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Abstract

Background: Carotid intima media thickness (cIMT) is a marker of atherosclerosis and 
a predictor of cardiovascular disease. Whole blood gene expression levels may 
provide insights into the etiology and consequences of atherosclerosis.

Methods: We measured cIMT and genome-wide gene expression levels in whole 
blood of 5,647 individuals from four population-based cohort studies: KORA, 
LIFE-Adult, SHIP, and the Rotterdam Study. We examined the association of over 
50,000 gene expression probes with cIMT adjusted for age, sex, batch effects, 
cell counts, RNA quality, fasting, and smoking status. In a sensitivity analysis, 
we further adjusted the model for traditional cardiovascular risk factors, and 
excluded participants with prevalent coronary heart disease. Finally, we explored 
whether probes mapping to genes identified for coronary heart disease were 
enriched for association with cIMT.

Results: After a Bonferroni correction (P-value < 9.2×10-7), four probes mapping to 
three genes (TNFAIP3, CEBPD, and METRNL) were inversely associated with cIMT. 
Effect sizes and significance levels of the probes decreased after adjustment for 
traditional cardiovascular risk factors and exclusion of participants with prevalent 
coronary heart disease, but all remained nominally significant. Expression levels 
of genes that were previously implicated in coronary heart disease by genome-
wide association studies were not enriched for association with cIMT.

Conclusions: Our results highlight the importance of inflammation in atherosclerosis 
as TNFAIP3 and METRNL are anti-inflammatory genes, and CEBPD can be both 
pro and anti-inflammatory. Further research is needed to clarify whether the as-
sociation between these genes and cIMT can indeed be explained through their 
anti-inflammatory properties.
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Introduction

As a marker of atherosclerosis, carotid intima media thickness (cIMT) is a strong 
predictor of coronary heart disease (CHD) and stroke.1,2 cIMT evaluates the full range 
of atherosclerosis: from early subclinical to full-blown clinical disease. Like CHD and 
stroke, cIMT has a moderate heritability,3-7 and numerous loci have been identified 
through genetic association studies.8-12 However, the genetic variants at these loci 
collectively explain only a small fraction of the heritability of cIMT. Furthermore, the 
ability of these genetic variants to predict incident cardiovascular disease remains 
limited.13-16 Besides genetic association studies, alternative approaches harnessing 
genomic data may yield new loci associated with atherosclerosis. 

One such approach is the transcriptome-wide association study, based on gene 
expression levels instead of genetic variants. Whole-blood is often used as it is fea-
sible to measure on a large scale in a non-invasive manner, and also because it is a 
relevant tissue for atherosclerosis. Although several transcriptome-wide association 
studies have already identified genes whose expression is associated with cardiovas-
cular disease, the overlap between the results of the different studies is very low.17-23 
No large-scale study has been performed on cIMT specifically. 

Hence, within the framework of the Cohorts for Heart and Aging Research in 
Genomic Epidemiology (CHARGE) consortium,24 we aimed to robustly identify 
genes whose expression is associated with atherosclerosis. To this end, we profiled 
genome-wide gene expression levels in whole blood of 5,647 individuals with cIMT 
measurements available from four population-based cohort studies. We then repli-
cated our findings in two further independent cohort studies. 

Methods

Study population

Individuals from four population-based cohort studies were included in the discov-
ery analysis: 836 from KORA,25,26 2,973 from LIFE-Adult,27 856 from the Rotterdam 
Study,28 and 982 from the Study of Health in Pomerania (SHIP).29 The total sample 
size was 5,647. All studies were approved by appropriate research ethics committees 
and all participants signed informed consent prior to participation.

Measurement of carotid intima media thickness

cIMT of the common carotid artery was measured with high-resolution B-mode 
ultrasonography. cIMT was calculated as the mean of the maximum cIMT of the near 
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and far walls of the right and left common carotid arteries. When the intima media 
thickness of the near walls was unavailable, only the far walls were used. 

Measurement of gene expression levels

Genome-wide gene expression levels in whole blood of up to 49,618 probes cover-
ing more than 25,000 genes were measured using the Ilumina HumanHT-12 Gene 
Expression BeadChip v3.0 or v4.0. In all four studies gene expression levels were 
measured based on blood that was drawn around the same time as cIMT was mea-
sured. 

Statistical analysis

cIMT was natural-log transformed. We used a linear mixed model, adjusting for batch 
effects (examples: array ID and position on array) as random effects, and for further 
technical covariates (examples: RNA quality and storage time between sampling and 
RNA isolation), cell types (examples: granulocytes, lymphocytes, monocytes), age, 
sex, fasting state, and smoking status as fixed effects. We ran a separate model for 
each gene expression probe, using cIMT and the covariates as independent vari-
ables, and gene expression levels as the dependent variable. These analyses were 
done in R. Meta-analysis of the four studies was performed using inverse-variance 
fixed effects meta-analysis implemented in METAL.30 We used a Bonferroni correc-
tion to adjust for multiple testing.

We performed additional analyses including further covariates relevant to athero-
sclerosis: total / high density lipoprotein (HDL) cholesterol ratio, systolic blood pres-
sure, body mass index (BMI), prevalent type 2 diabetes, lipid-lowering medication 
and antihypertensive medication (Model 2). We also repeated the original model in 
only those individuals with data available on all of the additional covariates (Model 1). 
Finally, we reran the full model excluding individuals with prevalent CHD (Model 3).

We also examined whether the expression levels of genes related to CHD, as 
described by the CARDIoGRAMplusC4D consortium,10 were enriched for asso-
ciations with cIMT. For each genome-wide significant locus, we selected genes that 
the top variant or one of its proxies (R2 > 0.8) were located in as exonic or intronic 
variants, and genes whose expression levels were associated with the top variant 
or one of its proxies. Associations between expression levels and genetics variants 
were examined using a publicly available dataset based on whole blood (http://
genenetwork.nl/bloodeqtlbrowser/), and associations with a false discovery rate of 
less than 5% were considered significant.31 A total of 48 genes were selected because 
they contained a top variant in-gene, and a total of 40 were selected because their 
expression levels were associated with one of the top variants, leading to a set of 74 
unique CHD-related genes. We examined the association of expression levels of the 
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individually CHD-related genes with cIMT as described above, and we examined 
their collective enrichment for association with cIMT using Fisher’s combined prob-
ability test.32

Results

Clinical characteristics

Baseline characteristics of the studies included in the discovery analysis are shown in 
Table 1. The mean age of the participants across the four studies was 58.5 years, and 
50.6% of participants were women. The mean BMI was 27.7 kg/m2.

Transcriptome-wide association analysis

A total of 54,124 probes were included in the analysis, resulting in a Bonferroni 
corrected P-value threshold of 9.2×10-7. There were 4 probes that were significantly 
associated with cIMT: ILMN_1780861 and ILMN_1688775 mapping to METRNL, 
ILMN_1702691 mapping to TNFAIP3, and ILMN_1782050 mapping to CEBPD 
(Table 2). All four probes were inversely associated with cIMT (Figure 1). The correla-
tion between the 4 significant probes was low (Figure 2). 

Table 1. Baseline characteristics of the four participating population-based cohort studies.

