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Mutations in TBL1X Are Associated With
Central Hypothyroidism

Charlotte A. Heinen, Monique Losekoot, Yu Sun, Peter J. Watson, Louise Fairall,
Sjoerd D. Joustra, Nitash Zwaveling-Soonawala, Wilma Oostdijk,

Erica L. T. van den Akker, Mariélle Alders, Gijs W. E. Santen, Rick R. van Rijn,
Wouter A. Dreschler, Olga V. Surovtseva, Nienke R. Biermasz,
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Eric Fliers,* and A. S. Paul van Trotsenburg*+

Context: Isolated congenital central hypothyroidism (CeH) can result from mutations in TRHR,
TSHB, and IGSF1, but its etiology often remains unexplained. We identified a missense mutation
in the transducin g-like protein 1, X-linked (TBL7X) gene in three relatives diagnosed with isolated
CeH. TBL1X is part of the thyroid hormone receptor-corepressor complex.

Objective: The objectives of the study were the identification of TBL1X mutations in patients with
unexplained isolated CeH, Sanger sequencing of relatives of affected individuals, and clinical and
biochemical characterization; in vitro investigation of functional consequences of mutations; and
MRNA expression in, and immunostaining of, human hypothalami and pituitary glands.

Design: This was an observational study.
Setting: The study was conducted at university medical centers.
Patients: Nineteen individuals with and seven without a mutation participated in the study.

Main Outcome Measures: Outcome measures included sequencing results, clinical and biochemical
characteristics of mutation carriers, and results of in vitro functional and expression studies.

Results: Sanger sequencing yielded five additional mutations. All patients (n = 8; six males) were
previously diagnosed with CeH (free T, [FT4] concentration below the reference interval, normal thy-
rotropin). Eleven relatives (two males) also carried mutations. One female had CeH, whereas 10 others
had low-normal FT4 concentrations. As a group, adult mutation carriers had 20%-25% lower FT4
concentrations than controls. Twelve of 19 evaluated carriers had hearing loss. Mutations are located
in the highly conserved WD40-repeat domain of the protein, influencing its expression and thermal
stability. TBL1X mRNA and protein are expressed in the human hypothalamus and pituitary.

Conclusions: TBL1X mutations are associated with CeH and hearing loss. FT4 concentrations in
mutation carriers vary from low-normal to values compatible with CeH. (J Clin Endocrinol Metab
101: 4564-4573, 2016)

entral hypothyroidism (CeH) is characterized by sub-
C optimal thyroid hormone (TH) secretion due to in-
sufficient stimulation by TSH of an otherwise normal thy-
roid gland. CeH may be caused by congenital or acquired
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disorders of the pituitary gland or hypothalamus (1). The
diagnosis is based on a plasma free T, (FT4) concentration
below the reference interval in combination with an in-
appropriately normal TSH. Congenital CeH has an esti-
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Abbreviations: BMI, body mass index; CD, circular dichroism; CeH, central hypothyroidism;
CH, congenital hypothyroidism; CoR, corepressor; FT4, free T,; GPS2, G protein pathway
suppressor 2; HDAC3, histone deacetylase 3; HPT, hypothalamus-pituitary-thyroid; LT4,
levothyroxine; NCoR, nuclear receptor corepressor; PTA, pure tone audiometry; PVN, para-
ventricular nucleus; SDS, SD score; SMRT, silencing mediator for retinoid and thyroid
hormone receptors; TBL1X, transducin B-like protein 1, X linked; TH, thyroid hormone; TR,
TH receptor; TRH, thyrotropin-releasing hormone; WES, whole-exome sequencing.
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mated incidence of 1 in 18 000 and is isolated in 25% of
cases (2). Until now, three genetic causes of isolated CeH
have been discovered: mutations in TRHR, TSHB, and
IGSF1 (3-5). Yet the etiology of most cases of isolated
disease has remained unexplained.

In our ongoing search for other genetic causes, we stud-
ied three patients from one family with isolated CeH who
tested negative for mutations in TRHR, TSHB, and
IGSF1. In these patients, we identified a missense muta-
tion in the gene encoding transducin B-like protein 1, X-
linked (TBL1X). Sanger sequencing of TBL1X in 50 other
patients with unexplained isolated CeH yielded five other
missense mutations in five families.

