 

sequencing process. Hence, the read can be aligned against this associated ‘reference 

sequence’ instead of the whole genome. 

To computer-generate reads containing information about the genomic position of their 

capture sequence and their associated reference sequence, first several different target 

sequences on the genome were selected to construct a target region of interest (Figure 1). For 

each of these target sequences, a number of capture probes is assumed that would be present 

on a hybridization array and act as primers for sequencing. Therefore, the genomic position of 
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a sequencing read as well as its associated reference sequence is located behind the capture 

probe. To cover the complete target sequence with sequencing reads, the capture probes need 

to be shifted along the genome, which results in the reference sequences being shifted as well 

to form a tiling of the target sequence with a constant offset (Figure 1A). Taking the reference 

sequences as templates, we next introduced errors, SNPs and Indels to simulate the 

sequencing reads (Figure 1B). The resulting reads were used as input for the computations to 

determine the speed performance of our approach compared with a regular alignment. The 

regular alignment against the whole genome was performed with Bowtie, BWA and MAQ 

(Figure 1C). For the alignment using the position information, different implementations of 

the Needleman–Wunsch algorithm were used (Figure 1D). These consist of a regular 

Needleman–Wunsch (NW) and a pruned version of the Needleman–Wunsch algorithm 

following the beam search paradigm (22). We refer to the latter implementation as ‘banded’ 

Needleman–Wunsch algorithm (NWB). Additionally, both algorithms were implemented 

using exact matching prior to the alignment to increase the computation speed (NWem and 

NWBem), as we describe further in the following section. 

 

Figure 1: Overview of the workflow. (A) A target region was chosen from which the 

reference sequences were created. (B) Each reference sequence was then used to create the 

associated reads. To simulate realistic data, errors, SNPs and Indels were introduced. The 

resulting reads were then aligned to the whole genome (C) or to their associated reference 

sequence (D). 

 

Different alignment approaches 

The first implementation of alignment using position information was realized through a 

regular Needleman– Wunsch algorithm (NW), which aligns each read to its associated 

reference sequence. Since the reads are expected to be very similar to the reference sequence, 

we realized that a direct string comparison might be applicable to skip the alignment for 

exactly matching sequences. This insight led to a second implementation (NWem), which 

performs the alignment in two steps. First, the information included in the header of each read 
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is used to look up and identify the reference sequence associated to the read being processed, 

and subsequently the aligner checks whether the compared sequences match exactly. If so, the 

maximum alignment score is assigned; otherwise, a regular alignment is performed for the 

two sequences (as has been described in (10, 22); allowing up to two Indels for the beam 

search approach). Since the Needleman–Wunsch algorithm can be optimized for similar 

sequences, a banded version was also implemented (NWB, as described in the previous 

section) and exact matching was added (NWBem), which works similarly to NWem. 

To compare the new approaches with established alignment methods, the reads were also 

aligned against the whole human reference genome using Bowtie (0.12.7), BWA (0.5.9-r16) 

and MAQ (0.7.1). Default settings were used for MAQ (map) and BWA (aln & samse). 

Bowtie was run using ‘-a -n 2 -q –solexa1.3-quals – quiet’ settings. The calculations were 

executed on a grid of 1648 cores divided over 206 Dell PowerEdge M600 blade servers, each 

utilizing two Intel Xeon L5420 Quadcore CPUs @ 2.5Ghz with 16, 32 or 64 GB of random 

access memory (BiG Grid, see www.biggrid.nl). 

Generation of sequencing data 

The data necessary to determine the gain of the new alignment approach by comparison to the 

regular aligments was obtained from reference human genome GRCh37 and a recent gene 

annnotation (Ensembl database, release 62; http://www.ensembl.org) (23). In total, 7368 

exons were chosen as the target region, representing approximately 3 million bases (Mb) 

based on previous microarray genomic enrichment experiments (21). Exons originating from 

the X and Y chromosomes as well as extrachromosomal DNA were excluded. A subset of the 

chosen exons was taken to create also a 300 kb target region (784 exons), while a 30Mb target 

region was also assembled to compare the performance for larger data sets (72 943 exons). 

Figure 2 shows the principle of the data generation based on the captured sequences (dark 

green) which are complementary to the capture probes present for instance on a hybridization 

array. The capture probes would be designed in such a way that the reference sequences (light 

green) following the captured sequences form a tiling of the target sequence (continuous 

black). This target sequence is a part of the target region, and might be an exon of interest. To 

generate the sequencing data, each associated reference sequence was created by selecting a 

substring from the target sequence, while the starting base of the next reference sequence was 

shifted by an offset of 10 bases, covering the target sequence in the process (Figure 2A). This 

procedure was repeated until the remaining target sequence was too small to create a new 

reference sequence with the required length. 

The associated reads were then created from their associated reference sequences, with a 

number of copies referred to as the read redundancy (Figure 2B).As indicated in red in Figure 

2, sequencing errors and incorrectly captured reads were introduced into the data set. SNPs 

and Indels were additionally introduced to the sequencing data with probabilities 

corresponding to typical occurences mentioned in literature (24). After the read sequence was 

prepared, the assembly of the read was finished by including the genomic position 

information. 

http://www.biggrid.nl/
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In the above approach, the length of the reference sequences influences the number of total 

reference sequences and associated reads, as with increasing length of the reference 

sequences, fewer complete sequences can be fitted into the target sequences, e.g. the exons 

chosen. As shown in Table 1, the number of reference sequences decreases for each step of 25 

bases. To determine the number of sequencing reads for each combination of target region 

and read length, the number of reference sequences has to be multiplied by the read 

redundancy. 

 

Figure 2. Principle of data generation. (A) Captured sequences (dark green) are 

complementary to the designed capture probes present on the array. These probes are 

designed in such a way that the following reference sequences (light green) form a tiling of 

the target sequence (continuous black) with a constant offset. Each reference sequence is 

therefore directly created from the target sequence. (B) For each reference sequence a number 

of associated reads (blue) is created, introducing different errors (red) in the process. The 

number of created reads per reference sequence is referred to as read redundancy (two in this 

example). 

 

Table 1: Number of reference sequences for the different target regions, depending on 

the length of each reference sequence (as described in the section Generating of 

sequencing data). The decrease in number is due to the fact that fewer complete sequences 

cover the same target if the length of each generated sequence is increased. 

Target region 25 base 

sequences 

50 base 

sequences 

75 base 

sequences 

100 base 

sequences 

0.3 Mb 28.163 26.218 24.243 22.298 

3 Mb 283.042 264.616 246.202 227.776 

30 Mb 2.857.844 2.676.092 2.493.129 2.311.377 
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Parameter space 

To evaluate the influence of various parameters on the alignment time, we varied the values 

of five parameters: 

 the size of the target region (0.3, 3 and 30 Mb), 

 the length of the reads (25, 50, 75, 100 bases), 

 the percentage of sequencing error per base (0.5%, 1%, 2%), 

 the read redundancy (1, 2, 5, 10, 20) and 

 the percentage of reads off-target but still captured and sequenced (0, 5, 10, 20, 40%). 
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Results and Discussion 

 

Introduction of errors by aligning solely to the target region 

As mentioned, the alignment speed of conventional aligners in targeted sequencing could 

perhaps be improved by aligning just to the target region instead of to the whole genome, 

which is the current practice (21), because this could seriously reduce the computational 

effort. To test whether this is a viable option, we first examined the effectiveness of sequence 

alignment to just the target region, using conventional aligners. Sequencing data from a 

previous experiment (21) was used for this study. 

When using common enrichment methods, two classes of reads are generated, the first one 

consisting of all reads that originate inside the target region (referred to as ITR) and the 

second one comprising all reads that originate outside of the target region (referred to as 

OTR). When all these reads are aligned solely to the target region, two possible errors may 

occur that influence subsequent analysis (e.g. SNP calling). Firstly, OTRs that now align 

uniquely inside the target region are falsely classified as uniquely matching reads (UMRs) to 

the target, as they align at a position from which they do not originate (Type 1 error). 

Secondly, all reads (ITR and OTR) that align uniquely inside the target region, but would also 

align one or more times outside the target region [known as multiple matching reads (MMR)] 

and that would normally be excluded from analysis, are falsely classified as UMRs as well 

(Type 2 error). 

We compared mapping strategies where reads were aligned to the full genome reference or 

only to the target. The previously published set (21) features 13.24 million mapped reads of 

which 8.36 million were uniquely mapped to the target region of genome reference NCBI36. 

Using the same analysis methods as described in (21), but mapping only against the target 

region, 8.48 million UMRs were obtained. From these, 0.78% were uniquely mapped to a 

different location (Type 1 error) and 0.83% were originally MMRs (Type 2 error) when the 

whole genome was used as a reference. 

