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Background: Although nitrofurantoin has been used for >60 years for the treatment of uncomplicated urinary
tract infections, its pharmacodynamic properties are not fully explored. Use is increasing because of increasing
resistance to other antimicrobials due to ESBLs.

Methods: We tested nine ESBL+ and two ESBL— strains in time-kill assays. Bactericidal activity and regrowth
were assessed for all species and concentrations. Early-phase pharmacodynamics was analysed with a sigmoidal
Ernax model and the maximal killing rate, slope and ECso/MIC ratio were determined for each species.

Results: A bactericidal effect was found at >2x MIC for Enterobacter cloacae after 4-8 h, for Klebsiella pneumo-
niae after 8-10 h and for Escherichia coli after 12-16 h. Overall, no killing was observed at low sub-MIC con-
centrations, whereas regrowth was found at 0.5-1x MIC after a short decline in cfu. The lowest maximal
killing rates were observed for E. coli (0.21+0.05h™?), followed by K. pneumoniae (0.37+0.09 h™!) and
E. cloacae (0.87+0.01 h™1). Surprisingly, the Hill slopes for these three species were significantly different
(10.45+9.37, 2.68+0.64 and 1.0140.06, respectively), indicating a strong concentration-dependent
early-phase antibacterial activity against E. cloacae. ECso/MIC ratios were significantly lower for E. coli
(0.24+0.08 mg/L) and K. pneumoniae (0.27 +0.03 mg/L) as compared with E. cloacae (0.77+0.18 mg/L).

Conclusions: Nitrofurantoin was bactericidal against all species, demonstrating an unusual differential pattern of
activity with concentration-dependent-type killing behaviour against E. cloacae and time-dependent killing
behaviour against E. coli, which may have significant consequences on species-dependent dosing regimens.
The results also demonstrate that the pharmacodynamic properties of some drugs cannot be generalized within

a family, here the Enterobacteriaceae.

Introduction

One of the most common human infections is urinary tract
infection (UTI). The treatment of these infections is increasingly
complicated by resistance to commonly used antibiotics, such as
fluorogquinolones and second- and third-generation cephalospor-
ins.12 The increase in antibiotic resistance in Gram-negative
bacteria and the unavailability of new antibiotics has increased
interest in and a revival of old antibiotics, including nitrofurantoin.’
Although viewed as a drug to be used against Escherichia coli,*
nitrofurantoin is currently primarily used to treat uncomplicated
UTIs caused by susceptible Enterobacteriaceae, such as E. coli,
Klebsiella spp. and Enterobacter spp. However, susceptibility of
Enterobacteriaceae varies among species, whereas Proteus spp.,
Pseudomonas aeruginosa and Streptococcus faecalis are usually
resistant to nitrofurantoin.® Despite being used for >60 years, evi-
dence of clinical efficacy is still meagre.”

Nitrofurantoin was shown to be bactericidal in urine at
therapeutic doses. Currently, the standard therapeutic dosages
of nitrofurantoin for UTIs are 50 mg three to four times daily or
100 mg two or four times daily.* Since ESBL-producing bacteria
have been progressively increasing in recent years, re-evaluation
of ‘old” antibiotics is needed in terms of dose optimization,
duration of therapy and understanding the pharmacokinetic/
pharmacodynamic relationship.® Limited pharmacodynamic
information is available for nitrofurantoin, as is the case for
many older antibiotics.”*°

Since the pharmacokinetic/pharmacodynamic properties of
nitrofurantoin are still largely unknown, including for ESBL+ uro-
pathogens, we determined the basic pharmacodynamic properties
of this antibiotic using in vitro time-kill assays and analysing in
depth the early-phase pharmacodynamics against common uro-
pathogens, namely E. coli, Klebsiella pneumoniae and Enterobacter
cloacae.
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Materials and methods

Bacterial strains

Nine ESBL+ strains (six E. coli, two K. pneumoniae and one E. cloacae) and
two ESBL— strains (one E. cloacae and one K. pneumoniae) that were col-
lected and analysed during a prevalence study were included in the study.
Five out of the 11 strains were isolated either from urine (strains 41 and 58)
or from a urinary catheter (strains 3, 11 and 39). Details are described else-
where.!! Briefly, PCR experiments were performed to detect the blargwm,
blasyy, blaoxa and blacrx-m genes. PCR products were sequenced by
Leiden Genome Technology Center (the Netherlands) and sequence ana-
lysis was performed with BioNumerics version 5.1 (Applied Maths,
Sint-Martens-Latem, Belgium). Characteristics of the strains are shown
in Table 1. Most isolates harboured CTX-M-type B-lactamases together
with other resistance genes (SHV, OXA and TEM).