TBL1X is an essential subunit of the nuclear receptor
corepressor (NCoR)-silencing mediator for retinoid and
thyroid hormone receptors (SMRT) complex, the major
TH receptor (TR) corepressor (CoR) involved in T-reg-
ulated gene expression. Disruption of NCoR in mice was
found to result in decreased TH synthesis while possibly
increasing peripheral sensitivity to TH (6). In humans,
TBL1X deletions have been associated with hearing loss
(7, 8) but not with CeH.

Here we report the phenotype of the probands and
relatives with a mutation in TBL1X and the results of
structural and functional studies of the mutated TBL1X
protein.

Materials and Methods

Acquisition of patients

In ongoing studies on X-linked CeH, we performed X-exome
sequencing in three patients with CeH and two relatives from one
family (family A, Figure 1A). The 25-year-old proband (A.II1.8)
and his sister’s 1.5-year-old son (A.IV.1) were diagnosed with
CeH after detection by the Dutch T,-based neonatal congenital
hypothyroidism (CH) screening (2). They were treated with levo-
thyroxine (LT4) from the ages of 6 months and 16 days, respec-
tively. The proband’s sister (A.II1.6) was diagnosed with CeH
when she was 27 years old and was subsequently treated with
LT4. An overview of the X-exome sequencing results is summa-
rized in Supplemental Table 1. After identification of a poten-
tially pathogenic TBL1X variant in these patients, Sanger se-
quencing was performed on DNA samples from 50 unrelated
patients with idiopathic CeH, resulting in the discovery of five
other mutations in five patients. Through family studies, 11
other individuals with a mutation were detected. Written in-
formed consent was obtained in all cases.
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Phenotyping

All individuals with a mutation were phenotyped in detail,
including assessment of growth and development, biochemical
evaluation of endocrine axes (see Supplemental Material), brain
magnetic resonance imaging, thyroid and testicular ultrasound,
and pure tone audiometry (PTA) or otoacoustic emission testing.
Because mice with a loss of hepatic TBL1X show hepatic hyper-
triglyceridemia and steatosis (9), plasma liver enzymes and lipids
were measured. PTA was performed in a soundproof booth,
using a manual audiometer (Madsen Electronics) with TDH-39
headphones, calibrated according to International Organization
for Standardization-389-1, with adequate masking (10). To
compare hearing thresholds between groups, we used the air
conduction thresholds, corrected for gender and age, according
to the International Organization for Standardization 1999 (11).
Seven relatives without a mutation were invited for evaluation of
the hypothalamus-pituitary-thyroid (HPT) axis, thyroid ultra-
sound, and PTA to serve as controls. A two-way, repeated-mea-
sures ANOVA analysis was used to compare the corrected
thresholds of individuals with a mutation with those of relatives
without a mutation. A value of P < .05 was considered to be
significant. SPSS version 22 for Windows (SPSS, Inc) was used.
The Medical Ethics Committee of the Academic Medical Centre
(Amsterdam, The Netherlands) approved the study protocol
(NL47462.018.13).

Genetic analyses

Genomic DNA isolation and X-exome enrichment were per-
formed as described previously (5). The KAPA library prepara-
tion kit (Illumina) was used to prepare the DNA for X-exome
sequencing on the Illumina MiSeq-generating, 250-bp paired-
end reads. Read mapping, variant calling, annotation, and fil-
tering strategy were essentially as described earlier (12). Candi-
date variants were confirmed by Sanger sequencing, and Sanger
sequencing of the complete coding region of TBL1X in unrelated
individuals with CeH was performed using standard procedures
(conditions and primer sequences are available upon request).
All available first- and second-degree relatives of the probands
were invited for molecular analysis. X-chromosome inactivation
analysis was performed in females with a mutation as described
previously (13).

Genes known or expected to cause isolated CeH (TSHB, TRHR,
IGSF1) were sequenced using Sanger sequencing in the probands of
all families. Whole-exome sequencing (WES) and variant calling
were performed by Beijing Genomics Institute using the Complete
Genetics platform in all individuals with a mutation and CeH from
families A-D to evaluate the presence of potentially pathogenic
variants in other genes. Rare variants were identified by focusing on
protein-altering and splice-site changing mutations that were pres-
ent at a frequency of less than 1% in the general population (based
on dbSNP database [dbSNP build 141 GRCh37.p13], ESP6500
[http://evs.gs.washington.edu/EVS/], 1000 Genomes project [1000
Genomes phase 3 release version 5.20130502], GoNL [http://
www.nlgenome.nl/], and more than 900 in-house reference sam-
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Figure 1. Pedigrees of the six families in which TBL7X mutations were found. Probands are indicated by an arrow, and small horizontal lines
indicate that mutation analysis was performed. Black and gray filled symbols represent mutation-carrying individuals with CeH and euthyroidism,
respectively. Pedigree of family A (A), family B (B), family C (C), family D (D), family E (E), and family F (F) is shown.