Subsequently, we evaluated the number of mismatches that were observed in reads that map 

consistently and in those that correspond to erroneous mappings. The result of this analysis is 

given in Figure 3. The data show that reads that erroneously map to the target region typically 

have several mismatches, while the vast majority of consistently mapped reads contains one 

or no mismatches with the target sequences. However, the distributions overlap and cannot be 

distinguished easily. For instance, accepting only reads with at most two mismatches to 

capture most of the consistently mapped reads, would still result in the inclusion of about half 

the erroneously mapped reads. Setting the threshold to 1 or 0 would on the other hand greatly 

reduce the information needed for SNP calling. Moreover, the use of a lower threshold to 

reduce type 1 and 2 errors is not feasible, since an analysis of the distance between SNPs (i.e. 

SNPs called when mapped against the full reference genome) showed that a third of all SNPs 

have neighboring SNPs not further than 50 bases apart (see Figure 3). Hence we conclude that 

allowing fewer than two mismatches per read would reduce the reliability of SNP calling for a 

substantial part of the exome. 
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Figure 3. (A) Number of mismatches that were observed in reads that map consistently and in 

those that correspond to erroneous mappings. Reads which erroneously map to the target 

region typically have several mismatches, while the vast majority of consistently mapped 

reads have one or no mismatches with target sequences. (B) Distribution of distances between 

neighboring SNPs that map to the same target region of exome. Percentage of between-SNP 

ranges (Y-axis) that are below a certain distance (base pairs, X-axis) shows that one third of 

the between-SNP distances are 50 bp or less. 

 

To test the effect of the additional 1.61% UMRs generated, supposedly uniquely mapping to 

the target region, on genomic analysis, SNP calling was performed [in the same way as done 

in (21)]. A direct comparison was made for sets mapped against the full genome reference and 

only to the target region. A total of 1886 SNPs were found in both sets, while an additional 

1651 SNPs were specific to the set where mapping was done solely against the target region. 

Thus aligning to just the target region produces an additional 88% SNPs. The same analysis 

using 35 bp reads (20) yields similar results and a slightly higher overall false-positive rate 

(52 versus 47%), indicating that read length has an influence, but will unlikely solve the 

problem of mismapping. These two different SNP sets exhibit different overlap with a known 

SNP database: 78.8 and 8.4%, respectively (exact numbers: 1486 and 138, source Ensembl 

database v.54). The latter percentage implies that nearly 92% of these additionally found 

SNPs are false positives. In addition, both SNP sets have dissimilar distributions of 

percentage of non-reference calls, which are given in Figure 4. Figure 4A shows the 

histogram of the non-reference frequency for the overlapping SNPs in both data sets, while in 

Figure 4B this histogram is given for the SNPs that are unique to the mapping to the target 

only. The histogram in Figure 4A exhibits the expected profile with a peak at 100 

(homozygous SNPs) and a secondary maximum a bit <50% expected for heterozygous SNPs. 

Interestingly the frequency spectrum in Figure 4B exhibits a 1/f trend with the frequency, f, 

which is indicative of noise (25) and suggests—in line with the low overlap with the SNPs 

known in Ensembl database—that nearly all of these SNPs are false positives. Therefore we 

conclude that, despite the small proportion of reads with ‘paralogous origin’ (1.61%) by 
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mapping just to the target region, they are more divergent from the target sequences and 

therefore can have a significant contribution to false positive SNP calls when detecting 

sequence variants, in an enrichment experiment when aligning just to the target region. 

 

Figure 4: Distributions of percentage of non-reference calls for both SNP sets. (A) 

histogram of the non-reference call frequency for the overlapping SNPs in both data sets, (B) 

histogram for the SNPs specific to the set where read mapping was done to the target only. 

 

Consequently, this validates the practice in targeted sequencing to perform whole genome 

alignment to avoid introducing additional errors during alignment. Thus, comparisons to 

determine the gain in alignment speed using a priori knowledge will be made by comparing 

the alignment speed of implementations of the Needleman–Wunsch algorithm, which align to 

just the target region, to the speed of conventional aligners (Bowtie, BWA, MAQ), which 

align to the whole genome. 

Comparison of alignment speed 

To evaluate the alignment speed of the new approach, the computation times required for 

aligning targeted sequencing experiments were compared to the performance of regular 

aligners (Bowtie, BWA and MAQ). These latter aligners do not use any a priori genome 

position information and align to the whole genome. Figure 5 shows the results of such a 

comparison for a 3 Mb target region, a read length of 75 bases, a sequencing error of 1% and 

with 10% reads off-target. These settings correspond to a total of 246,202 reference 

sequences. Four different implementations of the Needleman–Wunsch algorithm (NW, 

NWem, NWB and NWBem, see Section Different alignment approaches) were used. 

As can be seen, MAQ (red) is the slowest of the aligners used in this comparison, with its 

computation time ranging from 8713 s up to 69,768 s depending on the read redundancy. The 

two Burrows–Wheeler transform-based aligners perform the same calculations much faster, 

requiring 661–9419 s (BWA, violet; ~6.86× faster than MAQ) and 159–2791 s (Bowtie, 

black; ~22.9x faster than MAQ) respectively. These results confirm previous observations 
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concerning the alignment speed of Burrow–Wheeler transform-based aligners (15, 16). 

Nevertheless, the Needleman–Wunsch algorithms using position information lead to 

considerably shorter alignment times. 

 

Figure 5: Comparison of the alignment speed of different aligners versus read 

redundancy. Bowtie, BWA and MAQ aligned against the whole genome; the Needleman–

Wunsch implementations used the position information to align to the associated reference 

sequences. Settings: target size 30 Mb, read length 75 bases, 1% sequencing error, 10% reads 

off-target. Note that both axes are in logarithmic scale. 

 

Compared to Bowtie, the computation time is decreased by a factor of ~1.4 for NW (blue; 

106–1949 s), while NWem (light blue; 73–1244 s) even gains a factor of ~2.2. This gain 

increases further for NWB (dark green; 32–491 s or ~5.7× faster than Bowtie) and NWBem 

(green; 30–430 s or ~6.6× faster than Bowtie). Concluding, the total computation time for 

approximately 49.2 million reads of 75 bases length can be reduced from 46.5 to ~7 min when 

adapting a pruned Needleman–Wunsch algorithm to use the a priori information and 

comparing to the fastest regular aligner Bowtie. 

Figures 6–8 show a more extensive comparison of computational experiments, regarding only 

two of the Needleman–Wunsch implementations (NW and NWBem) with a sequencing error 

of 1% per base in Figures 6 and 7, as well as 2% in Figure 8, respectively. Figure 5 is a 
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subplot of Figure 6 and can be found in the second row and the third column. When 

investigating over a broader range of conditions, Bowtie (black) shows to be the fastest of the 

tested common aligners, outperforming MAQ (red) and BWA (violet) in every tested 

parameter combination. Though the use of the position information still leads to a 

considerable reduction in alignment time, NW shows limitations for longer reads lengths (due 

to the time complexity of the regular Needleman–Wunsch algorithm being O(max(n,m)
2
)), 

which are overcome by NWBem by pruning the alignment matrix. 

 

Figure 6: Comparison of different aligners for different read lengths, percentages of 

reads off-target and read redundancies. MAQ (red), BWA (violet) and Bowtie (black) 

aligned against the whole genome, NW (blue) and NWBem (green) used the position 

information to align to the associated reference sequence. Settings: target size 30 Mb, 1% 

sequencing error. 
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For example, in Figure 6, at a length of 100 bases and 40% reads off-target, Bowtie (164–

2765 s) and NW (158–2750) compute at comparable speeds, while NWBem outperforms both 

(32–447 s). When considering shorter reads of 25 bases, both NW (42–583 s) and NWBem 

(29–396 s) are able to outperform Bowtie (106–1856 s). Concerning the amount of reads off-

target, the exact matching shortcut of NWBem is skipped less often at 0% reads off-target and 

therefore fewer reads have to be aligned regularly (since NW performs no preselection, it is 

not influenced by this). Still the overall influence on computation time is only marginal, 

reducing alignment time to 32–445s. 

 

 

Figure 7: Comparison of different aligners for different read lengths, percentages of 

reads off-target and read redundancies. MAQ (red), BWA (violet) and Bowtie (black) 

aligned against the whole genome, NW (blue) and NWBem (green) used the position 

information to align to the associated reference sequence. Settings: target size 3 Mb, 1% 

sequencing error. 



 

144 
 

We also investigated the performance of the aligners for the 3 Mb target region (Figure 7) as 

well as the 300 kb target region (data not shown), which resulted in similar outcomes. In case 

of the 3 Mb target region, the performance gain varies between a factor of ~1.0 to ~4.3 for 

NW (average: 2.2±1.2) and a factor of ~5.0 to ~7.7 for NWBem (average: 6.8±0.8) when 

comparing to Bowtie. Similar results were observed for the 300 kb target region (NW: 2±0.9; 

NWBem: 6.5±1.1). 

