1. Autistic traits in school-aged children are associated with a widespread decrease of gyrification in the brain (*this thesis*).

2. The phenotypic continuum of autistic traits covaries with a continuum in the neurobiology of some, but not all neurobiological features of autism (*this thesis*).

3. In the context of heterogeneity in clinical presentation, identifying groups of subjects with relatively homogeneous symptoms can facilitate the study of neurobiological correlates (*this thesis*).

4. Children with autistic traits show alterations in dynamic brain connectivity consistent with a developmental disconnection syndrome (*this thesis*).

5. Children with internalizing problems and externalizing problems have distinct cognitive profiles (*this thesis*).

6. Neuroimaging research can help to reconcile the perceived segregation between psychiatry and somatic medicine that contributes to the stigmatization of psychiatric patients and inspires disproportionate policy and funding.

7. Large-scale data sharing initiatives can facilitate novel neurobiological discoveries and much needed replication in neuroimaging.

8. Researchers and clinicians in the field of autism should not forget that many people on the spectrum experience benefits from their traits as well.

9. Implicit gender bias affects the judgement of both men and women and should be acknowledged and countered to achieve equal representation in academic positions.

10. Individual psychiatric disorders are clinical-historical constructs, not pathophysiological entities (*Ken Kendler, 2013*).

11. In examining disease, we gain wisdom about anatomy and physiology and biology. In examining the person with disease, we gain wisdom about life (*Oliver Sacks 1933 - 2015*).