ples). Missense mutations that were not likely to be pathogenic
based on in silico prediction (Sorting Intolerant From Tolerant
score >0.1, and Polymorphism Phenotyping prediction <0.90)
were discarded. All variants were additionally checked againsta list
of genes that are known or presumed to be involved in HPT axis
functioning based on their position in biological pathways, expres-
sion, or animal models (Supplemental Table 2C). In family A, dis-
playing vertical transmission, all variants present in each of the three
affected members were checked against variants in a gene panel
consisting of genes defined to be medically relevant by the Medical
Exome Project (14) and Clinical Research Exome (Agilent Tech-
nologies) or listed as disease causing in the online inheritance in man
database.

Protein structural and functional studies

To express the TBL1-histone deacetylase 3 (HDAC3)-G pro-
tein pathway suppressor 2 (GPS2)-SMRT chimera complex, full-
length TBL1X and HDAC3 were cloned into the pcDNA3 vec-
tor, a chimera between GPS2 and SMRT was cloned into the
pcDNA3 vector with a N-terminal 10xHis-3xFlag tagand a TEV
protease cleavage site. To express TBL1X in isolation, full-length
TBL1X and the TBL1X WD40 domain (amino acids 100-526)
were cloned into the pcDNA3 vector with a N-terminal 10xHis-
3xFlag tag and a TEV protease cleavage site. Transient trans-
fections in mammalian cells and protein purifications were per-
formed as described previously (see Supplemental Material)
(15).

mRNA expression and immunostaining

We studied eight human hypothalami and five pituitary
glands obtained from the Netherlands Brain Bank, in accordance
with the formal permission for the use of human brain material
for research purposes. Three unfixed, frozen (—80°C) hypothal-
ami and three pituitary glands were used for mRNA expression,
and three paraformaldehyde-fixed hypothalami were used for
immunocytochemistry. In addition, we used frozen hypothala-

mus and pituitary glands from two patients for Western blot
analysis (see Supplemental Material).

Results

Genetic analyses

X-exome sequencing and subsequent filtering steps
yielded a single missense variant in TBL1X (transcript
accession number NM_001139466.1) in the three pa-
tients with CeH from family A, subsequently confirmed by
Sanger sequencing. Sanger sequencing of 50 other indi-
viduals with idiopathic CeH yielded mutations in five un-
related patients. None of the detected mutations were
present in available databases (dbSNP, 1000 Genomes
Project, Human Gene Mutation Database, National
Heart, Lung, and Blood Institute Exome Sequencing Proj-
ect, GONL) or previously reported. All mutations were
located in the highly conserved WD40-repeat domains of
the TBL1X protein (Figure 2; National Heart, Lung, and
Blood Institute reference sequence: NP_001132940.1).
All available first- and second-degree relatives of the pro-
bands were tested for mutations (Figure 1) and assessed
clinically (Table 1).

The variant identified in family A (Figure 1A) was also
found in three relatives. A second mutation was found in
a 2.5-year-old boy with CeH (Figure 1B; B.II1.4), detected
through the Dutch neonatal CH screening, and in his
mother. A third mutation was found in a 15-year-old girl
(Figure 1C; C.IL.1) diagnosed with CeH because of fatigue,
weight gain, and secondary amenorrhea. The mutation
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Figure 2. Schematic representations of the mutated amino-acids. The
mutated amino-acids are shown on the crystal structure of the
TBL1XR1 WD40 domain (PDB ID 4LG9). In each case the mutated
residues are shown in orange, TBL1XR1 in gray, and water molecules
in the crystal structure in cyan. The numbering of the amino acids is as
for TBL1X. A, N365. B, H453. C, W369. D, c.1312-1G>A splice
mutation with the missing amino acids in cyan (starting at asterisk).