When investigating the influence of 2% sequencing error per base for the 30 Mb target region 

at a length of 100 bases and 40% reads off-target, the results are consistent to previous 

observations (Figure 8). Compared to 1% sequencing error (see Figure 6 and above), NW 

(158–2758 s) and NWBem (33–460 s) alignment times seem largely unchanged, while 

Bowtie (196–3311 s) requires ~20% more computation time. Hence, for 2% sequencing error 

and the 30 Mb target region, the average gain for NWBem increases to 7.8±0.8 compared to 

Bowtie, whereas for the 3 Mb target region it even reaches a factor of 8±0.8. Also compared 

to Bowtie, BWA exhibited a similar behaviour, while MAQ’s performance remained stable. 
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Figure 8: Comparison of different aligners for different read lengths, percentages of 

reads off-target and read redundancies. MAQ (red), BWA (violet) and Bowtie (black) 

aligned against the whole genome, NW (blue) and NWBem (green) used the position 

information to align to the associated reference sequence. Settings: target size 30 Mb, 2% 

sequencing error. 

 

As expected, the amount of reads processed has the biggest impact on the computation time 

for all of the aligners, with our new approach showing a behavior similar to Bowtie and 

BWA. The percentage of sequencing error (in our tests up to 2%) influences the computation 

time of the common aligners (except for MAQ), while it has only a minor effect on the 

computation time of both NW and NWBem. Nevertheless, this gain in speed is sensitive to 

the similarity of the aligned sequences to the expected sequences, as it influences the number 

of exactly matching sequences. Therefore, both implementations using preselection by exact 

matching (NWem and NWBem) will benefit from a high specificity in enrichment and a low 

sequencing error. 

Concerning the amount of reads off-target, Figure 6 shows that variations in the percentage 

influence the computation time of both implementations (NW and NWBem) only marginally, 

with NWBem having the performance of NWB as an upper limit for the computation time 

when all of the reads need to be aligned in case no exact matches are found (compare Figure 

5). This can be understood as for NW, no preselection is performed and therefore all reads are 

aligned regardless of their origin, while for NWBem the biggest gain in computation time is 

achieved due to the use of the pruned Needleman–Wunsch algorithm. 

Implementation aspects 

To investigate whether there is room to improve NW even further, the time consumption of 

different parts of the Needleman–Wunsch implementations were analyzed. As shown in Table 

2, I/O makes up a major part of the total computation time, up to a fraction of 83.3%. 

Improvements should be possible by using a binary data format instead of the text format 

used in this study. In summary it can be said that our approach generally benefits from short 

reads with high quality, as the alignment time for dynamic programming implementations 

increases with the length of the reads. Furthermore, high-quality reads that match perfectly do 

not need to be aligned at all. 

We next note that BWA and Bowtie benefit from using multiple computer cores, as they can 

perform their computations multithreaded. MAQ as well as the presented Needleman–

Wunsch aligners are not implemented in a multithreaded form (yet) and therefore did not gain 

from multiple cores. 
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Table 2: Time consumption of alignment and input/output of the NW and NWBem 

aligners, for different read redundancies 

Program part 1×, n(%) 2×, n(%) 5×, n(%) 10×, n(%) 20×, n(%) 

NW—alignment 3.8 

(60.7) 

7.92 

(66.4) 

19.07 

(68.9) 

39.93 

(70.84) 

75.75 

(69.82) 

NW—I/O 2.47 

(39.3) 

3.99 

(33.6) 

8.61 

(31.1) 

16.43 

(29.16) 

32.75 

(30.18) 

NWBem—alignment 0.47 

(16.71) 

0.92 

(19.32) 

2.28 

(21.83) 

4.7 

(23.15) 

9.03 

(22.7) 

NWBem—I/O 2.33 

(83.29) 

3.85 

(80.68) 

8.15 

(78.17) 

15.59 

(76.85) 

30.77 

(77.3) 

 

Furthermore, the memory requirements for the different aligners vary, making great amounts 

of RAM advantageous or in case of MAQ necessary for the regular aligners when aligning 

large numbers of reads. As shown in Table 3, NW and NWBem require only a fraction (7.5–

16.6%) of the memory necessary for the other aligners to perform the calculations when 

aligning approximately 5 million reads from a 3Mb target region. These low hardware 

requirements combined with the overall speed of the computations would allow one to 

include the alignment within the sequencing device, making this kind of post-processing of 

the sequencing data obsolete in clinical applications. 

Table 3: RAM requirements (MB) of the different aligners when aligning approximately 

5 million reads 

Aligner/algorithm NW NWBem Bowtie BWA MAQ 

 

Virtual memory 

required 

200 200 1202 2333 2666 

Physical memory 

required 

145 145 904 2322 2654 

 

Outlook 

Thus far our work has been focused on methods where the enrichment step and the 

sequencing are combined in what can be called embedded enrichment, such as in OS-Seq 

(20). However, our method for mapping targeted sequences could be exploited in studies that 

use other enrichment strategies such as long-range PCR or selector probes (26). One could 

envision that the high specificity that these methods offer could warrant confining the 

alignment just to the target region. However, this is not done in practice to avoid generating 

false SNPs, as even with 98–99% specificity, 1–2% of the amplicons may be misaligned to 

the target region, if alignment is restricted to this (M. Nilsson, personal communication). 

Furthermore, as has been shown in the first results section, the vast majority of any additional 

SNPs generated will be false positives. PCR- and selector-based methods do not necessarily 

retain a direct link between a probe and the corresponding sequence read through a positional 

dependence. However, for the selector approach to targeted resequencing (26) a link to the 
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capture probe can be made as the hybridization probes are somewhere in the captured 

fragment to be read. If these are read as well, the read alignment could proceed by combining 

this information (giving the expected genomic location) and the read. In the work done by 

Johansson et al. (26) this was not done and alignment was performed against the full genome 

reference (M. Nilsson personal communication). However, if in between the two selector 

hybridization probes a specific label is incorporated, which upon sequencing indicates that 

adjacent to this site both hybridization probes are to be found, then upon the random rolling 

circle amplification-based multiple displacement amplification the hybridization probes can 

be easily found in the sequence. Consequently, the genomic location of the fragments would 

be known and alignment can be done just to the target location in the manner described in this 

article. For PCR-based enrichment methods the oligonucleotide primers, designed to flank the 

amplicons, could in principle also be used in the read alignment as a priori information. 

However, in this case new methods would still have to be developed to ensure that the primer 

information is retained through the concatamerization and/or shearing process, typically 

applied in the resulting next-generation sequencing library preparation as the PCR-products 

are longer than the currently typical read length. Thus, as the hybridization probe information 

can more readily be retained in the selector approach (26), in the latter target enrichment 

technique our method for targeted alignment might be more readily adopted. 
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Conclusion 

In this article we have investigated the use of a priori information in sequence alignment, 

based on a new implementation of current enrichment methods for targeted sequencing. For 

this purpose, sequencing reads were computer generated from the human genome while 

varying five parameters to evaluate their impact on alignment time. The presented alignment 

algorithms are based on straightforward dynamic programming and use a priori knowledge to 

map each read to the expected part of the genome. These implementations prove to be faster 

than Bowtie, BWA and MAQ. The latter three algorithms align against the whole human 

genome, since alignment solely to the target region using conventional aligners introduces 

falsely classified UMRs. We investigated this and found that 1.61% of a total of 8.48 million 

of the UMRs were incorrectly classified as UMR by aligning just to the target region. This 

seemingly small percentage of incorrectly classified UMR leads to a significant increase of 

around 88% more SNP calls, close to 92% of which are false positives. 

The gain in computation speed was investigated for a total of 900 parameter variations and 

was observed to range from an average of 6.2±0.8 for a 30 Mb target region to an average of 

8±0.8 for a 3Mb target region when comparing the fastest Needleman–Wunsch 

implementation (NWBem) to Bowtie. As the alignment itself consumes only a fraction of the 

total computation time, using a binary format to process the reads should give additional 

benefits. For example, speeding up the I/O by a factor of 3 would decrease the alignment time 

from ~40 s to ~20 s for the ~5 million reads of a 3 Mb target at 20× read redundancy, which is 

~16× faster than Bowtie. Furthermore, since the alignment algorithm can be exchanged easily 

and the computations do not require sophisticated hardware, using a priori information proves 

from a bioinformatics point of view to be a flexible and efficient approach to minimize 

alignment efforts in targeted sequencing and to enable a clinical use of sequencing 

information without the necessity of large computing facilities. Finally, the alignment time of 

around 7 min or less for a targeted resequencing run of approximately 49 million reads would 

be very attractive for clinical use. 
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Background 

 

Prostate cancer represents a heterogeneous disease with diverse outcomes that can range from 

long-term symptom free survival to aggressive metastatic disease. Because of this, clinicians 

and researchers face grave challenges in proper diagnosis and patient stratification to provide 

the best care possible. However, despite continuous research efforts and known flaws, the 

PSA-based serum test introduced in the 1980s remains the de-facto standard assay for the 

indication of presence of prostate cancer until this day. PSA testing is associated with 

overtreatment of insignificant disease cases, leading to unnecessary biopsies and surgical 

interventions (1–3). Moreover, PSA lacks prognostic value at the time of diagnosis and is not 

sufficient to predict disease progression or determine a treatment course (4). Many alternative 

markers have been proposed, but mainly due to lack of validation, the adoption rate for 

clinical use is low and the need for highly specific biomarkers that can predict outcome and 

allow disease monitoring persists. 

