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Abstract

Background Oral and subcutaneous morphine is widely
used for the treatment of cancer-related pain; however,
solid pharmacokinetic data on this practice are lacking.
Furthermore, it is largely unknown which factors con-
tribute to the variability in clearances of morphine and its
metabolites and whether morphine clearance is related to
treatment outcome.

Methods Blood samples from 49 cancer patients treated
with oral and/or subcutaneous morphine were prospec-
tively collected and were used to develop a population
pharmacokinetic model for morphine, morphine-3-glu-
curonide (M3G) and morphine-6-glucuronide (M6G). The
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influence of age, gender, renal function and several poly-
morphisms possibly related to the pharmacokinetics of the
three compounds was investigated. In addition, the relation
between treatment failure and morphine and metabolite
clearances was explored.

Results A one-compartment model including an extensive
first-pass effect adequately described the data of morphine
and its metabolites. Estimated mean area under the plasma
concentration—time curve (AUC) ratios following oral
versus subcutaneous administration were: M3G/morphine
29.7:1 vs. 11.1:1; M6G/morphine 5.26:1 vs. 1.95:1; and
M3G/M6G 5.65:1 vs. 5.70:1. Renal function was signifi-
cantly correlated with clearance of the metabolites, which
increased 0.602 L/h per every 10 mL/min/1.73 m? increase
of estimated glomerular filtration rate (eGFR), reaching a
plateau for eGFR >90 mL/min/1.73 m?. The clearance of
morphine or its metabolites was not found to be correlated
with treatment failure.

Conclusion The influence of age-, gender- and pharma-
cokinetic-related polymorphisms was not identified on the
pharmacokinetics of morphine. Clearance of morphine or
its metabolites was not found to explain treatment out-
come; however, large variations in plasma concentrations
of morphine, M3G and M6G support further studies on the
relation between plasma concentrations and treatment
outcome.

Dutch Trial Register ID: NTR4369.
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Key Points

We describe the pharmacokinetics of morphine,
morphine-3-glucuronide (M3G) and morphine-6-
glucuronide (M6G) after subcutaneous and oral
administration in cancer patients, including first-
order systemic and additional first-pass formation
from morphine for the metabolites.

Variations in area under the plasma concentration—
time curve (AUC) ratios of M3G:morphine and
M6G:morphine related to first-pass effect and renal
function support further studies on the relation
between plasma concentrations and treatment
outcome.

We did not identify significant effects of age, gender
and polymorphisms in UGT2B7, SLC22A1 and
ABCC3 on total clearance of morphine and morphine
metabolic clearances to M3G or M6G. Furthermore,
failure of treatment could not be related to the
clearance of morphine or its metabolites.

1 Introduction

Morphine is a widely used opioid analgesic and is one of
the preferred treatment options for the treatment of cancer-
related pain [1].

After intravenous administration, morphine is rapidly
distributed from the central compartment to highly per-
fused tissues (distribution half-life [f,,] = 0.9-2.5 min),
and thereafter the plasma concentrations versus time decay
in a biphasic way, with a short mean terminal elimination
t, of 1.4-3.4 h that is similar for intravenous, subcuta-
neous and oral administrations [2, 3]. After oral adminis-
tration, morphine undergoes extensive hepatic first-pass
metabolism [2, 3], and is predominantly metabolized
through glucuronidation in the liver into the conjugates
morphine-3-glucuronide (M3G; 45-55%) and morphine-6-
glucuronide (M6G; 10-15%) [4—6]. While M6G is thought
to contribute to the analgesic effects [7-9], the effects of
M3G are unclear. It has been associated with (central) side
effects and the development of tolerance to the analgesic
effects in rats [10, 11], but direct administration to humans
did not produce any clinical effects [12].

Morphine is available for different routes of adminis-
tration. For fast titration in cases of severe pain, we mainly
use continuous subcutaneous administration. This has been
found to be safe and effective [13, 14], has advantages over
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the intravenous route, and can also be applied safely in an
out-of-hospital setting [13, 15].

Little is known about the pharmacokinetics of morphine
after continuous subcutaneous administration in cancer
patients, and solid pharmacokinetic data after oral admin-
istration are also lacking. Furthermore, while substantial
inter- and intraindividual variability in plasma concentra-
tions of morphine, M3G and M6G has been reported after
oral as well as subcutaneous administration [16, 17], the
causes for this variability and its effects on clinical out-
comes of treatment are incompletely understood. Although
treatment with morphine is unsuccessful in approximately
30% of patients [18], it is unknown what causes these
treatment failures. A number of clinical factors such as age
and gender, as well as genetic factors, have been associated
with variability in pharmacokinetics and/or dynamics of
morphine [19-22] but data are sparse and to date only a
small part of variability can be explained at best.

The objectives of the current population pharmacoki-
netic analysis were to describe the pharmacokinetics and
metabolic ratios of morphine, M3G and M6G following
subcutaneous and oral administration of morphine. As a
second objective, the influence of age, gender, renal
function and polymorphisms in several pharmacokinetic-
related genes on the pharmacokinetics of morphine, M3G
and M6G was investigated. Finally, the relation between
outcome of treatment and the clearance of morphine and its
metabolites was explored.