  KORA LIFE-Adult
Rotterdam 
Study

SHIP

Sample size 836 2,973  856 982

Age 70.20 (5.34) 57.55 (12.48) 59.70 (8.02) 50.07 (13.74)

Sex (% women) 50.48 48.13 53.39 56.01

BMI (kg/m2) 28.99 (4.52) 27.43 (4.60) 27.71 (4.62) 27.28 (4.49)

HDL cholesterol (mmol/l) 1.44 (0.36) 1.58 (0.45) 1.40 (0.42) 1.48 (0.37)

Total cholesterol (mmol/l) 5.71 (1.03) 5.57 (1.07) 5.54 (1.08) 5.51 (1.07)

Lipid-lowering medication use (% yes) 24.28 15.2 27.0 7.33

Systolic blood pressure (mmHg) 128.48 (19.09) 128.97 (16.80) 134.53 (20.06) 124.33 (16.91)

Diastolic blood pressure mmHg) 73.93 (9.81) 75.46 (9.88) 82.92 (11.56) 76.50 (9.66)

Antihypertensive medication use (%yes) 56.82 44.50 27.27 29.33

Type 2 diabetes (% yes) 13.88 14.52 9.23 0.2

Current smoking (% yes) 6.22 20.92 27.10 18.43

Prevalent cardiovascular disease (% yes) 5.38 4.81 6.04 0.61

cIMT 0.97 (0.13) 0.75 (0.15) 0.96 (0.19) 0.73 (0.17)

Values are mean (SD) of percentages.
Abbreviations: BMI refers to body-mass index. HDL refers to high density lipoprotein. cIMT refers to 
carotid intima media thickness.



Chapter 4.3

196

Table 2. Association of significant probes with cIMT in 5,647 individuals.

Probe ID Locus Gene Effect Size P-value

ILMN_1702691 6q23.3 TNFAIP3 -0.46 1.2×10-7

ILMN_1782050 8q11.21 CEBP -0.39 2.8×10-7

ILMN_1688775 17q25.3 METRNL -0.49 2.8×10-8

ILMN_1780861 17q25.3 METRNL -0.57 4.8×10-10

Abbreviations: cIMT refers to carotid intima media thickness.

Figure 1. Volcano plot showing the –log10(P-value) of each probe plotted against the effect size, distin-
guishing between non-significant (black) and significant probes (red).

Figure 2. Correlation R2 between the four probes that were significantly associated with cIMT.
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Figure 3A and 3B. Correlation of effect sizes between A) Model 1 and Model 2, and B) Model 2 and 
Model 3.
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Additional Adjustments

As shown in Figure 3A, in general effect sizes and did not change substantially when we 
adjusted for total / high density lipoprotein (HDL) cholesterol ratio, systolic blood pres-
sure, BMI, prevalent type 2 diabetes, lipid-lowering medication and antihypertensive 
medication (correlation R2 = 0.92). As shown in Figure 3B, effect sizes also remained 
stable when we repeated the analysis excluding participants with prevalent CHD (corre-
lation R2 = 0.98). For the four significant probes in particular, effect sizes decreased when 
adjusted for additional covariates, though all probes remained nominally significant 
(Table 3). When participants with prevalent CHD were excluded, effect sizes remained 
stable or slightly increased. Of the four probes, the probe mapping to TNFAIP3 was the 
most stable with effect estimates changing by less than 10% after adjustment.

CHD-related genes

68 of the 74 CHD-related genes had one or more probes that were included in the 
analysis. A total of 104 probes representing these genes were analysed. Collectively, 
the 104 probes of CHD-related genes were not enriched for association with cIMT 
(Fisher combined probability P-value = 0.75). None of the probes of CHD-related 
genes were associated with cIMT according to a less strict significance threshold 
corrected only for CHD genes (0.05 / 104 = 4.8×10-4).

Discussion

We performed the first large-scale transcriptome-wide association study meta-anal-
ysis of cIMT including over 5,600 participants. We identified four gene expression 
probes mapping to three genes to be differentially expressed according to cIMT: 
TNFAIP3, CEBPD, and METRNL. The associations were robust to further adjustment 
for potential confounders, and excluding individuals with prevalent CHD did not 

Table 3. Additional adjustment analyses of significant probes.

Probe ID Gene

Model 1 Model 2 Model 3

Effect Size P-value Effect Size P-value Effect Size P-value

ILMN_1702691 TNFAIP3 -0.43 1.1×10-6 -0.39 1.1×10-5 -0.40 1.6×10-5

ILMN_1782050 CEBP -0.41 1.4×10-7 -0.32 2.8×10-5 -0.36 7.6×10-6

ILMN_1688775 METRNL -0.47 2.4×10-7 -0.38 2.2×10-5 -0.39 2.2×10-5

ILMN_1780861 METRNL -0.54 6.6×10-9 -0.43 1.6×10-6 -0.45 1.9×10-6

Adjustments: Model 1: batch effects, technical covariates, cell types, age, sex, fasting state, and smok-
ing status. Only including individuals with data available on all of the additional Model 2 covariates. 
Model 2: Model 1 + total / HDL cholesterol ratio, systolic blood pressure, BMI, prevalent type 2 dia-
betes, lipid-lowering medication and antihypertensive medication. Model 3: Model 2 excluding par-
ticipants with prevalent CHD.
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change the results. Probes at the three genes were not correlated to each other, sug-
gesting that they represent separate mechanisms.

Expression levels of genes identified for CHD in the largest genome-wide associa-
tion study were not associated with cIMT. Several possible explanations may explain 
the absence of associations. First, despite the predictive value of cIMT for CHD, cIMT 
and CHD may be too distinct as phenotypes to produce an overlap in associations 
with genes. In agreement, only one locus was found in genome-wide association 
studies of both cIMT and CHD.8,33 Second, the genetic background of atheroscle-
rosis and CHD may be differentially reflected through polymorphisms and gene 
expression levels. In a large-scale transcriptome-wide association study of blood 
pressure only two out of 34 genes were previously reported in relation to hyperten-
sion, and none were identified through genome-wide association studies.34 Third, 
while blood is a relevant tissue for atherosclerosis, it may not be the tissue in which 
the genes identified by genome-wide association studies are primarily expressed. 

TNFAIP3 encodes tumor necrosis factor α-induced protein-3, also known as A20, a 
protein involved in several inflammatory pathways. Most notably TNFAIP3 is involved 
in the negative feedback regulation of NF-kappaB,35 but it may also inhibit IFNγ/
STAT1 signalling.36 It is thus an anti-inflammatory protein, and low expression levels 
of TNFAIP3 have been associated with inflammatory disorders such as rheumatoid 
arthritis.37 In a small case-control study, genetic variants in TNFAIP3 were associated 
both with increased odds of CHD and lower TNFAIP3 expression in blood.38 How-
ever, neither the association with CHD nor the association with expression levels 
was replicated in larger hypothesis-free studies.10,31 The proposed anti-inflammatory 
properties of TNFAIP3 are in line with our study, in which expression of TNFAIP3 was 
inversely associated with cIMT.

