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GeNeral iNTrODUcTiON

In biomedical science and clinical practice, there is an increasing demand for accurate 

prediction models [1]. Prediction models are based on trends and patterns in avail-

able data to predict medical outcomes, such as complications or mortality. Prediction 

models may also support diagnostic classification and identify risk factors to facilitate 

prevention by classifying sources of infections and contaminations. Prediction models 

can assist physicians in making decisions by complementing their own clinical judg-

ment with evidence-based analyses.

A large variety of modelling techniques is available nowadays, including data mining 

and machine learning techniques. Modellers require guidelines for selecting the ap-

propriate tools for constructing and validating reliable prediction models. This thesis 

aims to give medical researchers insight into the pros and cons of modern modelling 

techniques versus traditional modelling techniques [2] [3] [4]. These insights may help 

to determine whether a published decision tool is valid and to advise researchers on 

the role of modern modelling techniques in various settings, such as a limited or larger 

sample size [5] [6] [7].

Traditional prediction modelling

In biomedical science, traditional and frequently used modelling techniques are linear 

regression, logistic regression and Cox regression. These regression techniques are all 

based on a linear combination of the predictor variables, the so called linear predictor. 

For p independent predictor variables x1,…,xp, the linear predictor (lp) takes the form:

lp = b1 * x1 +…+ bp * xp , in which b1,…,bp are the regression coefficients for the p predictor 

variables.

A linear regression model can be written as:

y=b0+lp+ε, in which ε is the error variable and b0 refers to the intercept, also indicated 

with α sometimes. The coefficients b0,…,bp are calculated by minimizing Σε2. The depen-

dent variable y is continuous and the independent variables are continuous, categori-

cal or dichotomous.

A logistic regression model can be written as:
P (y=1)=

1
1+e-(b0+lp) , in which P(y=1) is the probability that y=1.

The dependent variable y is dichotomous (0/1) and the independent variables are 

continuous, categorical or dichotomous. The coefficients b0,…,bp are calculated by 

maximizing the likelihood.
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A Cox regression model is the most often used method for survival outcomes and can 

be written as: H(t) = H0 (t) * elp, in which H(t) is the hazard at time t and H0(t) is the base-

line hazard function at time t. The independent variables are continuous, categorical 

or dichotomous. The coefficients b1,…,bp are calculated by maximizing the likelihood.

Figure 1 Example of a linear regression analysis in 30 patients

Fig 2 Example logistic regression



General introduction 11

A less frequently used traditional modelling technique is classification and regression 

trees (CART) [8]. CART is a modelling technique that uses recursive partitioning to split 

the patient records that serve as a training data set into segments with similar endpoint 

values. The modelling starts by examining the input variables to find the best split, 

commonly measured by the reduction in an impurity index that results from the split. 

The split defines two subgroups, each of which is subsequently split into two further 

subgroups and so on, until a stopping criterion is met. The dependent variable can 

be continuous or categorical. The independent variables are continuous, categorical 

or dichotomous, but they are always dichotomized in the analysis. Figure 4 shows an 

example of a tree model with three predictors (A, B and C) and one outcome, all with 

categories a, b, and c.

Fig 3 Example Cox regression with four subgroups

Fig 4 Example tree model CART
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Modern prediction modelling

Predictive data mining has received increasing interest as an instrument for researchers 

across various fields. Nowadays, there is a widespread availability of new computational 

methods and tools for data analysis and predictive modelling. In particular, methods 

known as “data mining” or “machine learning” offer new methodological and technical 

solutions for the analysis of medical data and the construction of prediction models. 

Examples of these techniques include random forests, support vector machines and 

neural networks. These techniques are based on algorithms which operate by build-

ing a model from example inputs in order to make data-driven predictions or deci-

sions, rather than following strictly static program instructions as used in traditional 

regression modelling. Some general descriptions are given below. Further details are 

presented in the chapters of this thesis.

Random forests
The random forest technique (RF) is an ensemble classifier that consists of many clas-

sification trees, rather than a single tree such as CART. Each tree is constructed using 

a bootstrap sample from the original data (a sample drawn with replacement). For 

classification, random forest outputs the class that is the mode among the classes from 

individual trees. In case of a regression-based prediction, a random forest outputs the 

value that is the mean of the output values from individual trees [9].

For each tree the misclassification rate is calculated using the subjects that are not in 

the bootstrap sample, approximately 36.8% of the original data. The misclassification 

rate is called the “out of bag” error rate (OOB). The overall OOB error rate is calculated 

by aggregation over the trees. Key parameters for the random forest technique are the 

number of trees and the number of candidate variables. The default setting for the 

number of candidate variables is the square root of the total number of all predictors 

in case of classification or the total number of all predictors divided by 3 in case of 

regression. Random forests can also be used to rank the importance of the predictor 

variables by means of a variable importance plot. The importance of a predictor vari-

able is calculated by the mean decrease in accuracy or the mean decrease in Gini of 

the model. The mean decrease in accuracy or Gini represents how much the accuracy 

or Gini of the model is reduced by removing the variable. The dependent variable and 

the independent variables are continuous or categorical.
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Support vector machines
A support vector machine (SVM) performs classification tasks by constructing hyper-

planes with a margin in a multidimensional space which separate cases from different 

classes. An SVM can perform a non-linear classification or regression task using differ-

ent kernels (radial, linear and polynomial). The tuning parameters for SVMs are the C-

parameter (cost), which regulates the margin width, and the gamma-parameter for the 

kernel calculation. SVM claims to be a robust classification and regression technique 

that maximizes the predictive accuracy of a model without overfitting the training data. 

SVM may be particularly suited for analysing data with large numbers of predictor 

variables. The dependent variable and the independent variables are continuous or 

categorical. SVM uses the distance from each data point to the decision boundary to 

calculate the so-called decision value. With this decision value a prediction is made 

(positive decision value: outcome=1 and negative decision value: outcome=-1). These 

decision values can also be used to calculate probabilities for the outcome category of 

interest (-1 of 1) [10].

Figure 6 shows examples of a SVM with a linear kernel, two predictor variables (x1 and 

x2) and a dichotomous outcome with different settings for the cost parameter (gamma 

parameter=0.5 for a linear SVM). The figure shows that a lower cost-value leads to a 

wider margin and therefore to more misclassification [11].

Fig 5 Example variable importance plot with 8 predictor variables
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Figure 7 shows examples of a SVM with a radial based function kernel, two predictor 

variables (x1 and x2) and a dichotomous outcome with different settings for the cost 

parameter and the gamma parameter. The figure shows that a higher value for the cost 

parameter and a lower value for the gamma parameter lead to a wider margin and 

therefore to more misclassification.

Neural networks
A neural network (NN), sometimes called a multilayer perceptron, simulates a large 

number of interconnected simple processing units, which are arranged in layers. There 

are three parts in a neural network: an input layer, with units representing the predictor 

variables, one or more hidden layers, and an output layer, with a unit representing 

the endpoint. The units are connected with varying connection strengths or weights. 

Input data are presented to the input layer and values are propagated from there to 

the next layer. Then, a prediction is delivered from the output layer. The network learns 

by examining individual records, generating a prediction for each record and making 

adjustments to the weights whenever an incorrect prediction is made. The adjustments 

are commonly based on the gradient descent algorithm to minimize the prediction 

error. This process is repeated many times, and the network continues to improve its 

Figure 6 Examples of a linear SVM

Figure 7 Examples of a radial SVM
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predictions until the magnitude of the gradient is less than a chosen bound (0.00005 

e.g.). The crucial parameters of an NN are the size parameter (number of units in the 

layer) and the decay parameter that penalizes large weights in the model to avoid 

overfitting (default=0). The dependent variable and the independent variables can be 

continuous, categorical or dichotomous [12].

Figure 8 shows an example of a neural network with an input layer consisting of two 

input units (green), a hidden layer with three units (blue) and an output layer with one 

output unit (red). The input variables are x1 and x2 and the output variable is y.

A value yj for a unit in the hidden layer (blue) is calculated using a linear combination 

of the values x1 and x2 of the units in the input layer (green) with coefficients (weights) 

w0j, w1j and w2j.

In formula: yj = w0j  + w1j * x1 + w2j * x2,   j=1,2,3

The value z is then calculated using a linear combination of the values y1, y2 and y3 of 

the units in the hidden layer (blue) with coefficients w30, w31, w32 and w33.

In formula: z = w30 + w31 * y1 + w32 * y2 + w33 * y3

The value of z is then compared with the value of y in the unit of the output layer by 

means of the prediction error defined as 1
*(y – z)2

2
.

The best model is found by minimizing this prediction error by means of repeated ad-

justment of the weights wij in the negative direction of the gradient until the magnitude 

of the gradient is less than a chosen bound (0.00001 e.g.). In case of a dichotomous 

outcome variable, the formulas for the calculation of yj and z become:

y j =
1    , j = 1,2,3 and z =

1
1+e-(w0j + w1j * x1 + w2j * x2) 1+e-(w30 + w31 * y1 + w32 * y2 + w33 * y3)

Figure 8 Example of a neural network
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Figure 9 shows an example of a neural network with the calculated weights.

Least absolute shrinkage selection operator
The least absolute shrinkage selection operator (LASSO) is a variant of linear or logistic 

regression technique. For p independent predictor variables x1, x2, …, xp and an outcome 

variable y, LASSO fits a linear model:

y = b0 + b1 * x1 +…+ bp * xp + ε, in which ε  is the error variable and b0 refers to the inter-

cept. The regression coefficients b0,…,bp are calculated by minimizing  Σε2  subject to

 
p

Σ | bj | <= s .
j = 1

In the constraint, s is a chosen bound (0.01 e.g.). A small value for s leads to small val-

ues of the regression coefficients. Often, some of the coefficients bj are shrunk to zero. 

The dependent variable y is continuous and the independent variables are continuous 

or dichotomous. Cross-validation is used to estimate the best value for s. In case of a 

dichotomous outcome, LASSO fits a logistic regression model:

P(y = 1)=
1

1+e-(b0 + b1 * x1 +…+ bp * xp)  by maximizing the likelihood subject to
p

Σ | bj | <= s
j = 1

Bayes network
A Bayes network is a graphical model that displays the relation of predictor variables 

and outcome variables and the probabilistic dependencies between these variables. 

A Bayes network may represent causal relationships between the variables. The links, 

Figure 9 Neural network with weights
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however, do not necessarily represent direct cause and effect. Figure 10 shows an ex-

ample of a Bayes network with the probabilistic dependencies between symptoms and 

disease which can be used to calculate the probability of a patient having a specific 

disease (D), given the presence (Y/N) of certain symptoms (A, B and C). These probabili-

ties are usually shown in the conditional probability tables presented with the graph.

The joint probability, using Bayes theorem for conditional probabilities, can be written 

as: 

P(A,B,C,D)=P(D|A,B,C)*P(C|A,B)*P(B|A)*P(A)

For this network, this formula reduces to:

P(A,B,C,D)=P(D|C)*P(C|A,B)*P(B|A)*P(A) 

because there is only a probabilistic dependency between D and C.

With this formula, conditional probabilities such as P(D=Y |B=Y)can be calculated:

P(D=Y|B=Y)=
P(B=Y,D=Y)  =

ΣP(A,B=Y,C,D=Y)
{A,C}

P(B=Y) ΣP(A,B=Y,C,D)
{A,C,D}

where A, C, and D are varied over the categories (Y/N).

Fig 10 Example of a Bayes network
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Decision list
A decision list technique (DL) outputs a set of conjunctive rules for classification. 

Each rule splits the data into subgroups that show a higher or lower likelihood of a 

dichotomous outcome relative to the overall sample. A rule may consist of more than 

one condition. The rules must be applied in the order listed by the model to avoid 

ambiguity. The outcome for a new unseen patient is determined by the first matching 

rule. If no matching rule can be found, the case is assigned to the so-called remainder 

rule. The methods used to generate the rule sets and the measures used in ordering 

the rules may be different for different decision list techniques. The basic principle of 

these techniques is the same: recognizing characteristics based on training data.

Example of a decision list output:

(Condition 1) and (Condition 2) -> (Class=C1)

(Condition 3) -> (Class=C2)

(Condition 1) -> (Class=C1)

Chi-squared automatic interaction detection
The Chi-squared automatic interaction detection model (CHAID) is a classification 

method for building decision trees based on Chi-square analysis. CHAID first performs 

a univariate analysis for each of the predictor variables with respect to the outcome 

variable. If more than one of these relations is statistically significant (p-value<0.05 

e.g.), CHAID will select the predictor with the smallest p-value. If a predictor has more 

than two categories, these are compared, and categories that show a similar outcome 

are combined. This is done by successively combining the pair of categories showing 

the least significant difference. CHAID is applicable for categorical and continuous 

predictors.

The main difference between CHAID and CART is in the construction of decision tree. 

CHAID uses a stopping rule (p-value<0.05 e.g.), while CART first grows the full tree and 

then prunes the tree based on the comparison of the performance of the tree on the 

development set and the performance on a holdout set. The pruning stops when equal 

performance is achieved.
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Table 1 Characteristics modelling techniques

Modelling technique

Linear regression

Logistic regression

Cox regression

C
A

RT

Random
 forests

Support vector m
achine

N
eural net

LA
SSO

Bayes netw
ork

D
ecision list

C
H

A
ID

Categorizing continuous predictor 
variables

- - - + + - - - + + +

Outcome Continuous + - - + + + + + + + +

Categorical - + - + + + + + + + +

Dichotomous - + - + + + + + + + +

Time to 
event

- - + - - - - - - - -

Iteractions Assumed - - - + + - + - + + +

Flexible + + + - - + - + - - -

Selection of predictor 
variables

Assumed - - - + + - - - + + +

Flexible + + + - - + + + - - -

Formula + + + - - - - + - - -

+=yes, -=no

Table 2 Hyper parameters modelling techniques

Modelling technique Hyper parameters

Linear regression L2-penalization

Logistic regression L2 penalization

Cox regression L2-penalization

CART complexity, tree depth, parent and child node size

Random forests number of trees, number of variables tried

Support vector machines margin width (C-parameter), gamma, kernel type

Neural net number of layers, layer size, decay, learning rate

LASSO upper bound L1-penalization

Bayes network -

Decision list -

CHAID tree depth, parent and child node size, p-value for split
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In 2012, a systematic review by Bouwmeester et al. [13] revealed that most of the 

prediction models used in clinical prediction research were developed with traditional 

modelling techniques, such as linear regression, logistic regression or Cox regres-

sion. However, another review illustrated a growing trend to apply machine learning 

techniques in cancer research, where techniques used for feature selection and clas-

sification included neural networks, Bayesian networks, support vector machines and 

decision trees [14].

Prediction of survival

Table 1 shows that modern modelling techniques are not suited for time-to-event out-

comes. The use of modern modelling techniques in survival problems is complicated 

by the fact that these models require a single outcome variable, whereas the outcome 

of survival problems involves a time-to-event variable. This problem can be solved by 

transforming the time-to-event outcome into new single variables, so-called pseudo 

values [15]. These pseudo values can be used to develop machine learning models for 

survival problems.

Feature selection

The selection of important predictor variables or features is sometimes embedded 

in the modelling technique (Table 1). A special case in developing prediction models 

is feature selection in a setting in which the number of predictors (p) is higher than 

the number of subjects (n), the “p>n” problem. A common approach is preselecting 

relevant features using a univariate technique with respect to the outcome (T-test, 

Mann-Whitney-test, Pearson correlation coefficients). By contrast, a specific modelling 

technique can be used to select features, and with the selected feature set a model 

can be built with that same modelling technique. Popular feature selection methods 

nowadays are the “least absolute shrinkage and selection operator” method (LASSO), 

recursive feature elimination with support vector machines (SVM RFE), and a backward 

feature selection method based on random forests (VARSEL RF) [16] [17] [18]. Their 

relative performance is insufficiently known, as is the performance of alternative ap-

proaches.

Performance measures for prediction models

Since prediction models are intended to be used as decision tools for clinical practice, 

clinicians have to be able to determine the quality of a published decision tool. For 

assessing the quality of prediction models, many performance measures have been de-

scribed [19]. The performance of prediction models for binary outcomes is commonly 

measured with discriminatory ability (AUC), the Brier score or Nagelkerke’s R2. The 
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performance of prediction models for continuous outcomes is commonly measured 

with the mean squared error (MSE) or the R2 statistic.

Another important aspect in assessing the quality of predictive modelling is calibration. 

For a well-calibrated model, the predicted probabilities must match the actual prob-

abilities: do close to x of 100 patients with a risk prediction of x % have the outcome 

of interest? The Cox recalibration framework is useful for assessing the calibration of a 

model [20], in combination with graphical assessments [21] [22].

sample size at model development

An important aspect in developing prediction models is the required sample size of 

the development set. For logistic regression modelling, an often-used rule of thumb is 

10 events per variable (EPV) [23] [24]. For other modelling techniques, such a rule of 

thumb is not available. The higher flexibility of modern modelling techniques implies 

that larger sample sizes may be required for reliable estimation. To determine whether 

a given data set is sufficient for developing a prediction model with a good and stable 

predictive performance, researchers need insight into the “data hungriness” of various 

modern modelling techniques.

Validation

A prediction model is only useful if the model is able to predict the correct outcome for 

new, unseen patients. Therefore, the validity of a prediction model is a very important 

issue. Two types of validation can be distinguished: internal validation and external 

validation. In case of internal validation, the model performance is estimated for the 

patients from the underlying population involved in the development of the predic-

tion model. Commonly used techniques for internal validation are cross-validation 

and bootstrap resampling. These techniques can assess and, if necessary, correct for 

a model’s optimism. However, to determine whether a particular model is transport-

able to slightly different settings, internal validation is not sufficient. It needs to be 

supplemented by external validation, in which the model is tested on one or more 

external data sets [25] [26].

aim of this thesis

The aim of this research is to investigate in what circumstances and under what condi-

tions relatively modern modelling techniques such as support vector machines, neural 

networks and random forests have advantages in medical prediction research over 

more classical modelling techniques, such as linear regression, logistic regression and 

Cox regression.
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Specific research questions:

Question 1:

Comparison of modern and traditional modelling techniques:

- What is the performance in predicting intracranial findings on CT scans?

- What is the ability to capture nonlinearity?

Question 2:

Application of modern modelling techniques:

- How can they be applied for survival problems?

- How can they be applied for feature selection in a domain with many variables and 

comparatively few subjects or data points?

Question 3:

Performance of modern modelling techniques:

- What is the performance in relation to the sample size?

- What is the stability of the performance at external validation?

case studies

To address these research questions, we performed studies with different data sets, 

which are briefly described below.

HNSCC survival
We analyzed survival in 1282 Dutch patients with newly diagnosed Head and Neck 

Squamous Cell Carcinoma (HNSCC) with conventional Kaplan-Meier and Cox regression 

analysis and modern modelling techniques. We considered clinical predictor variables 

such as TNM-classification, tumor location and demographic factors for predicting 

5-year mortality and overall mortality.

Legionella strains
We analyzed a data set containing 222 Legionella pneumophila strains with 448 

continuous markers. We aimed to predict a dichotomous outcome (clinical or environ-

mental Legionella).

CT scanning in TBI
We investigated whether alternative modelling techniques might improve the per-

formance of prediction rules for intracranial traumatic findings in patients with minor 

head injury. We re-analyzed 3181 patients with minor head injury who had received 

CT scans between February 2002 and August 2004. Of these patients, 243 (7.6%) had 

intracranial traumatic findings and 17 (0.5%) needed a neurosurgical intervention.
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Moderate or severe TBI
We performed simulation studies based on 1731 patients with traumatic brain injury 

(6-month mortality 22%). We further performed external validation studies within 

the IMPACT data base, which comprises data of fifteen different studies. Patients were 

enrolled in one of ten randomized clinical trials or in one of five registries between 

1984 and 2006.

Thesis structure

This thesis has seven core chapters (chapters 2 to 8) that address the key research 

questions. Some include simulation studies, others present case studies to serve as a 

basis for more general conclusions, which are discussed in chapter 9.

Table 3 Summary characteristics of data sets used in this thesis

Data set

  HNSCC survival Legionella 
strains

CT scanning 
in TBI

Moderate or 
severe TBI

Size 1282 222 3181 11026

Outcome Mortality Origin strain Intracranial 
findings

Mortality

Number of categorial predictors 7 0 10 2-7

Number of continuous predictors 1 448 2 1-3

Modelling techniques LR LR LR LR

CART CART CART CART

RF RF SVM RF

SVM SVM BN SVM

NN NN NN NN

VARSEL RF CHAID

    SVM RFE DL  

LR: logistic regression
CART: classification and regression trees
SVM: support vector machines
RF: random forests
NN: neural networks
CHAID: chi square automated interaction detection
BN: Bayes network
DL: decision list
VARSEL RF: variable selection random forest
SVM RFE: support vector machine recursive feature elimination
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aBsTracT

Background

Prediction rules for intracranial traumatic findings in patients with minor head injury 

are designed to reduce the use of computed tomography (CT) without missing patients 

at risk for complications. This study investigates whether alternative modelling tech-

niques might improve the applicability and simplicity of such prediction rules.