E, Surface representation of the WD40 domain to show the mutations
that are on the surface. F, Transparent representation of the WD40
domain to show the buried and surface mutations.

was also found in her father and two sisters. The fourth
mutation was found in a 16-year-old boy (Figure 1D;
D.III.1), diagnosed with CeH after presenting with obe-
sity, concentration difficulties, and macrocephaly. His
mother had the same mutation. The fifth mutation was
found in a 17-year-old boy (Figure 1E; E.I.1) diagnosed
with CeH after presenting with short stature. The muta-
tion was also found in his mother and sister. The sixth
mutation was found in a 6-month-old boy (Figure 1F;
F.IL.1), detected through the Dutch neonatal CH screen-
ing, and in his mother. X-inactivation analysis showed
absence of skewing in A.II.6, C.II.1, and E.IL.2 (diagnosed
with CeH) and A.IL.6, B.I.4, and C.II.2 (low normal FT4
concentrations).

Sanger sequencing failed to show a variant in any of the
genes known to cause CeH. Using WES, the three affected
members of family A shared variants in eight genes (Sup-
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plemental Table 2A). Mutations in four genes are not
known to be associated with a specific phenotype. The
phenotypes associated with mutations in the other four
genes were not present in our patients and are likely not
causative. WES in the six patients of families A-D yielded
variants in six genes, two of which cause phenotypes with
dominant inheritance not present in our patients (Supple-
mental Table 2B). Three of the remaining four genes
(BRD8, NCOA6, MED15) may play a role in mediating
TH-dependent activation of gene transcription (16-18).
Sanger sequencing showed that two of the five relatives
with a TBL1X mutation and a low normal FT4 had the
same variant as the proband in their family, and three did
not (Supplemental Table 2B). There was no relation be-
tween FT4 concentrations and the presence or absence of
variants, suggesting the absence of synergy of TBL1X mu-
tations and variants. Mutations in the fourth gene (THRB)
have been associated with resistance to thyroid hormone,
accompanied by elevated TH levels. This was not present
in our patients.

Clinical phenotyping

Endocrine and anthropometric findings

The six probands and two members from family A had
previously shown biochemical evidence of CeH, with FT4
concentrations between 56 % and 93% of the lower limit of
the reference interval (Table 1 and Figure 3). All were treated
with LT4 during phenotyping. Ten individuals with a mu-
tation (two males) had FT4 concentrations within the lower
half of the reference interval (Tables 1 and Figure 3). E.IL.2
had a FT4 concentration below the lower limit of the refer-
ence interval, without complaints. She is currently being
monitored. Compared with a large adult control group, the
FT4 concentrations of the 16 adults with a mutation were
clearly and significantly lower (same FT4 assay, same labo-
ratory; 11.2 vs 14.6 pmol/L, P < .000) (Figure 3). The seven
relatives without a mutation had FT4 concentrations within
the reference interval, similar to the controls (14.1 vs 14.6
pmol/L; P = .616) (Supplemental Table 3 and Figure 3). T,
concentrations were normal in all individuals with a muta-
tion (Supplemental Table 4). Thyrotropin-releasing hor-
mone (TRH) stimulation testing before LT4 treatment per-
formed in six individuals with a mutation and CeH showed
normal timing and peak concentration of TSH (Supplemen-
tal Table 5) (19), indicating intact responsiveness of the pi-
tuitary gland to TRH.

All individuals with a mutation had a normal height (20)
and normal age at onset and progression of puberty. Body
mass index (BMI) was greater than 30 kg/m? in three of the
nine adults and +2 or greater SD score (SDS) in three of the
10 children (20). Biochemical evaluation of the endocrine
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Table 1. Characteristics of the Probands and Relatives With a TBL7X Mutation Identified by Sanger Sequencing
Age at TSH, mU/L, FT4, pmol/L,
Age at Confirmation Without Without Thyroid
Nucleotide Amino Acid Diagnosis TBL1X Treatment Treatment Volume on

