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Abstract

In mouse, X-chromosome inactivation (XCI) can either be imprinted or random. Imprinted

XCI (iXCI) is considered unstable and depending on continuous Xist expression, whereas

random XCI (rXCI) is stably maintained even in the absence of Xist. Here we have systemat-

ically examined epigenetic modifications associated with the inactive X-chromosome (Xi) in

Trophoblast Stem cells, eXtra-Embryonic Endoderm Cells, undifferentiated and differenti-

ated Epiblast Like Stem Cells in order to understand intrinsic differences in epigenetic mech-

anisms involved in silencing of the inactive X-chromosome in lineages presenting iXCI and

rXCI. Whereas euchromatic histone modifications are predominantly lost from the Xi terri-

tory in all cell types, the accumulation of heterochromatic modifications diverges in between

the analysed cell lineages. Particularly, only the Xi of multipotent Trophoblast (iXCI) and Epi-

blast stem cells (rXCI) display a visible accumulation of Polycomb Repressive Complexes

(PRCs), in contrast to the Xi in differentiated Epiblast Like Stem Cells and eXtra-embryonic

Endoderm cells. Despite this, the histone modifications catalysed by PRCs, ubH2AK119

and H3K27me3, remain the best heterochromatic markers for the Xi in all assessed line-

ages. Heterochromatic chromatin modifications associated with the Xi are a reflection of the

epigenetic landscape of the entire genome of the assessed cell regardless whether XCI is

imprinted or random.

Introduction

Sex determination in mammals is determined by the presence of the male sex determining

gene SRY located on the Y-chromosome. Female mammals have two X-chromosomes,
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whereas males possess one X-chromosome and one Y-chromosome. This imbalance is com-

pensated through inactivation of one of the two X-chromosomes in all female cells.

The actual silencing of the X chromosome in placental mammals is a highly dynamic and

complex process. A crucial player in initiation of silencing of the X is the long non-coding

RNA Xist [1,2]. Xist RNA recruits specific protein complexes, which trigger, a cascade of epige-

netic events resulting in the inactivation of the Xist-expressing X-chromosome [3]. A widely

used animal model to study X-inactivation (XCI) is the mouse. In the female mouse embryo,

Xist starts to be expressed during early embryogenesis from the 2-cell stage onwards, leading

to silencing in cis. This form of XCI is referred as imprinted XCI (iXCI), as it exclusively leads

to XCI of the paternally derived X-chromosome. Whereas all developing extra-embryonic line-

ages maintain iXCI, lineages that will form the embryo proper characteristically erase iXCI

and re-establish XCI in a random manner (rXCI) [4]. In vitro differentiation of embryonic

stem (ES) cells derived from the inner cell mass (ICM) has provided quite detailed information

on the sequence of epigenetic events assisting in the inactivation of one of the X-chromosomes

in embryonic tissues [5,6,7,8,9,10,11]. In differentiating ES cells the first epigenetic event

following the accumulation of Xist is the loss of euchromatic marks such as methylation of

histone H3K4 and acetylation of H3K9. Subsequently, characteristic repressive histone modifi-

cations like methylation of H3K27, H3K9 and H4K20 and ubiquitination of H2A can be

detected on the Xi. XCI in extra-embryonic tissues is, in contrast to fully differentiated embry-

onic tissues, considered unstable [12,13,14,15,16]. In order to understand how and why XCI is

stable or unstable and if epigenetic events differ between rXCI and iXCI, a full characterization

of chromatin modifications in lineages of differing origin is necessary.

In this study, we have systematically characterized histone modifications associated with

the inactivated X-chromosome (Xi) in trophoblast stem (TS) cells, eXtra-embryonic Endo-

derm (XEN) cells, in vitro derived Epiblast Like Stem Cells (EpiLCs) and to mesoderm differ-

entiated EpiLCs. The obtained data were completed with reported data of chromatin

modifications on the Xi in pre-implantation embryos (Table 1) and cell lineages directly

derived from the pre- and early post-implantation embryo (Table 2). This study has generated

a comprehensive overview of the epigenetic landscape of the Xi in different cell lineages pre-

senting either iXCI or rXCI.