2 Patients, Materials and Methods

Between February 2010 and March 2014, patients admitted
to the Erasmus MC Cancer Institute (Rotterdam, The
Netherlands) and treated with morphine for moderate to
severe cancer-related nociceptive pain were asked to par-
ticipate in the study. All patients treated with morphine
were eligible, i.e. patients already treated with morphine
before admission but also opioid-naive patients or patients
rotating to morphine after failure of treatment with another
type of opioid. Morphine was available as hydrochloride-3-
water (molecular weight 375.84 mg/mmol) 10 mg/mL for
parenteral administration and as 5-sulphate-water (molec-
ular weight 758.83 mg/mmol) extended-release (ER; tablet
10, 20, 60, 100 mg) and immediate-release (IR) formula-
tion (liquid 20 mg/mL or dose unit 10, 30 mg) for oral
administration. The starting dose in opioid-naive patients is
usually 10 mg twice daily or 1 mg/h parenterally,
depending on the clinical circumstances. Doses in non-
naive patients are based on previous treatments. Patients
treated with a fentanyl patch who were prescribed IR oral
morphine for treatment of breakthrough pain could also be
included in the study. In cases of severe pain, patients were
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titrated by continuous subcutaneous infusion, with the
possibility of an extra bolus every hour. Doses were titrated
based on clinical effects. When pain control was reached
and doses were stabilized, patients could be rotated to oral
ER morphine, with IR morphine prescribed as needed,
using a 1:3 dose conversion ratio [23]. Gender, age and
weight (kg) at study entry were recorded, as well as
baseline creatinine values (pumol/L). The Modification of
Diet in Renal Disease (MDRD) formula was used to cal-
culate the glomerular filtration rates for all patients, and
values >90 mL/min/1.73 m* were truncated:

eGFR (mL/min/1.73m?) = 175 x (0.0113

X Scr[umol/L])il‘154

—0.203
X age [years]

x (0.742 if female).

For every patient treated with long-acting or continuous
morphine, the outcome of treatment was classified as
failure or non-failure. The response was classified as failure
in cases of rotation to another type of opioid or treatment
with intrathecal opioids because of insufficient pain control
and/or side effects or the use of palliative sedation because
of refractory symptoms associated with opioid treatment in
the dying phase.

2.1 Pharmacokinetic Sample Collection

Patients were included in the study as soon as possible after
hospital admission or after the start of morphine. Blood
samples for pharmacokinetic analysis were taken during a
maximum of 72 h after the start of morphine and after each
change in the opioid regimen (dose, route of administra-
tion). The protocol prescribed sampling twice daily, just
before the administration of oral ER morphine or around
8:00 am and 8:00 pm in cases of continuous administration,
a baseline sample before every change in the regimen, and a
series of samples maximally once daily around the admin-
istration of a subcutaneous bolus or oral IR formulation at
baseline and 5, 15, 30 and 60 min after administration.
Samples were collected using potassium EDTA tubes. After
centrifugation of the tube, the supernatant was collected and
stored at —70 °C until analysis at the laboratory of Trans-
lational Pharmacology (Erasmus MC Cancer Institute).

2.2 Measurements of Plasma Concentrations
of Morphine, Morphine-3-Glucuronide
and Morphine-6-Glucuronide

Morphine and its metabolites in plasma were quantitated
using a validated ultra performance liquid chromatography
tandem mass spectrometer (UPLC-MS/MS) method con-
sisting of a Waters Acquity UPLC sample manager

coupled with a triple quadruple mass spectrometer oper-
ating in the multiple reaction monitoring (MRM) mode
with positive ion electrospray ionization (Waters, Etten-
Leur, The Netherlands). The MRM transitions were set at
286 — 201 and 462 — 286 for morphine and M3G and
M6G, respectively.