Case Sex Alteration Alteration of CeH, y Mutation, y (RI, 0.5-5.0) (RI, 10-23) BMI Ultrasound (RI)
All3 M C.1246A>T N365Y — 53 1.50 10.2 21.4 kg/m? 8.1 mL (4.9-19.1)
All.6 F C.1246A>T N365Y — 51 3.40 10.4 25.4 kg/m? 8.3 mL (4.9-19.1)
AlllLe F C.1246A>T N365Y 27 29 2.50 8.7 25.5 kg/m? 4.4 mL(4.9-19.1)
AlllL8 M C.1246A>T N365Y 2 wk? 25 1.8 6.8° 24.3 kg/m? 3mL (4.9-19.1)
AlV.1 M C.1246A>T N365Y 2 wk? 1.5 4.0 (1.7-7.9) 6.7 (12-30) —1.2SDS 0 mL® (p2.5: 1)
AlV.2 F C.1246A>T N365Y — 1.5 1.90 154 +0.4 SDS 1.8 mL (p50: 2)
B.Il.4 F c.1510C>T H453Y — 42 3.0 16.3 44.4 kg/m? 17.3(4.9-19.1)
B4 M c.1510C>T H453Y 2 wk? 2 6.8 (1.7-7.9) 11.2 (12-30) +0.6 SDS 0.9 mL (p2.5: 1)
C.l1 M C.1249G>A A366T — 50 1.70 135 24.8 kg/m? 9.3 mL (4.9-19.1)
clr F C.1249G>A A366T 14 15 2.4 6.8 +2.1SDS 4.9 mL(4.9-19.1)
Cl.2 F C.1249G>A A366T — 13 2.7 11.9 +1.5SDS 5.2 mL (p50: 7.4)
C..3 F C.1249G>A A366T — 10 1.9 12.5 —0.1SDS 3.9 mL (p50: 5.2)
D.II.2 F c.1526A>G Y458C — 50 0.44 14.3 33.1 kg/m? 14.7 mL (4.9-19.1)
D.lI1 M c.1526A>G Y458C 6 16 1.2 7.8 +4.1 SDS 3.3mL(4.9-19.1)
El2 F c.1312-1G>A Splice — 48 2.8 15.0 32.5 kg/m? 8.2 mL (4.9-19.1)
E.Il1 M c.1312-1G>A Splice 14 17 2.38 7.04 +0.7 SDS 6.1 mL (4.9-19.1)
E.Il.2 F c.1312-1G>A Splice 15 15 3.20 9.5 +2.0 SDS 7.8 mL (p50: 9.1)
F.l1.2 F €.1258T>C W369R — 22 1.40 134 21.9 kg/m? 6.3 mL (4.9-19.1)
F.L1 M €.1258T>C W369R 2 wk? 6 mo 2.30(1.7-7.9) 7.9 (12-30) +0.8 SDS X

Abbreviations: F, female; L, left; M, male; R, right; RI, reference interval; x, missing value. Dashes indicate central hypothyroidism is not present.
Reference intervals for FT4 are 10-23 pmol/L and in neonates, 12-30 pmol/L. Reference intervals for TSH are 0.5-5 mU/L and in neonates, 1.7-7.9
mU/L. BMI is expressed as kilograms per square meter or SDS calculated with Dutch reference data (20). Reference intervals for thyroid size for age

are reported elsewhere (22).

@ Detected by neonatal screening.

b Determined at the age of 3 months.

 Thyroid tissue too small to measure reliably.

4 Measurements done in laboratory with different reference values.

axes other than the HPT axis was normal (Supplemental

Table 4).

Imaging

Brain magnetic resonance imaging performed in six
individuals with a mutation and CeH showed normal
hypothalamic and pituitary morphology. Adolescent
and adult males had a normal testicular size (21). Thy-
roid ultrasonography of seven of eight individuals with
a mutation who were treated with T, showed thyroid
volumes below the percentile of 2.5 of age-specific
reference intervals. Nine of 11 individuals with a muta-
tion who were not treated with LT4 had thyroid
volumes below the mean of age-specific reference
intervals (22).

Audiometry

Individuals with a mutation had poorer hearing
thresholds at high frequencies in PTA than their rela-
tives without a mutation (Figure 4 and Supplemental
Table 6), but the difference did not reach statistical sig-
nificance. In total, 11 of the 15 individuals with muta-
tions evaluated with PTA had hearing thresholds poorer
than the age-specific reference interval (23). There was
no correlation between the severity of the hearing loss
and FT4 concentrations.

Of the three children evaluated with otoacoustic emission
testing, one proband had poorer hearing thresholds relative
to reference ranges, whereas two relatives with a mutation
(one with CeH) had hearing thresholds at the lower limit of
normal (24). Transiently evoked otoacoustic emissions and
distortion product otoacoustic emissions were analyzed in
6-month-old F.II.1, which showed no abnormalities. The
main clinical manifestation of hearing loss was having diffi-
culties in following a conversation in a noisy environment.