CEBPD encodes CCAAT/Enhancer Binding Protein Delta (C/EBP-Delta), a tran-
scription factor regulating several inflammatory genes.39 Depending on the situation 
C/EBP-Delta can be both pro-inflammatory and anti-inflammatory: on the one 
hand, C/EBP-Delta may amplify the NF-kappaB response,40,41 but on the other hand, 
C/EBP-Delta has been shown to have an anti-inflammatory role in pancreatic β-cells 
and brain pericytes,42,43 while inhibiting the accumulation of amyloid plaques in 
Alzheimer’s disease.44 In our study, increased expression of CEBPD in blood is as-
sociated with less atherosclerosis as measured by cIMT. 

The remaining two probes mapped to METRNL, which for meteorin-like protein 
(Metrnl). Metrnl increases thermogenesis in brown and beige adipocytes, and in-
creases the expression of anti-inflammatory genes.45 Brown and beige adipocytes 
may play a role in metabolic disease by inhibiting weight gain through thermogen-
esis.46 Both the potential effects on adiposity and inflammation could explain the 
inverse association of METRNL expression with cIMT in our study.
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All three genes identified in the transcriptome-wide association analyses thus 
appear to be related to inflammation. This is not surprising, given the importance 
of inflammation in atherosclerosis,47,48 and the fact that expression levels were mea-
sured in whole blood, in which we expect most mRNA to originate from white blood 
cells. TNFAIP3 and METRNL are both reported to have anti-inflammatory properties, 
which is consistent with the direction of the association in this study. CEBPD, on the 
other hand, is reported to have both inflammatory and anti-inflammatory proper-
ties. None of the three genes was reported to be significantly associated in a recent 
transcriptome-wide association study of interleukin-6 levels.49 There has been no 
previous large-scale transcriptome-wide association study of cIMT, but several stud-
ies of CHD have been carried out. None of the three genes we report were significant 
in these previous studies.17-23 

Strengths of this study include the large sample size, the hypothesis-free approach, 
and the strict correction for multiple testing. The main limitation of this study is the 
lack of replication. Although we consider whole blood to be a relevant tissue for the 
expression of genes associated with atherosclerosis, the use of only whole blood 
could be considered a limitation of this study. As gene expression is highly tissue 
specific, investigating other tissues, may yield important genes for atherosclerosis 
that remained hidden in this study. 

Furthermore, the interpretation of the results is challenging because it is difficult to 
distinguish between genes whose expression influences atherosclerosis and genes 
whose expression is influenced by atherosclerosis. Although a longitudinal design 
could be used to focus on one of these two directions, reverse causation cannot be 
ruled out. Finally, the associations described in this study may be affected by residual 
confounding. We attempted to reduce the chance of confounding by correcting for 
batch effects, cell types, and, in an additional analysis, traditional cardiovascular 
risk factors. Nevertheless, other variables not covered in these models, as well as 
measurement error in the included variables may affect the results.

We identified novel three genes that were associated with atherosclerosis as 
measured by cIMT. All three genes are reported to be involved in inflammation, 
with TNFAIP3 and METRNL having well described anti-inflammatory properties. Our 
results thus highlight the importance of inflammation in atherosclerosis, but further 
research is needed to clarify whether the association between these genes and cIMT 
can indeed be explained through their anti-inflammatory properties.
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Main findings and interpretation

Genetics of hemostatic factors

In Chapter 2.1 we used the framework of the CHARGE consortium to identify 19 new 
loci for fibrinogen in a genome-wide association (GWA) study based on 1000 Ge-
nomes imputation. At the two most strongly associated loci we detected additional 
low-frequency (minor allele frequency [MAF] < 5%) and rare (MAF < 1%) variants 
independently associated with fibrinogen. In Chapter 2.2 we also compared 1000 
Genomes imputation to HapMap imputation in an identical sample, and found that 
1000 Genomes imputation led to the discovery of roughly 20% more loci.

In Chapter 2.3, we used exome arrays to identify 2 low-frequency and 10 rare vari-
ants associated with fibrinogen, factor VII, factor VIII, and VWF that were indepen-
dent of known associations.1 In Chapter 2.4 we used exome sequencing in a smaller 
sample to identify rare variants associated with fibrinogen, factor VII, factor VIII, and 
VWF. There was a large overlap between the findings of the exome array and exome 
sequencing studies, but both studies had unique findings. In the exome sequencing 
study we identified 3 new rare variants for factor VII and 2 new rare variants for factor 
VIII that were not discovered in the exome array study. For fibrinogen, there was also 
an overlap between the GWA study and the two exome studies.

Furthermore, in Chapter 2.5, we carried out a GWA study based on Genomes 
of the Netherlands imputation in the Rotterdam Study.2 We identified 6 variants 
at the ADAMTS13 locus and 1 variant at the SUPT3H locus that were independently 
associated with ADAMTS13 activity. Of the 6 variants at the ADAMTS13 locus 1 was 
common, 2 were low-frequency, and 3 were rare variants.

ADAMTS13: association with cardiovascular risk factors

ADAMTS13 has so far primarily been investigated in relation to stroke and CHD. AD-
AMTS13 acts on VWF, and VWF has been associated with kidney function decline and 
type 2 diabetes.3,4 In Chapter 3.1 we found that VWF-to-ADAMTS13 ratio was related 
to kidney function decline, an important direct cause of morbidity and mortality, 
and a strong risk factor for cardiovascular disease. A higher ADAMTS13 activity was 
protective, as it was associated with a lower decline in kidney function. This finding 
was consistent with what we know about thrombotic thrombocytopenic purpura, a 
condition caused by a severe lack of ADAMTS13 that often results in kidney failure.

In contrast, in Chapter 3.2 we found that ADAMTS13 activity was associated with a 
higher risk of incident type 2 diabetes. This association persisted despite adjustment 
for potential confounders, and for fasting glucose and insulin. ADAMTS13 activity 
was also associated with an increased risk of incident prediabetes. Thus, while AD-
AMTS13 may decrease the risk of cardiovascular disease through its antithrombotic 



Chapter 5

208

effects and its association with chronic kidney disease, it appears to increase the risk 
of cardiovascular disease through its association with diabetes.

Genetic risk of coronary heart disease

In Chapter 4.1 we found that a genetic risk score using 152 genetic variants was not 
able to meaningfully improve risk prediction of incident coronary heart disease 
(CHD).5 However, when we performed the analysis for prevalent CHD the improve-
ments in prediction were considerably larger. 

In Chapter 4.2 we investigated the association of SNPs in the seed sequence of 
microRNAs with cardiovascular risk factors and disease.6 The seed sequence con-
sists of 5-6 nucleotides in every microRNA that determine to which target genes 
it can bind. We found that rs2168518, a variant in the seed sequence of miR-4513, 
was associated with fasting glucose, LDL-cholesterol and total cholesterol, systolic 
and diastolic blood pressure, and the risk of CHD. We experimentally showed that 
miR-4513 expression is significantly reduced in the presence of the rs2168518 mutant 
allele, and we highlighted five target genes that may mediate these associations. 
Using luciferase reporter assays we validated one of these genes, GOSR2, as a target 
of miR-4513. Additionally, we demonstrated that the microRNA mediated regulation 
of this gene is changed by rs2168518. This study highlights miR-4513 as a regulator 
of a range of cardiovascular risk factors and, ultimately, CHD. We were the first to 
implicate miR-4513 in human disease. In a second study Li et al investigated the as-
sociation of the same variant, rs2168518, with clinical outcomes in CHD.7 In 1,004 
patients with angiographic CHD, they found that miR-4513 was associated with 
event-free survival and mortality, confirming the importance of this microRNA in 
cardiovascular disease. 