Results

Despite the wealth of experiments, a complete and comprehensive overview of all histone

modifications associated with the Xi in cell types of different embryonic lineages is lacking.

Table 1. Chromatin Marks associated with the Xi in pre-implantation embryos.

Chromatin Marks Xi 4-cell 8-cell Morula Blastocyst

H3K27me3 Absent [17,18] Present [17,18] Absent [6] Present [17,18] Present [6]

H4K20me1

H3K9me2 Absent [17,18] Absent [17,18] Present [17,18]

ubH2A

Polycomb Repressive Complex 1

Polycomb Repressive Complex 2 Absent [17,18] Present [17,18] Absent [6] Present [17,18]Present [6]

RNA Polymerase II exclusion Present [17,18] Present [17,18] Present [17,18] Present [17,18]

H3K4me2 exclusion Absent [17,18] Present [18]; Present [17,18] Present [17,18]

H3K9ac exclusion Absent [17,18] Present [18] Present [17,18] Present [17,18]

H4ac exclusion Present [17,18] Present [17,18]

H4K16Ac exclusion

doi:10.1371/journal.pone.0167154.t001
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We therefore generated TS, XEN, and ES cells from pre-implantation embryos with the same

genomic back ground, and differentiated the ES cell lines into EpiLCs, that were further differ-

entiated towards the mesodermal lineage using WNT3 and BMP4 ligands. For our studies we

examined Xi and Xist associated histone modifications in extra-embryonic TS and XEN cell

lines, and in undifferentiated and differentiated EpiLCs with an embryonic origin. The

obtained results were compared to available data in the literature (reviewed in Tables 1 and 2).

Loss of euchromatic marks on the Xi

Previous studies indicate that the first epigenetic changes observed on the Xist coated X are

related to loss of histone modifications, H3K4me2, H3K9ac, H4ac, H4K16ac and RNA poly-

merase II, all associated with active chromatin. To test whether these markers were depleted

throughout our panel of cell lines we performed RNA FISH for Xist RNA in combination with

immunohistochemistry for these histone modifications on TS (S1 Fig), XEN cells (S2 Fig),

EpiLCs (S3 Fig) and differentiated EpiLCs (S4 Fig). To quantify the results, 53 to 354 cells were

counted and the percentage of cells displaying Xist clouds with and without co-localization of

lost euchromatic marks was determined (Figs 1 and 2). Although the detection varied per cell

type, loss of euchromatic marks is a feature that is present in a high percentage of cells in all

lineages, indicating that the loss of euchromatic marks is detected in lineages that are both

independent (differentiated EpiLCs) and fully dependent on Xist expression (TS and XEN) for

maintenance of XCI (Fig 3).

Polycomb repressive complexes

Silencing of the X chromosome is thought to proceed via the recruitment of polycomb repres-

sive complexes (PRC) 1 and 2. While each complex consists of several proteins, for our studies

only RNF2/RING1B has been assessed from the PRC1 complex, and JARID2, EZH2 and EED

were evaluated as representative of the PRC2 complex, using the same panel of TS, XEN,

EpiLC and differentiated EpiLC lines. RNA-immuno FISH was performed detecting Xist in

combination with one of the PRC complex members. The number of cells counted per staining

Table 2. Chromatin Marks associated with the Xi cell lineages.

Chromatin Marks Xi ES Differentiation MEF TS Cell Trophoblast and differentiated TSC XEN

H3K27me3 Transient [5,6,7] Absent [6] Present [5,6,19,20] Transient [5,6] Stable [14] Present [21] Absent

[19,20]

H4K20me1 Transient [7] Present [19] Transient [14]

H3K9me2 Stable [7,8,9,10]

Absent[7]

Stable [8]

Absent [7]

Minorly present

[20]

Minorly present [20]

ubH2A Transient [5] Present [5,19] Transient [5]

Polycomb Repressive

Complex 1

Transient [5] Present [5,19] Transient [5]

Polycomb Repressive

Complex 2

Transient [5,6,7] Absent [6] Present

[5,6,19,20,22]

Transient (Ezh2 and Eed1) [5,6]

Stable (Eed1) [14]

Absent [19,20]

RNA Polymerase II

exclusion

Stable [11] Absent to partially present [14]