Liver enzymes and lipids

Liver enzymes were normal in all individuals with mu-
tations except D.III.1, who showed slight elevation most
likely caused by obesity (Supplemental Table 7). Low-
density lipoprotein or total cholesterol concentrations
were above the upper limit of age-specific reference inter-
vals in one of the eight evaluated individuals with a mu-
tation and CeH and in five of the nine evaluated individ-
uals with a mutation without CeH (Supplemental Table
7). Because family C had a positive family history of early
cardiovascular disease, C.I1.2 was screened for familial
hypercholesterolemia, which did not demonstrate muta-
tions in the LDLR and the APOB genes.

Protein structural analyses

To investigate the functional consequences of the mu-
tations in families A-D in the TBL1X WD40 domains, we
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Figure 3. Graphic representation of plasma FT4 and TSH concentrations. Plasma FT4 (left panel)
and TSH concentrations (right panel) in untreated condition are shown. Neonates are those with
a TBL1X mutation. Adults/children are adults and children with a TBL7X mutation (black filled
symbols: diagnosed with CeH; gray filled symbols: biochemically euthyroid). Relatives are adult
relatives without a TBL7X mutation. Controls are adult controls. The gray-shaded areas denote
the reference intervals. Reference interval for FT4 is 10-23 pmol/L; in neonates, 12-30 pmol/L;
for TSH, 0.5-5 mU/L; in neonates 1.7-7.9 mU/L. The adult controls (n = 136) were recruited for
earlier studies for the express purpose of establishing reference intervals. They were all healthy

subjects, not suspected of an endocrine disorder.

expressed isolated WD40 domains and the full-length pro-
teins. We also coexpressed full-length proteins with inter-
action partners GPS2/SMRT and HDACS3 (Figure 5).
TBL1X proteins containing the mutation N365Y or
H453Y were poorly expressed compared with wild-type
protein and were associated with elevated expression of
the chaperone heat shock protein 70 kDa, suggesting that
these mutations result in aberrant protein folding or sta-
bility. This fits well with their largely buried location in the
structure of the WD40 domain, such that mutation to a
larger tyrosine side chain cannot be tolerated. Due to the

either in isolation or in complex with
partner proteins.

To investigate whether the A366T
and Y458C mutations result in an al-
tered protein structure or stability, we
performed circular dichroism (CD)-
monitored thermal denaturation
studies of the WD40 domains (Figure
5). The wild-type and A366T and
Y458C mutant WD40 domains
showed CD spectra characteristic of
their largely B-sheet structure. Both
wild-type and A366T mutant WD40
domains underwent a cooperative denaturation at 70°C.
Together these data suggest that this protein is correctly
folded. In contrast, the Y458C mutation appeared to un-
dergo thermal denaturation at a lower temperature, suggest-
ing reduced thermal stability that may in part be responsible
for its impaired biological function. We also performed a
proteomic analysis of proteins that copurified with the
A366T and Y458C mutant proteins and compared this with
wild-type protein. In all cases the proteins associated with
endogenous proteins known to be part of the corepressor
complex. The consistent difference between the A366T and
Y458C mutants and wild-type pro-
teins was that the mutants showed as-
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Figure 4. Mean and SD of decibels of hearing loss. Hearing loss per frequency in the right (left
panel) and left ear (right panel) of individuals with a mutation (solid line) and relatives without a

mutation (dashed line).

thalamic nuclei (suprachiasmatic
nucleus, supraoptic nucleus, para-

ventricular nucleus, infundibular
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Figure 5. Transient expression in HEK293 cells and small-scale purification of wild-type and mutated TBL1X. A, SDS-PAGE of the purification of
the isolated wild-type TBL1X and mutant WD40 domains. B, SDS-PAGE of the purification of the wild-type and mutant TBL1X-HDAC3-GPS2-SMRT
chimera complex. C, Transient expression in HEK293 cells and small-scale purification of wild-type and mutated full-length TBL1X. SDS-PAGE of
the purification of the TBL1X, R is the resin, T is the TEV-eluted protein, and P is the peptide-eluted protein. D, CD spectra from 250 to 200 nm at
20°C of wild-type, A366T, and Y458C TBL1X WD40 domains. E, Melting curves at 215 nm from 10°C to 90°C of wild-type, A366T, and Y458C

TBL1X WD40 domains.

nucleus, and lateral hypothalamic area) of each hypothal-
amus studied (Figure 6A). A Western blot showed clear
bands in the pituitary (n = 2) and hypothalamus (n = 2)
at the expected height (55 kDa) for TBL1X (Figure 6B).
TBL1X immunostaining was present throughout the hy-
pothalamic gray. In particular, prominent neuronal stain-
ing was present in the paraventricular and supraoptic nu-
cleus (Figure 6C).