In Chapter 4.3, we used a new type of omics, transcriptomics, to identify 3 genes 
(TNFAIP3, CEBPD, and METRNL) whose gene expression levels in blood were inversely 
associated with carotid intima media thickness, a measure of subclinical atheroscle-
rosis. All three genes have previously been implicated in inflammation, with TNFAIP3 
and METRNL being described in the literature as anti-inflammatory genes, whereas 
CEBPD appears to have both pro and anti-inflammatory properties.8-10 

Methodological considerations

Genome-wide association studies

While traditional GWA studies are no longer novel, there are two key factors that 
ensure that they will keep delivering further results in the future. First, as more in-
dividuals are genotyped, the sample sizes available for GWA studies, and therefore 
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the statistical power, will keep increasing. This will lead to the discovery of further 
genetic associations that may be biologically informative or collectively useful in 
prediction.11 Second, as more individuals are sequenced around the world, and the 
coverage those individuals are sequenced at increases, reference panels will keep 
improving. During the writing of this thesis, for example, both the HapMap and 1000 
Genomes reference panels were updated,12,13 and the Genomes of the Netherlands 
and UK10K reference panels were released.14,15 

Whereas a significance threshold of 5×10-8, correcting for one million independent 
tests, ensured a type I error rate of 5% for GWA studies based on HapMap impu-
tation, the same might not be true for GWA studies based on 1000G imputation. 
As the imputation process is improved, further genetic variants are added to the 
analysis. Imputed variants are by definition correlated to directly genotyped variants; 
otherwise, the imputation process could not occur. Yet by combining information 
from multiple measured variants, an imputed variant can provide information that 
is independent from any one measured variant. This is also why GWA studies using 
HapMap imputation are corrected for one million tests even though genotyping 
arrays usually contain fewer variants than this. Several estimates for the number of 
tests being done using newer reference panels have been put forward,16,17 but there  
is not yet a consensus. Thus, when using imputation based on new reference panels 
in GWA studies, extra care should be taken to limit the number of false positives. 
Deciding on a standard threshold for each reference panel is complicated by the 
large number of reference panels and the speed at which new versions of these 
reference panels are produced. 

The associated variants found in future studies are likely to be either rarer or have 
smaller effect sizes, since most common variants with moderate to large effects have 
already been identified. Each of these variants individually will thus contribute less 
to heritability of the trait. However, the effect size of an associated variant discov-
ered through a GWA study does not necessarily correspond to the importance of the 
gene underlying the association to the phenotype. Two relevant examples from the 
literature are HMGCR (coding for 3-hydroxy-3-methyl-glutaryl-CoA reductase) and 
PCSK9 (coding for proprotein convertase subtilisin/kexin type 9).18 Variants in both 
of these genes are associated with low-density lipoprotein (LDL) cholesterol with 
small effect sizes.19 However, statins, drugs targeting HMGCR, are now the primary 
form of lipid-lowering medication. PCSK9 was discovered more recently, but PCSK9 
inhibitors have shown great promise in clinical trials as alternative or complementary 
lipid-lowering agents.20 In this thesis, STAT3 was among the new loci discovered in 
our GWA study of circulating fibrinogen. While the effect size of the most significant 
variant at the locus was small, this gene is thought to play a central role in regulat-
ing gene expression of fibrinogen genes as part of the acute phase response, and 
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many of the other associated loci appear to interact with it.21 In the above examples 
the loci was already known to be related to the phenotype from previous research. 
There may, however, be other important genes remaining to be discovered with 
larger samples sizes that have not yet been highlighted using other research. 

To identifying new important genes, however, an association from a GWA study is 
usually not enough.  GWA studies do not directly identify genes but instead identify 
loci spanning hundreds of thousands of base pairs, and sometimes harboring many 
genes. Definitively identifying the gene underlying the association is usually not 
possible, and candidate genes are usually selected based on their distance to the 
lead variant. This approach is pragmatic but has severe limitations. Even if the true 
causal variant lies within a gene, the mechanism underlying the association may be 
completely independent of that gene. A high-profile example that recently came 
to light is the association between variants in the FTO gene and obesity. While the 
variants associated with obesity are located within the FTO gene, there is functional 
evidence that they regulate the expression of a gene called IRX3, and not the FTO 
gene itself.22 Although IRX3 and FTO are separated by over 500 million base pairs, 
the three dimensional structure of the DNA brings them closer together so that they 
can interact. While a causal role for FTO is not yet excluded,23 this example illustrates 
the difficulty in using the location of associated variants to propose causal genes. In 
our GWA of fibrinogen, we also used associations with gene expression to provide 
information on the likely causal gene. For example, although we annotated the signal 
at 17q21.2 to RAB5C based on distance, we also found that the top variant was associ-
ated with expression levels of STAT3 in blood. Even incorporating extra information 
such as gene expression may not always lead to a single plausible candidate. In some 
cases the top variant is associated with the expression of more than one gene, or 
none. Furthermore, blood is not always the relevant tissue to examine, and many 
databases of other tissues are limited by their small sample sizes. 

Exome-wide association studies

The exome-wide association studies we performed, firstly using exon genotyping 
arrays and secondly using sequencing, also provide methodological insights. These 
new study designs were largely driven by the hypothesis that rare non-synonymous 
protein-coding variants are more likely to affect phenotypic variation. Thus, the de-
signs reflect a balance between costs and anticipated benefits at a time when whole-
genome sequencing was not yet affordable at a large scale. The major limitation of 
exome-based analyses is that noncoding regions are excluded, whilst they are also 
important for the genetic architecture of complex traits.24 Although non-synonymous 
protein-coding variants are indeed enriched for associations with phenotypes, so are 
several other regulatory elements.25,26 Furthermore, coding regions only comprise 



211

General discussion

a small percentage of the genome, so that despite their enrichment, most findings 
from GWA studies are still located in non-coding regions.27 

As illustrated by the exome-based studies in this thesis, the bulk of the results 
from exome-based studies are rare variants in genes that were already known to be 
related to the phenotype. This still serves a purpose: in the case of hemostasis, for 
example, these rare variants may predispose individuals to bleeding disorders.28,29 
Nevertheless, many of these rare variants may also be identified using standard ge-
notyping arrays and imputation. This is exemplified in our GWA study of circulating 
fibrinogen, in which we identify, among others, two rare variants with strong effects.

Above all, exome-based analyses in epidemiological studies should be seen as an 
intermediate step between traditional GWA studies and whole-genome sequenc-
ing studies. The scientific community has used these datasets as an opportunity to 
develop new analytical methods focused on rare variants that are now ready to be 
applied to whole-genome sequencing. 