In order to address these issues and uncover novel alternative biomarkers as well as gain 

further insight in the molecular characteristics of prostate cancer, we utilized data from 

numerous high throughput technologies for our genome-wide studies. One of the focuses of 

our research was to investigate disease-associated RNA isoforms of known genes, which 

included PCa-specific promoter switching as encountered with the PDE4D gene. In addition, 

we repurposed existing array data to identify novel prostate cancer-associated lncRNAs and 

evaluated their biomarkers potential. Lastly, the software we development for targeted re-

sequencing proved this technology’s potential for clinical applications. 

1 A new generation of markers and profiles  

Ideally, biomarkers for diagnostic and monitoring purposes should be absolutely disease-

specific to prevent any misclassification (false positives) that could cause overtreatment of 

patients. For PCa, such disease-specific markers are known to exist since the discovery of the 

fusion gene TMPRSS2-ERG (5). However, the lack of sensitivity due to the limited number 

of fusion gene-positive samples encompasses a risk of missing significant cases (false 

negatives). This shortcoming can be overcome by adding complementing biomarkers and 

creating a gene panel for biomarker purposes. Therefore, our aim was to identify other PCa-

specific RNA transcripts that would be suitable to use in such a biomarker panel. In order to 

ensure high specificity, we chose to pursue an outlier-based approach similar to the one used 

for discovering TMPRSS2-ERG (5). However, instead of fusion genes, we focused on the 

identification of novel genes in previously unannotated regions of the genome in an effort to 

discover PCa-associated lncRNAs, a class of RNAs known to exhibit highly tissue-specific 

expression patterns (see Chapter 2). 

With this approach, we identified 334 candidate transcripts referred to as EPCATs (EMC 

prostate cancer-associated transcripts), of which 15 were subsequently validated by RT-PCR 

and 12 had working qPCR probes that could be used to validate their diagnostic performance 

in an independent patient cohort (AUC = 0.87). Moreover, two of the validated EPCATs 

showed association with patient outcome, making them interesting prognostic biomarker 
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candidates. We also used two selected EPCATs for in situ hybridization on a tissue 

microarray and successfully distinguished PCa from surrounding tissue in 39% of all cases 

with 100% specificity, underscoring their value for needle biopsy evaluation and staging. In 

comparison, the genes most commonly hit by point mutations in PCa, TP53, SPOP and 

PTEN, occur in less than 15% of patients (14%, 9% and 7%, respectively (6)), while MYC 

amplifications are present in 2%-20% and NKX3-1 deletions are found in 35%-86% of 

prostate tumors (7, 8). Thus, our EPCATs show promise as diagnostic and prognostic markers 

for tissue assessment, but require further study concerning their potential as urine markers for 

early disease detection and monitoring. Furthermore, the cause for the observed diverse 

outlier expression patterns of the EPCATs remains unknown and a number of possible 

mechanisms can be envisioned to be involved. 

One possible explanation could be a transcriptional regulation by specific transcription factors 

(TFs), in which the TF itself follows an outlier pattern as exemplified by ERG and ETV1 

when fused to TMPRSS2. However, few EPCATs revealed a clear coexpression with ERG or 

ETV1, leading us to conclude that other TFs or perhaps specific TF combinations could be 

required for their transcription. To investigate this possibility further, we conducted a 

preliminary transcriptome-wide follow-up study using the Weighted Gene Coexpression 

Network Analysis (WGCNA (9)) framework as well as a custom approach termed XDmapper 

(10–12). These analyses identified several coexpressed TFs for individual EPCATs, but did 

not reveal a common cause for EPCAT expression, suggesting the involvement of other 

regulatory mechanisms. 

Among these mechanisms, epigenetic factors such as DNA methylation are interesting 

candidates for further investigation, which is why we conducted a preliminary study on the 

correlation of DNA methylation patterns and EPCAT expression using a public dataset (13–

16). Since an increased DNA methylation has been correlated with gene silencing, our aim 

was to identify losses of methylation (hypomethylation) near the promoter regions of 

EPCATs that could indicate an activation of the gene. However, similar to the analysis of TFs 

we found correlations of hypomethylation and expression only for a few individual EPCATs, 

while a global mechanism was not detected. 

Besides the mentioned processes, one could also envision that expression of some of the 

EPCATs is caused by reoccurring fusion events, although we could not find evidence of break 

points near EPCAT loci when looking at available DNA-seq data of several PCa cell lines 

(17). Other possible explanations could be alterations in copy number that disrupt chromatin 

organization and alter enhancer activity, or by elongated primary transcription and thereby 

related to read-through fusion transcripts (conjoined genes). These mechanisms have not yet 

been investigated further. 

From these findings, we hypothesize that expression of the EPCATs is unlikely caused by a 

single mechanism, and since the mentioned mechanisms need not be exclusive, unraveling the 

transcriptional regulation of the EPCATs will be a formidable challenge for future research. 

Such efforts may also provide further insights into tumor biology, as the underlying 

mechanisms could mark cellular aberrations or features important for cancerous growth, such 

as specific enhancer elements or chromatin domain boundaries. 



 

154 
 

1.1 Functional aspects of long non-coding RNAs 

Although our knowledge of lncRNAs is far from complete, a growing body of evidence has 

challenged the notion of lncRNAs as a curiosity of cellular transcription without functional 

role in the cell ("junk"). Nonetheless, the debate of what these genes actually are and if they 

should be considered as potentially functional despite a lack of evolutionary conservation, is 

still ongoing (18–20). Current genome annotations comprise more than 60,000 lncRNA genes 

(21), making them approximately 3-times more abundant than protein-coding genes (22), yet 

so far research has been unable to provide a conclusive explanation for the plethora of 

lncRNAs as well as their origin. A commonly cited explanation is that lncRNA genes 

represent either evolutionary left-overs or occur due to spontaneous formation of transcribable 

sequences, and that their expression is caused by spurious RNA Polymerase II activity ("leaky 

transcription") (23). While this hypothesis may explain the existence of a number of non-

coding transcripts, is does not provide an explanation for the often observed tissue-specific 

expression of lncRNAs (24, 25), and can therefore not be generalized to all transcripts 

currently classified as lncRNA. Moreover, numerous lncRNAs have been described as cancer-

associated (26–28), and while their expression could be caused by genomic alterations or a 

less tightly controlled transcription, the underlying DNA sequences would face negative 

evolutionary pressure if they would be solely cancer-promoting and without additional 

function. 

Functional roles of lncRNAs in cancer are further supported by siRNA-mediated knockdown 

of PCa-associated transcripts in PCa cell lines, which revealed impaired growth and/or cell 

motility (preliminary data) for 5 of the 9 tested RNAs (see Chapter 3). Even though only few 

examples have been studied, a diverse panel of functions has been associated to this RNA 

class, ranging from miRNA decoys to protein scaffolding and transcriptional regulation (see 

Chapter 2). Furthermore, discoveries in RNA epigenetics revealed that specific RNA 

modifications such as methylation of adenosine at the N6 position (m6A) are involved in 

many cellular processes and can impact the structure of RNA transcripts and their interactions 

with other intracellular molecules such as RNA-binding proteins (29–33). This could imply 

that a second regulatory layer for RNA function besides intracellular concentration exists, and 

that some lncRNAs require presence or absence of modification to perform specific roles in 

the cell. 

Recently, the CRISPR/Cas9 system has been receiving a lot of attention as a powerful tool for 

genome editing, allowing precise knock-out of target genes in a massively parallel matter 

(34). Since the function of most lncRNAs remains unknown, genome-wide CRISPR screens 

could provide a first step towards identifying functional lncRNAs as targets for further study 

in individual tissues or diseases (35). Additionally, it has often been speculated that lncRNAs 

can in fact encode small peptides and lately evidence for this property has been accumulating 

(36, 37). With emerging novel techniques such as ribosome profiling to study ongoing 

translation, the number of such discoveries is likely to increase in the coming years and it is 

therefore questionable whether the simplistic categorization of coding and non-coding RNAs 

should be continued in the future (see Chapter 2 and (38)). 
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Nevertheless, lncRNAs currently represent a large pool of uncharacterized transcripts with 

potential functional impact on defined cell types and conditions and need to be examined 

further in order to evaluate clinical relevance. Once appropriate targets have been identified, 

one can imagine that lncRNAs whose expression is associated with malignant disease could 

be therapy targets for knock-out via genome editing techniques and likewise, condition-

specific peptides produced from lncRNAs would be of strong interest as biomarkers. 

Certainly, these prospects currently remain fictional, however, first human trials are now 

being conducted in China (39, 40) and have been approved in the USA (41), rapidly closing 

the gap between science and fiction. 