Methods

We included 3181 patients with minor head injury who had received CT scans be-

tween February 2002 and August 2004. Of these patients 243 (7.6%) had intracranial 

traumatic findings and 17 (0.5%) underwent neurosurgical intervention. We analyzed 

sensitivity, specificity and area under the ROC curve (AUC-value) to compare the per-

formance of various modelling techniques by 10x10 cross-validation. The techniques 

included logistic regression, Bayes network, Chi-squared Automatic Interaction Detec-

tion (CHAID), neural net, support vector machines, Classification And Regression Trees 

(CART) and “decision list” models.

results

The cross-validated performance was best for the logistic regression model (AUC 0.78), 

followed by the Bayes network model and the neural net model (both AUC 0.74). The 

other models performed poorly (AUC<0.70). The advantage of the Bayes network 

model was that it provided a graphical representation of the relationships between the 

predictors and the outcome.

conclusions

No alternative modelling technique outperformed the logistic regression model. How-

ever, the Bayes network model had a presentation format which provided more detailed 

insights into the structure of the prediction problem. The search for methods with good 

predictive performance and an attractive presentation format should continue.
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2.1 BacKGrOUND

Minor head injury is one of the most common injuries seen in western emergency 

departments. Patients with minor head injury include those with blunt injury to the 

head who have a normal or minimally altered level of consciousness on presentation 

at the emergency department. Intracranial complications after minor head injury are 

infrequent, but they commonly require in-hospital observation and occasionally even 

neurosurgical intervention.

The imaging procedure of choice for reliable, rapid diagnostics of intracranial compli-

cations is computed tomography (CT). However, it is inefficient to scan all patients with 

minor head injury to exclude intracranial complications, as most patients with minor 

head injury do not show traumatic abnormalities on CT.

Several prediction rules have been developed to identify those at risk of abnormali-

ties on CT. These include the CT in Head Injury Patients (CHIP) prediction rule [1], the 

Canadian CT Head Rule (CCHR) [2] and the New Orleans Criteria (NOC) [3]. While the 

NOC was developed by expert opinion and based on existing literature, the CCHR and 

CHIP rules were developed with recursive partitioning (Classification And Regression 

Trees, CART) and logistic regression techniques respectively (Table 1).

A recent study used CART modelling to develop a prediction rule for CT scanning in 

children [4]. CART modelling was argued to be a more appropriate method for the 

particular problem of selecting a very low risk group among patients with possible 

intracranial complications.

We hypothesized that alternative modelling techniques might deliver better results 

in terms of applicability and performance than modelling based on conventional 

modelling techniques such as logistic regression techniques. We compared logistic 

regression modelling to alternative modelling techniques [5] [6], including CART and 

six other techniques, in the context of selective CT scanning for minor head injury. Data 

from the CHIP study, underlying the CHIP prediction rule, were used for this purpose.

Table 1 Rules

rule Patient selection N patients
N predictors 
considered

N predictors 
included Modelling technique

NOC Prospective cohort study 520 >7 7 Expert opinion

CCHR Prospective cohort study 3121 24 7 Logistic regression/CART

CHIP Prospective cohort study 3181 14 14 Logistic regression

Lancet Prospective cohort study 42411 10 3 CART
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Table 2 Patient characteristics

  Intracranial lesions  

absent present

n (%) n (%) p-value

Fracture skull Absent 2901 (98.7) 207 (85.2) 0.000

Present 37 (1.3) 36 (14.8)

EMV presentation (total) = 13 Absent 2818 (95.9) 212 (87.2) 0.000

Present 120 (4.1) 31 (12.8)

EMV presentation (total) = 14 Absent 2447 (83.3) 166 (68.3) 0.000

Present 491 (16.7) 77 (31.7)

Memory deficit Absent 2535 (86.3) 171 (70.4) 0.000

Present 403 (13.7) 72 (29.6)

Contusion skull Absent 1863 (63.4) 103 (42.4) 0.000

Present 1075 (36.6) 140 (57.6)

Loss of consciousness Absent 1169 (39.8) 61 (25.1) 0.000

Present 1769 (60.2) 182 (74.9)

Seizure Absent 2920 (99.4) 238 (97.9) 0.000

Present 18 (0.6) 5 (2.1)

Vomiting Absent 2651 (90.2) 188 (77.4) 0.000

Present 287 (9.8) 55 (22.6)

Coumarins Absent 2868 (97.6) 230 (94.7) 0.005

Present 70 (2.4) 13 (5.3)

Neurological deficit (all) Absent 2676 (91.1) 201 (82.7) 0.000

Present 262 (8.9) 42 (17.3)

Cause Reference 1882 (64.1) 102 (42) 0.000

ped.or cyclist 297 (10.1) 51 (21)

Fall 702 (23.9) 82 (33.7)

Ejected 57 (1.9) 8 (3.3)

PTA in 3 categories <= 2 hrs 2910 (99.0) 232 (95.5) 0.000

>2 hrs and <= 4 hrs 25 (0.9) 6 (2.5)

>4 hrs 3 (0.1) 5 (2.1)

mean (sd) mean (sd) p-value

EMV change 0.07 (0.50) −0.04 (1.27) 0.186

Age - 16 per decade   2.48 (1.85) 3.22 (2.01) 0.000
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2.2 MeTHODs

The CHIP database contains data on 3181 patients with minor head injury, defined 

as a presenting Glasgow Coma Scale (GCS) score of 13 to 15, and a maximum loss 

of consciousness of 15 minutes, posttraumatic amnesia for 60 minutes. Several risk 

factors were recorded to predict the presence of intracranial traumatic findings on CT 

(Table 2). Most of the risk factors were dichotomous variables (absent, present) and a 

few were continuous. The outcome of interest was intracranial traumatic findings on 

CT (absent, present). These intracranial traumatic findings included contusions, small 

haemorrhages indicating diffuse axonal injury, subarachnoid haemorrhage, and subdu-

ral and epidural hematoma, but excluded isolated linear skull fractures.

Based on this set of predictors, the CHIP-prediction rule was previously developed for 

the identification of intracranial traumatic findings on CT, using logistic regression for 

the statistical modelling [1]. We compared the logistic regression model to alternative 

modelling techniques in developing prediction rules for intracranial findings on CT. We 

used the predictors listed in Table 2.

Description of the modelling techniques

The alternative modelling techniques compared in this study are briefly described 

below [7].

Bayes network
A Bayesian network is a graphical model that displays variables (often referred to 

as nodes) in a dataset and the probabilistic, or conditional, dependencies between 

them. Causal relationships between nodes may be represented by a Bayesian network; 

however, the links in the network (also known as arcs) do not necessarily represent 

direct cause and effect. For example, a Bayesian network can be used to calculate the 

probability of a patient having a specific disease, given the presence or absence of 

certain symptoms and other relevant data, if the probabilistic dependencies between 

symptoms and disease as displayed on the graph hold true. Networks are robust to 

missing information and aim to make the best possible prediction using whatever 

information is present.

There are several reasons to use a Bayesian network:

• It helps to learn about (potentially causal) relationships.

• The network provides an efficient approach to prediction by parsimonious model-

ling and aims to avoid overfitting of data.

• It offers a clear visualization of the relationships involved.
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Neural net
A neural network, sometimes called a multilayer perceptron, is a simplified model of 

the way the human brain processes information. It works by simulating a large number 

of interconnected simple processing units that resemble abstract versions of neurons. 

The processing units are arranged in layers. There are typically three parts in a neural 

network: an input layer, with units representing the predictor variables, one or more 

hidden layers and an output layer, with a unit representing the outcome variable.

The units are connected with varying connection strengths or weights. Input data are 

presented to the first layer, and values are propagated from each neuron to every 

neuron in the next layer. Eventually, a prediction is delivered from the output layer. 

The network learns by examining individual records, generating a prediction for each 

record and making adjustments to the weights whenever it makes an incorrect predic-

tion. This process is repeated many times, and the network continues to improve its 

predictions until one or more of the stopping criteria have been met.

With the default setting, the network will stop training when the network appears to 

have reached its optimally trained state (90% accuracy). The networks that fail to train 

well are discarded as training progresses.

Initially, all weights are random, and the predictions that come out of the net are non-

sensical. The network learns through training. Records for which the output is known 

are repeatedly presented to the network, and the predictions it gives are compared to 

the known outcomes.

As training progresses, the network becomes increasingly accurate in replicating the 

known outcomes. Once trained, the network can be applied to future patients for 

whom the outcome is unknown.

CHAID
The Chi-squared Automatic Interaction Detection model is a classification method for 

building decision trees by using chi-square analysis to identify optimal splits. CHAID 

first examines the cross tables between each of the predictor variables and the outcome 

and tests for significance using a chi-square test. If more than one of these relations is 

statistically significant, CHAID will select the predictor that has the smallest p-value. 

If a predictor has more than two categories, these are compared, and categories that 

show a similar outcome are collapsed together. This is done by successively joining 

the pair of categories showing the least significant difference. This category-merging 

process stops when all remaining categories differ at the specified testing level. For set 

predictors, any categories can be merged. For an ordinal set, only contiguous catego-

ries can be merged. Exhaustive CHAID is a modification of CHAID that more thoroughly 

examines all possible splits for each predictor but takes longer to compute. CHAID can 

generate non-binary trees, meaning that some splits have more than two branches. It 
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therefore tends to create a wider tree than the binary growing methods. CHAID works 

for all types of predictors.

Support vector machine
A Support Vector Machine (SVM) performs classification tasks by constructing hyper-

planes in a multidimensional space that separates cases from different classes. It claims 

to be a robust classification and regression technique that maximizes the predictive 

accuracy of a model without overfitting the training data. A SVM may particularly be 

suited to analyze data with large numbers of predictor variables. SVM has applica-

tions in many disciplines, including customer relationship management (CRM), image 

recognition, bioinformatics, text mining concept extraction, intrusion detection, protein 

structure prediction, and voice and speech recognition.

CART
The Classification And Regression Tree model is a tree-based classification and predic-

tion model. The model uses recursive partitioning to split the training records into seg-

ments with similar output variable values. The modelling starts by examining the input 

variables to find the best split, measured by the reduction in an impurity index that 

results from the split. The split defines two subgroups, each of which is subsequently 

split into two further subgroups and so on, until the stopping criterion is met.

Decision list
A Decision list model identifies subgroups or segments that show a higher or lower 

likelihood of a binary outcome relative to the overall sample. The model consists of 

a list of segments, each of which is defined by a rule that selects matching records. A 

given rule may have multiple conditions. Rules are applied in the order listed, with the 

first matching rule determining the outcome for a given record. Taken independently, 

rules or conditions may overlap, but the order of rules resolves ambiguity. If no rule 

matches, the record is assigned to the remainder rule.

Cut-off values
For each model we determined cut-off values and classification rules to achieve a 

sensitivity >0.95. To this end, we varied the cut-off values for each model from 0.015 

to 0.05. Furthermore, the reduction in CT scans was calculated given a certain cut-off 

value. Reduction was defined as the percentage of subjects who would not undergo CT 

scanning since absence of intracranial findings on CT was predicted.
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Modelling

For the various modelling techniques we used Clementine Modeller version 12.0 in 

combination with SPSS 16.0. The comparison was made using performance characteris-

tics including the area under the ROC curve, sensitivity and specificity. We used default 

modelling settings as far as possible (Appendix 1). For the CART model, however, we 

used an extended setting besides the default setting. The stopping criteria for the de-

fault setting were: 100 records in the parent branch and 50 records in the child branch. 

The stopping criteria for the extended setting were: 11 records in the parent branch 

and 10 records in the child branch. In both variants we used pruning (Appendix 2).

Cross-validation

The models were validated using 10x10 cross-validation. The file was split into 10 

random deciles. Each model was trained repeatedly on 9 deciles with predictions 

generated for the remaining decile. The AUC-values were calculated for the 10 training 

parts and the full set of 10 deciles which were left out of the training parts. The differ-

ence defined the optimism of each model, and this process was repeated 10 times. The 

optimism was subtracted from the apparent AUC-value for each model on the original 

sample to obtain optimism-corrected estimates of model performance [8].

2.3 resUlTs

comparison of the performance of the models

The logistic regression and CART models showed limited optimism in the AUC-values 

(<0.040, Table 3). The support vector machine model had a remarkably high optimism 

(0.171). The logistic regression model had the best performance (optimism-corrected 

AUC 0.787), followed by the Bayes network model (AUC 0.744) and the neural net 

model (AUC 0.726). The CHAID model and the decision list model had AUC-values of 

0.699 and 0.634 respectively. The support vector machine model and the default CART 

model performed poorly with AUC-values 0.581 and 0.560 respectively. Although the 

CHAID model was more overfitted, the optimism-corrected AUC-value was much better 

than the CART analyses (Table 3).

The default CART model showed less statistical optimism than the extended CART 

model (0.008 versus 0.039 respectively). However, the optimism-corrected AUC-value 

was worse for the default CART model (AUC 0.560 versus 0.618 respectively, Table 3).

The logistic regression model had a sensitivity of 0.98 and a reduction of 20% at a cut 

off value of 0.02. The Bayes network model had a sensitivity of 0.97 and a reduction of 

23% at a cut off value of 0.015. For the neural net model, it was not possible to achieve 

a sensitivity >0.95.
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Graphical representations

The CART model is presented as a tree. The default CART model consisted of two pre-

dictor variables (Fracture skull and Cause), which were presented with three end nodes 

(Figure 1). The extended CART model consisted of six predictor variables (Fracture 

skull, EMV change, Cause, Memory deficit and Age per decade) presented in a tree with 

nine end nodes (Figure 2).

The Bayes network model is presented an interaction graph. It shows the relative 

importance of the predictors (Figure 3). The variable ‘intracranial lesions’ had a direct 

relation with the variable ‘fracture skull’ and the variable ‘seizure’. It also showed a 

relation between the variable ‘fracture skull’ and the variable ‘seizure’.

Table 3 AUC-values

Model aUc 95% ci for aUc
Mean aUc 

training
Mean aUc 

test Optimism

Optimism-
corrected 

aUc

Logistic regression 0.800 0.769-0.830 0.789 0.772 0.017 0.783

Neural net 0.782 0.751-0.814 0.785 0.746 0.038 0.744

Bayes network 0.806 0.777-0.836 0.808 0.743 0.065 0.741

CHAID 0.759 0.724-0.794 0.761 0.686 0.075 0.684

Decision list 0.674 0.633-0.715 0.673 0.626 0.048 0.627

CART extended 0.657 0.616-0.699 0.599 0.559 0.040 0.617

Support vector machine 0.754 0.714-0.794 0.740 0.578 0.162 0.592

CART default 0.568 0.527-0.609 0.556 0.537 0.019 0.549
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Figure 1 CART model default
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Figure 2 CART model extended
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Figure 3 Bayesian network model

Figure 4 Conditional probabilities of Intracranial lesions

Figure 5 Conditional probabilities of Fracture skull

Figure 6 Conditional probabilities of Seizure
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The Bayes network model also presented the conditional probabilities (Figures 4, 5 and 

6). Figure 6 shows that if fracture skull is absent and intracranial lesions are absent, the 

probability that seizure is absent equals 0.994.

Using Bayes theorem and the conditional probabilities in the figures 4, 5 and 6, we 

calculated that if seizure is absent, the predicted probability that intracranial traumatic 

findings are absent equals 92.5% (Figure 7).

The CHAID model presented a tree graph. The tree consisted of fifteen end nodes and 

therefore of fifteen decision rules (Figure 8). Hence the tree size was much larger than 

that of the CART analyses (Figure 1 and Figure 2).
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Figure 8 CHAID model
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Figure 8 CHAID model
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Presentation of the logistic regression model

The coefficients of the logistic regression model are presented in Table 4. The prob-

abilities were calculated using Formula 1.

Formula 1 Calculation probabilities logistic regression model (π)

π=
1

1+e-Σxi*bi

Table 4 Regression coefficients logistic model

Variables X b

Fracture skull Present 2.34

Absent 0.00

EMV presentation (total) = 13 Present 1.37

Absent 0.00

EMV presentation (total) = 14 Present 0.72

Absent 0.00

Memory deficit Present 0.41

Absent 0.00

Contusion skull Present 0.59

Absent 0.00

Loss of consciousness Present 0.60

Absent 0.00

Seizure Present 0.84

Absent 0.00

Vomiting Present 0.88

Absent 0.00

Coumarins Present 0.87

Absent 0.00

Neurological deficit (all) Present 0.40

Absent 0.00

EMV change EMV change −0.32

Cause Reference 0.00

pedastrian or cyclist 1.27

Fall 0.55

Ejected 1.13

Age - 16 per decade Age - 16 per decade 0.17

PTA <=2 hrs 0.00

>2 hrs and <=4 hrs 0.48

>4 hrs 2.01

Constant Constant −4.77
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2.4 DiscUssiON

We found that alternative modelling techniques did not deliver better results in terms 

of applicability and performance in developing prediction rules for intracranial findings 

in patients with minor head injury than modelling based on conventional modelling 

techniques such as logistic regression. The performance of logistic regression was com-

pared with six alternative modelling techniques using standard measures, specifically 

the receiver operating characteristic (ROC) curve. In a ROC curve, the trade-off between 

sensitivity and specificity is shown based on consecutive cut-off values. The key char-

acteristic for model comparisons is the area under the ROC curve, which is equivalent 

to the concordance (or ‘c’) statistic.

The apparent AUC-values of each model were corrected for optimism using 10x10 

cross-validation. Only the logistic regression model, the Bayes network model and the 

neural net model had satisfactory AUC-values (> 0.7), although it was impossible to 

achieve a sensitivity >0.95 for the neural net model. The CHAID model and the decision 

list model had AUC-values of 0.699 and 0.634 respectively, and the support vector 

machine model and the default CART model performed poorly (AUC-values <0.6).

At a cut-off value of 0.015, the logistic regression model would miss only 1% of the 

patients with intracranial traumatic findings (sensitivity 99%), whereas the Bayes 

network model would miss 3% (sensitivity 97%) at this cut-off. On the other hand, at 

this cut-off value the specificity of the Bayes model would be better (25%), and could 

potentially reduce the number of CT scans ordered by 23%. In contrast, the logistic 

regression model would only have 8% specificity and would reduce the number of 

CT scans ordered by 8% at a cut-off of 0.015. This illustrates the difficult trade-off 

between missing patients with intracranial traumatic findings versus the wish to reduce 

unnecessary CT scans in those without intracranial traumatic findings.

No modelling technique outperformed the relatively simple logistic regression model 

in terms of the optimism-corrected AUC-value. These findings may be seen as confirm-

ing the validity of the previously developed CHIP prediction rule [1]. However, it should 

be noted that these results are an internal validation of the developed CHIP-rule and 

that external validation is still required.

Our findings are in contrast to a recent study that advocated CART modelling to de-

velop a prediction rule for CT scanning in children [4]. This can potentially be explained 

by the fact that modelling techniques such as CART are ‘data hungry’. Therefore CART 

modelling may have been suitable for the Kuppermann study, which included 42,411 

patients (376 with abnormal CT scans). However, it was not suitable for the CHIP da-

tabase, which included only 3,181 patients (243 with abnormal CT scans). Also, the 

specific algorithm used in the Kuppermann study may have been different from the 

algorithm used in our study.



44 Chapter 2

The superior performance of the logistic regression modelling might be explained by 

the high number of categorical variables (10 out of 14), which might favour logistic 

regression modelling. The somewhat disappointing performance of tree models like 

CHAID and CART may be more realistic, because these models are well suited for deal-

ing with categorical and continuous variables, although the latter are categorized by 

these models.

Although the examined modelling techniques did not outperform logistic regression 

analysis, we can see a role for these techniques in providing a deeper insight into the 

interrelationships between predictors and outcome. For example, the Bayes network 

offered the advantage of showing a graphical representation of the direct relationships 

between the predictor variables and the outcome variable, as well as the first-order 

interactions. The CHAID model offered a tree graph which might give researchers 

insight into relevant risk groups. The neural net model, on the other hand, did have a 

satisfactory optimism-corrected AUC-value, but did not provide further insight into the 

medical problem. This alternative modelling technique has a black box character, which 

is a serious drawback for application in medical practice.

The outcomes of this study suggest that the use of alternative modelling techniques 

may also have practical value in ascertaining variables of critical import and in stream-

lining current existing guidelines. Smits et al. used 14 variables for their modelling 

based on expert opinion and previous studies. We started out with these same 14 

variables to be able to compare the model of Smits et al. with modelling based on 

alternative modelling techniques. However, the CHAID model only used 10 out of these 

14 variables. The variables PTA, Change, EMV-13 and Seizure were not used, which sug-

gests that these variables may be of lower importance for the outcome. However, the 

CHAID model performed poorly in comparison with logistic regression modelling. For 

most of the evaluated models, the variables of critical import were: Fracture skull (v69), 

Cause (cause3) and Age - 16 per decade (age10). Based on our study, the guidelines 

should certainly contain these variables.