Genetic risk prediction

Genetic risk prediction studies of CHD, including our own, have been largely disap-
pointing.30-34 Nevertheless, this does not necessarily mean that genetic risk prediction 
of CHD will remain unfeasible in the future, as there are several ways how genetic 
risk prediction could still be improved. 

The 152 genetic variants were identified in a large GWA study of CHD including a 
mix of incident and prevalent cases from cohort studies, case-control studies, and 
cross-sectional studies.35 This GWA study may have been affected by a bias known 
as prevalence-incidence bias or Neyman’s bias.36 For example, in a cross-sectional 
study, certain factors can affect the chance of individuals with CHD being recruited: 
individuals with fatal CHD are not included, and individuals with severe CHD are 
less likely to participate. In such a cross-sectional study, the group of individuals 
with CHD will be enriched with individuals that suffered from non-fatal and mild 
CHD. Factors associated with a decreased severity of CHD may thus erroneously 
be associated with the risk of CHD itself. In a GWA study, this means that variants 
that reduce the severity of CHD are expected to be present at a higher frequency 
among cases than controls, and may be picked up as significant results. Additionally, 
variants associated with severe acute events may be biased towards the null. The 
susceptibility of different study designs to Neyman’s bias is summarized in Table 1. In 
short, many of the study designs used in the GWA study of CHD are susceptible to 
Neyman’s bias, and some of the proposed CHD variants may instead be variants that 
reduce the severity of CHD.  

This could explain why the genetic risk score was more effective in predicting 
prevalent than incident CHD. If so, the implications for genetic risk prediction ex-
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tend beyond CHD to other diseases with a high mortality rate, such as cancer. Basing 
GWA studies on incident rather than prevalent cases is likely to be most beneficial 
for diseases involving acute events such as myocardial infarctions and strokes. 

Thus, a first way how genetic risk prediction of CHD could be improved is by con-
ducting large-scale GWA studies on incident CHD, rather than prevalent CHD, and 
using the variants and effect sizes from these studies to construct genetic risk scores. 
A second way to improve genetic risk prediction is to keep increasing the sample 
sizes of GWA studies. As sample size of GWA studies increase, the ability of the 
resulting genetic variants to predict disease will keep improving.11 Although the new 
genetic variants will have smaller effect sizes, collectively they may still make a large 
contribution to the heritability, because as shown in Figure 1, variants with smaller 
effect sizes are much more numerous than variants with large effect sizes. Given that 
a limited number of studies have already found clinically relevant improvements in 
prediction using currently identified genetic variants,37 it seems likely that further 
developments will lead to genetic risk scores that robustly improve prediction.

Table 1: Susceptibility of different study designs to Neyman’s bias.

Study design Susceptibility to Neyman’s bias

Prospective cohort studies

	 Incident cases Not susceptible to Neyman’s bias, because individuals with the 
disease are included regardless of survival.

	 Prevalent cases Highly susceptible to Neyman’s bias, because 1) individuals with fatal 
disease, whether sudden or not, are not included, and 2) individuals 
with non-fatal disease, especially when severe, are less likely to 
participate. The degree of Neyman’s bias will depend on age-based 
inclusion criteria: a study of the elederly will be highly susceptible 
whereas a study of young adults will not.

Case-control studies

	 Incidence-density sampling Incident cases are included in the study as they occur. When nested in 
a cohort study the exposure and covariates have often been measured 
before the event occurs. Thus, even sudden fatal cases can be 
included. If not nested in a cohort study, they may still be susceptible 
to Neyman’s bias for diseases that sometimes present themselves as 
sudden fatal events. 

	 Cumulative incidence sampling Prevalent cases available at the time of study initiation are included 
in the study. See explanation of prevalent cases in Prospective cohort 
studies.

Cross-sectional studies Prevalent cases available at the time of study initiation are included in 
the study. These studies are highly susceptible to Neyman’s bias. See 
explanation of prevalent cases in Prospective cohort studies.
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Transcriptome-wide association 
studies

In the past transcriptomics has been 
applied primarily to small sample 
sizes. The resulting genes from these 
studies often did not replicate in 
independent studies. For example, 
there was not a single overlapping 
gene among the results of 3 indepen-
dent transcriptome-wide association 
studies of CHD, despite the fact that 
each study identified more than 20 
genes.39-42 Yet it is unclear whether this 

heterogeneity is entirely attributable to the small sample sizes of previous studies. In 
this thesis, some of the findings were characterized by a high degree of heterogene-
ity. Gene expression levels are highly variable, with large changes occurring over 
small time spans. This variability may partially explain the heterogeneity and lack 
of robust, replicating findings. Lastly, confounding and effect modification may be 
an issue, as gene expression levels are highly dependent on environmental factors 
such as diet and lifestyle. Furthermore, gene expression levels are tissue specific, and 
measurements in the Rotterdam Study and other cohort studies are done on whole 
blood, including a variety of cell types. If the abundance of a specific cell type is 
associated with the phenotype of interest, then any probe associated with this cell 
type is likely to be associated with the phenotype through confounding. Although 
we adjust for counts of a selected number of cell types, this does not address the full 
range of cell types.

Besides introducing heterogeneity, these issues also make it difficult to interpret 
the results. Assuming there is a causal relationship between expression levels of a 
gene and the phenotype, the question remains what the direction of effect is: does 
the phenotype affect the expression levels or vice versa? In theory this can be ad-
dressed using a Mendelian randomization approach: if genetic variants associated 
with expression levels of the gene of interest are also associated with the phenotype 
of interest this suggests that gene expression levels influence the phenotype.43 On 
the other hand, if genetic variants known to be associated with the phenotype are 
also associated with gene expression levels this suggests that the phenotype influ-
ences gene expression levels. Both directions can be explored, but there are two 
key limitations: 1) genetic variants may have pleiotropic effects and thereby influ-
ence the outcome through a pathway not involving the exposure and 2) the power 
needed to detect an association is much greater than in a normal association study, 

Figure 1: Absolute effect sizes of SNPs in the latest 
GWA study of height.38
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and depends on the strength of the association between the genetic variants and 
the exposure. Applying Mendelian randomization to any trait thus requires careful 
consideration. While the approach can suggest causality or a lack thereof, it only 
rarely provides a definitive conclusion.

Future research

Molecular epidemiology

Despite the challenges associated with dynamic data such as transcriptomics, the 
field of molecular epidemiology is moving towards incorporating more of it. New 
dynamic omics approaches include microRNA profiling, epigenetics, metabolo-
mics, proteomics, and microbiomics. The main features that these new approaches 
have in common with GWA studies is the use of large sample sizes, a hypothesis-
free approach, and a strict Bonferroni-correct P-value threshold to define significant 
associations. Yet unlike GWA studies they suffer from many of the same issues as 
transcriptomics. The greatest challenge of the coming years will be to establish a 
set of guidelines for the conduct of these studies that will ensure that they produce 
robust, valid, and reliable results. 