1.2 Alterations in PDE4D isoform expression – A marker for prostate cancer and other 

malignancies  

Phosphodiesterases (PDEs) have been subject to many studies across a wide panel of diseases 

and clinical conditions. The best known examples are PDE5 inhibitors such as sildenafil, 

which are used to treat erectile dysfunction. In addition, abnormalities in PDEs have been 

reported in acrodysostosis  (42–44), stroke (45, 46), COPD (47) and cancer (48, 49), while 

PDEs have also been suggested as possible treatment targets for brain injuries (50) and 

Alzheimer’s disease (51). 

Since cancer initiation is linked to inflammatory reactions and members of the PDE4 family 

are predominating cAMP hydrolysis in inflammatory cells, with PDE4D making up 

approximately 80% of PDE activity (52–56), it seemed appropriate to study PDE4D 

expression in PCa and search for links between its expression patterns and cancer 

development. Importantly, while the individual PDE4D isoforms share a common catalytic 

domain for cAMP hydrolysis, their transcription is regulated by independent promoters and 

can be adapted to tightly control cAMP signaling (57). For this reason, our analyses focused 

on individual PDE4D isoforms and their diagnostic and prognostic biomarker potential, with 

PDE4D7 being the first promising candidate based on preliminary findings in PCa cell lines 

(58). 

Indeed, we were able to confirm that the PDE4D7 mRNA isoform is consistently up-regulated 

in localized disease, while its expression declines during disease progression. This over-

expression was especially pronounced in patient samples showing ERG expression, 

implicating presence of the TMPRSS2-ERG fusion gene (see Chapter 4). Interestingly, 

although the preliminary study in VCaP cells could not find evidence for androgen signaling 

being directly involved in PDE4D7 expression (58), the correlation with ERG expression 

does imply at least an indirect involvement, as ERG up-regulation in PCa is mostly linked to a 

fusion with the AR-regulated TMPRSS2 gene. 

We therefore continued to investigate the expression profiles of other PDE4D isoforms and 

found that PDE4D5 and PDE4D9 were down-regulated when compared to normal adjacent 

prostate tissue, revealing a PCa-specific promoter switch leading to a change in isoform 

composition (see Chapter 5). This promoter switch could be mediated by multiple factors, as 

we found increased DNA methylation in several loci located within in the PDE4D gene, 

which also overlapped the PDE4D5 transcription start site. In addition, cell line expression as 
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well as transcription factor-profiling data suggested that both AR and ERG could be involved 

in PDE4D7 up-regulation, again implicating a link between androgen and cAMP signaling. 

Our findings are supported by a recent study investigating differentially methylated genes 

between TMPRSS2-ERG positive and negative samples, which provided evidence for several 

loci located in PDE4D that were hypermethylated in TMPRSS2-ERG positive samples (59). 

Moreover, a study in mice found that tissue- and stage specific DNA methylation patterns 

were correlated to Pde4d transcription (60), indicating that PDE4D expression is indeed 

regulated by epigenetic mechanisms. Lastly, ERG presence and absence has been associated 

with distinct DNA methylation patterns (15) and transcriptional control of the Polycomb 

Group protein EZH2 (61, 62), which is involved in DNA methylation. It is therefore plausible 

to hypothesize that ERG over-expression, for instance via TMPRSS2-ERG, may be disrupting 

the EZH2-mediated methylation program of prostate cells and thereby participating in the 

observed promoter switch. 

Another possible explanation for the observed down-regulation may be structural variants, 

deletions or amplifications occurring in or near the PDE4D gene body (49), which could 

prevent expression of certain isoforms. However, when examining the influence of copy 

number on the expression levels of all nine PDE4D isoforms, we found that down-regulation 

of both PDE4D5 and PDE4D9 was also present in samples without a PDE4D deletion 

(Chapter 5). For this reason, we concluded that an active process such as gene silencing is 

likely to be responsible for promoter switching.  

With our current knowledge, a functional reason for the observed promoter switch can only be 

speculative. Since PDE4D isoforms not only utilize independent promoters but also differ in 

their N-terminal region (57), PDE4D7 expression could enable PCa cells to alter their cAMP 

signaling by re-targeting hydrolytic activity to other cellular compartments. Another 

possibility could be the availability of a PKA phosphorylation site in the PDE4D7 protein that 

allows to inhibits it activity (63) and creates an additional layer of fine-tuning cAMP 

degradation. 

With these findings and the broad spectrum of other medical conditions associated with 

PDEs, it is plausible to assume that expression of PDE enzyme isoforms could be altered 

similarly in other diseases. This hypothesis had been suggested previously by investigators of 

the deCODE consortium and others, arguing that the relative expression of PDE4D isoforms 

may regulate its enzymatic activity, in line with the idea of a compartmentalized cAMP 

signaling (57, 64, 65).  

Therefore, it might be worthwhile to extend the presented studies across all known human 

PDEs on RNA isoform level and perform a thorough statistical investigation of their 

transcriptional profiles in prostate cancer, as well as other tissues. In this way, we may be able 

to uncover further associations of individual PDE isoforms and development of disease as 

well as specific outcomes, and create a multifactorial model for cAMP degradation activity in 

different cancers. A promising source for the required information can be found in the 

publicly available TCGA cohort (66), which currently provides access to RNA and/or protein 

expression data for more than 30 types of cancers. With this information, previously 
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overlooked similarities between the different cancer types might be discovered that could 

highlight potentially shared treatment options. 

1.3 Implementation of biomarkers in a clinical setting 

Current biomarkers for PCa are utilizing single RNAs or proteins to detect and stage disease. 

However, it is very unlikely to find "the" cancer gene, as the commonly accepted multiple hit 

theory predicts cancer to be caused by an accumulation of (different) events (67, 68). Since 

numerous genes were found to be associated with PCa development and progression in recent 

years, multi-RNA/protein signatures have been proposed as biomarkers for PCa (see for 

instance Chapter 3 and 5) and implemented in commercial tests for diagnostic (MiPS, (66)) or 

prognostic evaluation (Oncotype DX, Genomic Health, Inc; Prolaris, Myriad Genetics, Inc; 

Decipher, GenomeDx Biosciences, Inc. and more). With various different tests to choose 

from, comprehensive benchmark studies are urgently needed to allow clinicians to select the 

optimal tool for patient assessment (69). Unfortunately such performance reviews do not yet 

exist for the mentioned tests, while available validation studies have been conducted 

retrospectively and are often limited by small cohort size and varying RNA quality (69, 70). 

Other factors limiting the use of multi-gene tests in the clinic are specific equipment 

requirements that may not be available for all institutes (microdissection equipment for 

Decipher), as well as interobserver variation when selecting appropriate tissue for extraction 

(Prolaris), which can decrease test reliability (70). Considering that increased price and/or 

labor cost of the mentioned tests need to be justifiable by their added clinical value over 

current PSA- or Gleason-based protocols, which can also be compiled in prostate cancer risk 

calculators (71), clinical implementation of these tests has been slow. 

In addition to these limitations, most commercial panels rely on increases or decreases of gene 

expression and/or DNA methylation in cancer to create a diagnostic or prognostic score. 

However, most genes are not specifically expressed in one tissue or condition and gene 

expression changes are transient, which complicates binary classification approaches. For this 

reason, we suggested a signature consisting of multiple highly specific markers (EPCATs, see 

Chapter 3) that can be complemented with other biomarkers such as specific rearrangements, 

point mutations or copy number alterations to increase its sensitivity. 

Moreover, individual RNA isoforms of genes are often summarized into overall gene 

expression based on the assumption that the resulting protein isoforms share common 

interaction partners and have similar functions. This assumption has recently been challenged 

by Yang et al. who provided evidence for vastly different interaction profiles between 

multiple isoforms (72). These findings underline our results for a PCa-specific promoter 

switch of PDE4D that can be harnessed to create PCa signatures based on RNA isoform 

composition (see Chapter 5) and demonstrate the advantages of isoform-level analyses. 

Although the biomarker candidates proposed in this thesis (Chapter 3: EPCATs and Chapters 

4&5: PDE4D-based signatures) are not yet readily usable for clinical applications, current 

efforts focus on an independent pre-clinical validation and evaluation of applicability in liquid 

biopsies. Once successfully validated, these markers can prove to be valuable additions to 

existing signatures, be it for solid or, as the case may be, for liquid tissue samples. 
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Ideally, a novel diagnostic signature should not only offer a significant performance increase 

over PSA testing, but also allow easy testing in body fluids without the need of invasive 

sampling to control costs and reduce treatment burden. For prostate cancer, this would include 

both blood as well as urine for sampling, and efforts to sequence urine-derived RNA (referred 

to as 'Urinome') or analyze contents of urine-derived exosomes are ongoing. These endeavors 

could ideally result in a transcriptome-wide classifier based on urine or blood composition 

that overcomes the reliance on a small number of genes and instead can be used for 

stratification of healthy and diseased men using topological comparisons. However, robust 

measurement of the often heavily degraded RNAs is still a challenge and sequencing cost 

needs to decrease substantially before clinical adaptation of such a protocol can be realized. 