Chromatographic separations for morphine were
achieved on an Acquity UPLC® BEH CI18 1.7 um
2.1 x 100 mm column eluted at a flow rate of 0.350 mL/
min on a gradient of methanol. The overall cycle time of the
method was 6 min. The calibration curves were linear over
the range of 1.00-100 ng/mL, with the lower limit of
quantitation (LLQ) validated at 1.00 ng/mL for morphine.
The within- and between-run precisions at five tested con-
centrations, including the LLQ, were <10.3 and <8.67%,
respectively, while the average accuracy ranged from 91.9
to 96.9%. The interday coefficient of variation (CV) at five
tested concentrations, including the LLQ, was <11.8% in
individual validation runs. The extraction of 200 pL of
plasma involved a deproteinization step with acetone, fol-
lowed by a simple liquid extraction with ethyl acetate. For
M3G and M6G, chromatographic separations were
achieved on a VisionHT C18-P 3 pm 2.1 x 50 mm column
eluted at a flow rate of 0.250 mL/min on a gradient of
acetonitrile. The overall cycle time of the method was
10 min. The calibration curves were linear over the range of
10.0-1000 ng/mL for M3G and 2.00-200 ng/mL for M6G,
with the LLQ validated at 10.0 ng/mL for M3G and
2.00 ng/mL for M6G. In patients with metabolite concen-
trations above these values, samples were adequately dilu-
ted in blank human plasma prior to processing until the
signal fell within the calibration range. The within- and
between-run precisions at five tested concentrations in
human potassium EDTA plasma for M3G, including the
LLQ, were <5.16 and <2.18%, respectively, while the
average accuracy ranged from 84.0 to 96.5%. For M6G, the
within- and between-run precisions at five tested concen-
trations, including the LLQ, were <16.2 and <9.12%,
respectively, while the average accuracy ranged from 87.0
to 105.5%. The interday CV at five tested concentrations,
including the LLQ, was <8.1 and <8.2% for M3G and
M6G, respectively, in individual validation runs. The
morphine glucuronides were extracted from 100 pL ali-
quots of plasma after the addition of 850 pL. ammonium
carbonate buffer pH 8.8 followed by a solid-phase extrac-
tion using Oasis® HLB 1 cc (30 mg) SPE columns.

2.3 Single Nucleotide Polymorphism Analysis
Single nucleotide polymorphisms (SNPs) that have been
related to morphine pharmacokinetics were studied

(Table 1). DNA was isolated from 1 mL EDTA blood on
the MagNA Pure LC 2.0 instrument (Roche Diagnostics),
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Table 1 Summary of selected genetic variants

UGT2B7

UGT?2BY7 is a phase II (glucuronidation) metabolizing enzyme encoded by the UGT2B7 gene
UGT?2BY7 is involved in the conversion of morphine into M3G and M6G
The G allele of polymorphism —900G>A (rs7438135), which is in complete LD with polymorphism 802C>T, has been associated with

decreased glucuronidation [56, 57]
SLC22A1
OCT1 is encoded by the SLC22A1 gene

OCT1, expressed at the sinusoidal membrane of the human liver, mediates the cellular uptake of morphine [51]

Healthy volunteers with SLC22A1 polymorphisms have reduced morphine uptake in the hepatocytes [54]

Children with two loss-of-function SLC22A] alleles have lower morphine clearance than carriers of the active SLC22A1 alleles [55]

ABCC3

ABCC3 is an organic anion transporter encoded by the ABCC3 gene

ABCC3, expressed on the basolateral membranes of hepatocytes, mediates the efflux of M3G, and mostly likely also M6G, into the

bloodstream [58]

ABCC3 polymorphism —211C>T (rs4793665) was associated with a significantly altered mRNA expression [59, 60]
Children with the —211CC genotype had significantly higher M3G and M6G levels (approximately 40%) than carriers of the —211T allele

[55]

UGT2B?7 uridine 5'-diphospho-glucuronosyltransferase 2B7, LD linkage disequilibrium, M3G morphine-3-glucuronide, M6G morphine-6-glu-
curonide, OCT organic cation transporter 1, ABCC3 ATP-binding cassette C3, mRNA messenger RNA

with further analysis performed on the 7500 Real-Time
PCR System (Life Technologies). Hardy—Weinberg equi-
librium was calculated using the Chi-squared test. Addi-
tionally, the observed minor allele frequency (MAF) was
compared using the European MAF from HapMap in
dbSNP (National Center for Biotechnology Information).
The SLC22A1 haplotype (consisting of either two active
alleles, a combination of one active and one inactive allele,
or two inactive alleles) was estimated based on the
expectation maximization (EM) logarithm with the R
(version 3.1.1) haplo.stats package, using a posterior
probability >0.98.

2.4 Population Pharmacokinetic Modeling

The analysis of concentration—time data of morphine and
its metabolites was conducted with the first-order condi-
tional estimation method with eta-epsilon interaction
through non-linear mixed-effects modeling in NONMEM
(version 7.3; Icon Development Solutions, Hanover, MD,
USA) [24]. Model building was supported by Perl-speaks-
NONMEM version 4.2.0, Xpose version 4.4.1 [25], and R
version 3.2.0.

Concentration data and doses of morphine were
expressed as free base in molar units (nmol/L and nmol,
respectively), the latter calculated taking into account the
salt administered. All dosing history regarding adminis-
tration of morphine before and during the period of sam-
pling was included in the dataset. Concentrations below the
LLQ comprised 7.6, 0.7 and 0.9% of the data of morphine,
M3G and M6G, respectively, and were discarded from the
analysis [26].
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First, a pharmacokinetic model was developed for
morphine following subcutaneous and oral administration,
starting out from previously published models [27, 28].
Oral bioavailability was estimated under the assumption of
complete subcutaneous bioavailability, as indicated in the
current literature [29-31]. Thereafter, the model was
extended to also describe the pharmacokinetics of the
metabolites. The rate of appearance of the metabolites was
parameterized as a fraction of the rate of elimination of
morphine, with fractions fixed to literature values [4-6].
The inclusion of first-pass formation of metabolites fol-
lowing oral morphine was assessed in the model, and the
sum of the estimated fractions of morphine reaching the
systemic circulation unchanged or undergoing first-pass
metabolism to metabolites was constrained to a maximum
of 1. The influence of age and gender on the pharma-
cokinetic profiles was explored and the relationship
between estimated glomerular filtration rate (eGFR) and
clearance of the metabolites was assessed.