Bacterial suspensions were prepared in 2 mL of CAMHB (BD Bioscience,
Erembodegem, Belgium) from 16-24 h old cultures on blood agar and
adjusted to a turbidity equivalent to that of a 0.5 McFarland standard
using a spectrophotometer. A working suspension was prepared after
1/20 dilution in CAMHB followed by 1/10 dilution in the bottle of the
time-kill assays in order to obtain a final inoculum of 5x10°cfu/mL.

Antibiotics and susceptibility testing

Nitrofurantoin was obtained from Molekula (Munich, Germany).
Stock solution was prepared freshly on the day of each experiment by
dissolving 0.229 g of nitrofurantoin (potency 99.36%) in 10 mL of
N,N-dimethylformamide (DMF). The desired working concentrations were
obtained after appropriate dilution in pre-warmed CAMHB. The MIC of
nitrofurantoin for each of the strains was determined by broth microdilu-
tion, according to ISO guidelines.'? The MIC was defined as the lowest con-
centration that completely inhibited visible growth. MIC determinations
were made in duplicate on different days.

Time-kill assays

Glass bottles of 18 mL of CAMHB (pH 7.3 4+0.1) containing 2- or 4-fold
increasing concentrations of nitrofurantoin ranging from 0.0625x or
0.125x up to 16x MIC were prepared and kept in darkness until inoculation
with 2 mL of bacterial suspension. The bottles were then incubated in

darkness at 37°C under shaking conditions (260 rpm) for 24 h. For each
experiment, a drug-free growth control and sterile inoculum-free control
were included.

To assess the effect of nitrofurantoin on bacterial growth, 1 mL samples
were taken from each bottle at selected time intervals (0, 1, 2, 3, 4, 6, 8, 16
and 24 h after the start of the experiment) and serial 10-fold dilutions in
0.9% saline solution were prepared. Ten microlitres from each dilution and
an undiluted sample were plated in triplicate onto Mueller-Hinton agar
plates (BD Bioscience, Erembodegem, Belgium). The numbers of cfu were
counted after incubation for 20-24 h at 37°C. The lower limit of detection
was 33.3 cfu/mL per plate, corresponding to 1.52 log;o cfu/mL. Absence of
growth after 24 h was regarded as complete kill. Reproducibility of the
time-kill assays was assessed by testing on different days for selected con-
centrations. The differences among replicates were <0.5 log; cfu/mL.

To reduce the effect of carryover, particularly at concentrations >4x
MIC, bacterial counts were calculated from at least the 10! diluted sam-
ples (if colonies were present), which yielded an antibiotic concentration
below the MICs for strains. Furthermore, in order to exclude in advance
any bias that might occur due to the potential antibacterial effect of the
solvent DMF, time-kill curves in the presence of serial dilutions from 5% to
0.15% DMF were compared with solvent-free control and no differences
were found at the concentrations tested in the present study (maximum
1.25% DMF) (results not shown).