H3K4me2 exclusion Stable [7,8,9] Present [8] Present [19,20] Minorly present [14] Present [20]

H3K9ac exclusion Stable [8,9] Present [8] Present [20] Present [20]

H4ac exclusion Stable [8,9,23] Present [8] Present [19] Absent to partially present [14]

H4K16Ac exclusion Stable [9] Absent [14]

H3Ac exclusion Present [19]

doi:10.1371/journal.pone.0167154.t002
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is displayed in Fig 4. As previously reported [5,6,19,20], TS cell lines distinctly displayed accu-

mulation of PRC2 on the Xi (Figs 4 and 5, S5 Fig). Whereas PRC2 associated proteins to some

extent also clearly accumulated on the Xi in undifferentiated EpiLCs, Xi associated accumula-

tion of JARID2, EZH2 and SUZI12 was not detected in XEN cells or in differentiated EpiLCs

Fig 1. Loss of euchromatic mark H3K9Ac on Xi in TS cells, XEN cells, EpiLCs and differentiated EpiLCs. Immuno-RNA FISH detecting H3K9Ac

(Rhodamine red) and Xist (FITC) on TS cells, XEN cells, EpiLCs and differentiated EpiLCs.

doi:10.1371/journal.pone.0167154.g001
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(Figs 4, 5 and 6, S6, S7 and S8 Figs). JARID2 did show accumulation in XEN cells, but the

accumulation was not associated with Xist. PRC2 catalyses trimethylation of lysine 27 on his-

tone H3 (H3K27me3). Immuno-RNA-FISH analysis detecting H3K27me3 and Xist confirms

that accumulation of this modification is present at the Xi in all cell types and indicates that

even when the catalysing complex is below the detection limit, as found in XEN and differenti-

ated EpiLC cells, its downstream modification is maintained (Figs 5 and 6). Nevertheless, the

percentage of XEN cells and differentiated EpiLC cells with Xist clouds together with

H3K27me3 accumulation is reduced compared to the other cell lines (Fig 4). The percentage

Fig 2. Percentage cells accumulating either Xist alone or showing Xist together with exclusion of euchromatic marks

in TS cells, XEN cells, EpiLCs and differentiated EpiLCs. Percentages displayed in bar chart with sample size (n) above.

Statistical significance (p<0,05) tested via z-test for proportion independent groups and shown in Figure.

doi:10.1371/journal.pone.0167154.g002

Fig 3. Percentage cells presenting exclusion of euchromatic modifications along Xist in XEN cells, TS cells, EpiLCs and differentiating EpiLCs.

Percentage illustrated by a colour scale from no (blue) to complete (red) exclusion of euchromatic modifications from the Xi territory.

doi:10.1371/journal.pone.0167154.g003
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of cells displaying an accumulation of H3K27me3 in differentiated EpiLCs was much higher

when only immunostaining was performed. This was observed in all cell types studied and

must be related to the more stringent conditions used for Xist RNA-FISH.

RING1B-Xist immuno-RNA FISH indicated clear Xi associated accumulation of RING1B

in TS but not XEN cells, whereas this analysis failed for EpiLCs and differentiated EpiLCs. For

XEN cells, EpiLCs and differentiated EpiLCs we therefore performed double immunohis-

tochemistry of RING1B and ubH2AK119, as ubH2AK119 as the catalytic product of this

enzyme is the best marker for the Xi in XEN, EpiLC and differentiated EpiLC (see data below).

This approach indicated that there was no clear accumulation of RING1B on the Xi in XEN

cells, EpiLCs and differentiated EpiLCs; although sporadically accumulation could be observed

(Fig 7). UbH2AK119, however, could be observed in all analysed cell lineages (Figs 4 and 7),

again indicating that the detection of Xi associated enzyme complexes is not a requirement for

the maintained presence of a corresponding chromatin modification. Similarly to H3K27me3,

an immunostaining of ubH2AK119 in differentiated EpiLCs detected a higher percentage of

cells presenting the modification.