Until that time, utilization and optimization of existing targeted PCR, hybridization or 

antibody-based assays to measure gene signatures will remain one of the main priorities of 

clinical biomarker-related research. 

2 Technology development and the future of big data, informatics and personalized 

medicine 

Decreasing cost and time for NGS in conjunction with higher base coverage and accuracy as 

well as longer reads will lead to an increasing usage of sequencing for various purposes in the 

coming years. With more genomic data being produced every day, current estimates project a 

total storage capacity in a range of 2-40 exabytes (2-40 million terabytes) needed by 2025 for 

human genomes alone (73). This massive amount of data will not only pose a major challenge 

for existing IT infrastructure, but also for scientists who will need adequate education in 

descriptive statistics and machine learning techniques to be able to interpret and utilize results 

of large scale analyses. Here, cloud-based solutions such as Galaxy, which allow sharing of 

tested and time-stamped analysis workflows will certainly be of great value to ensure ease of 

use and reproducibility (74). Moreover, improved algorithms for data processing and mining 

are necessary to control computational requirements. Here, utilizing expertise across different 

fields of natural sciences could prove valuable to address increasing computational 

complexity. For instance, algorithms specifically designed for the emerging field of quantum 

computing, referred to as quantum algorithms, may be able to overcome some of the major 

challenges when dealing with big data and extracting useful information (75). Likewise, 

advanced machine learning techniques such as neural networks and developments in artificial 

intelligence will be of great value for data assessment and classification problems that could 

for instance be based on large gene panels or transcriptome-wide measurements. 

Ultimately, such data-driven categorizations could then be utilized in clinical decision making 

and for personalized medicine, as early trials with the IBM Watson system providing advice 

on patient treatment have demonstrated (76, 77). If such endeavors can be extended to 

genomic data profiling and incorporate the currently promoted concept of drug repurposing 

and mutation profile-based treatment of patients (78, 79), an early-stage implementation of 

precision medicine might be feasible rather soon. Of course, a solely genomics-based 

treatment approach would not be capable to account for other major external factors that can 

influence treatment response, including diet, lifestyle and environmental factors. Here, one 

might argue that the recent developments in wearable technology as well as increasing 
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popularity of the "Quantified Self" (QS) movement (80–82) might offer a prospective 

compensatory solution in risk assessment of and treatment suggestions for eligible 

individuals. Similarly, developments of wearable technology with purely health care-oriented 

intent are currently ongoing, as evidenced by first efforts in developing 'smart contact lenses' 

for continuous measurements of blood sugar levels in diabetic patients (83) and a wristband 

that allows non-invasive surveillance of circulating tumor cells (CTCs) in the bloodstream 

(84). Such technologies are only examples of a possibly continuous monitoring of an 

individual's health status that could technically allow detecting carcinogenesis through, for 

instance, measurements in bodily fluids. When available, this information could then also be 

utilized in the mentioned decision system to improve treatment recommendations. 

However, it has to be noted that any QS-based solution would not only require a widespread 

adoption of a QS mentality, but also face severe ethical and data security concerns due a 

massive collection of personal information that can entice misuse and lead to unforeseen (and 

possibly unwanted) revelations about the patient (82). In addition, next to the associated costs 

of a continuous patient surveillance, the actual benefits of incorporating such technology in 

decision making are uncertain and can be controversial, as exemplified by the ongoing 

discussion concerning PSA screening (85–87). For these reasons, the actual impact of 

wearable technology and possibly QS on future healthcare is not yet reliably assessable 

beyond a marketing strategy perspective. Nevertheless, these limitations do not impair the 

theoretical strength of a decision system able to incorporate and balance a variety of available 

information to provide informed recommendations on the possible course of action. Lastly, as 

a distant extension of this personalized treatment concept one could also envision a 

combination of genome-sequencing and –editing of specific mutations to treat diseased cells 

or disorders, as has been showcased for retinitis pigmentosa, in which the CRISPR/Cas9 

system was used to repair an RPGR point mutation (88). 

Although these developments offer exciting opportunities and challenges for clinicians and 

scientists, ethical concerns of data usage and anonymization have to be addressed and 

discussed thoroughly in order to ensure a responsible data management and prevent issues 

such as genome-based discrimination. 

2.1 Targeted re-sequencing as promising clinical method for disease classification and 

choice of treatment in precision medicine 

The rapid cost decrease introduced by next generation sequencing (NGS) technologies has 

spawned many novel concepts for clinical sequencing applications including precision 

medicine (also known as personalized medicine), in which a patient is treated according to the 

molecular characteristics specifically identified in his / her disease. To implement such 

tailored treatments, a range of drugs targeting commonly found genetic alterations is required, 

which can be administered once an appropriate assay validates the presence of such alteration 

in the patient’s tumor. Current efforts for drug repurposing and combinations of drugs show 

promising results (89–91), however, until now the cost for genome-wide sequencing of 

patient samples still prevent a wide-spread application. Here, targeted re-sequencing of a 

panel of previously identified genomic regions such as susceptibility loci may be a valuable 

intermediate step to introduce the benefits of NGS to the clinic while reducing the associated 
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cost. As an example, recurrently mutated genes in PCa that are clinically actionable targets 

include PTEN (via PI3K inhibitors), ATM/BRCA1/BRCA2 (by PARP inhibitors) and 

BRAF/RAF1 (via RAF or MEK inhibitors) (92). In addition, next to reducing cost, the 

continuous advances in sequencing technology also decrease the time needed for an actual 

sequencing run, resulting in larger amounts of data being produced in shorter amounts of 

time. These data then need to be processed by post-sequencing bioinformatics analyses in a 

timely manner, effectively shifting the rate limiting step of mutation profiling to the 

downstream data analysis (93). 

To explore how this emerging bottleneck posed by data processing could be circumvented, we 

tested whether a naive reduction of alignment space for genome-wide mapping to only the 

target region of interest could offer a sufficient solution. However, we found that this 

approach creates a considerable number of false positive mutation calls by reads being forced 

to map uniquely with high mapping scores due to the restricted search space, which could not 

be rescued by increasing quality thresholds. Hence, these reads were undistinguishable from 

reads truly originating from the target region although they would have not contributed to 

mutation calling at the positions of interest in a genome-wide setting. This finding highlights 

the necessity of genome-wide alignments for mutation calling where high alignment accuracy 

is desirable, but might also be relevant when aligning reads to the transcriptome only, as is 

often the case for gene quantification in RNA-seq experiments. However, although such 

forced alignments could increase the variance of gene expression estimates, their overall 

contribution on accuracy should be limited since expression estimates are based on the whole 

gene or transcript and therefore less dependent on contributions of individual reads or a single 

nucleotide resolution. For this reason, a recent generation of quantification tools that utilizes 

k-mer counting and/or "pseudoalignment" approaches is able to provide an accurate 

quantification without the need for a complete base-for-base alignment (94–97). 

Nonetheless, it is apparent that specialized algorithms are required to address the informatics 

bottleneck for targeted sequencing and subsequent mutation calling. Consequently, we 

implemented a novel read alignment approach based on a priori information available from a 

capture platform now known as Haloplex™, demonstrating substantial improvements in both 

time and computational resources required for read mapping. 

Since our approach utilized the specific capture design of the Haloplex technology, an 

adaptation to other targeted sequencing protocols does not appear trivial as a priori 

information on the likely origin of the reads is required for its function. However, this 

limitation could be resolved by a novel concept termed "quasi-mapping", in which the 

mapping algorithm does not perform a traditional base-for-base alignment and instead tries to 

narrow down the likely loci of origin using a combination of a suffix array and a hash table to 

index the region of interest perform search operations (98, 99). In this way, if a read can be 

mapped to the reference region, one or more genomic regions are identified as potential 

origins, which could then be supplied to our algorithm as a priori information to obtain an 

accurate sequence alignment including mismatches. Current software implementations 

utilizing this novel technique focus on rapid transcriptome quantification as previously 

mentioned (95, 97, 99), but adaptations for DNA-sequencing applications are planned for 
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future releases. With these, a time and resource costly genome-wide alignment for targeted re-

sequencing could be implemented, enabling a rapid analysis in minutes and thereby 

eliminating the bioinformatics bottleneck in clinical applications. Subsequently, rapid 

profiling of diagnostic and prognostic point mutations or risk SNPs could be combined with 

RNA markers (see Chapter 3-5) to enable a faster and more accurate decision-making process 

(see Section 2). 

3 The promise of big data and the computational revolution for molecular biology 

Next generation sequencing as well as its derivative techniques has undoubtedly 

revolutionized the fields of molecular biology and cancer research by challenging existing 

concepts and providing detailed information on many different levels of cellular organization. 