A priori, it is not fully predictable whether an alternative modelling technique will 

perform better than conventional modelling techniques. This depends on the internal 

structure of the prediction problem and on the characteristics of the modelling tech-

niques. For example, tree modelling is well suited for a situation with many interactions 

between predictors, which might be missed with a default main effects logistic model. 

Neural nets are even more flexible in capturing interactions and non-linearities, which 

might be missed by other modelling techniques. It has been suggested that the bal-

ance between signal and noise is relatively unfavourable in many medical applications, 

making relatively simple regression models perform quite reasonably [9].

All these models can easily be evaluated, because capacity limitations for computer 

calculations no longer exist nowadays. The required software for evaluating the per-
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formance of alternative modelling techniques is readily available (e.g. Clementine, R 

software, etc). The methods we used in this study may be applied to other studies 

using characteristics such as AUC-values, sensitivity and specificity. Internal validation 

can be performed using 10x10 cross-validation. From there, optimism-corrected AUC-

values can readily be calculated.

Depending on the software used, it is possible to use the default setting or to choose 

an expert setting for the CART modelling. A researcher may use an expert setting for 

the number of levels below the root of a tree, for the number of records in the parent 

node and the child node, for applying or not applying pruning, for using weights for the 

categories of the outcome variable (costs) and so on. In our study, we used the default 

settings for the modelling as far as possible. Only in the evaluation of the CART model 

did we use an extended setting besides the default setting in order to achieve a higher 

AUC-value, but even then the performance of this model was poor.

In view of the applicability and simplicity of a prediction model, medical experts and 

researchers usually prefer a small number of predictors. However, this study shows that 

a considerable number of variables may be necessary to make an informed decision or 

a prediction with a high level of accuracy. The CHIP rule included 14 variables as major 

and minor risk factors, which all turned out to be indispensable.

By comparison, the default CART model appeared attractive, as it consisted of only 3 

end nodes and therefore of 3 decision rules. Unfortunately, this model showed a poor 

performance.

Larger models may lead to better performance when all predictors are in fact predictive 

of the outcome [10]. While the number of predictors should therefore not be unduly 

limited, the applicability and simplicity of a decision rule might still be improved by 

using a model that provides a clarifying presentation of all the relevant variables and 

their mutual dependencies. Therefore the search for superior models with attractive 

presentation formats should continue.

conclusions

No alternative modelling technique outperformed the logistic regression model. How-

ever, the Bayes network model had a presentation format which provided more detailed 

insights into the structure of the prediction problem. The search for methods with good 

predictive performance and an attractive presentation format should continue.
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2.5 aPPeNDiX 1 MODelliNG seTTiNGs

Bayes network  

Build Settings

Use partitioned data: false

Variable importance.LABEL: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Use frequency field: false

Continue training existing model: false

Structure type: TAN

Include feature selection preprocessing step: false

Parameter learning method: Maximum likelihood

Mode: Simple

Use only complete records: true

Append all probabilities: false

Independence test: Likelihood ratio

Significance level: 0,01

Maximal conditioning set size: 5

Inputs always selected: []

  Maximum number of inputs: 10

Neural net  

Build Settings

Use partitioned data: false

Calculate variable importance: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Method: Quick

Stop on: Default

Set random seed: true

Set random seed: true

Prevent overtraining: false

Sample %: 50,0

Optimize: Memory

Mode: Simple

Analysis

Estimated accuracy: 93,587

Input Layer: 29 neurons
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Hidden Layer 1: 3 neurons

  Output Layer: 1 neurons

CHAID  

Analysis

Tree depth: 5

Build Settings

Use partitioned data: false

Calculate variable importance: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Use frequency: false

Use weight: false

Levels below root: 5

Mode: Simple

  Use misclassification costs: false

Support vector machine  

Build Settings

Use partitioned data: false

Variable importance.LABEL: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Mode: Simple

Append all probabilities (valid only for categorical targets): false

Stopping criteria: 1.0E-3

Kernel type: RBF

Regularization parameter (C): 10

Regression precision (epsilon): 0,1

RBF gamma: 0,1

Gamma: 1,0

Bias: 0,0

  Degree: 3

CART default  

Analysis

Tree depth: 2

Build Settings
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Use partitioned data: false

Calculate variable importance: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Use frequency: false

Use weight: false

Levels below root: 10

Mode: Simple

  Use misclassification costs: false

CART extended  

Build Settings

Use partitioned data: false

Calculate variable importance: true

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Use frequency: false

Use weight: false

Levels below root: 5

Mode: Expert

Maximum surrogates: 5

Minimum change in impurity: 0,0

Impurity measure for categorical targets: Gini

Stopping criteria: Use absolute value

Minimum records in parent branch: 11

Minimum records in child branch: 10

Prune tree: true

Use standard error rule: false

Prior probabilities: Based on training data

Adjust priors using misclassification costs: false

  Use misclassification costs: false

Decision list  

Build Settings

Use partitioned data: false

Calculate raw propensity scores: true

Calculate adjusted propensity scores: false

Use frequency: false

Target value: 1,0
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Search direction: Up

Maximum number of segments: 5

Minimum segment size (as percentage): 5,0

Minimum segment size (as absolute value): 50

Maximum number of attributes: 5

Allow attribute re-use: true

Confidence interval for new conditions (%): 95,0

  Mode: Simple

Logistic regression  

Build Settings

Use partitioned data: false

Calculate variable importance: true

Calculate raw propensity scores: true

Procedure: Multinomial

Base category: 0

Model type: Main Effects

Include constant in equation: true

Mode: Simple

  Multinomial Method: Enter
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2.6 aPPeNDiX 2 cHaracTerisTics OF THe MODels

Model

   

Bayes netw
ork

C
H

AID
 and C

ART

D
ecision list

Support vector m
achine

N
eural net

Logistic regression

Categorizing of continuous predictor variables Yes x x x x

No x x

Outcome Continuous x x x

Categorial x x x x

Dichotomous x x x x x x

Iteractions Assumed x x x

Flexible x x

Possible x

Selection of predictor variables Assumed x x x

Flexible x x x

Graphical output Tree graph x

Interaction 
graph

x

Variable 
importance

x x x x

Formula Yes x

  No x x x x x  
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Machine learning techniques may have important roles in the medical statistical 

literature. We aimed to reflect the pros and cons of machine learning techniques in 

comparison with traditional regression modelling for risk prediction. First, we note that 

considering non-linearity is essential in a modern approach to regression analysis. 

Second, we emphasize the use of penalization procedures for a fair comparison of 

regression to MLT. Next, we discuss the role of model uncertainty, which argues for 

relatively simple models, and the balance between information from outside the data 

under study versus what can be learned from the data. We end with a discussion on the 

potential role of MLT in addition to regression modelling.

Key words: Machine learning; Prediction; Regression
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3.1 iNTrODUcTiON

Cross-fertilization between medical statistics and epidemiology on the one hand 

and machine learning techniques (MLT) on the other can be very stimulating (Kruppa 

et al., 2014a; Kruppa et al., 2014b). Not only is probability estimation discussed for 

dichotomous outcomes, but also for multi-category (or polytomous, multinomial) 

outcomes, which is an underdeveloped research area (Van Calster et al., 2012b). Prob-

ability estimation is key to the area of risk prediction, which is growing in importance 

in medicine, where personalized medicine becomes more and more possible through 

the combination of classical risk predictors and biomarkers.

The first paper focuses on theoretical aspects, such as consistency of probability esti-

mation (Kruppa et al., 2014a). For example, for the Nearest Neighbor (NN) method the 

authors report that the error in the estimation of probabilities converges to zero if the 

sample size tends to infinity, while this is not strictly true for Random Forests (RF). Con-

sistency does not hold for logistic regression (logreg), where the validity of probability 

estimates depends on the model specification. Simulation studies are provided which 

show that each of these methods can fail to provide reasonable predictions. Calibra-

tion properties were particularly poor for some variants of Support Vector Machines 

(SVMs) in some simulations. Various performance criteria were studied, specifically 

squared scoring rules such as the Brier score. Rank-based measures such as the area 

under the ROC curve were also used, for which extensions to multi-category evalua-

tion have recently been proposed, such as the Polytomous Discrimination Index (Van 

Calster et al., 2012a). Likelihood based performance measures might also have been be 

used, such as Nagelkerke’s R2 (Austin & Steyerberg, 2013), but these would probably 

have led to the same impression of performance. Finally, the paper nicely illustrates 

that some methods behave very similarly, e.g. two variants of NN, and SVM with linear 

kernel and logreg.

Below we first discuss tuning and implementation aspects of MLT and regression mod-

els (section 2), followed by reflections on model uncertainty (section 3) and a possible 

sensible modelling strategy (section 4). We discuss the potential role of MLT in addition 

to regression modelling in section 5.

3.2 TUNiNG, TraDiTiONs, aND MODerN aPPrOacHes iN reGressiON 
MODelliNG

As emphasized by the authors, one issue of attention with machine learning techniques 

(MLT) is that they have various tuning parameters, such as the number of neighbors to 

consider in NN, the regularization parameters and type of kernel for SVM, and the tree 
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specifications for RF, which essentially serve to control the complexity of the fitted 

model. Similarly, various strategies and modelling approaches are possible for logreg.

First, prediction modelers of medical data should assess non-linearity of continuous 

variables (Steyerberg, 2009). The blind application of the logistic regression model 

y~x1+x2, as was presented in Simulation I, is divorced from reality. The underlying 

circle model requires some kind of increasing and decreasing functions for x1 and x2. 

Any epidemiologist would do some form of data inspection, and would immediately 

note the more or less squared relation with x (Figure 1). After that no one would model 

linear effects for x1 and x2. Preferences for modelling non-linearity vary: Harrell advis-

esrestricted cubic splines (rcs) as a default tool in regression modelling (Harrell, 2001), 

while Royston & Sauerbrei (2008) advocate the use of fractional polynomials (FP). For 

illustration, we fitted FP and rcs functions in a simulation with 5000 subjects (Figure 1, 

using R packages mfp and rms).  The true effect of x1 is a linear increase from x1=0 to 

x1=17, a probability of 1 between x1=17 and x1=33, and a linear decrease between 

x1=33 and x1=50.  For the FP model, a linear term plus square term are selected for x1. 

This FP model follows the true shape well, although the probability of 1 is not reached, 

and low probabilities are underestimated. The rcs model (with 5 knots, 4 df) reached 

the plateau probability of 1, but slightly overestimated low probabilities at x1=0 and 

x1=50.  The models y~fp(x1)+fp(x2) and y~rcs(x1)+rcs(x2) had Brier scores below 0.15, 

which is equivalent to the best performing MLT in this simulation (NN, SVM-Bessel). 

Figure 1: The probability of y=1 in Simulation study I, for x2=25. We performed a simulation study 
of 5000 subjects, where the selected FP function was (x1+0.1)+(x1+0.1)^2. The rcs function used 
5 knots (4 df).
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So, as may be expected, a reasonably specified logreg model performs very well in 

simulation I.

Second, whereas some form of regularization is indispensable for MLT due to their 

flexibility, similar techniques exist for logreg to penalize or shrink model coefficients. 

Examples are simple shrinkage, L1 (LASSO) or L2 (ridge) penalization, or Bayesian ap-

proaches (Steyerberg, 2009). The LASSO method uses a L1 penalty to shrink regression 

coefficients to zero (Tibshirani, 1996). Hence LASSO combines variable selection with 

shrinkage while still providing adequate predictions, as observed in a large simulation 

study for patients with an acute myocardial infarction (Steyerberg et al., 2000). Similar 

to the improvement of RF over CART for prediction (Austin et al., 2012), we should 

use penalized rather than traditional approaches for logreg if comparisons are made 

between logreg and MLT.

3.3 MODel UNcerTaiNTy

The main problem for prediction models is model uncertainty. We can usually specify 

various models, which all reasonably describe the data (Breiman, 2001). In medical 

research, we may often have a relatively long list of potential predictors, e.g. 49 for 

Application I (stroke) (Kruppa et al., 2014b). This list was apparently based on solid 

grounds (a systematic literature review), but some reduction might have been pos-

sible by posing stricter criteria on the evidence underpinning a potential predictive 

effect, such as consistency of a substantial effect size across multiple studies. It is not 

plausible that a medical problem has 49 equally important predictors. For example, we 

identified only 3 key predictors of 6-month outcome in a systematic literature review 

for patients with traumatic brain injury (Mushkudiani et al., 2008). In this prediction 

problem, Age, Glasgow Coma Scale -especially the Motor component-, and pupillary 

reactivity strongly predicted 6-month mortality (Perel et al., 2008) (Steyerberg et al., 

2008). Models with these key predictors performed well in temporal and geographi-

cal validations (Roozenbeek et al., 2012). Only minor improvements were noted by 

including other characteristics, such as CT scan findings, while many clinicians would 

consider these characteristics vital for prediction. 

Moreover, it is well known that medical data typically have a poor signal to noise ratio 

for predictors. This has two implications. First, sample size and penalization are key fac-

tors to accurate prediction modelling. This is true for regression models, and even more 

so for MLT. MLT are more flexible than regression, which makes them more data hungry. 

A technique such as NN may be extreme in data requirements, because of its fully 

non-parametric nature. Second, simpler model specifications may often be sufficient 

to capture the main structure of a prediction problem. Extreme non-linearity such as 
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in the presented Simulation I is implausible in medical research. Complex higher order 

interactions may occasionally exist but are impossible to identify in reasonably sized 

medical data sets. This is supported by recent studies that report similar performance 

of logreg vs MLT (Van Calster et al., 2009) (Van Calster et al., 2010) (Van der Ploeg et al, 

2011) (Austin et al., 2013).

3.4 seNsiBle PreDicTiON MODelliNG iN MeDical DaTa

Medical data sets are often of too small a size to be able to reliably address difficult 

research questions, such as determining which predictors are important and which are 

not. For example, reliably determining which of 49 characteristics predict mortality 

may require far larger numbers of events than occurring among the training set of 1737 

patients in Application I (Kruppa et al., 2014b). In addition, backward elimination is a 

standard approach for variable selection in regression analysis, commonly requiring 

p<0.05 for predictors in a prediction model. Many drawbacks have been discussed 

in the past, including biased estimation of regression coefficients, distortion of the 

estimation of variance and p-values, and instability of the selected set of predictors 

(Austin & Tu, 2004) (Sauerbrei & Schumacher, 1992) (Steyerberg et al., 1999). For prob-

ability estimation the most relevant issue is that stepwise selection leads to subopti-

mal prediction: only the most prominent predictors are selected, so information from 

close-to-significant predictors is lost, and effects are exaggerated, which leads to too 

extreme predictions (Steyerberg et al., 2001).

Sensible modelling should find a balance between external knowledge from outside 

the data versus what can be learned from the data. The smaller the data set available, 

the more we have to rely on external information. This holds primarily for the list of 

candidate predictors in a model, which is relevant to both MLT and logreg. But it also 

holds for issues such as whether we should rely on the additivity assumption in logreg, 

i.e. whether we should consider statistical interaction terms. Some traditional statis-

ticians might consider assessment of interactions as good modelling practice, while 

others would warn of overfitting by the potential for inclusion of spurious interactions. 

Findings in prior studies and sample size of the data under study are key considerations 

for such strategies (Steyerberg, 2009).

3.5 a rOle FOr MlT iN aDDiTiON TO reGressiON?

MLT have various attractive properties, such as their focus on regularization and on 

finding algorithms and classification models that work, rather than focusing strongly on 
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theory of an assumed stochastic data model (Breiman, 2001). Clinical risk prediction 

research uses a similar philosophy, focusing on performance issues such as discrimina-

tion, calibration, utility, and impact. Nevertheless MLT also have various problems. If we 

aim for an important role of prediction models in medicine, we need to follow a frame-

work that not only includes model development, but involves a process of validation 

and updating of models (Steyerberg et al., 2013). Updating may require adjustments 

to local settings (van Houwelingen, 2000) (Steyerberg et al., 2004). In logreg, simple 

updating to the average probability is easily achieved by changing the model intercept, 

while this is difficult for MLT.

Furthermore, interpretability to a clinical audience is essential, as Kruppa et al. rightly 

notice. Logistic regression models can transparently be presented, with insight into the 

relative effects of predictors by odds ratios and in nomograms, score charts and other 

displays. Such presentations are not possible for MLT, although efforts to this end have 

been undertaken (Van Belle et al., 2012).  On the other hand, we notice that prediction 

models are increasingly implemented on the internet. For example, a risk calculator 

for the probability of Lynch syndrome related mutation is accessed over 1000 times a 

month (Kastrinos et al., 2011). Web-based calculation of risk may allow the underlying 

model to be quite complex, e.g. an MLT.

Some characteristics of MLT and regression modelling techniques are summarized 

in Table 1. An NN approach may be attractive because of the theoretical property of 

consistency, but is data hungry (requires huge sample sizes) and lacks interpretability, 

similar to RF and SVM. The consistency of RF and SVM is not fully proven, but the flex-

ibility is large. Although logreg is not consistent in the estimation of probabilities, the 

flexibility can be substantial with a modern modelling strategy. Naive fitting of linear 

main effects and automatic selection methods such as backward stepwise selection 

with p<0.05 are suboptimal implementations of logreg. Non-linear transformations can 

readily be made by rcs and FP functions, and the shrinkage or penalization methods 

such as LASSO provide better than standard predictive performance. Sample size re-

quirements for logreg depend on how much external evidence is available, and how 

Table 1 Characteristics of MLT and regression modelling techniques.

Method consistency Flexibility sample size interpretability

NN + + - -

RF +/- + +/- -

SVM +/- + +/- -

Logreg - +/- + +

NN: nearest neighbors; RF: random forest using probability estimation trees; 
SVM: support vector machine; logreg: logistic regression
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much the analyst is willing to rely on such evidence, e.g. on the relevance and effects 

of predictors. Interpretability of effect sizes is readily possible for a medically trained 

audience, and model updating can readily be achieved with simple or more advanced 

procedures.

All in all, we envision that logreg will remain the main modelling approach to prob-

ability estimation in medical risk prediction, especially when applied with modern 

approaches. MLT may have a supplementary role, in highly complex problems and to 

provide a comparison to regression results.
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aBsTracT

Background

The use of alternative modelling techniques for predicting patient survival is compli-

cated by the fact that some alternative techniques cannot readily deal with censor-

ing, which is essential for analyzing survival data. In the current study, we aimed to 

demonstrate that pseudo values enable statistically appropriate analyses of survival 

outcomes when used in seven alternative modelling techniques. 

Methods

In this case study, we analyzed survival of 1282 Dutch patients with newly diagnosed 

Head and Neck Squamous Cell Carcinoma (HNSCC) with conventional Kaplan-Meier 

and Cox regression analysis. We subsequently calculated pseudo values to reflect the 

individual survival patterns. We used these pseudo values to compare recursive parti-

tioning (RPART), neural nets (NNET), logistic regression (LR) general linear models (GLM) 

and three variants of support vector machines (SVM) with respect to dichotomous 

60-month survival, and continuous pseudo values at 60 months or estimated survival 

time. We used the area under the ROC curve (AUC) and the root of the mean squared 

error (RMSE) to compare the performance of these models using bootstrap validation.

results

Of a total of 1282 patients, 986 patients died during a median follow-up of 66 months 

(60-month survival: 52% [95% CI:50%-55%]). The LR model had the highest opti-

mism corrected AUC (0.791) to predict 60-month survival, followed by the SVM model 

with a linear kernel (AUC 0.787). The GLM model had the smallest optimism corrected 

RMSE when continuous pseudo values were considered for 60-month survival or the 

estimated survival time followed by SVM models with a linear kernel. The estimated 

importance of predictors varied substantially by the specific aspect of survival studied 

and modelling technique used.

conclusions

The use of pseudo values makes it readily possible to apply alternative modelling 

techniques to survival problems, to compare their performance and to search further 

for promising alternative modelling techniques to analyze survival time.
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4.1 BacKGrOUND

Predicting the survival probability of patients is important for various purposes in 

biomedical research, such as patient counselling, medical decision making, and bench-

marking. The conventional analysis of survival problems mainly relies on Kaplan-Meier 

analysis and Cox regression modelling to predict the survival probability in relation to 

predictor variables [1] [2].

Alternative modelling techniques are available, such as support vector machines and 

artificial neural networks [3] [4] [5], which might possibly provide better predictions. 

For example, feed forward neural networks were already used in 1998 for the analysis 

of censored survival data [6]. In 2007, applications of random survival forests were de-

scribed [7]. In 2009, prognostic indexes were compared using data mining techniques 

and Cox regression analysis in breast cancer data [8].