Accumulation of other heterochromatic markers

H3K9me2 and H4K20me1 are both histone modifications associated with the Xi but not as

well characterized as H3K27me3 and ubH2AK119. Several lysine 9 histone H3 methyltrans-

ferases, euchromatic and heterochromatic, have been characterized but it is unclear which

enzyme catalyzes this modification on the Xi. We found that H3K9me2 accumulation, associ-

ating with Xist clouds, could only be observed in XEN and TS cells, but was not as abundant as

H3K27me3 and ubH2AK119 (Fig 8). Immuno-RNA FISH indicates that H4K20me1, likely

catalysed by SET8/PR-Set7 [24,25], is a better marker for the Xi than H3K9me2 as it was not

only accumulated on the Xi in TS and XEN cells but,also accumulates to a minor extent on the

Xi in EpiLCs (Figs 9, 10 and 11). In conclusion, we found that accumulation of PRC1 and

PRC2 is very variable on the Xi, but that the modifications, ubH2A119 and H3K27me3,

Fig 4. Percentage cells accumulating either Xist alone or showing Xist together with members of the PRC1 and 2 complexes and their

catalysed modifications ubH2AK119 and H3K27me3 in TS cells, XEN cells, EpiLCs and differentiated EpiLCs. Percentages displayed in bar chart

with sample size (n). Statistical significance (p<0,05) tested via z-test for proportion independent groups and shown in Figure.

doi:10.1371/journal.pone.0167154.g004
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catalysed by these complexes are better Xi associated chromatin markers compared to

H3K9me2 and H4K20me1.

Discussion

Random and imprinted XCI are respectively depicted as stable and unstable. Since silencing of

the X-chromosome relies on histone modifications, we tried to understand whether the stabil-

ity of XCI could be simply conveyed to the presence or absence of histone modifications asso-

ciated with the Xi. To address this question, reported chromatin modifications (Tables 1 and

2) associated with the Xi were assessed in all early cell lineages presenting either iXCI or rXCI.

XEN and TS cells representing cell lineages with iXCI, whereas undifferentiated and

Fig 5. Immuno-RNA FISH for EZH2 or H3K27me3 and Xist in TS cells and XEN cells. Immuno-RNA FISH detecting EZH2 or

H3K27me3 (Rhodamine red) together with Xist (FITC) on TS cells and XEN cells.

doi:10.1371/journal.pone.0167154.g005
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differentiated EpiLC portrayed lineages with rXCI. This is the first study that provides a com-

prehensive overview of such a wide range of chromatin modifications associated with the Xi in

different embryonic and extra-embryonic cell types. (Fig 12).

Upon ES cell differentiation, among the first epigenetic changes detectable after Xist accu-

mulation are the loss of euchromatic features including RNA polymerase II, H3K9Ac, H4Ac,

H4K16Ac. Our study indicates that this loss of euchromatic marks is a general characteristic of

Fig 6. Immuno-RNA FISH for EZH2 or H3K27me3 and Xist in EpiLCs and differentiated EpiLCs. Immuno-RNA FISH detecting EZH2 or H3K27me3

(Rhodamine red) together with Xist (FITC) on EpiLCs and differentiated EpiLCs.

doi:10.1371/journal.pone.0167154.g006
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Fig 7. Immuno-RNA FISH for ubH2AK119 and Xist or RING1B in XEN cells, TS cells, EpiLCs and differentiating EpiLCs. Immuno-

RNA FISH detecting ubH2AK119 (Rhodamine red) together with RING1B or Xist (FITC) on TS cells, XEN cells, EpiLCs and differentiated

EpiLCs.

doi:10.1371/journal.pone.0167154.g007
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the Xi in a large percentage of cells in all lineages examined, and is central to the iXCI and

rXCI processes. Recently, SPEN family members and co-factors have been identified as inter-

actors of Xist. SPEN mediated recruitment of HDAC3 has been implicated in triggering his-

tone deacetylation in differentiated ES cells [26,27,28,29,30]. Whether iXCI also involves

Fig 8. Immuno-RNA FISH for H3K9me2 and Xist in XEN cells, TS cells, EpiLCs and differentiating EpiLCs. Immuno-RNA FISH detecting H3K9me2

(Rhodamine red) together with Xist (FITC) on TS cells, XEN cells, EpiLCs and differentiated EpiLCs.

doi:10.1371/journal.pone.0167154.g008
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SPEN mediated recruitment of HDAC3, and if H3K4 demethylases are actively recruited to

the Xi to trigger the loss of RNA polymerase II needs further investigation [31].