The other major change in the field will be the move from genotyping arrays and 
imputation to whole-genome sequencing.44 While many epidemiological studies 
are now in the process of sequencing their participants, it is unclear how long it will 
take before new findings arising from whole-genome sequencing are widespread. 
The genotyping-imputation approach is estimated to capture 97% of the variation 
of common variants and 68% of the variation of rare variants.45 One of the main 
advantages of whole-genome sequencing is thus likely to be the improved access 
to rare and population-specific variants, whereas the analysis of common variants 
will be improved to a smaller extent. The study of rare variants, however, requires 
large sample sizes that will initially be unavailable. Thus, as long as samples sizes 
using the genotyping-imputation approach are higher, the benefit of whole-genome 
sequencing is likely to be limited. For example, in our GWA study of circulating fi-
brinogen concentration we used 1000 genomes imputation, and we identified some 
of the same rare variants identified using whole-exome sequencing. 

Although better access to rare and population specific variants is one of the objec-
tives of whole-genome sequencing, the largest impact of whole-genome sequenc-
ing may be improvements in fine-mapping. In a traditional GWA study, the variant 
with the lowest P-value at a locus is selected as the lead variant and is reported in 
the results. All other things being equal this may be the optimal approach. However, 
all other things are often not equal: the imputation quality and sample size differ 
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among variants, and to make matter worse, some variants are not included at all. 
With whole-genome sequencing these issues can be avoided. All variants are di-
rectly measured and not imputed, so there are no differences in imputation quality. 
Sample sizes should be more consistent, since variants with poor imputation quality 
are no longer filtered out. Finally, although some QC filtering will still occur, more 
variants will be included. 

Coming closer to the causal variant does not, by itself, guarantee the identifica-
tion of the causal gene. However, the functional annotation of the genome is now 
rapidly evolving, spearheaded by large-scale efforts such as the ENCODE and 
Roadmap consortia.24,26 These consortia have identified promotors, enhancers, 
DNAse hypersensitive regions, among other regulatory elements in a variety of cell 
types. Together, the identification of the correct causal variant and the availability of 
accurate functional annotation of the variant will increase the chance of selecting 
the correct causal gene. These developments may finally allow GWA studies to fully 
deliver on their aim of uncovering new biology. 

Hemostasis and cardiovascular disease

We expect that the developments described above will continue to lead to new dis-
coveries in the genetics of complex traits. For hemostasis factors and cardiovascular 
disease, these discoveries may help to define the association between the two. The 
Mendelian randomization approach described above, may in the future provide 
evidence for a causal relationship between hemostatic factors and cardiovascular 
disease, or a lack thereof. If there is a causal relationship, using a bi-directional 
Mendelian randomization approach may clarify the direction of the relationship. So 
far the use of genetic evidence to identify a causal relationship between hemostatic 
factors and cardiovascular disease has been only partially successful. Variants as-
sociated with VWF, including a variant in the VWF gene, are associated with venous 
thrombosis.46 

On the contrary, there is evidence for a lack of a causal relationship between 
fibrinogen concentration and prevalent CHD and stroke. Variants found for fibrino-
gen concentration are not associated with these diseases.47 A variant in one of the 
genes encoding fibrinogen, FGG, has been identified to be associated with venous 
thrombosis in GWA studies of venous thrombosis.48 Interestingly, this is not one of 
the variants most associated with fibrinogen concentration, and also at the genome-
wide level variants associated with fibrinogen level do not appear to be associated 
with venous thrombosis.47 Instead of affecting fibrinogen concentration, the FGG 
variant might affect other aspects like fibrinogen activity or the proportion of differ-
ent fibrinogen isoforms. Therefore, while fibrinogen concentration does not appear 
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to be causally related to venous thrombosis in the general population, fibrinogen 
might be. 

Going beyond the hemostatic factors studied in this thesis, genes encoding several 
other hemostatic factors have been associated with CHD (plasminogen) and venous 
thrombosis (factor II, factor V, and factor XI).35,48 Additionally, variants in the ABO 
gene, which are strongly associated with VWF, are associated with CHD and venous 
thrombosis.35,48 The ABO gene codes for blood group, and thus its association with 
CHD and venous thrombosis might be explained by mechanisms not involving VWF. 

One important limitation of the Mendelian randomization work done so far is the 
use of prevalent rather than incident CHD, stroke, and venous thrombosis. Genetic 
variants in hemostatic factors are likely to influence the severity of the thrombotic 
response to plaque rupture, rather than earlier stages of cardiovascular events. They 
thereby affect the risk of an event, but also the severity of the event, which can cause 
Neyman’s bias (see Table 1). Associations of such variants with prevalent cardiovas-
cular disease may be bias towards the null, and remain hidden. Large-scale Mende-
lian randomization studies using incident CHD, stroke, and venous thrombosis are 
thus needed to provide a conclusive answer regarding the causal role of hemostatic 
factors in cardiovascular disease.  

Conclusions

In this thesis we identified many new genetic associations with hemostatic factors 
fibrinogen, factor VII, factor VIII, VWF, and ADAMTS13, providing new insight into 
their etiology. Additionally, we explored the association of ADAMTS13 with car-
diovascular risk factors and uncovered a complex scenario where low ADAMTS13 
activity is a risk factor for kidney function decline, but a protective factor for type 
2 diabetes. We implicated miR-4513 in the etiology of several cardiovascular risk 
factors and CHD, and found expression levels of three genes to be associated with 
atherosclerosis.  
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English Summary

Hemostasis, the processes causing bleeding to stop, and thrombosis, the formation 
of blood clots, are essential processes in the development of coronary heart disease 
(CHD). Many proteins are involved in hemostasis and thrombosis, and understand-
ing their biology and genetic background could lead to insights relevant to cardio-
vascular disease. In this thesis we explored five of these proteins, and also studied 
other genetic influences on atherosclerosis and CHD.

Chapter 2 focuses on genetic association studies of proteins involved in hemosta-
sis: fibrinogen, factor VII, factor VIII, von Willebrand factor (VWF), and ADAMTS13. In 
traditional genetic association studies, millions of variants are tested for association 
with a trait of interest. However, only a few hundred thousand variants are directly 
measured: the remaining variants are estimated, or imputed, using a reference panel 
that provides information about the correlation structure between the variants. 
The first widely used reference panel was the HapMap project, which provided 
information on around 2.5 million genetic variants. Recently, new reference panels 
such as the 1000 genomes project (1000G) have been released that are expected 
to improve the imputation process. In Chapter 2.1 we performed a genome-wide 
association study, based on 1000G imputation, of circulating fibrinogen concentra-
tion in over 120,000 individuals. We identify 18 new loci for fibrinogen, and at the 
two most strongly associated loci we detected additional low-frequency variants 
independently associated with fibrinogen. 

The use of 1000G imputation as opposed to HapMap imputation was not the 
only difference between our study and previous studies: our study was also larger. 
Therefore, to be able to adequately examine the benefit of using 1000G imputation 
over HapMap imputation, in Chapter 2.2 we performed a comparison of these two 
methods in exactly the same individuals, using circulating fibrinogen concentration 
as a quantitative example trait. We found that all other things remaining the same, 
using 1000G imputation lead to the discovery of 20% more loci. On the other hand, 
one locus that was found using HapMap imputation was not found using 1000G 
imputation. 