In 2000, Schwarzer and Vach [9] reviewed the use of artificial neural networks in 

medical research and found several problems. A major problem was that some of the 

alternative techniques did not deal adequately with censoring, which is essential for 

analyzing survival data. The conventional analysis of survival outcomes requires two 

variables: the status of the patient (e.g. dead or alive) and the time point at which this 

status is measured. In 2008, Klein et al. [10] [11] proposed to predict the survival at 

particular time points using pseudo values, which combine the variables status and 

time point in one outcome variable. The use of these pseudo values in generalized 

estimating equation modelling (GEE) using a log-minus-log link function leads to 

statistically appropriate analyses, which are in line with the results of Cox regression 

modelling.

In the current study, we aimed to study the use of pseudo values for analyses of survival 

outcomes with other modelling techniques, including support vector machines (SVM), 

neural networks (NNET), general linear models (GLM), recursive partitioning (RPART) and 

logistic regression (LR). To compare the performance, we applied these techniques and 

conventional regression analysis in the prediction of survival of 1282 Dutch patients 

with Head and Neck Squamous Cell Carcinoma (HNSCC), using predictors as described 

in earlier studies [12] [13] [14]. The survival of this particular population of newly 

diagnosed patients with HNSCC has already been studied by applying conventional 

Kaplan-Meier analysis, Cox regression and random survival forests (RSF) to 60-month 

survival and overall survival [15] [16] [17].
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4.2 MeTHODs

Patients and data

We considered a cohort of 1371 patients with Head and Neck Squamous Cell Carci-

noma (HNSCC) of the oral cavity, pharynx or larynx, diagnosed at Leiden University 

Medical Centre. The data were obtained from files used in an earlier study [16]. The 

same data had been used before to derive a prediction model based on the Cox regres-

sion modelling technique [15]. Predictors in this model included Tumor location, Age 

at diagnosis, Gender, T-N-M classification (T=the extent of the primary tumor, N=the 

absence or presence and extent of regional lymph node metastasis, M=the absence or 

presence of distant metastasis) and Prior malignancies. In 2010, Datema et al. [16] [17] 

published an updated model including comorbidity according to the Adult Comorbid-

ity Evaluation, based on a 27-item comorbidity index (ACE27) [18]. In our study, we 

excluded patients for whom comorbidity was unknown, resulting in a total of 1282 

patients.

Outcome variables

We defined three outcome variables related to patient survival:

• The 60-month survival (dichotomous, dead or alive, ignoring censoring before 60 

months)

• The pseudo values at 60 months (continuous)

• The estimated survival time (continuous)

We focused on 60-month survival, since this is a common time point in cancer research. 

We subsequently calculated pseudo values for the time points 12, 24,…,288, and 300 

months to reflect the individual survival patterns of patients using the R-package 

“Pseudo”. The pseudo values form a new set of observations to allow for analysis as if 

we had time-to-event data without censoring [10] [11].

The estimated survival time was calculated as the sum of the pseudo values at these 

time points, because this sum reflects the area under the survival curve and can be 

interpreted as the mean survival time. The choice for a time interval of 12 months 

was motivated by the wish to have around 25 time intervals per subject for sufficient 

accuracy in estimating the survival time. Appendix 1 gives a more detailed description 

of the calculation and interpretation of the pseudo values and the estimated survival 

time. For univariate analysis of 60-month survival and overall survival we used Kaplan-

Meier analysis and Cox regression analysis.
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Modelling techniques

We considered the following modelling techniques: support vector machines (SVM), 

neural networks (NNET), recursive partitioning (RPART), general linear models (GLM) 

and logistic regression (LR), with their implementations as available in the software 

package R, version 2.14.1 [19]. The parameters of the various modelling techniques are 

presented in Table 1.

Appendix 2 presents a more detailed description of the various modelling techniques 

and their parameters, based on previous literature [20] [21] [22] [23] [24] [25] [26] [27].

Tuning of the modelling techniques

Before applying a modelling technique, we tuned that technique by varying the pa-

rameters to create an optimal model fit. The optimal parameter setting was based on 

the smallest prediction error after 10-fold cross validation. The modelling technique 

SVM was tuned using a simultaneous grid search for the parameters cost and gamma 

when a radial or linear kernel was used and for the parameters cost, gamma and degree 

when a polynomial kernel was used. The modelling technique NNET was tuned using 

a simultaneous grid search for the parameter size, and the modelling technique RPART 

was tuned by varying the cp-value.

Validation and performance of the modelling techniques

For all models, internal validation was done by bootstrap resampling (200 bootstrap 

samples). From the original data set a bootstrap sample was drawn (randomly and with 

replacement). Then the modelling technique was tuned to create an optimal model 

fit for this bootstrap sample. With the optimal setting resulting from the tuning, we 

applied the modelling technique to the bootstrap sample and calculated the perfor-

mance of the resulting model (bootstrap performance). We then applied the model to 

the original data base and calculated the performance (validated performance). This 

process was repeated 200 times. The 200 results were averaged to produce a single 

estimation of the bootstrap performance and the validated performance [28]. The dif-

Table 1 Parameters required for the modelling techniques

Modelling technique Parameters

NNET  size and decay

RPART cp-value

SVM LINEAR cost and gamma

SVM POLYNOMIAL cost, gamma and degree

SVM RADIAL cost and gamma
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ference of the mean bootstrap performance and the mean validated performance in-

dicated the optimism of a model. The optimism corrected performance was calculated 

by subtracting the optimism from the apparent performance estimate, i.e. when the 

model was optimized and assessed for its performance on the original data set. With 

respect to dichotomous 60-month survival, the performance measure was the area 

under the ROC-curve (AUC). With respect to continuous pseudo values at 60 months 

and estimated survival time, the performance of the models was calculated using the 

root of the mean squared error (RSME).

Variable importance

We calculated the relative importance of each of the eight predictor variables in a 

model by calculating the difference between the validated performance of the full 

model with all eight predictor variables and the validated performance of the model 

with seven predictor variables, leaving out each predictor variable in turn.

ethics statement

Patient data were used that had been collected prospectively and anonymously be-

tween 1981-1998. According to Dutch regulations, neither medical nor ethical approval 

was required to conduct the study, as no interventions were initiated and the study had 

no influence on medical care nor on decision making. The data was anonymized. The 

study was not supported financially in any way.

4.3 resUlTs

Patients and data

Of the 1371 patients included originally, we dropped 89 patients for whom the comor-

bidity was unknown. As a result, we included 1282 patients in our analysis. Of these, 

986 patients died during a median follow-up of 66 months (60-month survival: 52% 

[95% CI: 50%-55%], Figure 1). The censoring pattern of the patients (censoring rate 

before 60 months: 4%) is presented in Figure 2.
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Table 2 shows the overall number of events and the survival probabilities for each cat-

egory of the predictor variables with respect to the Kaplan-Meier estimated 60-month 

survival. Several characteristics were associated with a poor 60-month survival: Tumor 

location in the Hypopharynx, Oral cavity and Oropharynx (60-month survival 0.33, 0.36 

and 0.37 respectively), cancer stages T3, T4, and N3 (60-month survival 0.38, 0.27, 0.11 

respectively), higher age (Age >=70, 60-month survival 0.40) and severe comorbidity 

(Grade 3 of ACE27, 60-month survival 0.25).

Figure 1 Survival pattern 1282 patients with newly diagnosed HNSCC

Figure 2 Censoring pattern 1282 patients with newly diagnosed HNSCC
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Table 2 Overall survival and 60-month survival
Overall 60 months

Variable Value Total (n) Events (n) HR 95% CI Survival 
probability

95% CI

Gender Male (ref) 1022 789 1.00 - 0.54 [0.51; 0.57]

Female 260 197 1.12 [0.96; 1.31] 0.48 [0.42; 0.54]

Tumor location Glottic larynx 
(ref)

425 282 1.00 - 0.71 [0.67; 0.75]

Lip 85 54 0.88 [0.66; 1.18] 0.75 [0.67; 0.85]

Oral cavity 261 210 2.04 [1.70; 2.44] 0.36 [0.31; 0.43]

Oropharynx 148 129 2.37 [1.92; 2.92] 0.37 [0.30; 0.46]

Nasopharynx 39 23 1.35 [0.88; 2.06] 0.52 [0.37; 0.74]

Hypopharynx 135 123 2.83 [2.29; 3.51] 0.33 [0.26; 0.42]

Supraglottic 
larynx

189 165 1.70 [1.40; 2.06] 0.50 [0.43; 0.57]

T-class T1 (ref) 454 293 1.00 - 0.74 [0.70; 0.78]

T2 354 281 1.63 [1.38; 1.92] 0.53 [0.48; 0.58]

T3 200 170 2.26 [1.87; 2.73] 0.38 [0.32; 0.45]

T4 274 242 3.18 [2.68; 3.78] 0.27 [0.22; 0.33]

N-class N0 (ref) 891 641 1.00 - 0.64 [0.61; 0.67]

N1 138 125 2.10 [1.73; 2.54] 0.33 [0.26; 0.42]

N2 174 147 2.45 [2.04; 2.94] 0.28 [0.22; 0.36]

N3 79 73 3.82 [2.99; 4.89] 0.11 [0.06; 0.21]

M-class M0 (ref) 1266 972 1.00 - 0.53 [0.50; 0.56]

M1 16 14 8.51 [4.97; 14.58] 0.00 -

Prior 
malignancies

No (ref) 1160 880 1.00 - 0.54 [0.51; 0.57]

Yes 122 106 1.62 [1.32; 1.98] 0.36 [0.28; 0.45]

ACE27 Grade 0 (ref) 782 574 1.00 - 0.57 [0.54; 0.61]

Grade 1 239 176 1.17 [0.99; 1.39] 0.52 [0.46; 0.59]

Grade 2 185 164 1.66 [1.40; 1.98] 0.44 [0.38; 0.52]

Grade 3 76 72 2.52 [1.97; 3.23] 0.25 [0.17; 0.37]

Age class <50 (ref) 173 100 1.00 - 0.66 [0.59; 0.74]

50-59 339 234 1.24 [0.98; 1.57] 0.59 [0.54; 0.65]

60-69 404 328 1.73 [1.38; 2.16] 0.52 [0.47; 0.57]

>=70 366 324 2.53 [2.02; 3.18] 0.40 [0.36; 0.46]

Total 1282 986 0.52 [0.50; 0.55]

HR: Hazard ratio
CI: Confidence interval
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Model performance and optimism

We evaluated the performance of the various models with respect to the three survival 

related outcome variables.

For the outcome ‘dead or alive at 60 months’, the LR model had the highest optimism 

corrected AUC (0.791, Table 3) followed by the SVM model with linear kernel (AUC 

0.787, Table 3). The NNET model performed slightly poorer (AUC 0.785, Table 3). The 

RPART model had the lowest AUC (0.725, Table 3).

Considering the outcome ‘pseudo values at 60 months’, the GLM model had the high-

est optimism corrected RMSE (0.436, Table 4). The SVM model with polynomial kernel 

and the NNET model performed poorly (RMSE 0.482 and 0.486 respectively, Table 4).

Analyzing the outcome ‘estimated survival time’, the GLM model had the lowest opti-

mism corrected RMSE (77.7, Table 5), followed by the SVM model with a linear kernel 

(79.2, Table 5). The NNET model had the worst RMSE (83.7, Table 5).

The regression based models (LR and GLM) had relatively small optimism. This small 

optimism was also noted for the SVM models with a linear kernel. The bootstrap-

estimated optimism was substantial for NNET and the more complex SVM models with 

polynomial and radial kernels (Table 3 to Table 5).

Table 3 Performance of models for the outcome ‘dead or alive at 60 months’

Dead or alive at 60 months

Modelling technique AUC bootstrap AUC validated AUC-apparent Optimism Optimism-
corrected-
AUC

LR 0.809 0.797 0.803 0.012 0.791

NNET 0.880 0.810 0.855 0.070 0.785

RPART 0.769 0.741 0.753 0.028 0.725

SVM LINEAR 0.807 0.794 0.800 0.013 0.787

SVM POLYNOMIAL 0.861 0.811 0.821 0.050 0.771

SVM RADIAL 0.872 0.813 0.825 0.059 0.766

Table 4 Performance of models for the outcome ‘pseudo values at 60 months’

Pseudo values at 60 months

Modelling technique RMSE 
bootstrap

RMSE 
validated

RMSE-
apparent

Optimism Optimism-
corrected-
RMSE

GLM 0.427 0.433 0.430 0.006 0.436

NNET 0.388 0.457 0.417 0.069 0.486

RPART 0.430 0.448 0.448 0.018 0.466

SVM LINEAR 0.461 0.470 0.460 0.009 0.469

SVM POLYNOMIAL 0.409 0.445 0.446 0.036 0.482

SVM RADIAL 0.428 0.446 0.442 0.018 0.460
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Variable importance

For each model and for each outcome we calculated the variable importance (Figure 

3). We chose the parameter settings of the modelling techniques based on the highest 

frequency (mode) resulting from the bootstrap procedure (Table 6).

Figure 3 shows the variable importance for each model and for each outcome with 

these parameter settings.

Overall, the variables Tumor location, T-class and N-class were the most important 

predictor variables for predicting the dichotomous and continuous 60-month survival 

(Figure 3). Survival probability was considerably lower for patients with cancer stages 

T4 and N3 (Appendix 3, Table 7, Table 8).

For the estimated survival time, age at diagnosis was the most important predictor 

variable (Figure 3). Cancer stages T1 and N0 indicated a relatively good survival prob-

Table 6 Mode of the parameter settings identified as optimal in bootstrap samples

Outcome

Modelling technique Dead or alive at 60 
months

Pseudo values at 60 
months

Estimated survival time

LR - - -

NNET size=40 size=30 size=40

RPART cp=0.01 cp=0.01 cp=0.01

SVM LINEAR cost=0.5, gamma=0.001 cost=0.5, gamma=0.001 cost=0.5, gamma=0.001

SVM POLYNOMIAL cost=50, gamma=0.05, 
degree=3

cost=25, gamma=0.05, 
degree=3

cost=50, gamma=0.05, 
degree=3

SVM RADIAL cost=50, gamma=0.05 cost=0.5, gamma=0.05 cost=50, gamma=0.05

Table 5 Performance of models for the outcome ‘estimated survival time’

estimated survival time

Modelling technique RMSE 
bootstrap

RMSE validated RMSE-apparent Optimism Optimism-
corrected-
RMSE

GLM 76.0 77.1 76.6 1.1 77.7

NNET 80.3 83.0 81.0 2.7 83.7

RPART 76.7 80.1 79.8 3.4 83.1

SVM LINEAR 77.4 78.7 77.9 1.3 79.2

SVM POLYNOMIAL 69.7 76.3 76.3 6.6 82.9

SVM RADIAL 69.7 76.4 76.8 6.7 83.4
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ability (Appendix 3, Table 9). The relative importance of each predictor variable varied 

substantially by the specific aspect of survival studied and modelling technique used.

The variable plots with observed 60-month survival (dichotomous) proved to be very 

similar to the variable plots with pseudo values at 60 months (continuous), except for 

the NNET model (Figure 3).

4.4 DiscUssiON

In this study, we demonstrated that pseudo values as described by Klein et al. [10] 

[11] enable statistically appropriate analyses of survival outcomes when used in in 

three variants of support vector machines (SVM), neural networks (NNET), general 

linear models (GLM), recursive partitioning (RPART) and logistic regression (LR). We 

showed that pseudo values enabled us to apply these techniques to predict survival in 

a case study of 1282 Dutch patients with newly diagnosed HNSCC, and to compare the 

performance of the resulting models. 

Our analysis showed that conventional regression analysis approaches (logistic regres-

sion and the generalized linear model) outperformed the performance of relatively 

modern modelling techniques. However, the SVM model with an optimal setting and 

a linear kernel performed only slightly worse with respect to our outcomes. The NNET 

model and the RPART model performed relatively poorly.

Figure 3 Variable importance of the models per outcome

*Cox regression was added as reference technique
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We compared the performance of the alternative modelling techniques in predicting 

three variants of survival outcome for our case study . The first, admittedly rather sim-

plistic, outcome variable was based on the 60-month survival in terms of dead or alive. 

This outcome may produce bias unless the censoring rate is small (4% in our study). 

The other two outcome variables were defined by means of pseudo values, which were 

derived from the Kaplan Meier survival function.

A drawback of outcome definitions for 60 months is that they only consider survival at 

a particular point in time rather than the full survival curve. By contrast, the approach 

with the estimated survival time is attractive, because it considers the full survival 

curve. We consider the total expected survival time the most relevant to inform pa-

tients about their prognosis and to support decision making.

In our study, SVM models with a linear kernel and optimal settings performed slightly 

worse than conventional regression modelling. These findings are in line with other 

studies that used support vector machines for analyzing survival [3] [4] [5] [6]. On the 

other hand, our findings also support the results of previous studies that relied on 

Cox regression modelling to predict the five year mortality and the overall mortality of 

newly diagnosed patients with HNSCC [15] [16] [17].

None of the investigated models showed a very satisfactory performance. This may 

possibly be explained by the low signal-to-noise ratio in our data. In 1998, Ennis et 

al. discussed the predictive performance of adaptive non-linear algorithms versus 

conventional statistical techniques. Based on their quite negative findings for the 

more modern algorithms, they postulated that adaptive non-linear methods may be 

most useful in problems with high signal-to-noise ratios, which sometimes occur in 

engineering and physical science. Since the signal-to-noise ratio is often quite low 

in medical prediction studies, they concluded that modern methods may have less to 

offer [24].

A limitation of this study is that the results were based on a single cohort of 1282 Dutch 

patients, diagnosed at a single center [16]. We had to rely on bootstrap validation to 

estimate the performance of alternative modelling techniques. On the other hand, the 

number of events was more than sufficient to allow for detailed statistical modelling 

with modern techniques for the relatively small set of candidate predictors.

We showed that the use of pseudo values opens new possibilities for analyzing survival 

problems with techniques other than conventional regression techniques. The validity 

of the pseudo value approach is supported by the concordance between Cox regres-

sion modelling for censored survival time and Generalized Estimating Equation model-

ling (GEE) using a log-minus-log link function [11]. Therefore, this approach deserves a 

central role in the ongoing search for improved prediction models for survival. On the 

other hand, our results also show that it may be hard to find modelling approaches that 
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are superior to conventional regression analysis in terms of performance, applicability 

and simplicity.

In conclusion, the use of pseudo values makes it readily possible to analyze survival 

time with alternative modelling techniques, to compare their performance and to search 

further for promising alternative modelling techniques to analyze survival time. In our 

case study on patients with newly diagnosed HNSCC, none of the alternative model-

ling techniques provided better predictions for survival than conventional regression 

modelling techniques. The estimated importance of predictors depends on the specific 

aspect of survival studied and the modelling technique used.
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4.6 aPPeNDiX1

This appendix describes the calculation of the pseudo values, the calculation of the 

estimated survival time and the interpretation of the pseudo values [10].

calculation of the pseudo values and the estimated survival time

Let S(t) be the estimated Kaplan-Meier survival function. We calculated the pseudo 

values Ji(t) for the ith patient as Ji(t)=nS(t)-(n-1)S(-i)(t) with S(-i)(t) the survival function 

without the ith patient.

Ji(t) can be considered as the individual survival function for the ith patient. The area 

under the survival curve of Ji(t) is the survival time for the ith patient.

In our study, we calculated the pseudo values at the time points t=12, 24,…,300. For the 

ith patient, we calculated the estimated survival time (ESTi) as ESTi=12(Ji(12)+Ji(24)+…

+Ji(300)).

examples

The following two examples are meant as an illustration how to interpret the pseudo 

values of a patient. We do not consider the case of negative pseudo values.

Example 1 (censored case):

Suppose a patient has the following series of pseudo values at the particular time 

points:
Time point 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300
Pseudo value 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.03 1.05 1.09 1.14 1.18 1.23 1.31 1.35 1.19 0.98 0.80 0.74 0.71 0.64 0.55 0.44

The interpretation of the series of pseudo values for this patient is:

The patient did not die because all pseudo values are positive. The follow-up time 

point lies between the time points 204 and 216 because the increasing pattern of the 

pseudo values changes into a decreasing pattern.

Example 2 (uncensored case):

Suppose a patient has the following series of pseudo values at the particular time 

points:
Time point 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300
Pseudo value 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.02 -0.19 -0.18 -0.16 -0.14 -0.13 -0.12 -0.10 -0.10 -0.08 -0.07 -0.06 -0.05 -0.05 -0.05 -0.04 -0.03

The interpretation of the series of pseudo values for this patient is: 

The patient died between the time points 108 and 120 because the pseudo values 

change from a positive value into a negative value.