Analysis

Viable bacterial count (cfu/mL) versus time curves were constructed for
each strain. Bactericidal effects (>3 log; o cfu/mL reduction from initial inoc-
ula) and regrowth (increased growth after an initial cfu reduction) were
assessed by visual inspection of time-kill curves for each strain and concen-
tration. Since nitrofurantoin is administered every 6-8 h for UTIs, we studied
in depth the early-phase (within 6 h) pharmacodynamics. Thus, the kill rate
(log1o cfu/mLxh™1) observed after drug addition was determined at each
concentration as the slope of the log-linear regression analysis of 1-6 h
time-kill curves. Kill rates were then plotted against each log;o-transformed
concentration and analysed with non-linear regression analysis using a sig-
moidal Emax Model with variable slope. The maximal killing rate (Emax), the
concentration corresponding to 50% of Emax (ECso), the ECsq corrected for
the MIC (EC5o/MIC), the concentration corresponding to stasis (no cfu reduc-
tion compared with initial inoculum) and the Hill slope () were determined
foreachisolate. An early-phase bactericidal effect (3 log; o cfu/mL reduction

Table 1. Nitrofurantoin MICs determined by broth microdilution in CAMHB and other (susceptibility) characteristics for E. cloacae, E. coli and

K. pneumoniae

MIC (mg/L)
Species Strain Resistance phenotype NIT CAZ CIp CRO MEM SXT
E. cloacae 32 ESBL (CTX-M-9, SHV-12) 16 128 0.094 256 0.094 32
94 non-ESBL (unknown) 16 48 0.023 96 0.047 0.064
E. coli 3 ESBL (CTX-M-15, TEM-84) 8 32 32 256 0.047 32
5 ESBL (CTX-M-9, OXA-1) 8 0.5 0.012 16 0.023 0.19
11 ESBL (CTX-M-15, OXA-1, SHV-12) 32 256 32 256 0.094 32
41 ESBL (CTX-M-2, TEM-1) 16 6 0.012 0 0.047 0
51 ESBL (CTX-M-15, OXA-1) 16 16 32 256 0.032 32
82 ESBL (CTX-M-14, TEM-1) 16 3 32 256 0.047 32
K. pneumoniae 4 ESBL (CTX-M-15, OXA-1, SHV-1) 32 256 32 256 0.125 32
39 non-ESBL (TEM-1) 16 4 0.008 0.25 0.023 0.38
58 ESBL (SHV-11, TEM-84) 32 48 0.75 4 0.064 0.094

NIT, nitrofurantoin; CAZ, ceftazidime; CIP, ciprofloxacin; CRO, ceftriaxone; MEM, meropenem; SXT, trimethoprim/sulfamethoxazole.
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within 6 h) corresponded to a kill rate of 0.6 log; o cfu/mLxh™*. Goodness of
fit of both log-linear and Erqx Model was assessed using R? and post-run
test. Differences in pharmacodynamic parameters among the three species
were assessed with analysis of variance followed by Tukey multiple com-
parison tests. All analyses were performed using GraphPad Prism 5.0
(GraphPad, San Diego, CA, USA).

Results

Susceptibility

The MICs of nitrofurantoin and other drugs together with
the resistance phenotypes for each strain are presented in

(a) E. coli 11 MIC 32 mg/L (b)

0 2 4 6 8 1012 14 16 18 20 22 24
Time (h)
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2 24
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Table 1. The MICs of nitrofurantoin for E. cloacae, E. coli and
K. pneumoniae were 16, 8-32 and 16-32 mgl/L, respectively.

Time-kill assays

Representative time-kill curves for E. coli, K. pneumoniae and
E. cloacae strains at different concentrations of nitrofurantoin
are shown in Figure 1. Maximum growth in drug-free controls
was observed within 8 h for all strains and was similar at
~2.0x10° cfu/mL. Log-linear growth rates in the drug-free control
as determined over the first 6 h were also similar for all strains
(0.6 logyo cfu/mLxh ™). These findings indicate no significant
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Figure 1. Typical examples of growth curves of nitrofurantoin against various strains of E. coli (a and b), K. pneumoniae (c and d) and E. cloacae (e and f).
Cell viability (logjo cfu/mL) is plotted for cultures grown at different concentrations of nitrofurantoin relative to strain-specific MICs. This figure appears in
colour in the online version of JAC and in black and white in the print version of JAC.
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differences in growth characteristics between the strains and the
species examined in the absence of antibiotic.