Interindividual variability (IIV) in pharmacokinetic
parameters was modeled using log-normal models.
Homoscedastic, heteroscedastic and combined residual
error models were evaluated. The correlation between
parent drug and metabolite concentrations from the same
sample was taken into account utilizing the L2 data item in
NONMEM.

Selection between alternative models was based on sci-
entific plausibility, statistical significance, precision in
parameter estimates and visual inspection of goodness-of-fit
plots. Statistical significance was determined using the
likelihood ratio test with the NONMEM objective function
value (OFV). The OFV is given by minus twice the log
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likelihood, and a difference in OFV (AOFV) between nested
models is approximately Chi-square distributed. A AOFV of
6.64 and 10.8 corresponds to p values of 0.01 and 0.001,
when one parameter is added to the model (1 df). The reli-
ability of various diagnostic plots was judged based on the
magnitude of n- and e-shrinkage [32]. The precision of the
model parameter estimates was obtained using the sam-
pling importance resampling (SIR) method [33]. In addition
to the general advantages of SIR (e.g. fast run times as it does
not require estimation steps, flexibility in addressing
asymmetric confidence intervals), SIR was deemed more
appropriate than the bootstrap in this case because it is less
sensitive to sample size and does not require stratification of
the data, which is particularly useful with unbalanced study
designs involving a few subjects. Further details on the SIR
procedure are presented in electronic supplementary mate-
rial. The predictive performance of the final model was
evaluated using visual predictive checks (VPCs) or popu-
lation prediction-corrected VPCs (pcVPCs) [34] for the
observed concentrations, as well as for concentration ratios.
The concentration ratios M3G:M, M6G:M and M3G:M6G,
uniquely following the subcutaneous or oral route of
administration, were calculated by dividing the respective
observed or simulated concentrations.

2.5 Influence of Genetic Variants and Assessment
of Treatment Failure

After finalization of the population pharmacokinetic model,
the influence of UGT2B7 (rs7438135), SLC22A1
(rs72552763, rs12208357, rs34130495, rs34059508) and
ABCCS3 (rs4793665) genetic variants were explored on total
morphine clearance and morphine metabolic clearances to
M3G and M6G; ABCC3 (rs4793665) was also studied in
relation to the clearance of the metabolites. In addition, the
model was used to assess whether failure of treatment was
related to a difference in clearance of morphine or
metabolites. The influence of failure of treatment was tested
in the model as a binominal variable on the clearance of
morphine and its metabolites, not with the purpose of
explaining parameter variability but to identify a possible
association between failure of the treatment and clearance.

3 Results
3.1 Patients
The dataset contained 410 samples from 49 patients

(Table 2). Treatment with oral and subcutaneous morphine
in relation to the observations for all patients is shown in

Table 2 Baseline characteristics

Characteristics (n = 49) No % or
range

Median age, years 60 38-80
Gender

Male 27 55

Female 22 45
Median weight, kg 83 53-140
Body mass index, kg/m2

Underweight, <18.5 1 2

Normal range, 18.5-25 13 27

Overweight, 25-30 20 41

Obese, 3040 13 27

Severely obese, >40 2 4
Race

Caucasian 44 90

Latin American

Unknown/other 4 8
Median WHO performance status 2 03
Primary tumor localization

Breast 11 22

Colorectal 7 14

Prostate 6 12

Sarcoma 4 8

Other 21 43
Distant metastasis present 44 89
Median creatinine, pmol/L 72 25-190
Median estimated glomerular filtration rate, mL/ 81 33>90

min/1.73 m?
Median serum albumin, g/LL 40 2847
Routes of administration during sampling

Subcutaneous 28 57

Oral extended and immediate release 12 24

Oral immediate release only 6 12

Both oral and subcutaneous consecutively 3 6
UGT2B7 G>A

GG, wild type 14 29

GA, heterozygous 26 53

AA, variant 9 20
SLC22A1

2 active alleles 26 53

1 active allele/1 inactive allele 18 37

2 inactive alleles 5 10
ABCC3 C>T

CC, wild type 5 10

CT, heterozygous 28 57

TT, variant 16 33
UGT2B7  uridine  5'-diphospho-glucuronosyltransferase ~ 2B7,

SLC22A1 solute carrier family 22A member 1, ABCC3 ATP-binding
cassette C3
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Morphine Morphine Morphine
Oral IR Oral ER Subcutaneous
,' Foral
)/ tlager Ka sc
‘ Ka Er
) Fm, met CL- (1 - Fm, met)