Figure 4 shows that the Kaplan-Meier survival curve nearly matches the curve of the 

mean pseudo values at each time point.
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Figure 5 shows that the sum of the pseudo values multiplied by 12 can be considered 

as an estimation of the area under the survival curve and therefore as an estimation of 

the expected survival time for a patient.

For the modelling of the various models we therefore used this variable as outcome 

variable to estimate the survival time of a patient.

Figure 4 Comparison KM survival curve and survival curve based on pseudo values

Figure 5 Estimation of the area under the survival curve using pseudo values
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4.7 aPPeNDiX 2

This appendix contains a description of the evaluated modelling techniques and their 

parameters, based on literature and articles of various authors [20-24]. The standard 

regression techniques logistic regression (LR) and generalized linear model (GLM) are 

assumed to be familiar.

support vector machines

A Support Vector Machine (SVM) performs classification tasks by constructing hyper-

planes with a margin in a multidimensional space that separates cases from different 

classes. SVM can efficiently perform a non-linear classification or regression task using 

different kernels (radial, linear and polynomial). The tuning parameters for SVM are 

the C-parameter (cost), which regulates the margin width, and the gamma-parameter 

for the kernel calculation. SVM claims to be a robust classification and regression 

technique that maximizes the predictive accuracy of a model without overfitting the 

training data. SVM may particularly be suited to analyze data with large numbers of 

predictor variables.

Neural net

A neural network (NNET), sometimes called a multilayer perceptron, works by simulat-

ing a large number of interconnected simple processing units, which are arranged in 

layers. There are three parts in a neural network: an input layer, with units representing 

the predictor variables, one or more hidden layers and an output layer, with a unit 

representing the outcome variable. The units are connected with varying connec-

tion strengths or weights. Input data are presented to the input layer and values are 

propagated from there to the next layer. Then, a prediction is delivered from the output 

layer. The network learns by examining individual records, generating a prediction for 

each record and making adjustments to the weights whenever it makes an incorrect 

prediction. This process is repeated many times, and the network continues to improve 

its predictions until one or more of the stopping criteria have been met. Initially, all 

weights are random, and the predictions that come out of the net are nonsensical. The 

network learns through training. Records for which the output is known are repeatedly 

presented to the network, and the predictions it gives are compared to the known 

outcomes. As training progresses, the network becomes increasingly accurate in repli-

cating the known outcomes. Once trained, the network can be applied to new patients 

for whom the outcome is unknown. The parameters of NNET are the size-parameter 

(number of units in the layer) and decay-parameter.
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recursive partitioning

Recursive partitioning (RPART) is a tree-based classification and prediction modelling 

technique which uses recursive partitioning to split the training records into segments 

with similar output variable values. The modelling starts by examining the input vari-

ables to find the best split, measured by the reduction in an impurity index that results 

from the split. The split defines two subgroups, each of which is subsequently split into 

two further subgroups and so on, until the stopping criterion is met. The parameter of 

RPART is the cp-parameter (cost complexity factor). A cp-value of 0.001 for example 

regulates that a split must decrease the overall lack of fit by a factor of 0.001.
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4.8 aPPeNDiX 3

This appendix contains the coefficients of the regression models.

Coefficients regression models

Table 7 Logistic regression model for the outcome ‘dead or alive at 60 months’

Variable Value B se P-value Or 95% ci

Tumor location Glottic larynx (ref) 0.00  -  - 1.00  - 

Lip 0.04 0.31 0.89 1.05 [0.57; 1.91]

Oral cavity 1.00 0.21 0.00 2.73 [1.83; 4.07]

Oropharynx 0.76 0.25 0.00 2.15 [1.32; 3.50]

Nasopharynx −0.09 0.41 0.82 0.91 [0.41; 2.03]

Hypopharynx 0.80 0.26 0.00 2.21 [1.33; 3.68]

Supraglottic larynx 0.39 0.22 0.07 1.48 [0.97; 2.26]

ACE27 Grade 0 (ref) 0.00  -  - 1.00 -

Grade 1 0.04 0.18 0.82 1.04 [0.74; 1.47]

Grade 2 0.36 0.19 0.06 1.43 [0.99; 2.08]

Grade 3 1.09 0.31 0.00 2.97 [1.62; 5.45]

T-class T1 (ref) 0.00  -  - 1.00 -

T2 0.67 0.17 0.00 1.95 [1.38; 2.74]

T3 0.90 0.21 0.00 2.47 [1.62; 3.76]

T4 1.30 0.21 0.00 3.68 [2.44; 5.55]

N-class N0 (ref) 0.00  -  - 1.00 -

N1 0.73 0.22 0.00 2.08 [1.34; 3.22]

N2 1.02 0.22 0.00 2.76 [1.81; 4.22]

N3 2.13 0.38 0.00 8.40 [3.98; 17.72]

M-class M0 (ref) 0.00  -  - 1.00 -

M1 1.65 0.85 0.05 5.23 [0.99; 27.63]

Prior malignancies No (ref) 0.00  -  - 1.00 -

Yes 1.04 0.24 0.00 2.83 [1.78; 4.50]

Gender Male (ref) 0.00  -  - 1.00 -

Female −0.05 0.17 0.77 0.95 [0.68; 1.33]

Age at diagnosis per decade 0.49 0.06 0.00 1.63 [1.44; 1.84]

Constant −4.79 0.44 0.00 0.01 -

B: Regression coefficient
SE: Standard error regression coefficient
OR: Odds ratio
CI: Confidence interval
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Table 8 General linear model for the outcome ‘pseudo values at 60 months’

Variable Value B se 95% ci P-value

Tumor location Glottic larynx (ref) 0.00 - - -

Lip −0.00 0.05 [−0.11; 0.10] 0.93

Oral cavity −0.19 0.04 [−0.26; −0.11] 0.00

Oropharynx −0.14 0.05 [−0.23; −0.05] 0.00

Nasopharynx −0.06 0.08 [−0.21; 0.09] 0.44

Hypopharynx −0.15 0.05 [−0.25; −0.06] 0.00

Supraglottic larynx −0.07 0.04 [−0.15; 0.01] 0.08

ACE27 Grade 0 (ref) 0.00 - - -

Grade 1 0.00 0.03 [−0.06; 0.06] 0.99

Grade 2 −0.07 0.04 [−0.14; 0.00] 0.06

Grade 3 −0.19 0.05 [−0.29; −0.09] 0.00

T-class T1 (ref) 0.00 - - -

T2 −0.13 0.03 [−0.20; −0.07] 0.00

T3 −0.19 0.04 [−0.27; −0.11] 0.00

T4 −0.27 0.04 [−0.34; −0.19] 0.00

N-class N0 (ref) 0.00 - - -

N1 −0.16 0.04 [−0.25; −0.08] 0.00

N2 −0.22 0.04 [−0.29; −0.14] 0.00

N3 −0.37 0.05 [−0.47; −0.26] 0.00

M-class M0 (ref) 0.00 - - -

M1 −0.27 0.11 [−0.49; −0.05] 0.02

Prior malignancies No (ref) 0.00 - - -

Yes −0.20 0.04 [−0.28; −0.12] 0.00

Gender Male (ref) 0.00 - - -

Female 0.01 0.03 [−0.05; 0.07] 0.69

Age at diagnosis per decade −0.09 0.01 [−0.11; −0.07] 0.00

Constant 1.38 0.07 [1.24; 1.52] 0.00

B: Regression coefficient
SE: Standard error regression coefficient
CI: Confidence interval
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Table 9 General linear model for the outcome ‘estimated survival time’

Variable Value B se 95% ci P-value

Tumor location Glottic larynx (ref) 0.00 - - -

Lip −0.79 9.44 [−19.30; 17.72] 0.93

Oral cavity −31.29 6.79 [−44.59; −17.98] 0.00

Oropharynx −38.62 8.26 [−54.82; −22.42] 0.00

Nasopharynx −21.39 13.66 [−48.17; 5.38] 0.12

Hypopharynx −44.97 8.59 [−61.81; −28.13] 0.00

Supraglottic larynx −23.41 7.23 [−37.59; −9.24] 0.00

ACE27 Grade 0 (ref) 0.00 - - -

Grade 1 −2.43 5.75 [−13.69; 8.83] 0.67

Grade 2 −24.39 6.41 [−36.95; −11.83] 0.00

Grade 3 −41.36 9.37 [−59.72; −23.01] 0.00

T-class T1 (ref) 0.00 - - -

T2 −25.71 5.79 [−37.06; −14.35] 0.00

T3 −30.65 7.18 [−44.72; −16.58] 0.00

T4 −46.44 6.93 [−60.02; −32.86] 0.00

N0 (ref) 0.00 - - -

N-class N1 −27.65 7.60 [−42.54; −12.76] 0.00

N2 −36.42 7.16 [−50.45; −22.40] 0.00

N3 −56.29 9.70 [−75.29; −37.28] 0.00

M-class M0 (ref) 0.00 - - -

M1 −47.31 19.71 [−85.94; −8.68] 0.02

Prior malignancies No (ref) 0.00 - - -

Yes −38.03 7.52 [−52.76; −23.29] 0.00

Gender Male (ref) 0.00 - - -

Female 2.99 5.56 [−7.91; 13.90] 0.59

Age at diagnosis per decade −22.71 1.88 [−26.39; −19.03] 0.00

Constant 300.47 12.58 [275.82; 325.12] 0.00

B: Regression coefficient
SE: Standard error regression coefficient
CI: Confidence interval
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aBsTracT

introduction 

Genetic comparisons of clinical and environmental Legionella strains form an essential 

part of outbreak investigations. DNA microarrays often comprise many DNA markers 

(features). Feature selection and the development of prediction models are particularly 

challenging in this domain with many variables and comparatively few subjects or data 

points. We aimed to compare modelling strategies to develop prediction models for 

classifying infections as clinical or environmental.

Methods

We applied a bootstrap strategy for preselecting important features to a database 

containing 222 Legionella pneumophila strains with 448 continuous markers and a 

dichotomous outcome (clinical or environmental). Feature selection was done with 50 

bootstrap samples resulting in a top 10 of most important features for each of four 

modelling techniques: classification and regression trees (CART), random forests (RF), 

support vector machines (SVM) and least absolute shrinkage and selection operator 

(LASSO). Validation was done in a second bootstrap re-sampling loop (200x) for evalu-

ation of discriminatory model performance according to the AUC.

results

The top 5 of selected features differed considerably between the various modelling 

techniques, with only one common feature (“LePn.007B8”). The mean validated AUC-

values of the SVM model and the CART model were 0.859 and 0.873 respectively. 

The LASSO and the RF model showed higher validated AUC-values (0.925 and 0.975 

respectively).

conclusions

In the domain of Legionella pneumophila, which comprises many potential features 

for classifying of infections as clinical or environmental, the RF and LASSO techniques 

provide good prediction models. The identification of potentially biologically relevant 

features is highly dependent on the technique used, and should hence be interpreted 

with caution.
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5.1 INTRODUCTION

The bacterium Legionella pneumophila, the causative agent for Legionnaires’ disease, 

is omnipresent in both natural and man-made aquatic environments. The major route 

of transmission is inhalation of the bacterium, which is spread into the air as an aerosol 

from its reservoir [1]. Genetic comparisons of clinical and environmental Legionella 

strains form an essential part of outbreak investigations [2] [3]. Such investigations pre-

viously showed that the distribution of genotypes within clinical strains significantly 

differed from the distribution in environmental strains [4] [5] [6].

To develop reliable statistical models for the discrimination between clinical and en-

vironmental strains, modelling techniques are required which can stabilize the feature 

selection. DNA microarrays may comprise thousands of DNA markers (features, p) and 

only a few hundred or even only a few dozen subjects (n; the “p>n” problem) [7].

Common statistical approaches for selecting features include filter methods, wrapper 

methods and embedded methods. Filter methods preselect features using a univariate 

technique with respect to the outcome (T-test, Mann-Whitney-test, Pearson correla-

tion coefficients), without being tuned to a specific type of modelling technique. By 

contrast, wrapper methods use a specific modelling technique to select features, and 

subsequently each selected feature set is used to train a model built with that same 

modelling technique; the performance of the model is usually tested on a hold-out set, 

resulting in a score for a specific feature set. Embedded methods are a catch-all group 

of techniques that perform feature selection as part of the model construction process 

[8] [9].

Popular feature selection methods nowadays are the least absolute shrinkage and 

selection operator method (LASSO) [10], recursive feature elimination, which is com-

monly used with support vector machines (SVM RFE) [11], and a backward feature 

selection method based on random forests (VARSEL RF) [12]. For stabilizing the feature 

selection, several authors proposed the use of ensemble feature selection based on 

bootstrap samples [13] [14] [15], a widely used technique in prediction research [16]. 

Several authors discussed double bootstrap or nested bootstrap procedures for both 

feature selection and performance estimation [17] [18] [19] [20] [21] [22].

The aim of the present study was to compare statistical models that can be used to dis-

criminate between clinical and environmental strains using a small number of features. 

We compared modelling techniques for developing prediction models with relevant 

genomic features related to pathogenity. We focused on four modelling techniques: 

classification and regression trees (CART) [23], random forests (RF) [24], support vector 

machines (SVM) [25] and least absolute shrinkage and selection operator (LASSO) [26]. 

We used a nested bootstrap procedure, one for feature selection and one for predictive 
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performance validation for a fair evaluation of a prediction model based on a relatively 

small data set.

5.2 MeTHODs

Data

We analyzed the database of the Dutch National Legionella Outbreak Detection 

Programme as used before [27]. The database contained 222 Legionella pneumophila 

strains with 448 continuous markers and a dichotomous outcome. Of these strains, 

49 were patient-derived strains from notified cases in the Netherlands in the pe-

riod 2002–2006, and 173 were environmental strains that were collected during the 

source investigation for those patients. The 448 continuous markers were coded as 

LePn.###L## (e.g. LePn.032E12). The data were collected prospectively and anony-

mously. According to Dutch regulations, neither medical nor ethical approval was 

required to conduct the study, as no medical interventions were initiated and the study 

had no influence on medical care nor on decision making.

Modelling techniques

We evaluated the modelling techniques CART, RF, SVM and LASSO, which are described 

below.

Classification and regression trees (CART)
The CART model is a tree-based classification and prediction model that uses recursive 

partitioning to split the training records into segments with similar output variable 

values. The modelling starts by examining the input variables to find the best split, 

measured by the reduction in an impurity index that results from the split. The split 

defines two subgroups, each of which is subsequently split into two further subgroups 

and so on, until the stopping criterion is met [23].

Random forest (RF)
Random forest is an ensemble classifier that consists of many decision trees and out-

puts the class that is the mode of the classes output by individual trees [24].

Each tree is constructed using the following algorithm:

1. Let the number of training cases be N, and the number of variables in the classifier 

be M.

2. We are told the number m of input variables to be used to determine the decision 

at a node of the tree; m should be much lower than M.
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3. Choose a training set for this tree by choosing n times with replacement from all N 

available training cases (i.e. take a bootstrap sample). Use the rest of the cases to 

estimate the error of the tree, by predicting their classes.

4. For each node of the tree, randomly choose m variables on which to base the deci-

sion at that node. Calculate the best split based on these m variables in the training 

set.

5. Each tree is fully grown and not pruned (as may be done in constructing a normal 

tree classifier).

For prediction a new sample is pushed down the tree. It is assigned the label of the 

training sample in the terminal node it ends up in. This procedure is iterated over all 

trees in the ensemble, and the mode of the votes over all trees is used as the random 

forest prediction.

Support vector machine (SVM)
A support vector machine performs classification tasks by constructing hyperplanes in 

a multidimensional space that separate cases from non-cases. It claims to be a robust 

technique that maximizes the predictive accuracy of a model without overfitting the 

training data. SVM may particularly be suited to analyze data with large numbers of 

predictor variables. SVM has applications in many disciplines, including customer 

relationship management, image recognition, bioinformatics, text mining concept 

extraction, intrusion detection, protein structure prediction, and voice and speech 

recognition [25].

Least absolute shrinkage selection operator (LASSO)
Given a set of input measurements x1, x2,…,xp and an outcome measurement y, the 

LASSO fits a linear model: ŷ=b0+b1*x1+b2*x2+...+bp*xp

It uses the following criterion: Minimize sum((y-ŷ)2) subject to sum(|bj|)<=s.

The first sum is taken over the cases in the dataset. The bound “s” is a tuning parameter. 

If “s” is large, the constraint has no effect and the solution is just the usual maximum 

likelihood regression of y on x1, x2,…,xp. For smaller values of s (s>=0) the regression 

coefficients are shrunken versions of the maximum likelihood estimates. Often, some 

of the coefficients bj are shrunk to zero. We used cross-validation to estimate the best 

value for “s” [26], and a logistic link function rather than linear regression.

reference techniques

As reference points for this evaluation, we applied the commonly used techniques 

VARSEL RF and SVM RFE to our database, which are examples of embedded methods. 

VARSEL RF is a feature selection technique based on random forests with backward 

stepwise elimination of features that are not important. SVM RFE is a recursive feature 
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elimination technique. It is based on support vector machines, which eliminate feature 

redundancy resulting in compact feature sets.

Model performance

We evaluated the stability of the feature selection and the validated performance 

by means of bootstrap re-sampling from the original database. The performance of 

a model resulting from a modelling technique was assessed using the area under the 

Receiver Operator Curve (AUC).

Modelling strategy

For a specific modelling technique, feature selection was done by bootstrap re-

sampling from the original database D. We re-sampled 50 bootstraps Bi (B1,…,B50) from 

the original database D. We applied the specific modelling technique on each Bi and 

Figure 1 Feature selection and model development strategy
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determined for each Bi the top 12 of most important features, leading to 50x12=600 

important features. From these 600 features, the top 10 of features with the high-

est frequency was extracted. With this feature top 10, a model was developed on the 

original database D with the specific modelling technique. For the resulting model the 

performance for the original database D was calculated (“AUC apparent”, Figure 1)

Validation of the strategy

To validate our strategy for a specific modelling technique, we performed a bootstrap 

procedure. We re-sampled a bootstrap sample Bj from the original data base D and 

from this bootstrap sample Bj, we re-sampled 50 independent bootstraps Bji (Bj1,…,Bj50).

We applied the specific modelling technique on each Bji and determined for each Bji 

the top 12 of most important features, leading to 50x12=600 important features. From 

these 600 features, the top 10 of features with the highest frequency was extracted. 

Figure 2 Evaluation of optimism for each strategy
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With this top 10 features, a model was developed on bootstrap sample Bj with the 

specific modelling technique. For the resulting model, the performance for Bj and the 

performance for the original data base D were calculated (“AUC bootstrap” and “AUC 

validated” respectively). The optimism of the resulting model was calculated as “AUC 

bootstrap” minus “AUC validated”. This process was repeated 200 times (B1 to B200, 

Figure 2).

analysis

For the modelling and the analysis of these techniques, we used R 2.14, using default 

settings as far as possible. We used the libraries randomForest, caTools, rpart, caret, 

e1071, varSelRF and glmnet [28].

5.3 resUlTs

reference techniques

Feature selection with the reference techniques VARSEL RF and SVM RFE resulted in 

two different sets of features, only with LePn.007B8 as the common feature in the top 5 

(Table 1). For the full list of features for each technique and for each bootstrap sample, 

we refer to file S1 and file S2. The mean validated AUC-values of the models generated 

by these two techniques were 0.966 for VARSEL RF and 0.915 for SVM RFE (Table 2).

Other techniques

The top 5 of selected features differed among the other modelling techniques (CART, 

RF, SVM, LASSO). The only common feature in the top 5 of all four modelling techniques 

was feature LePn.007B8. Feature selection with RF resulted in four matches with 

feature selection based on VARSEL RF, and feature selection with LASSO resulted in 

three matches with feature selection with SVM RFE (Table 3). The selected features also 

differed within the various modelling techniques. For the full list of selected features 

for each technique and for each bootstrap sample, we refer to file S3, file S4, file S5 and 

file S6. The RF model showed the highest mean validated AUC-value (0.975) followed 

by the LASSO model (0.925). The mean validated AUC-values of the CART and the SVM 

models were 0.873 and 0.859 respectively (Table 4). The RF model showed a relatively 

low statistical optimism (0.005). Modelling with CART, SVM and LASSO resulted in pre-

diction models with higher optimism (decrease in performance 0.064, 0.066 and 0.056 

respectively, Table 4).



Feature selection and validated predicted performance in the domain of legionella pneumophila 97

Ta
bl

e 
1 

To
p 

5 
fe

at
ur

es
 V

AR
SE

L 
RF

 a
nd

 S
V

M
 R

FE
 a

nd
 fr

eq
ue

nc
y 

of
 s

el
ec

ti
on

 in
 2

00
 b

oo
ts

tr
ap

 re
sa

m
pl

es
.