The loss of active histone marks observed during ES cell differentiation is soon followed by

the accumulation of histone modifications associated with facultative heterochromatin. In

Fig 9. Immuno-RNA FISH for H4K20me1 and Xist in XEN cells, TS cells, EpiLCs and differentiating EpiLCs. Immuno-RNA FISH detecting

H4K20me1 (Rhodamine red) together with Xist (FITC) on TS cells, XEN cells, EpiLCs and differentiated EpiLCs.

doi:10.1371/journal.pone.0167154.g009

Histone Modifications Associated with Xi in TSCs, XEN Cells, EpiLCs and Differentiated EpiLC

PLOS ONE | DOI:10.1371/journal.pone.0167154 December 15, 2016 11 / 20



Fig 10. Percentage cells accumulating either Xist alone or showing Xist together with an

accumulation of histone modifications H4K20me1 and H3K9me2 in TS cells, XEN cells, EpiLCs and

differentiated EpiLCs. Percentages displayed in bar chart with sample size (n). Statistical significance

(p<0,05) tested via z-test for proportion independent groups and shown in Figure.

doi:10.1371/journal.pone.0167154.g010

Fig 11. Percentage cells presenting heterochromatic modifications along Xist in XEN cells, TS cells, EpiLCs and differentiating

EpiLCs. Percentage illustrated by a colour scale from no (blue) to complete (red) association between Xist and heterochromatic modifications.

doi:10.1371/journal.pone.0167154.g011
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contrast to the absence of euchromatic marks we found that these heterochromatic features

associated with the Xi were very heterogenic (Fig 12). Although H3K27me3 could be detected

in all cell types, the PRC2 subunits EZH2, SUZ12 and JARID2, catalysing this modification,

were only present on the Xi in both TS cells and EpiLCs. Similarly, ubH2AK119 accumulation

associated with the Xi, could be detected in all cell types, despite the absence of Xi associated

RING1B in XEN cells and undifferentiated and differentiated EpiLCs. The failure to detect

PRC members in some tissues in spite of the presence of their catalysed histone modifications

does not exclude accumulation of the PRC complexes, which may be present under the techni-

cal detection level, or the tested proteins may be substituted with other paralogs such as EZH1

[32] and RING1A [33]. The results, however, imply that a visible accumulation of PRC com-

plexes on the Xi are merely an extrapolation of the plasticity of the genome of EpiLCs (rXCI)

and TS cells (iXCI) rather than whether XCI is random or imprinted.

Fig 12. Overview of Xi associated heterochromatic marks in TS cells, XEN cells, EpiLCs and differentiated EpiLCs. Comprehensive overview of

accumulation of RING1B, EZH2, SUZI12, JARID2, H4K20me1, H3K9me2, H3K27me3 and ubH2AK119 (categorized present if found in more than 10% of

the cells).

doi:10.1371/journal.pone.0167154.g012
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XCI in extra-embryonic tissues is classified as unstable in contrast to XCI in embryonic lin-

eages. This is highlighted by the fact that forced expression of Tsix, a negative regulator of Xist
and leading to Xist downregulation, results in reactivation of the Xi in extra-embryonic tissues

[34]. Interestingly, also EpiLCs still have the capacity to initiate rXCI upon differentiation [35],

a feature that is lost upon differentiation of this cell type, highlighting the plasticity of this cell

type with respect to XCI. The presence of such a meta-stable state of XCI in these three cell

types might be attributed to reduced levels of CpG methylation. In trophoblast and XEN cells

CpG methylation is reported to be very low in comparison to embryonic tissues [36,37]. Inter-

estingly, despite high expression levels of Dnmts [36], the DNA methylation level of CpG

islands on the X-chromosome in female EpiLCs is also very low [36], and CpG islands only

become methylated upon EpiLC differentiation (R.G. Boers, and J Gribnau personal commu-

nication). Therefore, the strong accumulation of H3K27me3, and possibly H4K20me1, and

ubH2AK119 therefore might antagonize or precede the accumulation of DNA CpG methyla-

tion, reminiscent of findings showing a switch in the transcriptional control of repressed pro-

moters via from H3K27me3 to DNA methylation during ES cell differentiation and

carcinogenesis [38,39,40].