\l/C Lmet

Fig. 1 Pharmacokinetic model developed to describe plasma con-
centrations of morphine and its metabolites (M3G and MG6G)
following oral IR, oral ER and subcutaneous administration. CL
morphine clearance, CL,,,, metabolite clearance, ER extended release,
Fip, me: fraction of morphine converted to metabolites in first-pass
effect, F,, e fraction of morphine clearance forming metabolites,
F,,. oral bioavailability, IR immediate release, k, gg absorption rate
constant for oral ER morphine, k, ;z absorption rate constant for oral
IR morphine, k, sc absorption rate constant for subcutaneous
morphine, M3G morphine-3-glucuronide, M6G morphine-6-glu-
curonide, tlagrr absorption lag-time for oral ER morphine, V mor-
phine volume of distribution, V,,., metabolites volume of distribution

electronic supplementary Fig. 1, and observations in rela-
tion to time after first dose are shown in electronic sup-
plementary Fig. 2. Before the start of treatment with
morphine, and/or inclusion in the study, 13 patients were
opioid-naive, 11 were treated with fentanyl, 19 were trea-
ted with oxycodone, and six patients were already treated
with morphine. Of these, five patients were treated with
oral ER morphine and one was treated with continuous
subcutaneous administration. The median treatment doses
were 2 mg/h for continuous and bolus subcutaneous mor-
phine (ranges 0.6—-14 mg/h and 0.6-10 mg, respectively),
40 mg twice daily for oral ER morphine (range
10-150 mg) and 10 mg for oral IR morphine (range
5-60 mg). Creatinine values were missing for four patients
and were imputed based on linear regression of the avail-
able values of eGFR on age and gender. In seven patients,
baseline eGFR was between 30 and 60 mL/min/1.73 m*
(range  33-57 mL/min/1.73 m®, median 43 mL/min/
1.73 m?). All other patients (n =38) had an
eGFR >60 mL/min/1.73 m>. In 12 of 43 patients treated
with long-acting/continuous morphine, the outcome of
treatment was classified as failure, in all due to the
occurrence of dose-limiting side effects.
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3.2 Morphine Pharmacokinetics

The pharmacokinetics of subcutaneous and oral morphine
was adequately described by a one-compartment model
with separate first-order absorption processes for each
route. Parameters describing the absorption phases for
subcutaneous and oral IR morphine were fixed to literature
values [27, 28], and the value of the absorption rate con-
stant for oral ER morphine was estimated (p < 0.001 when
compared with a fixed value of 0.8 h™"). The fractions of
total morphine clearance forming M3G and M6G were
fixed to 0.57 and 0.10, respectively [4-6].

The pharmacokinetics of M3G and M6G were appro-
priately described by first-order systemic and additional
first-pass formation and first-order elimination according to
a one-compartment model (Fig. 1). Note that given the
parameterization of the model (fixed and estimated frac-
tions of formation), the estimated disposition parameters
reflect true, and not apparent, values. The inclusion of first-
pass metabolism statistically significantly improved the fit
of the parent-metabolite model (p < 0.001). The metabo-
lite disposition parameters were estimated to common
values, and the estimation of separate clearance and vol-
ume parameters for each metabolite was not found to be
statistically significant (p > 0.01). The final population
model parameters for morphine, M3G and M6G are pre-
sented in Table 3.

The model was found to fit the data well, as shown by
the absence of major systematic trends in the goodness-of-
fit plots and pcVPCs (Fig. 2), with only a small tendency of
overprediction of variability at low concentrations.

Allometric body weight with theory-based exponents
was included a priori on all disposition parameters of all
entities [35]. Age did not statistically significantly improve
the model fit (p > 0.01). The inclusion of an effect of
gender on clearance of morphine resulted in a decrease of
17.0% for females (p > 0.01) but was not retained in the
model. The clearance of the metabolites was found to
change with eGFR (p < 0.001) and increased 0.602 L/h
with every increase in eGFR of 10 mL/min/1.73 m? up to
an eGFR of 90 mL/min/1.73 mz, above which clearance
was constant (Fig. 3).

The mean area under the plasma concentration—time
curve (AUC) molar ratios for a typical patient (weight
70 kg and eGFR of 81 mL/min/1.73 m?) following oral
morphine compared with the subcutaneous route of
administration for the same dose were: M3G/morphine
29.7:1 vs. 11.1:1; M6G/morphine 5.26:1 vs. 1.95:1; and
M3G/M6G 5.65:1 vs. 5.70:1. The concentration ratios over
time and the respective model predictions by route of
administration are shown in Fig. 4.
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Table 3 Population pharmacokinetic parameter estimates for morphine, M3G and M6G following subcutaneous and oral administration of