Te
ch

ni
qu

e
To

p 
5 

fe
at

ur
es

 a
nd

 f
re

qu
en

ci
es

 [ 
]

VA
RS

EL
RF

Le
Pn

.0
07

B8
[ 1

96
 ]

Le
Pn

.0
32

E1
2

[ 9
3 

]
Le

Pn
.0

04
E8

[ 7
1 

]
Le

Pn
.0

15
B2

[ 4
0 

]
Le

Pn
.0

35
C

6
[ 4

0 
]

SV
M

RF
E

Le
Pn

.0
07

B8
[ 8

8 
]

Le
Pn

.0
16

E4
[ 8

0 
]

Le
Pn

.0
33

H
2

[ 7
7 

]
Le

Pn
.0

05
H

6
[ 6

0 
]

Le
Pn

.0
33

D
7

[ 5
4 

]

Ta
bl

e 
2 

M
ea

n 
AU

C
 a

nd
 m

ea
n 

op
ti

m
is

m
 V

AR
SE

L 
RF

 a
nd

 S
V

M
 R

FE

 
Bo

ot
st

ra
p 

a
U

c
Va

li
da

te
d 

a
U

c
O

pt
im

is
m

Te
ch

ni
qu

e
a

pp
ar

en
t a

U
c

M
ea

n
95

%
 c

i
M

ea
n

95
%

 c
i

M
ea

n
95

%
 c

i

VA
RS

EL
RF

0.
90

4
0.

96
6

 [0
.9

63
;0

.9
69

] 
0.

96
6

 [0
.9

63
;0

.9
69

] 
0.

00
0

 [−
0.

00
4;

0.
00

4]
 

SV
M

RF
E

0.
96

4
0.

99
1

 [0
.9

90
;0

.9
92

] 
0.

91
5

 [0
.9

11
;0

.9
19

] 
0.

07
6

 [0
.0

72
;0

.0
80

] 

Ta
bl

e 
3 

To
p 

5 
fe

at
ur

es
 C

AR
T,

 R
F,

 S
V

M
 a

nd
 L

AS
SO

 a
nd

 fr
eq

ue
nc

y 
of

 s
el

ec
ti

on
 in

 2
00

 b
oo

ts
tr

ap
 re

sa
m

pl
es

.

Te
ch

ni
qu

e
To

p 
5 

fe
at

ur
es

 a
nd

 f
re

qu
en

ci
es

 [ 
]

C
AR

T
Le

Pn
.0

07
B8

[ 2
00

 ]
Le

Pn
.0

26
A7

[ 9
3 

]
Le

Pn
.0

27
A1

2
[ 7

6 
]

Le
Pn

.0
28

A1
1

[ 7
1 

]
Le

Pn
.0

16
E4

[ 6
6 

]

RF
Le

Pn
.0

07
B8

[ 2
00

 ]
Le

Pn
.0

32
E1

2
[ 1

68
 ]

Le
Pn

.0
04

E8
[ 1

51
 ]

Le
Pn

.0
35

C
6

[ 1
41

 ]
Le

Pn
.0

16
E4

[ 1
00

 ]

SV
M

Le
Pn

.0
07

B8
[ 1

44
 ]

Le
Pn

.0
35

G
3

[ 1
11

 ]
Le

Pn
.0

09
C

5
[ 1

05
 ]

Le
Pn

.0
12

C
5

[ 9
7 

]
Le

Pn
.0

24
C

3
[ 8

9 
]

LA
SS

O
Le

Pn
.0

07
B8

[ 1
87

 ]
Le

Pn
.0

33
H

2
[ 1

46
 ]

Le
Pn

.0
16

E4
[ 1

31
 ]

Le
Pn

.0
10

B1
2

[ 8
3 

]
Le

Pn
.0

11
B3

[ 7
7 

]

Ta
bl

e 
4 

M
ea

n 
AU

C
 a

nd
 m

ea
n 

op
ti

m
is

m
 C

AR
T,

 R
F,

 S
V

M
 a

nd
 L

AS
SO

 
Bo

ot
st

ra
p 

a
U

c
Va

li
da

te
d 

a
U

c
O

pt
im

is
m

Te
ch

ni
qu

e
a

pp
ar

en
t a

U
c

M
ea

n
95

%
 c

i
M

ea
n

95
%

 c
i

M
ea

n
95

%
 c

i

C
AR

T
0.

92
9

0.
93

7
 [0

.9
33

;0
.9

42
] 

0.
87

3
 [0

.8
68

;0
.8

78
] 

0.
06

4
 [0

.0
60

;0
.0

68
] 

RF
0.

93
8

0.
98

0
 [0

.9
78

;0
.9

81
] 

0.
97

5
 [0

.9
73

;0
.9

76
] 

0.
00

5
 [0

.0
03

;0
.0

08
] 

SV
M

0.
88

7
0.

92
4

 [0
.9

18
;0

.9
30

] 
0.

85
9

 [0
.8

52
;0

.8
66

] 
0.

06
6

 [0
.0

61
;0

.0
71

] 

LA
SS

O
0.

96
5

0.
98

1
 [0

.9
80

;0
.9

83
] 

0.
92

5
 [0

.9
22

;0
.9

28
] 

0.
05

6
 [0

.0
53

;0
.0

60
] 



98 Chapter 5

5.4 DiscUssiON

Using a feature selection and validation strategy based on bootstrap procedures, we 

found that RF and LASSO modelling resulted in prediction models with high perfor-

mance. The statistical optimism of the RF model was relatively low (0.005). By contrast, 

modelling with CART, SVM and LASSO resulted in prediction models which had a good 

validated performance, but with higher optimism in the apparent performance esti-

mates (0.064, 0.066 and 0.056 respectively).

We applied two commonly used techniques as references: variable selection from 

random forests using backward variable elimination (VARSEL RF) and support vector 

machines using recursive feature elimination (SVM RFE). We applied these techniques 

to the same database and validated the resulting models by means of bootstrap re-

sampling. These analyses showed that VARSEL RF had a high validated performance 

(AUC 0.966), whereas modelling with SVM RFE resulted in a validated performance of 

0.915 and an optimism of 0.076.

We used the bootstrap procedure as described by Efron [16]. The original data set com-

prised 222 Legionella strains. Bootstrapping from that data set leads to 222 Legionella 

strains again in each bootstrap sample because it is based on simple re-sampling with 

replacement. We note than the 0.632+ variant of the standard bootstrap validation 

procedure uses only cases not used at model development. Empirical evaluations for 

binary prediction showed no advantage of this bootstrapping variant [29] . Hence, we 

did not use this approach in the estimation of the optimism of the models and the 

stability of the feature set.

Our results are in line with earlier findings, which showed that RF and LASSO are suit-

able modelling techniques for feature selection and that the resulting models have a 

good predictive performance [10] [11]. Our results with SVM modelling are in line with 

the work of Guyon et al., who suggested SVM RFE for feature selection [11]. However, 

the features selected with SVM and bootstrapping differed from the features selected 

with the SVM RFE approach. The validated predictive performance of our strategy with 

SVM modelling was inferior to the validated predictive performance with the SVM RFE 

approach (mean validated AUC 0.859 and 0.915 respectively).

We found that feature selection by means of VARSEL RF resulted in models with a high 

validated performance. This is in line with the findings of earlier studies that used a 

simpler validation procedure [27]. Likewise, RF modelling resulted in models with a 

very high performance (mean validated AUC 0.975). Feature selection with either of 

the two RF approaches resulted in four matching features (LePn.007B8, LePn.004E8, 

LePn.032E12 and LePn.035C6).

Feature selection with LASSO modelling resulted in a top 3 that was identical to the top 

3 based on feature selection with SVM RFE. The relevance of this match is reinforced 
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by the fact that feature selection with both these techniques resulted in models with a 

fairly high performance (validated AUC 0.915 and 0.925 respectively).

One of the limitations of our study is that we used one single database with features of 

a specific bacterium to compare the performance of the various modelling techniques. 

Future research should apply strong validation methods, such as our double bootstrap 

method, when analyzing comparable databases, such as databases comprising Legio-

nella strains from other countries. An even stronger validation would be achieved by 

testing the models on new, independent data. Another limitation is that we restricted 

our research to four modelling techniques (CART, RF, SVM and LASSO). Various other 

techniques might also be suitable for feature selection and prediction in a domain with 

many variables and few subjects.

conclusions

In the domain of Legionella pneumophila, which comprises many potential features 

for classifying of infections as clinical or environmental, the RF and LASSO techniques 

provide good prediction models. The identification of potentially biologically relevant 

features is highly dependent on the technique used, and should hence be interpreted 

with caution.

5.5 aBBreViaTiONs

DNA: Deoxyribonucleic acid;

LASSO: Least absolute shrinkage and selection operator;

SVM RFE: Support vector machines recursive feature elimination;

VARSEL RF: Variable selection random forest;

CART: Classification and regression trees;

RF:  Random forest;

SVM: Support vector machines.
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aBsTracT

Background

Modern modelling techniques may potentially provide more accurate predictions of 

binary outcomes than classical techniques. We aimed to study the predictive perfor-

mance of different modelling techniques in relation to the effective sample size (“data 

hungriness”).

Methods

We performed simulation studies based on three clinical cohorts: 1282 patients with 

head and neck cancer (with 46.9% 5 year survival), 1731 patients with traumatic brain 

injury (22.3% 6-month mortality) and 3181 patients with minor head injury (7.6% with 

CT scan abnormalities). We compared three relatively modern modelling techniques: 

support vector machines (SVM), neural nets (NN), and random forests (RF) and two clas-

sical techniques: logistic regression (LR) and classification and regression trees (CART). 

We created three large artificial databases with 20 fold, 10 fold and 6 fold replication of 

subjects, where we generated dichotomous outcomes according to different underly-

ing models. We applied each modelling technique to increasingly larger development 

parts (100 repetitions). The area under the ROC-curve (AUC) indicated the performance 

of each model in the development part and in an independent validation part. Data 

hungriness was defined by plateauing of AUC and small optimism (difference between 

the mean apparent AUC and the mean validated AUC <0.01).

results

We found that a stable AUC was reached by LR at approximately 20 to 50 events per 

variable, followed by CART, SVM, NN and RF models. Optimism decreased with increas-

ing sample sizes and the same ranking of techniques. The RF, SVM and NN models 

showed instability and a high optimism even with >200 events per variable.

conclusions

Modern modelling techniques such as SVM, NN and RF may need over 10 times as 

many events per variable to achieve a stable AUC and a small optimism than classical 

modelling techniques such as LR. This implies that such modern techniques should 

only be used in medical prediction problems if very large data sets are available.



Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints 107

6.1 iNTrODUcTiON

Prediction of binary outcomes is important in medical research. The interest in the 

development, validation, and clinical application of clinical prediction models is in-

creasing [1]. Most prediction models are based on logistic regression analysis (LR), but 

other, more modern techniques, may also be used. Support vector machines (SVM), 

neural nets (NN) and random forest (RF) have received increasing attention in medical 

research [2] [3] [4] [5] [6], since these hold the promise of better capturing non-linear-

ities and interactions in medical data. The increased flexibility of modern techniques 

implies that larger sample sizes may be required for reliable estimation. Little is known, 

however, about the sample size that is needed to generate a prediction model with 

a modern modelling technique that outperforms more traditional, regression-based 

modelling techniques in medical data.

Usually, only a relatively limited number of subjects is available for developing predic-

tion models. In 1995, a comparative study on the performance of various prediction 

models for medical outcomes concluded that the ultimate limitation seemed due to 

the availability of the information in data. This study used the term “data barrier” [7].

Some researchers aimed to develop a “power law” that can be used to determine the 

relation between sample size and the discriminatory ability of prediction models in 

terms of accuracy [8] [9] [10]. These studies clarified how a larger sample size leads to a 

better accuracy. The studies revealed that a satisfactory level of accuracy (the accuracy 

at infinite sample size +/- 0.01) can be achieved by sample sizes varying from 300 to 

16,000 records, depending on the modelling technique and the data structure. The re-

lation between sample size and accuracy was reflected in learning curves. Similarly, the 

number of events per variable (EPV) has been studied in relation to model performance 

[11] [12] [13] [14] [15].

In the current study, we aimed to define learning curves to reflect the performance of 

a model in terms of discriminatory ability, which is a key aspect of the performance 

of prediction models in medicine [16]. We assumed that the discriminatory ability 

of a model is a monotonically increasing function of the sample size, converging to 

a maximum at the infinite sample size. We hypothesized that modern, more flexible 

techniques are more “data hungry” [17] than more conventional modelling techniques, 

such as regression analysis. The concept of data hungriness refers to the sample size 

needed for a modelling technique to generate a prediction model with a good predic-

tive accuracy. For fair comparison, we generated reference models with each of the 

modelling techniques considered in our simulation study.
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6.2 MeTHODs

Patients

We performed a simulation study, based on three patient cohorts.

The first cohort consisted of patients with head and neck cancer who were followed 

during 15 years for survival (“HNSCC cohort”) [18]. The cohort contained 7 predictor 

variables (2 dichotomous, 4 categorical and 1 continuous) and a dichotomous (0/1) 

outcome with an incidence of 601/1282 (46.9%).

The second cohort consisted of patients with traumatic brain injury (“TBI cohort”) [19]. 

The cohort contained 10 predictor variables (4 dichotomous, 1 categorical and 4 con-

tinuous) and a dichotomous outcome with an incidence of 386/1731 (22.3%).

The third cohort consisted of patients suspected of head injury who underwent a CT-

scan (“CHIP cohort”) [6]. This cohort contained 12 predictor variables (9 dichotomous, 

1 categorical and 2 continuous) and a dichotomous (0/1) outcome with an incidence 

of 243/3181 (7.6%).

We generated artificial cohorts by replicating the HNSCC cohort 20 times, the TBI cohort 

10 times and the CHIP cohort 6 times. This resulted in an artificial cohort consisting of 

25,640 subjects (“HNSCC artificial cohort”), an artificial cohort consisting of 17,310 

subjects (“TBI artificial cohort”) and an artificial cohort consisting of 19,086 subjects 

(“CHIP artificial cohort”).

reference models

In the current study, we evaluated the following modelling techniques, using default 

settings as far as possible:

• Logistic regression (LR)

• Classification and regression trees (CART)

• Support vector machines (SVM)

• Neural nets (NN)

• Random forest (RF)

Table 1 Cohort characteristics

cohort

HNSCC TBI CHIP

Outcome 5 year survival  6-months mortality intracranial findings

Type dichotomous dichotomous dichotomous

Event/Total 601/1282 (46.9%) 386/1731 (22.3%) 243/3181 (7.6%)

Predictors 2 dichotomous 4 dichotomous 9 dichotomous

4 categorial 1 categorial 1 categorial

1 continuous 4 continuous 2 continuous
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For a description of these modelling techniques, based on the work of various authors 

[12] [15] [20] [21], we refer to Appendix 1.

As reference points for this evaluation, we first applied each modelling technique to 

each entire artificial cohort in order to generate an LR model, a CART model, an SVM 

model, an NN model and an RF model. These models were fitted with optimization ac-

cording to default settings. Next, we generated probabilities of the outcome for each of 

these reference models. With these probabilities, we generated a new 0/1 outcome by 

comparing the generated probabilities of each reference model with a random number 

from a uniform (0,1) distribution. Using this new 0/1 outcome, we evaluated the five 

modelling techniques. The R-code for the construction of the reference models is in 

Appendix 2.

Development and validation

For each of the five modelling techniques, we randomly divided the artificial cohort 

into a development set and a validation set for performance assessment. Each set 

consisted of 50% of the subjects of the artificial cohort.

simulation design and analysis

We applied the following steps to each of the three artificial cohorts:

1. Development sets were samples of increasing sizes (varying from 200 to the maxi-

mum size of the development set with increment 1000), drawn at random from the 

non-validation part of the artificial cohort.

2. For each of the five modelling techniques we generated a model for each sample, 

taking the 0/1 outcome of a specific reference model as outcome. We evaluated the 

predictions on each sample.

3. For each sample, the predictions of the model were evaluated on the validation set, 

taking the 0/1 outcome of the same reference model as outcome.

We repeated these steps 100 times for each sample size to achieve sufficient stability. 

We considered each of the five reference models in turn for a fair comparison of each 

of the modelling techniques. Evaluation of predictive performance focussed on the 

discriminatory ability according to the area under the Receiver Operating Character-

istic curve (AUC). The AUC was determined using the development set (apparent AUC) 

and the validation set (validated AUC). We calculated optimism as mean apparent AUC 

minus mean validated AUC.

We defined the maximally attainable AUC (AUCmax) as the validated AUC-value of a 

model based on the entire development set (50% of the artificial cohort).
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Figure 1 Flow chart simulation design
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A flowchart of the simulation design is presented in Figure 1. For the analysis we used 

R software (version 2.14) [22]. For the R-code of the simulation design we refer to 

Appendix 2 [23].

learning curves

For each modelling technique, we generated learning curves to visualize the relation 

between the AUC-values and optimism of the generated models with respect to the 

number of events per variable.

Data hungriness

The data hungriness of a modelling technique was defined as the minimum number of 

events per variable at which the optimism of the generated model was <0.01. This limit 

was admittedly arbitrary, but in line with previous research [24].

sensitivity analysis

We performed a sensitivity analysis to determine the influence of the endpoint inci-

dence in the CHIP artificial cohort (7.6%). We hereto selectively oversampled subjects 

with the outcome of interest in order to generate an artificial cohort with an endpoint 

incidence of 50% (“CHIP5050 cohort”).

6.3 resUlTs

HNscc cohort

The best performance in terms of mean validated AUC-values was achieved when the 

full development set was used (n=12,820, number of events=6013, event rate 46.9%) 

and by the models generated with the same modelling technique as the reference 

model, except when the reference model was generated with NN, in which case the RF 

model had the best performance (AUC 0.810, Table 2).

The level that could be reached (AUCmax) depended foremost on the reference model 

used to generate the 0/1 outcomes. All models performed best when the reference 

model RF was used. For all reference models, except the CART reference model, the 

CART model performed worst (Table 2).

The data hungriness of the various modelling techniques is reflected by the first part of 

the learning curves with <100 events per variable (Figure 2). As expected, all models 

converged monotonically to AUCmax. For each of the reference models, the LR model 

showed the most rapid increase to a stable mean validated AUC-value, while the RF 
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model needed the largest number of events per variable to reach a stable mean vali-

dated AUC-value (Figure 2).

We calculated the relative performance of a model by setting the performance of the 

model resulting from the modelling technique that generated the reference model 

at 100%. Figure 3 shows the relative performance of the models for each reference 

model.

Table 2 AUCmax per reference model, HNSCC cohort

reference model

lr carT sVM NN rF

lr 0.797 0.745 0.803 0.802 0.880

carT 0.730 0.748 0.749 0.728 0.822

sVM 0.787 0.740 0.814 0.802 0.898

NN 0.785 0.745 0.800 0.804 0.869

rF 0.784 0.747 0.810 0.810 0.929

Bold numbers are for model performance when the underlying model was specified according to 
the modelling technique considered.

Figure 2 Validated AUC-values vs. events per variable, HNSCC cohort
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For all reference models, the optimism of the models decreased with an increasing 

number of events per variable. For all reference models, except when the reference 

model was CART, the modelling technique LR needed the smallest number of events 

per variable to reach an optimism <0.01 (55 to 127 events per variable).

When CART was the reference model, the modelling technique CART needed the small-

est number of events per variable to reach an optimism <0.01 (62 events per variable). 

The modelling techniques NN and RF and, to a lesser extent, SVM needed the most 

events per variable to generate models with an optimism <0.01.

The modelling technique RF needed 850 events per variable when the reference 

model RF was used, but for the other reference models the optimism of the RF model 

remained >=0.01, despite the large number of events per variable (Figure 4).

TBi cohort

For the TBI artificial cohort, with a development set consisting of 8655 subjects and 

1930 events (event rate 22.3%), the CART models performed poorly, irrespective of the 

reference model (Table 3). The models generated with the same modelling technique as 

the reference model showed the best performance, except when the reference model 

was generated with CART, in which case the LR model had the best performance (AUC 

Figure 3 Relative validated AUC-values vs. events per variable, HNSCC cohort
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0.712, Table 3). All models, except the CART model, showed the lowest AUC when the 

reference model CART was used (Table 3).

The NN model needed the largest number of events per variable to reach AUCmax. For 

each of the reference models, the LR model showed the most rapid increase to a stable 

AUC (Figure 5).

Again, we calculated the relative performance of a model by setting the performance of 

the model resulting from the modelling technique that generated the reference model 

at 100%. Figure 6 shows the relative performance of the models for each reference 

model.

For all models, optimism decreased with an increasing number of events per variable. 

The LR model needed 18-23 events per variable to reach an optimism <0.01, whereas 

the optimism of the RF model remained high, except for the reference model RF, in 

which case optimism was <0.01 at 163 events per variable (Figure 7).