E. coli

When exposed to nitrofurantoin, E. coli showed smaller decreases in
the bacterial population size (<2 logo cfu/mL reduction) within the
first 6 h of incubation compared with E. cloacae and K. pneumoniae.
Nitrofurantoin was bactericidal (3 log;o cfu/mL reduction) against
the E. coli strains within 16-24h at 2-16x MIC (equivalent
to 16-256 magl/L), with the exception of strains 11 and 82 where
1x MIC was also bactericidal. For E. coli strains 5 and 51, complete
kill was observed for 16x MIC within 8 h (data not shown).

In all E. coli strains, the killing was not increased at higher con-
centrations, but lasted for a long time with no regrowth up to 24 h,
indicating a concentration-independent killing effect (Figure 1a
and b). Growth was observed at concentrations <1x MIC after
2-4h (0.0625-0.25x MIC), 6-8 h (0.25-0.5x MIC) and 16 h
(0.5-1x MIC) for all strains.

K. pneumoniae

In the three K. pneumoniae strains, a bactericidal effect was
observed at nitrofurantoin concentrations >8x MIC (equivalent
to 128-256 mg/L) within 8 h and at 4x MIC within 16 h. A

bactericidal effect at 2x MIC was observed only for strain 58
(data not shown). For the non-ESBL K. pneumoniae strain 39, a
bactericidal effect was also observed at concentrations of 1-2x
MIC. A less pronounced concentration-independent effect was
observed for K. pneumoniae strains (Figure 1c and d). Growth
was observed at concentrations <0.5-1x MIC (growth was also
observed at 2x MIC in K. pneumoniae strain 4) after 2-4 h
(0.125x MIC), 4-6 h (0.25x MIC) and 8-16 h (0.5-1x MIC).

E. cloacae

In the experiments with E. cloacae strains 94 and 32 (Figure 1e
and f), nitrofurantoin concentrations >2x MIC (equivalent to
64 mg/L) were bactericidal within 6-8 h. In the non-ESBL strain,
this effect was observed at 4 h with 16x MIC. The effect of nitro-
furantoin increased at higher concentrations, indicating a
concentration-dependent bactericidal activity against E. cloacae.

Growth was observed at concentrations <1x MIC after 2 h
(0.125x MIC), 4 h (0.25x MIC), 6-8 h (0.5x MIC) and 16 h (1x MIC).

Early-phase pharmacodynamic modelling

The sigmoidal E.qx model with variable slope fitted well to early-
phase concentration-kill rate data (R?>0.96), as shown in
Figure 2 for each strain. The pharmacodynamic parameters

(a) E. coli (b) K. pneumoniae
= 1.2 1 e Strain 3 = 1.2 e Strain 4
w 1.0+ ) '« 1.0 .
X 0.8 Strain 5 X 0.8 - Strain 39
i . . - . .
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2 04- . n Strain 41 g 0.4 /.—'.""— ...........
o 021 5 + Strain 51 & 021 val
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Figure 2. Early-phase pharmacodynamics of nitrofurantoin. Concentration-kill rate data and best-fitted sigmoid curves obtained from the sigmoid
maximum effect (Enqx) Model for all E. coli, K. pneumoniae and E. cloacae strains after exposure to nitrofurantoin for 6 h. The 95% confidence band
of the best-fitted curve is also plotted. The horizontal dotted line represents stasis, i.e. no cfu reduction compared with the initial inoculum. An
early-phase bactericidal effect (3 logqo cfu/mL reduction) corresponded to a kill rate of 0.6 and was achieved only for E. cloacae strains.
Species-specific mean (95% CI) Enax Mmodel parameters are shown in each graph after analysis of all strains per species together.
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Table 2. Pharmacodynamic parameter estimates of nitrofurantoin against different uropathogens

Species Strain Growth rate  Maximalkill rate (h™1)  Hill slope (Y)  ECso (mg/L) ECso/MIC Stasis (mg/L) R?