Discussion

In this study we identified six missense mutations in
TBL1X in eight patients (six males) from six families pre-
viously diagnosed with CeH and in 11 of their relatives
(two males). Only one of these relatives met the biochem-
ical criteria of CeH (E.IL.2). The other 10 relatives had
plasma FT4 concentrations in the lower half of the refer-

ence interval. As a group, the 16 adult mutation carriers
had 20%-25% lower plasma FT4 concentrations than
controls, whereas relatives without a mutation had FT4
concentrations similar to controls. All individuals with a
mutation and CeH had a very small thyroid gland, similar
to patients with TSHB and IGSF1 mutations (25, 26). In
combination with these very small thyroid glands and rel-
atively low thyroid volumes in individuals with a mutation
without CeH, the lowered FT4 concentrations are sugges-
tive of longstanding, lower-than-normal TSH stimulation.
TBL1X has not been associated with CeH or lower-than-
average FT4 concentrations before. In addition, 12 of 19
evaluated individuals with a mutation had mild to pro-
found hearing loss.

TBL1X consists of an N-terminal tetramerization do-
main and a WD40 domain. Whereas the tetramerization
domain mediates assembly of the NCoR-SMRT corepres-
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Figure 6. Expression of TBL1X in human brain tissue. A, TBL1X variants TBL1Xa and TBL1Xab
transcript PCR product of three subjects (1, 2, and 3) on 2% agarose gel. The expected products
are 83 bp (TBL1Xa) and 216 bp (TBL1Xab). INF, infundibular nucleus; LH, lateral hypothalamus;
PIT, pituitary; SCN, suprachiasmatic nucleus; SON, supraoptic nucleus. B, Western blot of TBL1X
(55 kDa) in the median hypothalamus (M), lateral hypothalamus (L), and pituitary (P) of two
subjects (1 = 97-90 and 2 = 97-235; see Supplemental Table 8 for further details). B-Actin is
used as a housekeeping protein (37 kDa), and the blot contains 10 ug protein of each sample.

C, Representative TBL1X immunostaining in the hypothalamus of subject 2013-083. Arrowheads,

Magnocellular neurons; stars, parvocellular neurons. SON, supraoptic nucleus; 3V, third ventricle.
In the left upper panel, the PVN is visible just lateral to the third ventricle. The higher
magnification shows darkly stained, mostly parvocellular and magnocellular neurons. The left
lower panel shows an overview of the SON, and the higher magnification in the right lower
panel shows darkly staining, mostly magnocellular neurons.

sor complex (27), the WD40 domain is thought to be in-

press.endocrine.org/journal/jcem 4571

relative nuclear vs cytoplasmic local-
ization may be perturbed. We spec-
ulate that the A366T and Y458C
mutations impair interaction with
partner proteins or chromatin. Taken
together, these studies suggest that
these four mutations alter the struc-
tural and functional properties of
TBL1X.

We found TBL1X mRNA and
TBL1X protein expression in the hy-
pothalamic paraventricular nucleus
(PVN) and pituitary gland. The
prominent expression of TBL1X in
the parvocellular neurons of the
PVN suggests coexpression with
TRH (30).

TBL1X is an essential subunit of
the NCoR-SMRT complex, the ma-
jor TR CoR involved in T5-regulated
gene expression. This complex me-
diates the ability of the TR to repress
the transcription of positively regu-
lated T target genes in the absence of
T; (6). CoRs are additionally known
to enhance TR-mediated basal acti-
vation of negatively regulated genes
(such as TRH and TSHB) in the ab-
sence of Tj, although the exact
mechanism s only partly understood
(7). In mice expressing a mutated
NCoR protein resulting in a defec-
tive NCoR-SMRT complex, serum
TH concentrations were decreased
by 30%, whereas TSH was normal
(6). This implies that the NCoR-
SMRT complex is essential for ade-
quate HPT axis regulation. Similar
defective NCoR/SMRT complex
functioning may very well be the un-
derlying mechanism of the lowered
FT4 concentrations in individuals
with a mutation. We propose that a
defective NCoR-SMRT complex is

volved in mediating interaction of the complex with chro-
matin, enabling efficient histone deacetylation (28, 29).
All mutations are in the WD40-repeat domains of TBL1X.
Our protein studies suggest that the N365Y and H453Y
mutations impair the folding or stability of the WD40
domain. Although the A366T and Y458C behaved very
similar to the wild-type protein, the mutant’s association
with cytoplasmic cytoskeletal proteins suggests that the

less able to activate transcription of negatively regulated
genes in the absence of T, resulting in decreased TRH and
TSHB transcription, ultimately leading to decreased TH
synthesis.