Figure 4 Optimism vs. events per variable, HNSCC cohort
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Figure 5 Validated AUC-values vs. number of events per variable, TBI cohort

Table 3 AUCmax  per reference model, TBI cohort

reference model

lr carT sVM NN rF

lr 0.806 0.712 0.743 0.792 0.817

carT 0.710 0.702 0.676 0.652 0.684

sVM 0.754 0.677 0.765 0.765 0.838

NN 0.800 0.701 0.746 0.802 0.828

rF 0.744 0.685 0.750 0.776 0.988

Bold numbers are for model performance when the underlying model was specified according to 
the modelling technique considered.
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Figure 6 Relative validated AUC-values vs. events per variable, TBI cohort

Figure 7 Optimism vs. events per variable, TBI cohort
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Figure 7 Optimism vs. events per variable, TBI cohort 

 
 
CHIP cohort 
 
For the CHIP artificial cohort, with a development set consisting of 9543 subjects and 

729 events (event rate 7.64%), the findings were largely similar to the results of the 

HNSCC cohort. The best performance was achieved by the same modelling 

technique that generated the reference model (Table 4). The modelling technique 

CART generated models with a poor performance, irrespective of the reference 

models. The modelling technique SVM also generated models with a poor 

performance, irrespective of the reference models, except when the RF model was 

used as reference model (AUC 0.871, Table 4). All models performed poorly when 

the reference models CART and SVM were used. All models, except the CART 

model, performed well when the reference model RF was used (AUC>0.8, Table 4). 
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cHiP cohort

For the CHIP artificial cohort, with a development set consisting of 9543 subjects and 

729 events (event rate 7.64%), the findings were largely similar to the results of the 

HNSCC cohort. The best performance was achieved by the same modelling technique 

that generated the reference model (Table 4). The modelling technique CART generated 

models with a poor performance, irrespective of the reference models. The modelling 

technique SVM also generated models with a poor performance, irrespective of the 

reference models, except when the RF model was used as reference model (AUC 0.871, 

Table 4). All models performed poorly when the reference models CART and SVM were 

used. All models, except the CART model, performed well when the reference model RF 

was used (AUC>0.8, Table 4).

Considering the learning curves (Figure 8), the CART models performed poorly. For 

each of the reference models, the LR model showed a rapid increase to a stable mean 

validated AUC-value, in contrast to the NN model which needed far more events to 

reach a stable mean validated AUC-value. The CART model showed a decreasing mean 

validated AUC-value despite increasing number of events, except when the reference 

model CART was used (Figure 8).

Figure 9 shows the relative performance of the models for each reference model. For 

the reference models LR, SVM and NN, the modelling technique LR required 14 to 28 

events per variable to reach an optimism <0.01 and CART required 11 to 17 events 

per variable. Despite an increasing number of events per variable, the modelling 

techniques SVM, NN and RF generated models with optimism >0.01 for all reference 

models. For the reference models CART and RF, none of the modelling techniques was 

able to generate a model with optimism <0.01 (Figure 10).

Table 4 AUCmax per reference model, CHIP cohort

reference model

lr carT sVM NN rF

lr 0.786 0.572 0.607 0.782 0.903

carT 0.562 0.578 0.580 0.500 0.666

sVM 0.584 0.560 0.615 0.616 0.871

NN 0.758 0.564 0.589 0.791 0.856

rF 0.728 0.579 0.594 0.755 0.916

Bold numbers are for model performance when the underlying model was specified according to 
the modelling technique considered.
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Figure 8 Validated AUC-values vs. number of events per variable, CHIP cohort

Figure 9 Relative validated AUC-values vs. events per variable, CHIP cohort
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sensitivity analysis cHiP cohort

When we increased the event rate in the CHIP cohort from 7.6% to 50% (“CHIP5050 

cohort”), the behaviour of the learning curves became largely similar to the behaviour 

of the curves generated for the HNSCC cohort (Appendix 3, Figure 11 to 13).

6.4 DiscUssiON

Modern modelling techniques, such as SVM, NN and RF, needed far more events per 

variable to achieve a stable validated AUC and an optimism <0.01 than the more con-

ventional modelling techniques, such as LR and CART. The CART models had a stable 

performance, but at a fairly poor level. Specifically, a larger number of events did not 

lead to better validated performance in the cohort with a 7.6% event rate. The LR 

models had low optimism when the number of events per variable was at least 20 to 

50. A remarkable finding was that the optimism of the RF models remained high for the 

three cohorts, even at a large number (over 200) of events per variable. This indicates 

that these RF models were far from robust. Of note, the validated performance of RF 

models was similar to that of LR models. This implies that especially RF models need 

Figure 10 Optimism vs. events per variable, CHIP cohort
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careful validation to assess predictive performance, since apparent performance may 

be highly optimistic.

Since LR modelling is far less data hungry than alternative modelling techniques, this 

technique may especially be useful in relatively small data sets. With very small data 

sets, any modelling technique will lead to poorly performing models. Our results con-

firm the generally accepted rule that reasonable predictive modelling requires at least 

10 events per variable, even with a robust technique such as LR [11] [12] [15]. We note 

that larger numbers of events per variable are desirable to achieve better stability and 

higher expected performance.

The modelling techniques SVM and NN needed far more events per variable to generate 

models with a stable mean validated AUC-value and an optimism converging towards 

zero. For models generated with the modelling technique RF, the optimism did not even 

converge towards zero at the largest number of events per variable that we evaluated.

Obviously, models generated by the same modelling technique as the reference model 

generally performed best, reflecting a “home advantage” over models generated by a 

different modelling technique than the reference model. The performance of models 

according to different reference models was provided for a fair assessment of the 

performance of the approaches considered.

While RF and LR models consistently performed well, CART consistently performed 

poorly. The poor performance of CART modelling may be explained by the fact that 

continuous variables need to be categorized, with optimal cut-offs determined from 

all possible cut-off points, and that possibly unnecessary higher-order interactions 

are assumed between all predictor variables. RF modelling is an obvious improvement 

over CART modelling [24]. It is hence remarkable that CART is still advocated as the pre-

ferred modelling technique for prediction in some disease areas, such as trauma [25]. 

A researcher must always carefully consider which modelling technique is appropriate 

in a specific situation. Using, for instance, a random forest technique just because the 

number of subjects is over 10,000 is too simplistic.

The aim of our study was to investigate the data hungriness of the various modelling 

techniques and the aim was not to find the best modelling technique in AUC terms. 

To our knowledge, the data hungriness of various modelling techniques has not been 

assessed before for medical prediction problems. However, a few studies addressed 

this topic in the context of progressive sampling for the development of a power law 

to guide the required sample size for prediction modelling. For example, arithmetic 

sampling was applied with sample sizes of 100, 200, 300, 400 etc. to 11 of the UCI 

repository databases to obtain insight into the performance of a naive Bayes classifier 

[8]. This study led to required sample sizes from 300 to 2180 to be within 2% from 

the accuracy of a model built from the entire database. Other researchers modelled 3 

of the larger databases from the UCI repository using different progressive sampling 
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techniques [9]. Using the C4.5 modelling technique, which we consider a CART variant, 

sample sizes of 2000 for the LED database, 8000 for the CENSUS database and 12000 

for the WAVEFORM database were required for a model being no more than 1% less 

accurate than a model based on all the available data.

Another study compared the performance of 6 data mining tools at various sample 

sizes for 2 test databases (test database I with 50,000 records and test data base II 

with 1,500,000 records), using accuracy as the performance measure. For test database 

I, for all tools, a stable level of accuracy was reached at 16,000 records, and for test 

database II, for all tools, a stable level was reached at 8000 records [10]. The results of 

our study are in line with these studies. Although we used mean validated AUC-values 

instead of accuracy to measure the performance of the models, we also found that the 

more complex modelling techniques required large numbers of events per variable to 

generate models with optimism <0.01.

A number of limitations need to be considered. Firstly, we used three cohorts with 

dichotomous outcomes, in which non-linearity was not a major issue. While this may 

be common in medical research, it limited the ability for some modern modelling 

techniques to outperform traditional logistic regression modelling. If important non-

linearity is truly present in a data set, techniques that capture such non-linear pat-

terns well are obviously attractive. Various approaches can be considered to address 

non-linearity within the regression framework, including restricted cubic splines and 

fractional polynomials [15] [26]. Secondly, we used default settings for the modelling 

techniques [8]. Further research might investigate our evaluated models, but also other 

modelling techniques such as LASSO, using other cohorts, and also using other settings 

for the modelling (such as pruning options, priors, and number of subjects in the end 

nodes).

Thirdly, there was a considerable difference in incidence between the three cohorts 

(47%, 22% and 8%). To assess the effect of this difference in incidence on the data 

hungriness, we performed a sensitivity analysis. Further research should evaluate the 

relation between the incidence of the outcome and the data hungriness patterns of 

various modelling techniques.

conclusions

Modern modelling techniques such as SVM, NN and RF need far more events per vari-

able to achieve a stable AUC-value than classical modelling techniques such as LR 

and CART. If very large data sets are available, modern techniques such as RF may po-

tentially achieve an AUC-value that exceeds the AUC-values of modelling techniques 

such as LR. The improvement over simple LR models may, however, be minor, as was 

shown in the two empirical examples in this study. This implies that modern modelling 
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techniques should only be considered in medical prediction problems if very large 

data sets with many events are available.

6.5 aBBreViaTiONs

CT: Computed tomography; SVM: Support vector machines; NN: Neural nets; RF: Ran-

dom forest; CART: Classification and regression trees; LR: Logistic regression; ROC: 

Receiver operating curve: AUC: Area under the curve; EPV: Events per variable; HNSCC: 

Head and neck squamous cell carcinoma; TBI: Traumatic brain injury; CHIP: CT in head 

injury patients; UCI: University of California, Irvine; LASSO: Least absolute shrinkage 

and selection operator.
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6.7 aPPeNDiX 1

This appendix describes the evaluated modelling techniques in detail, based on the 

work of several authors [12] [15] [20] [21].

Logistic regression (LR)
Logistic regression is a type of regression analysis used for predicting the outcome of 

a binary dependent variable (a variable which can take only two possible outcomes, 

e.g. “yes” vs. “no” or “success” vs. “failure”) based on one or more predictor variables. 

Logistic regression attempts to model the probability of a “yes/success” outcome using 

a linear function of the predictors. Specifically, the log-odds of success (the logit of 

the probability) is fit to the predictors using linear regression. Logistic regression is 

one type of discrete choice model, which in general predict categorical dependent 

variables, either binary or multi-way.

Like other forms of regression analysis, logistic regression makes use of one or more 

predictor variables that may be either continuous or categorical. Also, like other linear 

regression models, the expected value (average value) of the response variable is fit to 

the predictors, the expected value of a Bernoulli distribution is simply the probability 

of success. Unlike ordinary linear regression, however, logistic regression is used for 

predicting binary outcomes (Bernoulli trials) rather than continuous outcomes, and 

models a transformation of the expected value as a linear function of the predictors, 

rather than the expected value itself.

Classification and regression trees (CART)
Classification and regression trees is a tree-based classification and prediction model-

ling technique which uses recursive partitioning to split the training records into seg-

ments with similar output variable values. The modelling starts by examining the input 

variables to find the best split, measured by the reduction in an impurity index that 

results from the split. The split defines two subgroups, each of which is subsequently 

split into two further subgroups and so on, until the stopping criterion is met. The pa-

rameter of RPART is the cp-parameter (cost complexity factor). A cp-value of 0.001 for 

example regulates that a split must decrease the overall lack of fit by a factor of 0.001.

Support vector machine (SVM)
A Support Vector Machine performs classification tasks by constructing hyperplanes 

with a margin in a multidimensional space that separates cases from different classes. 

SVM can efficiently perform a non-linear classification or regression task using differ-

ent kernels (radial, linear and polynomial). The tuning parameters for SVM are the C-

parameter (cost), which regulates the margin width, and the gamma-parameter for the 
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kernel calculation. SVM claims to be a robust classification and regression technique 

that maximizes the predictive accuracy of a model without overfitting the training 

data. SVM may particularly be suited to analyse data with large numbers of predictor 

variables.

Neural nets (NN)
A neural network (NN), sometimes called a multilayer perceptron, works by simulating 

a large number of interconnected simple processing units, which are arranged in lay-

ers. There are three parts in a neural network: an input layer, with units representing 

the predictor variables, one or more hidden layers and an output layer, with a unit 

representing the outcome variable. The units are connected with varying connec-

tion strengths or weights. Input data are presented to the input layer and values are 

propagated from there to the next layer. Then, a prediction is delivered from the output 

layer. The network learns by examining individual records, generating a prediction for 

each record and making adjustments to the weights whenever it makes an incorrect 

prediction. This process is repeated many times, and the network continues to improve 

its predictions until one or more of the stopping criteria have been met. Initially, all 

weights are random, and the predictions that come out of the net are nonsensical. The 

network learns through training. Records for which the output is known are repeatedly 

presented to the network, and the predictions it gives are compared to the known out-

comes. As training progresses, the network becomes increasingly accurate in replicat-

ing the known outcomes. Once trained, the network can be applied to new patients for 

whom the outcome is unknown. The parameters of NN are the size-parameter (number 

of units in the layer) and decay-parameter.

Random forest (RF)
Random forest is an ensemble classifier that consists of many decision trees and out-

puts the class that is the mode of the classes output by individual trees. The algorithm 

for inducing a random forest was developed by Leo Breiman and Adele Cutler, and 

“Random Forests” is their trademark.

Each tree is constructed using the following algorithm:

1. Let the number of training cases be N, and the number of variables in the classifier 

be M.

2. We are told the number m of input variables to be used to determine the decision 

at a node of the tree; m should be much less than M.

3. Choose a training set for this tree by choosing n times with replacement from all N 

available training cases (i.e. take a bootstrap sample). Use the rest of the cases to 

estimate the error of the tree, by predicting their classes.
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4. For each node of the tree, randomly choose m variables on which to base the deci-

sion at that node. Calculate the best split based on these m variables in the training 

set. 

5. Each tree is fully grown and not pruned (as may be done in constructing a normal 

tree classifier).

For prediction a new sample is pushed down the tree. It is assigned the label of the 

training sample in the terminal node it ends up in. This procedure is iterated over all 

trees in the ensemble, and the average vote of all trees is reported as random forest 

prediction.
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6.8 aPPeNDiX 2

This appendix describes the R-code that was used for the simulation design on the 

HNSCC artificial cohort with a LR model as reference.

# Open libraries

library(foreign)

library(KsPlot)

# cohort creation

HNSCC=read.spss(“HNSCC20x.sav”,use.value.labels=FALSE,to.data.frame=TRUE)

Gender=as.factor(HNSCC$Gender)

Tumor_location=as.factor(HNSCC$Tumor_location)

T_class=as.factor(HNSCC$T_class)

N_class=as.factor(HNSCC$N_class)

M_class=as.factor(HNSCC$M_class)

Prior_malignancies=as.factor(HNSCC$Prior_malignancies)

Age_at_diagnosis=as.numeric(HNSCC$Age_at_diagnosis)

ACE27=as.factor(HNSCC$ACE27)

Dead_or_alive_at_60_months=as.numeric(HNSCC$Dead_or_alive_at_60_months)

HNSCC2<-data.frame(Gender,Tumor_location,T_class,N_class, Prior_malignancies,Age_at_
diagnosis,ACE27,Dead_or_alive_at_60_months)

# construction of a binary outcome with the lr model as reference model

lrModel <- glm(as.factor(Dead_or_alive_at_60_months)~ ., data = HNSCC2, family = “binomial”)

lrProbs <- predict(lrModel, HNSCC2, type = “response”)

lrROC <- caTools: : colAUC(lrProbs,HNSCC2$Dead_or_alive_at_60_months)

lrROC

set.seed(1)

runis = runif(25640,0,1)
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lry = ifelse(runis < lrProbs,1,0)

BASE<-data.frame(lry,Gender,Tumor_location,T_class,N_class, Prior_malignancies,Age_at_
diagnosis,ACE27)

# creation development set and validation set

Sample <- sample(1: nrow(BASE), nrow(BASE)/2)

devBASE<- BASE[Sample, ]

valBASE<- BASE[-Sample, ]

# Modelling with the modelling techniques lr, carT, sVM, NN and rF with increasing sample 
size

output <- matrix(NA, nrow = 700, ncol=12, byrow=TRUE, dimnames = list(c(1: 700),c(“Sample 
number per size”, “Sample size”, “lrROCtraining”,”lrROCtest”,”cartROCtraining”,”cartRO
Ctest”,”svmROCtraining”,”svmROCtest”,”nnROCtraining”,”nnROCtest”,”rfROCtraining”, 
“rfROCtest”)))

k=1

for( j in c(200, 500, 1000, 2000, 5000, 10000,nrow(devBASE)))

{

for (i in 1: 100)

{

sampledata=devBASE[sample(1: nrow(devBASE),j),]

lrModel <- glm(as.factor(lry)~ ., data = sampledata, family = “binomial”)

lrProbs1 <- predict(lrModel, sampledata, type = “response”)

lrProbs2 <- predict(lrModel, valBASE, type = “response”)

lrROCtraining<- caTools: : colAUC(lrProbs1,sampledata$lry)

lrROCtest <- caTools: : colAUC(lrProbs2,valBASE$lry)

cartModel <- mvpart: : rpart(as.factor(lry)~., data = sampledata)

cartProbs1 <- predict(cartModel, sampledata)

cartProbs2 <- predict(cartModel, valBASE)

cartROCtraining<- caTools: : colAUC(cartProbs1[,2],sampledata$lry)

cartROCtest <- caTools: : colAUC(cartProbs2[,2],valBASE$lry)
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svmModel <- e1071: : svm(lry ~ ., data = sampledata,kernel = “polynomial”, degree = 3, prob-
ability = T)

svmProbs1 <- predict(svmModel, sampledata, probability = T)

svmProbs2 <- predict(svmModel, valBASE, probability = T)

svmROCtraining<- caTools: : colAUC(svmProbs1,sampledata$lry)

svmROCtest <- caTools: : colAUC(svmProbs2,valBASE$lry)

nnModel <- nnet: : nnet(as.factor(lry) ~ ., data = sampledata, size = 10)

nnProbs1 <- predict(nnModel, sampledata)

nnProbs2 <- predict(nnModel, valBASE)

nnROCtraining<- caTools: : colAUC(nnProbs1,sampledata$lry)

nnROCtest <- caTools: : colAUC(nnProbs2,valBASE$lry)

rfModel <- randomForest: : randomForest(lry ~ ., data = sampledata)

rfProbs1 <- predict(rfModel, sampledata)

rfProbs2 <- predict(rfModel, valBASE)

rfROCtraining<- caTools: : colAUC(rfProbs1, sampledata$lry)

rfROCtest <- caTools: : colAUC(rfProbs2, valBASE$lry)

output[k,]<-c(i,j,lrROCtraining,lrROCtest,cartROCtraining,cartROCtest,svmROCtraining,svmROCt
est,nnROCtraining,nnROCtest,rfROCtraining, rfROCtest)

print(k)

k=k+1

}

}

# Performance results to output file

output

write.csv(output, “HNSCC training and test x vs lr.csv”)
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6.9 aPPeNDiX 3

This appendix shows the figures resulting from the sensitivity analysis.

Figure 11 Validated AUC-values vs. events per variable, CHIP5050 cohort
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Figure 12 Relative validated AUC-values vs. events per variable, CHIP5050 cohort

Figure 13 Optimism vs. events per variable, CHIP5050 cohort
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aBsTracT

Background

Prediction of medical outcomes may potentially benefit from using modern statistical 

modelling techniques. We aimed to externally validate modelling strategies for predic-

tion of 6-month mortality of patients suffering from traumatic brain injury (TBI) with 

predictor sets of increasing complexity.

Methods

We analyzed individual patient data from fifteen different studies including 11,026 

TBI patients. We consecutively considered a core set of predictors (age, motor score 

and pupillary reactivity), an extended set with CT scan characteristics, and a further 

extension with 2 laboratory measurements (glucose and hemoglobin). With each of 

these sets, we predicted 6-month mortality using default settings with five statisti-

cal modelling techniques: logistic regression (LR), classification and regression trees 

(CART), random forests (RF), support vector machines (SVM) and neural nets (NN). For 

external validation, a model developed on one of the fifteen data sets was applied 

to each of the fourteen remaining sets. This process was repeated fifteen times for a 

total of 630 validations. The area under the ROC-curve (AUC) was used to assess the 

discriminative ability of the models.

results

For the most complex predictor set, the LR models performed best (median validated 

AUC value 0.757), followed by RF and SVM models (median validated AUC value 0.735 

and 0.732 respectively). With each predictor set, the CART models showed poor per-

formance (median validated AUC value <0.7). The variability in performance across the 

studies was smallest for the RF and LR based models (IQR for validated AUC values 

from 0.07 to 0.10).

conclusions

In the area of predicting mortality from traumatic brain injury, non-linear and non-

additive effects are not pronounced enough to make modern prediction methods 

beneficial.
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7.1 iNTrODUcTiON

Prediction of binary outcomes has since long received much attention in medical 

research. Prediction is complicated by the specification of the model structure, such 

as the inclusion of main effects, potential non-linearities and statistical interactions [1] 

[2] [3]. While most prediction models for binary endpoints are still based on logistic 

regression analysis, there is increasing interest in other, more modern techniques, such 

as support vector machines, neural nets and random forests. These more modern meth-

ods hold the promise of better capturing non-linearities and interactions in medical 

data [4].