We then further examined the genetics of fibrinogen, but also factor VII, factor 
VIII, and VWF, using study designs especially suited for the identification of rare vari-
ants. In Chapter 2.3 we performed an exome-wide study using genotypes obtained 
from the Ilumina Exome Chip. We identified two low-frequency and ten rare variants 
associated with fibrinogen, factor VII, factor VIII, and VWF that were independent 
of known associations. In Chapter 2.4 we performed a similar study using exome 
sequencing data. We identified three new rare variants for factor VII and two new 
rare variants for factor VIII that were not discovered in the exome array study. For 
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fibrinogen, there was also an overlap between the genome-wide association study 
and the two exome studies.

In Chapter 2.5 we combined the genome-wide association study and exome chip 
approaches to study both common and rare genetic variants associated with AD-
AMTS13 activity. Using the genome-wide association study approach we identified 
two variants at the ADAMTS13 locus and one variant at the SUPT3H locus that were 
independently associated with ADAMTS13 activity. Using the exome chip approach, 
we identified a further three rare variants that were independently associated with 
ADAMTS13 activity. 

ADAMTS13 has so far primarily been investigated in relation to stroke and CHD. 
In Chapter 3 we further characterized ADAMTS13 by examining its association with 
cardiovascular risk factors. In Chapter 3.1 we explored the association of ADAMTS13 
activity with kidney function decline. We found that VWF-to-ADAMTS13 ratio was 
related to kidney function decline, an important direct cause of morbidity and 
mortality, and a strong risk factor for cardiovascular disease. A higher ADAMTS13 
activity was protective, as it was associated with a lower decline in kidney function. 
This finding was consistent with what we know about thrombotic thrombocytopenic 
purpura, a condition caused by a severe lack of ADAMTS13 that often results in 
kidney failure.

In Chapter 3.2 we examined the association of ADAMTS13 activity with incident 
type 2 diabetes. In contrast to our findings with kidney function decline, we found 
that high ADAMTS13 activity was associated with a higher risk of incident type 2 dia-
betes. This association persisted despite adjustment for potential confounders, and 
for fasting glucose and insulin. High ADAMTS13 activity was also associated with an 
increased risk of incident prediabetes. Thus, while ADAMTS13 activity may decrease 
the risk of cardiovascular disease through its antithrombotic effects and its asso-
ciation with chronic kidney disease, it appears to increase the risk of cardiovascular 
disease through its association with diabetes.

In Chapter 4 we investigated CHD and the underlying atherosclerosis directly. In 
Chapter 4.1 we evaluate the incremental predictive value of genetic risk scores in 
the risk prediction of incident coronary heart disease. We found that a genetic risk 
score using 152 genetic variants was not able to meaningfully improve risk predic-
tion of incident CHD. However, when we performed the analysis for prevalent CHD 
the improvements in prediction were considerably larger. We theorized that this 
discrepancy may be caused by the use of genetic variants discovered for prevalent 
rather than incident CHD.

In Chapter 4.2 we investigated the association of SNPs in the seed sequence of 
microRNAs with cardiovascular risk factors and disease. The seed sequence consists 
of 5-6 nucleotides in every microRNA that determine to which target genes the 
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microRNA can bind. We found that rs2168518, a variant in the seed sequence of 
miR-4513, was associated with fasting glucose, LDL-cholesterol and total cholesterol, 
systolic and diastolic blood pressure and the risk of CHD. The direction of the effects 
was consistent across the different phenotypes, with the mutant allele of rs2168518 
leading to an unfavorable cardio-metabolic profile. We experimentally showed 
that miR-4513 expression is significantly reduced in the presence of the rs2168518 
mutant allele, and we highlighted five target genes that may mediate the association 
between miR-4513 and these cardio-metabolic phenotypes. We validated one of 
these genes, GOSR2, as a target of miR-4513, and demonstrated that the regulation 
of GOSR2 by miR-4513 varies according to rs2168518. 

In a transcriptome-wide association expression levels of genes across the genome 
are associated with a trait of interest. In Chapter 4.3 we performed a transcriptome-
wide association study of carotid intima media thickness, a measure of atheroscle-
rosis. We identified 3 genes (TNFAIP3, CEBPD, and METRNL) with gene expression 
levels in blood that were associated with carotid intima media thickness. All of these 
genes were inversely associated with carotid intima media thickness: high expres-
sion levels were associated with less atherosclerosis. TNFAIP3 and METRNL have 
been described in the literature as anti-inflammatory genes, and CEBPD has been 
described as both pro and anti-inflammatory.

Finally, Chapter 5 contains an overview of the main findings of this thesis as well as 
their implications, discusses methodological issues, and explores future directions 
in molecular epidemiology in general, and in the molecular epidemiology of CHD 
and hemostasis in particular.
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Nederlandse samenvatting

Hemostase, het stoppen van bloeden, en trombose, de formatie van bloedproppen, 
zijn essentiële processen in de ontwikkeling van hart- en vaat ziekten zoals coronaire 
hartziekten. De breuk van atherosclerotische plaques leidt immers tot een hartaanval 
door het uitlokken van bloedstolling: het zijn de bloedproppen in de slagaders van 
het hart die de bloedtoevoer naar het hart blokkeren. Vele eiwitten spelen een rol 
in hemostase en trombose. Door de biologie en genetische achtergrond van deze 
eiwitten beter te begrijpen, kunnen we meer te weten komen over het ontstaan 
van hart- en vaat ziekten. In deze thesis hebben we vijf hemostase-eiwitten alsook 
genetische risicofactoren van atherosclerose en coronaire hartziekten bestudeerd.

Hoofdstuk 2 bestaat uit genetische associatie studies van de hemostase-eiwitten 
fibrinogeen, factor VII, factor VIII, von Willebrand factor (VWF), en ADAMTS13. Ge-
netische associatie studies testen de associatie tussen miljoenen genetische varian-
ten en een fenotype. Echter, enkel een paar honderdduizend van deze varianten zijn 
direct gemeten: de rest van de varianten wordt geïmputeerd met behulp van een 
referentie populatie. Op basis van deze referentie populatie kan men de correlatie 
tussen de genetische varianten schatten. Het HapMap project was de eerste referen-
tie populatie die het mogelijk maakte om de correlatie tussen genetische varianten 
te schatten en  niet-direct gemeten varianten te imputeren. Sinds kort zijn er nieuwe 
referentie populaties beschikbaar die het imputatieproces naar verwachting verbe-
teren. Het “1000 genomes project” (1000G) is zo een nieuwe referentie populatie. 
In Hoofdstuk 2.1 hebben we een genoomwijde associatiestudie van fibrinogeen uit-
gevoerd in meer dan 120.000 mensen, gebaseerd op 1000G imputatie. Met gebruik 
van deze nieuwe referentie populatie vonden we 18 nieuwe genetische loci voor 
fibrinogeen. Bovendien vonden we dat in de twee sterkste loci voor fibrinogeen 
meerdere genetische varianten, waaronder zeldzame varianten, onafhankelijk van 
elkaar geassocieerd waren met fibrinogeen.