morphine
Parameter (units) Description Estimate SIR RSE* (%) SIR 95% CI
Morphine
tag, ER (D) Absorption lag-time for oral extended-release 0.25 fixed NA NA
ka, sc (h™hH Absorption rate constant for subcutaneous 3.96 fixed NA NA
ka, 1R ) Absorption rate constant for oral immediate 6.00 fixed NA NA
release
ka, ER ) Absorption rate constant for oral extended 0.221 17.7 0.155-0.306
release
Fora (%)° Oral bioavailability 0.372 NA NA
CL7gkg (L/0)° Clearance 91.9 391 85.8-99.9
Vaoke (L)° Volume of distribution 278 12.3 221-351
M3G and M6G
Fm. m36 Fraction of morphine clearance forming M3G 0.573 fixed NA NA
Fm. M6 Fraction of morphine clearance forming M6G 0.104 fixed NA NA
Hlb Parameter estimated to derive Fora, F1p m3G 0.170 10.4 0.136-0.206
and Fip mec
0,° Parameter estimated to derive Fora, Fip M3 0.953 8.95 0.796-1.14
and F'i, meG
03h Parameter estimated to derive Fora, Fip m3G 0.565 30.3 0.310-1.01
and Fp mec
Fip, M3GY Fraction of morphine converted to M3G in 0.355 NA NA
first-pass effect
Fip, MGGb Fraction of morphine converted to M6G in 0.0631 NA NA
first-pass effect
CLmet, 70kg (L/h)d Clearance (common for metabolites) 471 5.24 4.24-5.20
Viet, 70kg (L)¢ Volume of distribution (common for 25.8 6.12 22.8-29.0
metabolites)
eGFR on CL, 70kgd Fractional change in CL,¢(, 70kg per mL/min/ 0.0128 12.9 0.00924-0.0156
1.73 m? eGFR relative to CLpnet, 70kg for
subject with eGFR of 81 mL/min/1.73 m>
Interindividual variability
ka, an (%CV [n-shrinkage]) 71.0 [25.3] NA NA
CL;0kg (%CV [n-shrinkage]) 22.2 [17.9] 12.9 16.9-27.8
Vaokg (%CV [n-shrinkage]) 74.7 [21.4] 9.71 60.4-88.6
CLm3g (%CV [n-shrinkage]) 36.2 [6.28] 10.6 29.5-44.4
CLmeG (%CV [n-shrinkage]) 36.8 [7.00] 11.8 29.6-46.2
Correlation CLy;36—CLysG” 0.912 11.8 0.864-0.952
Vmsg (%CV [n-shrinkage]) 24.7 [30.7] 18.4 17.0-34.0
Vmeg (%CV [n-shrinkage]) 24.3 [39.0] 20.5 16.3-34.6
0, (%CV [n-shrinkage]) 15.0 [62.7] 18.7 8.91-19.9
03 (%CV [n-shrinkage]) 98.2 [57.1] 25.1 50.1-146
Residual variability
Morphine (%CV [e-shrinkage]) Proportional residual error for morphine 28.6 [8.45] 431 26.5-31.2
M3G (%CV [e-shrinkage]) Proportional residual error for M3G 20.0 [8.00] 4.14 18.5-21.7
M6G (%CV [e-shrinkage]) Proportional residual error for M6G 23.9 [8.00] 4.04 22.2-26.0
Correlation morphine—M3G*® 0.420 7.11 0.340-0.504
Correlation morphine—M6G® 0.386 7.57 0.302-0.477
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Table 3 continued

Parameter (units) Description

Estimate SIR RSE" (%) SIR 95% CI

Correlation M3G—M6G®

0.918 4.29 0.901-0.934

ClI confidence interval, CV coefficient of variation, eGFR estimated glomerular filtration rate, M3G morphine-3-glucuronide, M6G morphine-6-
glucuronide, NA not available, RSE relative standard error, SIR sampling/importance resampling

 For interindividual and residual variability, %RSE is reported on the standard deviation scale
® For = V(1 + 01 + 0, + 05); Fip, m36 = 0x/(1 + 0, + 05 + 03); Fipp, mec = 01/(1 + 0, + 05 + 03)

c

Value for a 70-kg patient calculated as parameter = estimatesqr, X (weight/70)" for volumes or 0.75 for clearances

4 Value for a 70-kg patient with eGFR = 81 mL/min/1.73 m? calculated as CLye = 4.71 x (weight/70)*7> x (1 + 0.0128 x (eGFR - 81))

¢ Correlation of the off-diagonal estimate calculated as cov(omegal, omega2)/sqrt(var(omegal) x var(omega2)) or cov(sigmal, sigma2)/

sqrt(var(sigmal) x var(sigma2))

3.3 Influence of Genetic Variants

An effect of UGT2B7, SLC22A1 and ABCC3 SNPs on total
clearance of morphine and morphine metabolic clearances
to M3G or M6G could not be identified (p > 0.01). Simi-
larly, an effect of ABCC3 genotype on the clearance of the
metabolites was not found (p > 0.01).

3.4 Assessment of Treatment Failure in Relation
to Metabolism

Differences in clearance of morphine, M3G and M6G in
patients in whom treatment with morphine failed (n = 12)
compared with patients in whom treatment did not fail
(n = 31) could not be identified (p > 0.01 in all cases).