This study describes many undocumented chromatin modifications on the Xi in XEN cells,

in vitro derived EpiLCs and differentiated EpiLCs. Most of our findings fit very well with docu-

mented observations, although we also found some noticeable exceptions. For instance, the

stable association of H3K27me3 on the Xi in XEN cells contrasts previous findings [19,20].

Also, the failure to demonstrate a strong accumulation of H3K9me2 on the Xi in EpiLCs and

differentiated EpiLCs is in conflict with earlier described studies in embryonic lineages

[7,8,9,10]. This discrepancy might be explained through differences in detection efficiency, but

could also be related to differences in cell types that have been used.

Conclusion

In conclusion, what governs stability of XCI cannot be simply determined by the assessment

of the presence or absence of histone modifications or classified depending on whether XCI is

random or imprinted. XCI is initiated and maintained by a multitude of epigenetic layers con-

sisting of histone modifications and DNA CpG methylation. The deposition and maintenance

of histone modifications on the Xi is Xist dependent whereas the accumulation of DNA CpG

methylation makes XCI maintenance irreversible and Xist independent. In a specific epige-

netic context, XCI is relatively stable regardless whether XCI is random or imprinted. Prob-

lems in XCI stability may arise when XCI maintenance is still Xist dependent and the changing

epigenetic context during differentiation and development cannot be implemented fast

enough to create other epigenetic layers on the Xi. Which heterochromatic chromatin modifi-

cations can be found on the Xi is dependent on the epigenetic context and plasticity of the

entire genome of the assessed cell. Despite the observed differences in histone modifications

associated with the Xi in different lineages, our results indicate that both ubH2AK119 and

H3K27me3 are the best heterochromatic markers for the Xi in all assessed lineages.

Materials and Methods

Embryo collection and cell culture

Ethics statement and embryo collection. All animal experiments were approved by the

Erasmus MC Animal Experimental Commission and were in accordance with the legislation

of animal experimentation in the Netherlands. Housing and husbandry of mice was provided

by the animal experimentation center (EDC) at the Erasmus MC. Except for the TS cells, all

analysed lineages were hybrid, derived from embryos from crossings of 129S2/SvHsd (Envigo,
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The Netherlands) or C57BL/10ScOlaHsd (Envigo, The Netherlands) female mice with Cast/Eij

(Jackson, USA) males. The analysed TS cells were both hybrid and inbred 129S2/SvHsd

(Envigo, The Netherlands). The ovarian cycle of females was synchronized by intra-peritoneal

injections of Folligonan and Chorullon (both 150 μl, 50U/ml, both one injection with 48 hours

in between). Following the last injection each female mouse was mated with a male mouse.

About 20 hours after the last injection, mating was evaluated by looking for the presence of a

white plug in the vagina. Females that had mated were euthanized by cervical dislocation at

E3.5 for ES or XEN cell derivation or killed by cervical dislocation at E6.5 for the creation of

TS cells.

XEN cell line derivation and culture conditions. E3.5 embryos were flushed with M2

medium and placed in M16 medium at 37˚C and 5% CO2 before being placed in XEN deri-

vation culture conditions. For XEN derivation, E3.5 embryos were placed into gelatinized

wells covered with MEFs and cultured in XEN-medium (RPMI 1640; with 20% FBS, 1 mM

sodium pyruvate, 2 mM L-glutamine, PS and 100μ M β-mercaptoethanol). Every 1–2 days,

fresh medium was added until embryos were attached to the gelatinized surface of the well.

After the embryos were attached and showed significant outgrowth, the XEN cells were

split with 0.25% trypsin/EDTA and cultured in standard XEN culture conditions. For com-

bined immunohistochemistry RNA-FISH, cells were grown onto plastic slide chamber

flasks.

TS cell line derivation and culture conditions. TS cells were derived from E6.5 embryos.