Genome-wide studies of epigenetic regulation and chromatin organization revealed a much 

more complex system than originally anticipated and further discoveries are made 

continuously as demonstrated by the recent discoveries of tens-of-thousands of new lncRNAs 

and other epigenetic modifications of both DNA and RNA (30, 100, 101). However, due to 

the continuing improvements of NGS technologies and a growing number of experimental 

protocols, it can be expected that the discovery of novel intracellular molecules will soon 

reach a plateau. Functional characterization and mechanistic studies of molecules and their 

modifications will thus become essential to address the challenge to integrate all of these 

different concepts into a full working model of cellular architecture that recaptures the 

dynamic processes ongoing in every cell. Here, machine learning techniques will also be of 

great importance to identify patterns in existing data and predict functions and interaction 

partners for uncharacterized molecules. In this way, it can be envisioned that transcripts 

currently summarized under the generalized term lncRNAs will be reassigned to different 

functional classes and grouped with previously unrelated RNAs. This function-based 

classification in turn promotes concepts of multi-functional RNAs (38) and function as an 

emergent property which mainly depends on the availability of appropriate interaction 

partners. Using such concepts, modeling of the complex cellular system may grant us further 

insights into its organization and its responses to perturbations such as mutations and 

chromosomal aberrations. 

Lastly, the sharing and repurposing of NGS data via repositories such as Gene Expression 

Omnibus and EGA allows anyone with sufficient biological and informatics knowledge to 

conduct their own studies and test hypotheses. As an example, in several of the studies 

presented in this thesis, usage of publicly available high-throughput data allowed a broader 

view on the study subject and more detailed analyses of regulatory mechanisms. Furthermore, 

platforms such as Galaxy allow cloud-based implementation and sharing of tested and time-

stamped analysis workflows, improving reproducibility while simultaneously simplifying 

usage for scientists without bioinformatics training (74). Involvement of non-experts via 

open-access publishing as well as crowdsourcing may also be beneficial and help to raise 

public interest for research as demonstrated by the successful implementation of the 

Folding@home and Rosetta@home networks. As exemplified by these ongoing efforts, 

science has begun to transform into an open-source community that allows rapid exchange of 

scientific ideas and in doing so, shares many similarities with modern information technology.  
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Thus, to avoid false conclusions based on improper analyses, good data management as 

promoted by the Dutch FAIR Data Principles (Findable, Accessible, Interoperable and 

Reusable (102)) as well as the adoption of the scientific method including proper validation of 

results by all participating parties will be crucial mechanisms for future scientific efforts. 

Addressing these numerous challenges and utilizing the opportunities provided by big data, 

will therefore be major stepping stones on the way to a better understanding of the molecular 

mechanisms involved in cancer formation and many other diseases. 
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Summary 

 

Prostate cancer (PCa) is a disease commonly found in western societies and has been 

associated with age as well as western lifestyle. Around 12,000 men are diagnosed with PCa 

in the Netherlands each year, and 3000 men die because of the disease. PCa is marked by 

divergent outcomes ranging from long-term symptom free survival to aggressive metastatic 

disease and until now it remains challenging to accurately predict how a tumor will behave. 

To be able to better distinguish indolent from malignant cases, a deeper understanding of the 

disease at the molecular level as well as better biomarkers are urgently needed. In this thesis, 

we focused on discovering novel biomarker candidates to aid the clinical need of better 

patient stratification. Moreover, we investigated a methodology for targeted next generation 

sequencing (NGS) that can be used for patient diagnosis and staging. In conjunction, our 

findings may provide valuable tools to improve patient care and reduce unnecessary 

treatments. 

Chapter 1 represent a general introduction to PCa as well as the difficulties faced in detection 

and staging of the disease. We also describe the molecular characteristics of and cellular 

signaling pathways involved in PCa. Additionally, we outline technological and 

bioinformatics developments in recent years, specifically NGS that have had great impact on 

PCa research in this thesis and that show great promise for clinical applications. 

In chapter 2, we provide an extensive review of long non-coding RNAs (lncRNAs) in 

urological malignancies and illustrate their potential for diagnosis and staging of PCa. 

To study lncRNAs as potential PCa biomarkers, in chapter 3, we utilized the Affymetrix 

Human Exon Array platform which offers probe coverage of many genomic regions that do 

not have annotated genes in them. Our approach was founded on the cancer outlier profile 

analysis used for finding the PCa-specific TMPRSS2-ERG fusion gene and focused on probes 

without known gene association. With the additional samples provided by independent public 

datasets, we were able to identify 334 candidate regions in the genome showing signal in PCa 

samples only (referred to as EPCATs). We then set out to validate the top 20 EPCATs via 

RT-PCR and were able to confirm 15 novel PCa-associated transcripts. Our efforts in using a 

quantitative RT-PCR were successful for 12 of these RNAs, which we combined in a gene 

panel with very high diagnostic power. We also visualized two EPCATs in pathological tissue 

sections using in situ hybridization and confirmed their highly specific expression patterns. 

Moreover, we found that two EPCATs located on chromosome 2 were predictive of disease 

progression and development of metastasis. Lastly, we computationally evaluated the coding 

potential of our validated EPCATs and concluded that they most likely represent lncRNAs as 

initially proposed. In conclusion, we discovered and validated previously unannotated genes 

that can be used as highly specific biomarkers for PCa. 

Previous research found that a specific isoform of the cAMP-specific 3',5'-cyclic 

phosphodiesterase 4D (PDE4D) was down-regulated in cell lines that represent more 

aggressive forms of PCa. We therefore investigated in chapter 4, whether this down-

regulation of PDE4D7 could be verified in human tissue samples across a broad panel of 
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independent datasets. Our results confirmed the association of PDE4D7 expression with PCa 

stage, as samples of non-progressive primary PCa showed higher expression when compared 

to samples with progressive disease as well as normal control tissues. Moreover, we found 

that PDE4D7 expression was increased in samples harboring the TMPRSS2-ERG fusion gene 

compared to fusion-negative samples and normal tissue. Therefore, PDE4D7 is a potential 

PCa biomarker and represents a highly interesting therapy target. 

Since mounting evidence points towards a cross-talk of the androgen receptor (AR) pathway 

and cAMP signaling, we investigated whether expression of other PDE4D isoforms besides 

PDE4D7, showed association with PCa progression in chapter 5. Utilizing several 

independent datasets, we found that both PDE4D5 and PDE4D9 are down-regulated in 

localized primary PCa, uncovering an isoform switch upon PCa development. To elucidate 

molecular mechanisms responsible, we checked whether chromosomal deletions, transcription 

factor binding or DNA methylation patterns were involved in PDE4D regulation. We found 

that down-regulation of PDE4D5 and PDE4D9 occurs independently of deletions in the gene 

locus, and that PDE4D5 expression was decreased in the LNCaP PCa cell line upon androgen 

signaling stimulation. Furthermore, ERG expression does not seem to affect PDE4D5 and 

PDE4D9, while conversely, PDE4D7 showed an increased expression when AR stimulus was 

supplied as well as in samples with high ERG expression. In addition, several loci with 

increased DNA methylation in PCa samples could be identified in the PDE4D gene, one of 

which located in proximity to the PDE4D5 promoter. Based on the gathered evidence, we 

created two signatures based on different isoforms and evaluated their diagnostic and 

prognostic performance across several datasets. Lastly, we also showed that our diagnostic 

signature can be used to improve needle biopsy staging. Our findings provide evidence for 

deregulation of PDE4D isoform composition in PCa and highlight the importance of this gene 

as PCa biomarker as well as target for therapeutic intervention. 

While NGS is broadly used in research for discovery and validation purposes, its clinical 

implementation is still limited. To advance the utilization of cancer-associated genetic 

alterations in a clinical context, in chapter 6, we investigated informatics bottlenecks in the 

clinical application of targeted sequencing of patient genomes. Since standard software was 

designed for genome-wide alignment of NGS reads, a reduction of complexity by aligning 

only to the targeted region of interest causes many reads to be forcefully aligned with high 

mapping scores. This leads to severe false positives in mutation calling (88% additional SNP 

calls, 92% of which false positive), making a genome-wide alignment a necessity for 

conventional tools. We therefore implemented a novel alignment approach that utilized a 

priori information of a targeted sequencing technique to align NGS reads in a much shorter 

time and with lower memory requirements compared to existing methods. This methodology 

allows a highly efficient processing of NGS data that can provide valuable genetic 

information of a patient’s tumor tissue for tailored treatment strategies and personalized care. 