4 Discussion

First, we developed a population pharmacokinetic model
for morphine, M3G and M6G following subcutaneous and
oral morphine administration from a high number of sparse
samples. We found that a one-compartment model with
separate first-order absorption processes for each route
adequately describes the plasma concentrations of mor-
phine, and a one-compartment model following first-order
systemic and additional first-pass formation from morphine
appropriately describes plasma concentrations of the
metabolites. Our results are in line with literature data.
Pharmacokinetic data after subcutaneous administration
are scarce. The model by Upton et al. [27], who reported a
clearance of 79.8 L/h in a population of 22 postoperative
patients aged 50 years or over, was the basis for the mor-
phine model. In a study by Stuart-Harris et al. [29] in six
healthy volunteers, clearances of 83.1 L/h (subcutaneous
bolus), 95 L/h (intravenously) and 127.5 L/h (subcutaneous
infusion) were reported. In a recent publication, a lower
clearance of 47.5 L/h was reported in a slightly older and
terminally ill population, with (compared with our cohort)
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lower serum albumin values (median 26 g/L), shorter sur-
vival (median 33 days) and, most likely, lower body
weight (not reported); these factors may suggest lower
metabolic capacity and may explain the lower clearance in
that study [36]. Thus, clearance in our study, estimated to
be 92.9 L/h for a patient weighing 70 kg, is in reasonable
agreement with previous data. In our analysis, we assumed
complete bioavailability following subcutaneous adminis-
tration. Although information available in the literature
was limited, i.e. the studies comparing subcutaneous and
intravenous administration usually involved a small num-
ber of patients and a crossover design was not used in all
studies [29-31], we consider that the current literature
supports the assumption made. The main consequence if
this assumption is not true lies in the interpretation of the
estimated pharmacokinetic parameters, i.e. they would
correspond to apparent clearances and volumes of distri-
bution, and oral bioavailability would be relative (to sub-
cutaneous) instead of absolute.

Clearance for the metabolites was estimated to a com-
mon value of 4.71 L/h for a subject weighing 70 kg and
with eGFR of 81 mL/min/1.73 m*. The estimation of
separate disposition parameters for M3G and M6G did not
statistically significantly improve the model, proposing that
these entities have the same clearance and volume of dis-
tribution, a finding that is true or may be due to modeling
assumptions leading to difficulties in distinguishing dif-
ferent pharmacokinetic characteristics of the metabolites.
Thus, the different pharmacokinetic profiles of the
metabolites depend exclusively on the fraction of systemic
(subcutaneous and oral) and first-pass formation (oral) of
the metabolites, which is in line with the observed strong
correlation (R? = 0.963) of the metabolites as reported in
other studies [37, 38]. Furthermore, the suggestion of
similar pharmacokinetic estimates for the metabolites is
supported by results from independent pharmacokinetic
studies following intravenous administration of M6G and
M3G to healthy volunteers, which reported clearances for
M6G and M3G of 10-11 and 10 L/h, respectively [39-41].
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Fig. 2 Prediction- and simulation-based diagnostics for the final
population pharmacokinetic model. Observed concentrations of
morphine, M3G and M6G versus population predictions (upper
panel), and observed concentrations versus individual population
predictions (middle panel); the solid line represents a unity line and
the dashed line represents a linear tendency line. Prediction-corrected

Moreover, the lower clearance estimated in our study
(4.7 L/h) is reasonable given the lower renal function in
cancer patients compared with healthy volunteers, and is in
agreement with clearance for M6G of 5.7 L/h following
intravenous administration in cancer patients [42]. In the
four cited studies, volume of distribution was estimated in
the range of 20-30 L, which is consistent with our
estimate.

Time after dose (h)

Time after dose (h)

visual predictive checks (lower panel) through 1000 replications; dots
represent the predicted-corrected concentrations of each entity, the
solid red line and dashed blue lines represent the observed median
and 5th and 95th observed percentiles, and the shaded areas represent
the 95% confidence interval for the respective percentiles. M3G
morphine-3-glucuronide, M6G morphine-6-glucuronide

Concentration—time data following the administration of
subcutaneous and oral morphine allowed estimation of the
oral morphine bioavailability (37.2%) and, in addition, the
fractions of the oral morphine dose that undergo first-pass
metabolism to M3G (35.5%) and M6G (6.31%). It is not
expected that the fractions are in agreement with the Fm,
i.e. the fractions of morphine clearance forming the two
metabolites. The fraction of the dose formed into a
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Fig. 3 M3G and M6G 7
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metabolite in the first pass is dependent on several factors:
whether metabolism occurs in the intestinal wall in addi-
tion to the liver; whether all metabolites are formed in the
first passage (i.e. whether total clearance is equal to hepatic
clearance); and the blood-to-plasma ratio of morphine. The
values estimated are in line with hepatic first-pass meta-
bolism only (for all pathways), but this is not solid evi-
dence of lack of intestinal wall formation.