E. cloacae 32 0.604 0.88 1.05 10.25 0.64 7.33 0.984
94 0.579 0.86 0.97 14 .44 0.90 10.13 0.992
all (mean+SD) 0.592+0.018 0.87+0.014 1.0140.056 12.35+2.96 0.774+0.18 8.73+1.98

K. pneumoniae 4 0.592 0.45 1.95 7.51 0.23 8.87 0.976
39 0.639 0.27 2.97 443 0.28 5.89 0.990
58 0.604 0.38 3.13 9.15 0.29 10.81 0.982
all (mean+SD) 0.612+0.024 0.37+0.091° 2.6840.64 7.0342.40°  0.27+£0.0329 8524248

E. coli 3 0.589 0.15 411 2.75 0.34 3.86 0.994
5 0.627 0.28 7.60 233 0.29 2.59 0.993
11 0.600 0.23 3.69 456 0.14 5.89 0.966
41 0.627 0.17 23.37 421 0.26 446 0.982
51 0.701 0.27 21.27 427 0.27 446 0.996
82 0.604 0.19 2.67 2.27 0.14 3.58 0.968
all (mean+SD) 0.6254+0.040 0.2140.0545¢ 10.45+9.37 3.40+1.059° 0.24+0.082°  4.14+1.10°¢

9P<0.05 for E. cloacae versus K. pneumoniae.
bp<0.05 for E. cloacae versus E. coli.
“P<0.05 for K. pneumoniae versus E. coli.

Emax ECso, ECso/MIC, static concentrations and Hill slope are
shown in Table 2 for each species.

The lowest maximal killing rates were observed in E. coli strains
(0.21+0.05 h™ 1) followed by K. pneumoniae (0.37+0.09 h™?)
and E. cloacae (0.87+0.01 h™'). An early-phase bactericidal
effect was observed only for E. cloacae. The species mean+ SD
Hill coefficients for E. coli, K. pneumoniae and E. cloacae were
10.454+9.37, 2.68 +0.64 and 1.01 +0.06, respectively, indicating
a strong concentration-dependent early-phase antibacterial
activity against E. cloacae (Table 2).

The ECso+ ECso/MIC of nitrofurantoin were significantly lower for
E. coli and K. pneumoniae strains (3.40+1.06 mg/L+0.24+0.08
and 7.03+2.40 mg/L+0.27 +0.03, respectively) as compared
with E. cloacae (12.3542.96 mg/L+0.77+0.18), indicating that a
lower nitrofurantoin concentration is needed in E. coli and
K. pneumoniae to reach 50% of the maximum effect.

The mean+SD static concentrations were 8.73+1.98,
8.524+2.48 and 4.14+1.10 mg/L for E. cloacae, K. pneumoniae
and E. coli, respectively, indicating that the same antibacterial
effect was attained with lower nitrofurantoin concentrations for
E. coli (Table 2).

Discussion

The main purpose of this study was to investigate the time-Kkill
effects of nitrofurantoin and describe the early-phase pharmaco-
dynamic relationships of nitrofurantoin against common uro-
pathogens with various in vitro susceptibilities. Nitrofurantoin
was bactericidal at >2x MIC after 4-8 h against E. cloacae,
whereas a late bactericidal effect was found for K. pneumoniae
after 8-10 h and for E. coli after 12-16 h. Overall, no killing was
observed at low sub-MIC concentrations, whereas regrowth was
found at 0.5-1x MIC after a small decline in cfu. Early-phase
(0-6 h) pharmacodynamics was remarkably different among

the three species with concentration-dependent bactericidal
activity observed only for E. cloacae and a lower concentration
required for stasis for E. coli.

Early-phase pharmacodynamic analysis showed high maximal
killing rates for E. cloacae followed by K. pneumoniae and E. coli.
In the various E. coli strains, the killing behaviour appeared to be rela-
tively concentration independent. When there is concentration-inde-
pendent killing, the concentration-effect relationship is steep, which
is represented by a high Hill slope factor Y. This was indeed the case
for E. coli with an average slope factor of 10.45, besides also the con-
centration range for maximal killing was narrow, and therefore
resembles a B-lactam antimicrobial type of killing behaviour, such
as meropenem.** This is in agreement with the findings of Komp
Lindgren et al.*® in that in vitro model, the T-mc correlated better
to both outcome indices delta cfug_», and AUCB (R?>0.82 and
0.67) as compared with other pharmacokinetic/pharmacodynamic
indices log (AUC/MIC) (R*>0.38 and 0.52).