Because not all individuals with a mutation had CeH,
one may hypothesize that mutations in genes other than
TBL1X might be causally involved. We checked this by
WES targeted for genes known or presumed to be involved
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in HPT axis sequencing (Supplemental Table 2C). In three
of six patients with CeH and a mutation in TBL1X, WES
demonstrated variants in such genes (Supplemental Table
2, A and B). However, these variants did not cosegregate
with the CeH phenotype and were also present in individ-
uals with a TBL1X mutation and a low normal FT4 con-
centration. This makes it unlikely that those variants are
involved in the pathogenesis of the observed CeH. An al-
ternative explanation for the wide range of FT4 concen-
trations of TBL1X mutation carriers may be that every
healthy individual has his/her own optimal and stable FT4
concentration within the population reference interval
(also known as the individual set point [31-33]), deter-
mined by both genetic and environmental factors. In the
present series of patients, the TBL1X mutations result on
average in a 3- to 4-pmol/L lower FT4 concentration. One
may hypothesize that without a mutation in TBL1X, the
CeH patients might not have had CeH but a FT4 concen-
tration in the lower tertile of the population reference in-
terval. Their relatives would have had values dispersed
normally within this reference interval. Finally, although
a skewed X-inactivation was not present in peripheral
mononuclear cells, it may be present in other tissues. A
varying expression of TBL1X in the hypothalamus may
also have caused the observed variation in phenotype.

Although the normal TSH concentrations in the CeH
patients may seem unexpected at first sight, this is com-
monly seen in CeH (3-5) and may be explained by altered
glycosylation of the TSH protein, resulting in diminished
bioactivity (1).

Hearing loss was previously reported in two unrelated
patients with partial deletion of TBL1X (7, 8). However,
the cause of the observed sensorineural hearing loss is un-
clear. Given the expression of TBL1X in mouse cochlea
(7), a mutated TBL1X protein may have local detrimental
effects on cochlear function or its development. Muta-
tions in another subunit of the NCoR-SMRT complex,
TBL1XR1, were found to cause hearing loss as well (34).
Alternatively, because TH plays a crucial role in fetal inner
ear maturation (35), the hearing loss may have resulted
from the congenital hypothyroidism per se. However, the
relatively mild hypothyroidism and lack of correlation of
the severity of hearing loss with FT4 concentrations may
argue against this.

In mice, loss of hepatic TBL1X was found to result in
hepatic hypertriglyceridemia and steatosis (9). None of the
present individuals with a mutation had hypertriglyceri-
demia or signs of hepatic steatosis. Because 6 of 17 had
hypercholesterolemia, at this point we cannot exclude that
hypercholesterolemia is part of the TBL1X mutation phe-
notype. In a genome-wide association study, TBL1X was
identified as a candidate gene for male autism spectrum

TBL1X Associated With Central Hypothyroidism
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disorder (36), but none of present patients had been di-
agnosed with autism spectrum disorder.

An important question is whether the lowered plasma
FT4 concentrations in individuals with TBL1X muta-
tions, especially in those biochemically classified as having
CeH, result in hypothyroidism at the level of TH target
tissues. Earlier studies in mice expressing mutated NCoR
suggested increased sensitivity to TH in peripheral tissues
(6), and it is tempting to speculate that the same mecha-
nism is present in individuals with a TBL1X mutation.
This might also explain why patients who were diagnosed
at a later age developed well intellectually and reached
normal adult heights. Another intriguing question is
whether the defective NCoR-SMRT corepressor complex
function has consequences for the intrinsic action of other
nuclear receptors, such as retinoic acid receptor and ret-
inoid X receptor.

In conclusion, we demonstrate that mutations in
TBL1X are associated with CeH and hearing loss. At this
point it remains unclear whether these patients display
hypothyroidism at the tissue level. Further studies are
clearly needed to address this issue.
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