As expected, the subcutaneous route of administration,
which avoids first-pass metabolism, resulted in lower
metabolite:morphine concentration ratios compared with
the oral route. According to Hasselstrom and Sawe [5], and
supported by our data, this difference is due to higher
morphine plasma concentrations, and therefore the AUCs
of the metabolites formed following both routes of mor-
phine administration are similar. The observed and model-
predicted ratio M3G:M6G remained constant regardless of
the level of renal impairment or route of administration.
The clinical consequences of the differences in metabo-
lite:morphine ratios are uncertain. We could only find one
study comparing oral and subcutaneous administration
using a crossover design [23]. This study reported less
nausea and somnolence during treatment with subcuta-
neous morphine, a finding that we recognize from our daily
clinical practice. However, the relationship between
plasma concentrations of morphine and its metabolites and
clinical effects is not clear because some studies have
failed to show a correlation [43—45], while others reported
an association [9, 37, 46]. Although we did not perform a
full pharmacokinetic-pharmacodynamic analysis, we tried
to identify an association between outcome of treatment
and clearance of morphine. The outcome of treatment may
not be associated with a different clearance of morphine,
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and other factors may be more important in this regard. The
relation between clearances and plasma concentrations of
morphine and the metabolites and outcomes of treatment
deserves further study.

Second, in an attempt to explain variability in pharma-
cokinetic parameters, we studied the role of several clinical
and genetic covariates on the clearances of morphine and the
metabolites. In our study, inclusion of both age and gender did
not statistically significantly improve the model, although we
estimated a 17% lower clearance in females. Reported data on
the effects of age are conflicting. Age was reported to predict
postoperative morphine requirements [47], and pharmacoki-
netic studies have reported either lower clearances and vol-
ume of distribution in elderly patients [20] or higher plasma
concentrations of M6G and/or M3G [48, 49], while others
found no significant impact of age [50]. A possible explana-
tion for these findings is the fact that in most studies renal
function, which declines with age, was not taken into account.
However, in the study by Klepstad et al. [49], serum crea-
tinine and age were found to be independent contributors to
outcome in a multivariable analysis.

With regard to gender, in a systematic review and meta-
analysis, Niesters et al. [21] found that women display
greater opioid analgesia than men and this effect was lar-
gest when the analysis was restricted to patient-controlled
analgesia studies with morphine. However, it is unclear if
this gender difference can be attributed to pharmacokinetic
differences. While McQuay et al. [48] found lower plasma
concentrations of morphine and M6G in men compared
with women, the effect of gender was also non-significant
in other modeling studies [27, 50].

Furthermore, clearance of the metabolites was found to
be a function of body weight and renal function (Fig. 3),
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Fig. 4 Observed and simulated
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while no correlation was found between these two (data not
shown). The consequence of this combined finding for dose
recommendation is not clear, and would demand to
simultaneously take into account the systemic exposure of
morphine and its metabolites. Although accumulation of
M3G and M6G in patients with impaired renal function is
widely reported [51], data on the clinical effects of mor-
phine treatment in these patients are scarce and conflicting.

Time after dose (h)

Reducing the frequency of administration or the dose are
carefully suggested in guidelines [1, 52], but opioid rota-
tion to an opioid without renally excreted active metabo-
lites, such as fentanyl, should also be considered.

In addition, we did not identify the significant effects of
genetic variants in transporters (OCTI, ABCC3) and the
phase II metabolizing enzyme (UGT2B7) on morphine
pharmacokinetics. Remarkably, almost all of the
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previously identified effects of these genetic variants were
found in children and mainly in small patient populations
(Table 1). In our adult population, we were unable to
confirm previously identified effects, which may be caused
by lower rates of glucuronidation in children and possibly
overcapacity in adult livers. Additionally, the absence of a
genotypic OCT1 effect could be due to construction of the
OCT1 haplotype in the current study. Recently, a study
addressing worldwide genetic variability within this gene,
and assessing the effect of several genetic variants (among
others SLC22A1%2-*6 alleles) on 10 probe compounds,
found that the effect of the *2 allele on the transport
function is substrate-dependent [53]. This makes the *2
allele a rather reduced function allele against morphine
than total loss-of-function, as previously suggested
[54, 55].

5 Conclusions

We found that a one-compartment model adequately
described the pharmacokinetics of morphine after subcu-
taneous and oral administration, and a one-compartment
model following first-order systemic and additional first-
pass formation from morphine appropriately described the
plasma concentrations of the metabolites. The estimated
relative bioavailability of 37.2% for oral morphine con-
firms the dose conversion ratio of 1:3 when converting
subcutaneous to oral morphine. Age and gender did not
significantly influence the clearance of morphine, while
clearance of the metabolites was found to be a function of
body weight and glomerular filtration rate. We identified no
significant effects of polymorphisms in UGT2B7, SLC22A1
and ABCC3, and no difference in morphine and metabolite
clearance between patients in whom treatment failed versus
patients in whom treatment did not fail. Further research is
therefore needed to explain the variability in treatment
doses as well as clinical outcomes.
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