Remarkably, a completely different pattern of kill was observed
in E. cloacae. In this species, the killing increased significantly over
a wide concentration range at higher concentrations, which
resulted in a shallower S-curve and higher maximum kill rate.
This is represented by slope factors ~1.0 (1.05 and 0.97 in our
study), indicating a shallow S-curve, which resembles the phar-
macodynamic efficacy of the aminoglycoside tobramycin.**1*
No difference in kill pattern was observed between ESBL+ and
ESBL— pathogens or between strains of urogenic and non-
urogenic origin. To the best of our knowledge, this is the first occa-
sion where significantly different killing characteristics are
described for the same drug for closely related species.

Some variation (20%-30%) in the pharmacodynamic para-
meters Enqx and static concentrations was present among the
used isolates. The drug-specific characteristics and the (un)avail-
ability of bacterial nitroreductases also might explain part of the
observed inter- and intraspecies differences.*”
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E. coli strains required a longer period (12-16 h) for concentra-
tions of 2-16x MIC to reach a bactericidal effect as compared
with the study of Komp Lindgren et al.,'° where the bactericidal
effect was achieved within 4-8 h for E. coli for concentrations of
8-32x MICirrespective of the EBSL+ or ESBL— status. In the study
of Komp Lindgren et al.,*° bacterial cells were washed and centri-
fuged before plating. However, in the study of Pembrey et al.,*®
centrifugation at 15000 g caused significant reductions of up to
36% in E. coli viability as compared with centrifugation at
5000 g; it is possible that some of the bacteria were killed during
the procedure and this might have influenced the results and led
to underestimation of the time needed to reach a bactericidal
effect of nitrofurantoin in that study.

Although only two ESBL— strains were used in the present
study, we did not find differences on nitrofurantoin effectivity
between ESBL+ and ESBL— strains in agreement with Komp
Lindgren et al.,'° where the effectiveness of nitrofurantoin treat-
ment did not differ between the ESBL-producing E. coli and the
non-ESBL-producing E. coli strains.

The clinical implications of these findings are related to the
concentration-dependent activity of nitrofurantoin against
E. cloacae and to the finding that a bactericidal effect occurred
at different exposure times and concentrations. Increased urine
concentrations may enhance killing against E. cloacae, but not
the other species, whereas nitrofurantoin concentrations should
remain higher than the MIC for the pathogen for a longer time for
E. coli than the other species. Dosing regimens should target urine
concentrations >2x MIC (i.e. >64 mg/L for the isolates of the pre-
sent study) for >4 h for E. cloacae, 8 h for K. pneumoniae and 12 h
for E. coli. The dose of 100 mg given every 8 h resulted in urine con-
centrations <16 mg/L, whereas when 100 mg was given every 6 h
urine concentrations were always >16 mg/L.*” Urine concentra-
tions may reach 250 mg/L at doses up to 400 mg every 6 h, but
these doses may not be feasible clinically.*® Based on the present
findings, dosing regimens may have to be adjusted depending on
the microorganism cultured, with a more frequently administered
standard dosing regimen for E. coli and K. pneumoniae. A limitation
is the lack of recent urinary pharmacokinetic data, which limits the
extrapolation of our results. In addition, the differential killing activ-
ity against E. coli, K. pneumoniae and E. cloacae found in this study
might be different from the human (in vivo) situation where during
UTI an inflammatory response is induced and neutrophils are acti-
vated. Since we did not mimic the innate immune response in these
experiments, we can only speculate on the impact of that on a pos-
sible dosing regimen and the influence of the immune system on
the pharmacodynamics of nitrofurantoin during UTI should be
investigated further.

In summary, our findings show that nitrofurantoin was bac-
tericidal at different exposure times against all species, but
showed distinctly different patterns of kill against different species
irrespective of their ESBL status. This phenomenon is highly
unusual and not observed for other drugs. The differential pattern
of activity may have significant consequences for dosing depend-
ing on the pathogen and this should be explored further.
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