In conclusion, this thesis provides several new biomarkers for prostate cancer that can help to 

address the flaws of current protocols and discriminate indolent from aggressive cases.  The 

EPCATs show great promise as highly specific lncRNAs, while PDE4D deregulation 

indicates broader alterations in cAMP signaling in PCa. Moreover, this thesis also advances 
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the clinical utilization of targeted re-sequencing by providing an efficient means to reduce 

computational burden during data analysis using a priori knowledge. 
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Samenvatting 

 

Prostaatkanker is een vaak voorkomende ziekte in de Westerse wereld en geassocieerd met 

hoge leeftijd. In Nederland krijgen jaarlijks ongeveer 11.000 mannen te horen dat zij 

prostaatkanker hebben. De ziekte wordt gekenmerkt door een variabele patiënten uitkomst: 

van lange termijn symptoomvrije overleving tot agressieve uitgezaaide ziekte. Jaarlijks 

overlijden er ongeveer 2600 mannen in Nederland aan prostaatkanker. Tot op heden blijft het 

een uitdaging om nauwkeurig te voorspellen hoe de tumor zich zal gedragen. Een beter begrip 

van de ziekte op moleculair niveau en het gebruik van voorspellende biomarkers zouden het 

stratificeren tussen indolente en agressieve prostaatkankers kunnen verbeteren. In dit 

proefschrift hebben we de nadruk gelegd op het ontdekken van nieuwe kandidaat biomarkers 

ten behoeve van klinische risicostratificatie. Ook hebben we een methodologie voor 

doelgerichte ‘next generation sequencing’ (NGS) onderzocht dat gebruikt zou kunnen worden 

voor diagnose en stagering.  Tezamen zouden onze bevindingen kunnen dienen als 

waardevolle middelen om patiëntenzorg te verbeteren en het aantal onnodige behandelingen 

te reduceren. 

Hoofdstuk 1 omvat een algemene introductie over prostaatkanker en bijbehorende 

uitdagingen omtrent de detectie en stagering ervan. Ook beschrijven we de moleculaire 

karakteristieken en cellulaire signaaltransductiepaden die een rol spelen bij prostaatkanker. 

Voorts zetten we de technologische en bioinformatica ontwikkelingen van de laatste jaren 

uiteen, met de nadruk op NGS, een technologie die grote invloed op het 

prostaatkankeronderzoek heeft gehad en bovendien veelbelovend lijkt met betrekking tot 

klinische toepassingen. In hoofdstuk 2 geven wij een uitgebreide literatuurstudie weer naar 

‘long non-coding RNAs’ (lncRNAs) in urologische maligniteiten en hun potentie betreffende 

diagnose en stagering van prostaatkanker. 

Om te onderzoeken of lncRNAs potentiële biomarkers in prostaatkanker zouden kunnen zijn, 

hebben we gebruik gemaakt van het ‘Affymetrix Human Exon Array’ platform dat de 

expressie van de bekende, maar ook onbekende genen weergeeft. In hoofdstuk 3, beschrijven 

we de ontdekking van een groot aantal nieuwe transcripten die in een deel van de 

prostaattumoren tot expressie komt, maar niet of zelden in de normale prostaat. Met behulp 

van aanvullende monsters uit publieke datasets waren we in staat 334 genomische 

kandidaatregio’s, zogeheten ‘EPCATs’, te identificeren die alleen een signaal gaven in 

weefsel met prostaatkanker. Vervolgens hebben wij de top 20 EPCATs via RT-PCR expressie 

analyse getest en waren wij in staat 15 nieuwe prostaatkanker geassocieerde transcripten te 

bevestigen. Kwantitatieve RT-PCR validatie slaagde in 12 van deze transcripten, die we 

vervolgens combineerden in een genetisch panel met zeer sterke diagnostische potentie. Ook 

hebben we met behulp van in situ hybridisatie twee EPCATs in histologische coupes van 

patiëntenmateriaal gevisualiseerd en hun zeer specifieke expressiepatronen bevestigd. Wij 

hebben eveneens aangetoond dat twee EPCATS, beide gelokaliseerd op chromosoom 2, 

voorspellend waren voor progressie van de ziekte en ontwikkeling van uitzaaiingen. Als 

laatste hebben we coderende potentie van onze gevalideerde EPCATs onderzocht met behulp 
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van voorspellende programma’s en geconcludeerd dat de EPCATs meest waarschijnlijk 

lncRNAs betreffen, zoals ook in eerste instantie werd voorgesteld. 

In voorgaand onderzoek werd gesuggereerd dat expressie van de specifieke isovorm van 

cAMP-specifieke 3’,5’-cyclische phosphodiësterase 4D (PDE4D) verlaagd is in cellijnen van 

agressieve prostaatkankers. Om die reden hebben wij vervolgens in hoofdstuk 4 onderzocht 

of de expressie van PDE4D7 ook verlaagd was in humane weefsels van verschillende 

onafhankelijke datasets. Onze bevindingen bevestigen de associatie tussen PDE4D7 en 

tumorstadium, aangezien weefsels met niet-progressieve prostaatkankers een hogere expressie 

toonden dan de weefsels met progressieve ziekte en normaal controle weefsel. Wij vonden 

bovendien ook dat de PDE4D7 expressie verhoogd was in monsters met het TMPRSS2-ERG 

fusiegen vergeleken met de fusie-negatieve monsters en normaal controle weefsel. Daarom is 

PDE4D7 een potentiële biomarker in prostaatkanker en een mogelijk interessant therapeutisch 

doelwit. 

Vanwege toenemend wetenschappelijk bewijs over de interactie tussen de androgeen receptor 

(AR) en de cAMP signaaltransductiepaden, hebben we in hoofdstuk 5 onderzocht of de 

expressie van andere PDE4D isovormen geassocieerd was met prostaatkankerprogressie. 

Door gebruik te maken van verschillende onafhankelijke datasets vonden wij dat de expressie 

van PDE4D5 en PDE4D9 beide verlaagd waren in primaire prostaatkanker, waarbij we een 

isovormwisseling ontdekten bij de ontwikkeling van prostaatkanker. Om de 

verantwoordelijke moleculaire mechanismen op te helderen, hebben we gekeken of 

chromosomale deleties, transcriptiefactorbinding en DNA methyleringspatronen betrokken 

waren bij de regulatie van PDE4D. Wij vonden dat de expressieverlaging van PDE4D5 en 

PDE4D9 onafhankelijk van deleties in het genlocus gebeurde en dat PDE4D5 expressie 

verlaagd was in de LNCaP cellijn na androgeenstimulatie. ERG expressie lijkt geen effect te 

hebben op PDE4D5 en PDE4D9, terwijl PDE4D7 een toename van expressie liet zien in de 

weefsels met verhoogde ERG expressie en degene na androgeenstimulatie. Daarnaast konden 

we verscheidene loci identificeren met een toegenomen DNA methylering in prostaatkanker, 

waarvan één dichtbij de PDE4D5 promoter was gelokaliseerd. Op basis van het verkregen 

bewijs creëerden we twee genetische handtekeningen die gebaseerd waren op verschillende 

isovormen en evalueerden hun diagnostische en prognostische waarde in verscheidene 

onafhankelijke datasets. Als laatste lieten we zien dat onze diagnostische handtekening kan 

worden gebruikt om stagering van het naaldbiopt te verbeteren. Onze bevindingen laten 

eveneens zien dat PDE4D isovorm opbouw gedereguleerd is in prostaatkanker en 

benadrukken de relevantie van dit gen als biomarker en therapeutisch doelwit. 

Alhoewel NGS extensief wordt gebruikt in het onderzoek ten behoeve van ontdekking en 

validatie, is diens klinische implementatie nog steeds beperkt. Om de vooruitgang van het 

gebruik van kanker-geassocieerde genetische afwijkingen in een klinische context te 

bevorderen, onderzochten wij in hoofdstuk 6 de bioinformatica knelpunten van doelgerichte 

sequentieanalyse in genomen van patiënten. Aangezien standaard software voor het uitlijnen 

van NGS ‘reads’ ontworpen is voor genoom-wijde analyses, leidt een reductie van de 

complexiteit, door slechts alleen aan de doelgerichte regio van interesse uit te lijnen, tot een 

hoge ‘mapping’ score, doordat vele ‘reads’ gedwongen worden uitgelijnd. Hierdoor krijgt 
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men zeer veel vals positieve uitslagen in het afroepen van een mutatie (88% extra afgeroepte 

mutaties, waarvan 92% vals positief). Om die reden implementeerden wij een nieuwe 

benadering dat gebruik maakte van a priori informatie van een doelgerichte sequentie 

techniek om zo in een korter tijdsbestek ‘reads’ uit te lijnen en minder gebruik te hoeven 

maken van computergeheugen vergeleken met bestaande methoden. Deze methodologie laat 

een zeer efficiënte verwerking van NGS data toe dat waardevolle genetische informatie van 

een patiënt zijn tumor kan geven met betrekking tot op maat gemaakte behandelstrategieën en 

gepersonaliseerde zorg. 

Concluderend voorziet dit proefschrift van enkele nieuwe biomarkers voor prostaatkanker die 

van waarde zouden kunnen zijn in de discriminatie tussen indolente en agressieve ziekte. De 

EPCATs tonen een veelbelovende rol als specifieke lncRNAs, terwijl PDE4D deregulatie een 

aanwijzing is voor bredere afwijkingen in de cAMP signaaltransductie bij prostaatkanker. Dit 

proefschrift bevordert eveneens de klinische applicatie van doelgerichte sequentie analyse 

door het voorzien van efficiënte middelen om de computationele last te reduceren bij het 

analyseren van data met a priori kennis. 
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