The extra embryonic part of E6.5 egg cylinders were plated in six-well plates on irradiated

MEFs and maintained in XEN-medium supplemented with 25 ng/ml human recombinant

fibroblast growth factor 4 (hrFGF4) and heparin sulfate. After the embryos were attached and

there was significant outgrowth, the TS cells were split with 0.25% trypsin/EDTA and further

cultured in standard TS culture conditions. For combined immunohistochemistry RNA-FISH,

cells were grown onto plastic slide chamber flasks.

ES derivation and culture conditions. For ES derivation, E3.5 blastocysts were placed

into culture dishes coated with gelatin (0.2%) and irradiated MEFs in ES cell medium contain-

ing DMEM, 15% fetal calf serum (FCS), PenStrep (PS), 1 mM non-essential amino acids

(NEAA), 50mM β-mercaptoethanol, leukaemia inhibitory factor (LIF), MEK inhibitor

(PD98059, 4μM) and GSK3inhibitor (CHIR99021, 3.3 μM). Approximately one week after

embryo recovery the outgrowth of the ICM was enzymatically split and plated in the same cul-

ture conditions as previously described. After a few passages, inhibitors for MEK and GSK3

were removed from the culture medium.

ES differentiation towards EpiLC. ES cells were trypsinized with 0.25% trypsin/EDTA

and cultured in EpiLC conditions [41] for 3 passages (with collagenase) before being analysed.

For combined immunohistochemistry RNA-FISH, cells were grown onto plastic slide chamber

flasks.

EpiLC differentiation towards mesoderm. EpiLC cells were for combined immunohis-

tochemistry RNA-FISH cells passaged onto plastic slide chamber flasks and grown for an extra

48 to 72 hours in EpiLC medium devoid of IWP2 put in the presence of WNT3 and BMP4.

Immunohistochemistry and RNA-FISH

DNA Xist probe. The Xist probe used was a 5kb cDNA BglII fragment covering exons

3–7 [42]. The probe was directly labeled by random priming. A total of 500ng DNA was dis-

solved in a total volume of 23 μl. 20μl of random primers 2.5x was added and denaturation was

then performed at 95˚C for 5 min. Immediately following the denaturation, the probe was

cooled on ice and dNTPs, labeled dUTP and Klenow fragment were added. This mix was
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incubated at 37˚C for 2 hours. For precipitation, Cot1-DNA, salmon sperm (SS) DNA, tRNA,

sodiumacetate 3M and EtOH 100% were added to the labelled DNA. The mixture was frozen

for 20 min in -20˚C. To obtain the DNA pellet, the tube was centrifuged at 13200 rpm for 20–

30 min and the supernatant was carefully removed. The pellet was thoroughly resuspended in

70% EtOH by vortexing and centrifuging at 13200 rpm for 5–10 min. Supernatant was care-

fully removed and the pellet was air-dried for 10 min. The labeled probe was dissolved with

50+ Hybridization mix and stored at -20˚C.

Antibodies. Specifications of the utilized antibodies can be found in Table 3.

RNA FISH. Cells cultured on plastic slide chamber flasks were fixed in 4% paraformal-

dehyde (PFA) for 10 min at room temperature and subsequently 3 times rinsed in PBS. The

coverslips were incubated with 0.2% pepsin dissolved in water and incubated at 37˚C in a

water bath. After 4 min exposure, the pepsin was removed and the coverslips were rinsed in

water. The coverslips were post-fixed in 4% PFA for 5 min and again 3 times washed with

PBS. To dehydrate the cells, an ethanol gradient was used with 70%, 90% and 100% EtOH.

Cells were hybridized overnight at 37˚C with the denatured Xist probe (10min at 99˚C fol-

lowed by 45min at 37˚C). The next day the coverslips were 3 times washed with 0.05x Saline-

Sodium Citrate (SSC) in a pre-heated water bath at 40˚C. The cells were mounted with Vecta-

shield/DAPI.