Het gebruik van 1000G imputatie was niet het enige verschil tussen onze studie 
naar genetische factoren voor fibrinogeen levels en voorgaande studies: onze studie 
was ook groter in vergelijking met eerdere studies. Om het voordeel van het gebruik 
van 1000G imputatie ten opzichte van HapMap imputatie nader te bekijken, heb-
ben we in Hoofdstuk 2.2 beide methoden vergeleken in exact dezelfde mensen.
We vonden dat 1000G imputatie 20% meer loci identificeert in vergelijking met 
HapMap imputatie, aannemende dat alle andere factoren hetzelfde blijven. Echter, 
een locus die we in de HapMap studie vonden, was niet significant geassocieerd in 
de 1000G geïmputeerde studie.

Vervolgens hebben we de genetica van fibrinogeen, alsook die van factor VII, 
factor VIII en VWF, bestudeerd met gebruik van een speciaal ontworpen studie 
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methode voor de identificatie van zeldzame genetische varianten. In Hoofdstuk 

2.3 beschrijven we een exoomwijde studie uitgevoerd met gebruik van de Illu-
mina Exome Chip. We vonden twee varianten met een lage allel frequentie en tien 
zeldzame varianten die geassocieerd waren met fibrinogeen, factor VII, factor VIII 
en VWF, onafhankelijk van gekende associaties. In Hoofdstuk 2.4 hebben we een 
zelfde soort studie verricht met gebruik van exoom sequencing data. In deze studie 
vonden we drie nieuwe varianten voor factor VII en twee nieuwe varianten voor 
factor VIII. Deze varianten waren nieuw ten opzichte van de exome array studie. We 
vonden een overlap tussen de genoomwijde associatie studie gebaseerd op 1000G 
imputatie en de twee exoom studies van fibrinogeen.  

In Hoofdstuk 2.5 hebben we de genoomwijde associatie studie methode samen 
met de exoom chip methode gebruikt om frequente en zeldzame genetische varian-
ten voor ADAMTS13 activiteit te vinden. De genoomwijde associatie studie methode 
vond twee varianten op de ADAMTS13 locus en een variant in de SUPT3H locus die 
onafhankelijk van elkaar geassocieerd waren met ADAMTS13 activiteit. De exoom 
chip methode resulteerde in drie extra varianten voor ADAMTS13 activiteit. 

In het verleden hebben onderzoekers vooral de associatie tussen ADAMTS13 en 
cardiovasculaire ziekte bestudeerd. In Hoofdstuk 3 hebben we de rol van ADAMTS13 
met betrekking tot cardiovasculaire risicofactoren onderzocht. We hebben de 
associatie tussen ADAMTS13 activiteit en nierfunctie achteruitgang in Hoofdstuk 

3.1 beschreven. We vonden dat de VWF/ADAMTS13 ratio geassocieerd was met 
nierfunctie achteruitgang, een sterke risicofactor voor cardiovasculair ziekte en een 
belangrijke directe oorzaak van morbiditeit en mortaliteit. Een hogere ADAMTS13 
activiteit was beschermend gezien het geassocieerd was met een tragere nierfunctie 
achteruitgang. Deze bevinding is in lijn met wat we weten van trombotische trom-
bocytopenische purpura, een ziekte veroorzaakt door een laag ADAMTS13 die zich 
vaak presenteert met nierfalen.

In Hoofdstuk 3.2 hebben we de associatie tussen ADAMTS13 activiteit en de 
incidentie van type 2 diabetes bestudeerd. In tegenstelling tot de bevindingen 
met nierfunctie achteruitgang vonden we dat hoger ADAMTS13 geassocieerd was 
met een hoger risico op type 2 diabetes. De associatie veranderde nauwelijks na 
adjusteren voor mogelijke confounders en vastende glucose en insuline waarden. 
We concluderen dat ADAMTS13 activiteit het risico op cardiovasculaire ziekte kan 
verlagen door een mogelijk antitrombotisch en dus protectief effect op nierinsuffici-
ëntie. Tevens kan ADAMTS13 activiteit het risico op cardiovasculaire ziekte verhogen 
door de associatie met diabetes.

In Hoofdstuk 4 hebben we cardiovasculaire ziekte zelf bestudeerd, alsook de on-
derliggende atherosclerose. In Hoofdstuk 4.1 hebben we de toegevoegde waarde 
van een genetische risico score voor het voorspellen van een toekomstig hartinfarct 
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onderzocht. We vonden geen noemenswaardige verbetering in het voorspellen 
van een toekomstig hartinfarct met een genetische risico score opgebouwd uit 152 
genetische varianten. Desalniettemin, de predictie voor prevalente coronaire hart-
ziekte verbeterde wel substantieel. De discrepantie tussen prevalente en incidente 
predictie van coronaire hartziekte kan het gevolg zijn van het gebruik  van gene-
tische varianten gevonden in studies voor prevalente hartziekte, en niet incidente 
hartziekte.  

In Hoofdstuk 4.2 hebben we de associatie tussen SNPs in de zogenoemde “seed” 
sequentie van microRNAs en cardiovasculaire ziekte en zijn risicofactoren onder-
zocht. Deze “seed” sequentie bestaat uit vijf tot zes nucleotiden en bepaalt aan 
welke genen het microRNA kan binden. We vonden dat rs2168518, een variant in 
de sequentie van miR-4513, geassocieerd was met vastende glucose waarden, LDL-
cholesterol en totaal cholesterol, alsook systolische en diastolische bloeddruk en 
het risico op coronaire hartziekte. De richting van het effect was overeenkomstig 
met de andere fenotypes: het zeldzame allel van rs2168518 was geassocieerd met 
een slechter cardio-metabool profiel. Middels experimenteel onderzoek toonden 
we aan dat het zeldzame allel van rs2168518 de expressie van miR-4513 significant 
verminderde. Daarnaast konden we vijf genen aanwijzen die de associatie tus-
sen miR-4513 en deze cardio-metabole fenotypes zouden kunnen mediëren. We 
valideerden een van deze genen (GOSR2), en we toonden aan dat de regulerende 
werking van miR-4513 op GOSR2 varieerde op basis van het genotype van rs2168518.

In transcriptoomwijde associatie studies associeert men expressie levels van alle 
genen in het genoom met een phenotype. In Hoofdstuk 4.3 hebben we en trans-
criptoomwijde associatie studie uitgevoerd op carotis intima media dikte, een maat 
van atherosclerose. De expressie van drie genen (TNFAIP3, CEBPD en METRNL) was 
geassocieerd met carotis intima media dikte. Deze drie genen waren alle negatief 
geassocieerd met carotis intima media dikte: hogere expressie was geassocieerd met 
minder atherosclerose. TNAIF3 en METRNL zijn beschreven als anti-inflammatoire 
genen in de literatuur, daar waar CEBPD zowel pro- als anti-inflammatoire effecten 
kan hebben.

Tenslotte bespreken we in Hoofdstuk 5 de hoofdbevindingen van deze thesis 
alsook de implicaties en methodologische aspecten. Tevens bespreken we de 
toekomstige mogelijkheden in de moleculaire epidemiologie, meer specifiek de 
moleculaire epidemiologie van coronaire hartziekte en hemostase.
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