RNA FISH and immunohistochemistry. Cells cultured on plastic slide chamber flasks

were fixed in 3% PFA for 10 min at room temperature and 3 times rinsed in PBS. Permeabili-

zation was performed with PBS containing 20% Triton-X 100 and 20 μM Vanadyl Ribonucleo-

side Complex (VRC)(New England Biolabs S1402S). After rinsing 3 times in PBS, preparations

were blocked in a blocking solution containing bovine serum albumin (BSA) (Biolabs,

B90015) and 20 μM VRC in PBS for 30 min. The primary antibody, diluted in blocking solu-

tion, was applied to the wells of the slide chamber flasks and incubated in a humid box for 1

hour at room temperature (Table 3). After 3 times 10 min washes with PBS, the secondary anti-

body, diluted in the blocking solution was applied to the wells of the slide chamber flask and

incubated for 1 hour at room temperature.

The secondary antibody, was removed by 3 washes in PBS for 5min each. Following

removal of the plastic chamber, the remaining plastic slides were accordingly post-fixed in 4%

PFA for 10 min at room temperature, rinsed in PBS and washed two times with 2x SSC before

being air dried. The denatured Xist probe was applied on the slides, coverslips were placed and

Table 3. Antibody pecifications.

Antibody Dilution Host Supplier

H3K27me3 1:500 Rabbit Diagenode CS-069-100

H4K20me1 1:500 Rabbit Abcam 16974

H3K9me2 1:200 Mouse Cosmo Bio (MCA-MABI0007-20-EX)

ubH2A 1:200 Rabbit Cell signalling (8240)

H3K4me2 1:1500 Rabbit Upstate 07–030

H3K9ac 1:1000 Rabbit Sigma H9286

H4K16ac 1:100 Rabbit Abcam 1240–100

H4ac 1:100 Rabbit Upstate 06–598

RNApolII 1:600 Mouse Abcam 817–100

RING1B 1:50 Mouse Generous gift from Dr. H. Koseki

SUZ12 1:100 Rabbit Diagenode pAb-029-050

EZH2 1:200 Rabbit Leica Microsystems (NCL-L-EZH2)

JARID2 1:500 Rabbit Abcam (48137)

doi:10.1371/journal.pone.0167154.t003
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glued with rubber cement onto the slide and incubated for 15–20 hours in a dark box at 37˚C.

After 3 washes with 0.05x SSC at 38–40˚C, DNA was counterstained for 2 minutes in 10μl

DAPI. A Leica TCS SP 5 confocal microscope and Adobe Photoshop CS 6 and Illustrator were

used for image acquisition.

Supporting Information

S1 Fig. Loss of euchromatic marks on Xi in TS cells. Immuno-RNA FISH on TS cells stained

for euchromatic histone modifications (Rhodamine red) along Xist RNA (FITC).

(TIF)

S2 Fig. Loss of euchromatic marks on Xi in XEN cells. Immuno-RNA FISH on XEN cells

stained for euchromatic histone modifications (Rhodamine red) along Xist RNA (FITC).

(TIF)

S3 Fig. Loss of euchromatic marks on Xi in EpiLC cells. Immuno-RNA FISH on EpiLC cells

stained for euchromatic histone modifications (Rhodamine red) along Xist RNA (FITC).

(TIF)

S4 Fig. Loss of euchromatic marks on Xi in differentiated EpiLC cells. Immuno-RNA FISH

on differentiated EpiLC cells stained for euchromatic histone modifications (Rhodamine red)

along Xist RNA (FITC).

(TIF)

S5 Fig. Accumulation of PRC2 complex members on Xi in TS cells. Immuno-RNA FISH on

TS cells stained for PRC2 complex members JARID2 and SUZ12 (Rhodamine red) along Xist
RNA (FITC).

(TIF)

S6 Fig. No accumulation of PRC2 complex members on Xi in XEN cells. Immuno-RNA

FISH on XEN cells stained for PRC2 members JARID2 and SUZ12 (Rhodamine red) along

Xist RNA (FITC).

(TIF)

S7 Fig. Accumulation of PRC2 complex members on Xi in EpiLC cells. Immuno-RNA

FISH on EpiLCs stained for PRC2 complex members JARID2 and SUZ12 (Rhodamine red)

along Xist RNA (FITC).

(TIF)

S8 Fig. No accumulation of PRC2 complex members on Xi in differentiated EpiLC cells.

Immuno-RNA FISH on differentiated EpiLCs stained for PRC2 complex members JARID2

and SUZ12 (Rhodamine red) along Xist RNA (FITC).

(TIF)
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