A decisive factor in choosing a modelling technique for prediction is the performance 

of the resulting model at external validation. Many studies compared modern model-

ling techniques with classical techniques, but mostly they only validated the resulting 

models internally [5] [6]. External validation was used in only a few comparisons of 

classification trees, neural networks and logistic regression [7] [8], and in a comparative 

study on stroke patients [9].

In this study, we aimed to compare the external validity of logistic regression and four 

more modern modelling techniques to predict 6-month mortality of patients suffering 

from traumatic brain injury (TBI). We chose this patient group because TBI is a het-

erogeneous disease, in which many mechanisms and pathways can lead to mortality 

and poor long term outcome [10] [11] [12] [13]. Moreover, tree-based models have 

specifically been suggested to be beneficial for prediction of outcome after TBI [4]. 

In patients with moderate or severe injuries, mortality 6-month after surgery exceeds 

20% and lifelong disability occurs in half of the survivors [14]. Prediction of outcome 

in patients with TBI using prediction models has been studied since the 1970s [15] 

[16]. However, the preferred technique for prediction of outcome of TBI patients is 

still under debate, and preference for a technique varies between investigators [4]. 

Various statistical techniques have been used in this area, including logistic regression, 

recursive partitioning, Bayesian approaches and discriminant analysis [16]. Nowadays, 

a wide array of modern learning techniques is available, including random forests, sup-

port vector machines and neural networks [1] [17]. We investigated whether non-linear 

and non-additive effects in the area of predicting mortality from traumatic brain injury 

are pronounced enough such that these modern modelling techniques can outperform 

traditional modelling techniques such as logistic regression.
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7.2 MeTHODs

Patients

We analyzed individual patient data from the IMPACT database [14] [18] [19]. This data-

base includes data of patients suffering from moderate or severe traumatic brain injury 

(TBI). The database comprises data from 11,026 patients included in fifteen different 

studies (Appendix 1, Table 1, Figure 1). Patients were enrolled in one of ten randomized 

clinical trials or in one of five registries between 1984 and 2006.

Modelling techniques

We compared five statistical modelling techniques to predict 6-month mortality:

-Logistic regression (LR)

-Classification and regression trees (CART)

-Random forests (RF)

-Support vector machines (SVM)

-Neural nets (NN)

We here list the main characteristics of the evaluated modelling techniques, based on 

previous work of several authors [2] [3] [17] [20] [21]. We refer to Appendix 3 for the 

code of our analyses in R software [22].

Logistic regression (LR)
Logistic regression is a type of regression analysis that is often used in medical research 

to model the probability of a binary endpoint using a linear function of the predictors. 

Predictor variables may be either continuous or categorical. Logistic regression uses 

a logistic transformation to calculate the probability of a binary outcome. Regression 

coefficients were estimated by maximum likelihood using the lrm function in the rms 

library.

Classification and regression trees (CART)
CART is modelling technique that uses recursive partitioning to split the training re-

cords into segments with similar endpoint values. The modelling starts by examining 

the input variables to find the best split, measured by the reduction in an impurity 

index that results from the split. The split defines two subgroups, each of which is 

subsequently split into two further subgroups and so on, until a stopping criterion 

is met. The commonly used parameter for CART is the cp-parameter (cost complexity 

factor). A cp-value of 0.001 for example regulates that a split must decrease the overall 

lack of fit by a factor of 0.001. The modelling was done using the rpart function in the 

rpart library.
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Random forest (RF)
Random forest is an ensemble classifier that consists of many decision trees. In case of 

classification, random forest outputs the class that is the mode among the classes from 

individual trees. In case of regression, random forest outputs the value that is the mean 

of the values output from individual trees. Each tree is constructed using a bootstrap 

sample from the original data. A tree is grown by recursively partitioning the bootstrap 

sample based on optimization of a split rule. In regression problems, the split rule is 

based on minimizing the mean squared error, whereas in classification problems, the 

Gini index is commonly used. At each split, a subset of candidate variables are tested 

for the split rule optimization, similar to CART modelling. For prediction, a new sample 

is pushed down the tree. This procedure is iterated over all trees in the ensemble. 

Key parameters are the number of trees and the number of candidate variables. The 

modelling was done using the randomForest function in the randomForest library.

Support vector machine (SVM)
A SVM performs classification tasks by constructing hyperplanes with a margin in a 

multidimensional space that separates cases from different classes. A SVM can per-

form a non-linear classification or regression task using different kernels (radial, linear 

and polynomial). The tuning parameters for SVMs are the C-parameter (cost), which 

regulates the margin width, and the gamma-parameter for the kernel calculation. SVM 

claims to be a robust classification and regression technique that maximizes the pre-

dictive accuracy of a model without overfitting the training data. SVM may particularly 

be suited to analyse data with large numbers of predictor variables. The modelling was 

done using the svm function in the e1071 library.

Neural nets (NN)
A NN, sometimes called a multilayer perceptron, simulates a large number of intercon-

nected simple processing units, which are arranged in layers. There are three parts 

in a neural network: an input layer, with units representing the predictor variables, 

one or more hidden layers, and an output layer, with a unit representing the endpoint. 

The units are connected with varying connection strengths or weights. Input data are 

presented to the input layer and values are propagated from there to the next layer. 

Then, a prediction is delivered from the output layer. The network learns by examining 

individual records, generating a prediction for each record and making adjustments 

to the weights whenever it makes an incorrect prediction. The adjustments are based 

on the gradient descent algorithm to minimize the prediction error. This process is 

repeated many times, and the network continues to improve its predictions until the 

magnitude of the gradient is less than 1e-5.
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Once trained, the network can be applied to new patients for whom the endpoint is 

unknown. The crucial parameters of a NN are the size-parameter (number of units in 

the layer) and the decay-parameter that penalizes large weights in the model to avoid 

overfitting (default=0). The modelling was done using the nnet  function in the nnet 

library.

endpoint and predictor sets

With each modelling technique, we developed prediction models for 6-month mortal-

ity. We hereto used three predictor sets of increasing complexity, referred to as the 

Core, Core+CT and Core+CT+Lab sets (Table 2).

When predictor values were missing, we used a single imputation technique to fill 

in missing values, based on correlations between predictor variables. We recognize 

that single imputation underestimated the variability of the parameter estimates in 

the model, but was expected to have only minor impact on the point estimates in the 

model compared to more complex procedures such as multiple imputation [23]. The 

point estimates are most relevant for prediction in future patients.

Validation procedure

A modelling technique was applied to each of the fifteen data sets, which served as a 

development set for a prediction model. The performance of the resulting model was 

calculated for the development set (“apparent performance”). The model was then ap-

Table 2 Admission characteristics and predictor sets

admission characteristics Predictor set

Variable Type core core+cT core+cT+lab

Age continuous x x x

Motor score factor (4) x x x

Pupils factor (3) x x x

Hypoxia factor (2) x x

Hypotension factor (2) x x

CT classification factor (3) x x

tSAH on CT factor (2) x x

Epidural mass on CT factor (2) x x

Glucose continuous x

Hb continuous     x

( )=number of categories



Modern modelling techniques had limited external validity in predicting mortality from traumatic brain injury 141

plied to each of the fourteen remaining data sets that each in turn served as validation 

set (“validated performance”).

The development and validation process was repeated for each of the fifteen develop-

ment sets, leading to a total of 15 x 14=210 validations per predictor set. With three 

predictor sets, we had 3 x 210 = 630 validations for a stable impression of comparative 

performance of the five modelling techniques.

Performance

The performance of the prediction models was quantified by discrimination and cali-

bration. The area under the receiver operator characteristic curve (AUC) indicated the 

discriminative ability of the models.

The apparent AUC value was calculated by developing a model on the development 

set by straightforward calculation of the AUC. The validated AUC value was calculated 

by applying the model to the validation set followed by straightforward calculation of 

the AUC [24].

The Cox recalibration framework was used to assess calibration of the prediction 

models [25]. We estimated the calibration slope as the logistic regression coefficient 

in a model for 6-month mortality that included the log odds of the predictions as the 

single predictor: mortality ~ logit(ŷ), where ŷ is the predicted probability of mortality. 

We recalibrated the models for the development sets so that the calibration slope is 

1 when the apparent performance is estimated in the development set. The slope is 

commonly smaller than 1 when validated in independent data [26].

Besides the area under the receiver operator characteristic curve (AUC) as measure 

for discriminative performance, the Brier score was calculated. This score is based on 

squared distances between predicted and observed outcomes. We scaled the Brier 

score such as to indicate the performance of a model with predictors against a non-

informative model without predictors on a scale from 0 – 100% [27].

sensitivity analyses

Two sensitivity analyses were performed. The first analysis was performed with two 

non-linear models, RF and NN, as underlying model with the Core+CT+Lab predictor 

set. The second analysis considered the variables “Motor score”, “Pupils” and “CT-class” 

as continuous variables instead of categorical variables (Appendix 2).

7.3 resUlTs

For each model and for each predictor set, the median apparent AUC values were over 

0.7 for each of the three predictor sets with each of the five techniques, except for the 
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RF model with the Core predictor set (0.676, Table 3). Validated AUC values were lower 

than at development, with largest optimism for the most complex predictor set. Specifi-

cally, apparent performance was optimistic for the SVM and NN models (Apparent AUC 

0.833 and 0.878 versus validated AUC 0.732 and 0.674 respectively). The CART models 

showed relatively poor validated performance (AUC <0.7). The LR models showed 

the best validated AUC values closely followed by the RF models. The median of the 

validated calibration slopes of the NN models was remarkably low for the Core+CT and 

the Core+CT+Lab predictor sets (0.45 and 0.32 respectively, Table 4). The LR models 

showed the highest median validated scaled Brier scores (Table 5, scaled Brier > 10%), 

while RF and NN models predicted worse than chance (negative scaled Brier scores).

Figure 2 shows the variability of the validated AUC values of the models for each de-

velopment set and for each of the three predictor sets. The LR and RF models showed 

a reasonably stable performance for each of the development sets, while performance 

varied more with other modelling techniques. The sensitivity analysis with respect to 

other underlying models showed that the LR models still had the highest AUC values. 

Table 3 Median apparent and validated AUC values over analyses in 15 data sets

Type Model lr carT rF sVM NN

Apparent Core 0.738 0.708 0.676 0.717 0.763

Core+CT 0.794 0.733 0.718 0.801 0.821

Core+CT+Lab 0.812 0.744 0.750 0.833 0.878

Validated Core 0.725 0.654 0.690 0.664 0.710

Core+CT 0.764 0.669 0.730 0.728 0.706

  Core+CT+Lab 0.757 0.666 0.735 0.732 0.674

Table 4 Median validated calibration slopes over analyses in 15 data sets

Model lr carT rF sVM NN

Core 0.92 0.68 0.93 0.76 0.67

Core+CT 0.80 0.65 1.03 0.69 0.45

Core+CT+Lab 0.78 0.54 1.03 0.63 0.32

Table 5 Median validated scaled Brier scores over analyses in 15 data sets

Model lr carT rF sVM NN

Core 10% 4% −14% 3% 6%

Core+CT 14% 3% 6% 8% −8%

Core+CT+Lab 13% −2% 9% 6% −14%



Modern modelling techniques had limited external validity in predicting mortality from traumatic brain injury 143

Fi
gu

re
 2

 B
ox

pl
ot

s 
of

 v
al

id
at

ed
 A

U
C

 v
al

ue
s 

ac
ro

ss
 1

5 
da

ta
 s

et
s 

w
it

h 
pa

ti
en

ts
 s

uff
er

in
g 

fr
om

 T
BI

 (n
=1

10
26

)



144 Chapter 7

Using continuous rather than factor coding for the variables “Motor score”, “Pupils” and 

“CT-class” had no impact on the results (Appendix 2).

7.4 DiscUssiON

This systematic comparison of the external validity of prediction models revealed wide 

differences in performance between logistic regression models and four other model-

ling techniques in predicting 6-month mortality of patients suffering from traumatic 

brain injury (TBI). The classic logistic regression (LR) models performed best, closely 

followed by the random forest (RF) and support vector machine (SVM) models. The 

models based on classification and regression techniques (CART) and neural net (NN) 

showed a disappointing performance. These findings were consistent over three sets 

of predictors of increasing complexity, although SVM appeared to perform relatively 

better with a more complex predictor set.

In addition to the average discriminative power, stability of the performance at external 

validation is also important. The LR and RF models achieved quite stable validated 

AUC values with each predictor set. The stable performance of the RF models over the 

validation sets might be explained by the fact that the RF modelling technique inter-

nally validates multiple models using bootstrapping. The SVM models only showed 

stable performance for the most complex predictor set. This might be explained by the 

higher dimensional setting of this set. Substantial variation in validated performance 

was found for models based on NN and CART.

An important role of prediction models is to inform patients on their prognosis. A 

natural requirement to a model is that predictions are well calibrated [10]. For a fair 

comparison, we recalibrated the models at the development sets so that the calibration 

slope for each modelling technique equals one. The validated calibration of the RF 

models was best, followed by the LR models. The NN models showed poor calibration 

at validation.

For better insight in the relative performance of the models, we also calculated the 

scaled Brier score for each data set [10]. Comparison of model performance with these 

scaled Brier scores revealed that LR modelling, with each predictor set, clearly outper-

formed the other approaches.

While the interest in the development, validation, and clinical application of clinical 

prediction models is increasing, a recent systematic review showed that only a quarter 

of the studies reported prediction models with internal as well as external validation 

[27] [28]. Examples of internal validation techniques are split-sample, cross-validation 

and bootstrapping [29]. External validation, on the other hand, aims to address the 
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performance of a model in patients from a different but plausibly related setting, 

which still represents the underlying disease domain. This validation step is widely 

considered necessary before implementing a developed prediction model in clinical 

practice [30] [31]. Our study supports this notion, specifically for models developed 

with modern techniques.

We found that NN models had a considerably lower validated performance than LR 

models at external validation for all fifteen cohorts considered. No development cohort 

could be found in which NN models systematically outperformed simple, classical LR 

models. This is in contrast with the findings of two previous studies, where NN models 

performed equally well as or better than LR models in predicting the 6-month mortality 

of patients after severe brain injury [32] [33]. In both studies, the results were based on 

some form of internal validation. This illustrates that an honest internal validation may 

be difficult to perform, and show overoptimistic results compared to external valida-

tion [30].

A strength of our study was the adequate sample size in each of the fifteen different 

data sets in the IMPACT database. The median sample size of 791 patients, with a me-

dian of 188 events, implies more than 10 events per variable also in the most complex 

model considered (Appendix 1, Table 1). This sample size should provide sufficient 

opportunity to reliably model non-linear and non-additive effects, if present. The real 

world character of our study also contributes to its value to compare the validity of 

modern modelling techniques, in contrast to simulation studies.

Our findings support the suggestion of earlier studies that RF modelling is attractive in 

medical decision problems. Note that large databases need to be available for model 

development, because RF is a “data hungry” modelling technique [34] [35]. We expect 

that more flexible models such as RF will outperform LR only with much larger sample 

sizes, in line with a previous study where flexible models such as GAM, MARS, NN and 

CART did not perform better than LR models when 25,000 patients from the GUSTO-I 

data set were used for model development [36].

RF modelling was also found attractive compared to NN, SVM, CART and three traditional 

classifiers, such as discriminant analysis and logistic regression, to predict dementia 

and cognitive impairment using 10 neuropsychological predictors with a data set of 

400 subjects [6]. The authors concluded that RF and linear discriminant analysis had 

the highest discriminative power. While this study performed no external validation, 

internal validation was reported using 5-fold cross validation.

While RF and LR models consistently performed well in the present study, CART 

models consistently performed poorly. The poor performance of CART modelling may 

be explained by the fact that this technique categorizes continuous variables, with 

optimal cut-offs determined from all possible cut-off points. In the present study, the 

variable ‘age’ already was a very strong predictor when analyzed continuously [37], 



146 Chapter 7

and therefore categorization would lead to substantial information loss. Furthermore, 

the CART modelling technique assumes higher-order interactions between all predic-

tor variables, which may be unnecessary and harmful for discriminatory ability. RF 

modelling is an obvious improvement over CART modelling [38]. It is hence remarkable 

that CART has until recently been advocated as the preferred modelling technique for 

prediction in some disease areas, such as trauma [4].

Our findings on CART modelling contrast with a study that compared CART and NN with 

logistic regression in predicting cardiovascular risk. This study concluded that CART and 

NN can complement existing models [5]. The discrepancy between this study and ours 

may partly be explained again by the fact that only internal validation was attempted 

by splitting the dataset into a training set (n=10,296) and a test set (n=5,148). External 

validation was not performed. In addition, sample size may have been sufficient to 

allow for reliable estimation of the of CART and NN models.

Our sensitivity analysis by simulating dichotomous outcomes from two non-linear 

underlying models, RF and NN, with the Core+CT+Lab predictor set revealed that LR 

modelling still outperformed the other modelling techniques. This might be explained 

by the lack of strong non-linear effects in the data.

One of the limitations of our study was the use of default settings for the modelling 

techniques. This holds for LR, where penalization with ridge regression, or lasso type 

of methods might be used, as well as for the modern methods, where various specifics 

might be fine-tuned to the development setting [1] [3] [38]. Further tuning of param-

eters to specific issues in a particular development data set might obviously improve 

apparent performance, but we doubt that substantial improvement would be achieved 

in the validated external performance.

We conclude that in the area of predicting mortality from traumatic brain injury, non-

linear and non-additive effects are not pronounced enough to make modern prediction 

methods beneficial. Random forests and support vector machines may lead to similar 

performance as logistic regression if very large data sets are available with larger sets 

of potential predictors. Neural networks and in particular CART may be harmful for pre-

diction. Since performance may vary substantially across settings, external validation 

is a necessary step before applying a prediction model in a new setting, specifically if 

a modern technique was used for model development.
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7.6 aPPeNDiX 1  cHaracTerisTics DaTa seTs

Table 1 Characteristics data sets

study Name Period Type n Mortality

1 TINT 1991-1994 RCT 1118 25%

2 TIUS 1991-1994 RCT 1041 22%

3 SLIN 1994-1996 RCT 409 23%

4 SAP 1995-1997 RCT 919 23%

5 PEG 1993-1995 RCT 1510 24%

6 HIT I 1987-1989 RCT 350 28%

7 UK4 1986-1988 OBS 791 45%

8 TCDB 1984-1987 OBS 603 44%

9 SKB 1996-1996 RCT 126 27%

10 EBIC 1995-1995 OBS 822 34%

11 HIT II 1989-1991 RCT 819 23%

12 NABIS 1994-1998 RCT 385 26%

13 CSTAT 1996-1997 RCT 517 22%

14 PHARMOS 2001-2004 RCT 856 17%

15 APOE 1996-1999 OBS 756 15%
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7.7 aPPeNDiX 2 seNsiTiViTy aNalyses

This appendix comprises the results of simulations with two non-linear underlying 

models (RF and NN) with the Core+CT+Lab predictor set (Table 6, 7) and the results with 

the variables “Motor score”, “Pupils” and “CT-class” considered as continuous variables 

instead of categorical variables (Table 8, 9, 10).

Results simulations with two non-linear underlying models with the Core+CT+Lab 

predictor set over analyses in 15 data sets

Results with the variables “Motor score”, “Pupils” and “CT-class” considered as continu-

ous variables instead of categorical variables over analyses in 15 data sets

Table 6 Medians of validated values with RF as underlying model

  lr carT rF sVM NN

AUC 0.675 0.585 0.650 0.628 0.586

Scaled Brier score 1.9% −17.5% 1.3% −9.3% −27.3%

Slope 0.621 0.293 0.819 0.291 0.154

Table 7 Medians of validated values with NN as underlying model

  lr carT rF sVM NN

AUC 0.726 0.612 0.704 0.711 0.641

Scaled Brier score 5.5% −16.5% 4.4% −0.6% −19.6%

Slope 0.617 0.399 0.672 0.476 0.221

Table 8 Median apparent and validated AUC values

Model lr carT rF sVM NN

Apparent Core 0.738 0.708 0.681 0.708 0.758

Core+CT 0.787 0.733 0.733 0.809 0.824

Core+CT+Lab 0.809 0.749 0.744 0.848 0.843

Validated Core 0.734 0.655 0.691 0.660 0.712

Core+CT 0.768 0.669 0.737 0.724 0.720

Core+CT+Lab 0.762 0.664 0.736 0.727 0.702
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Table 9 Median validated calibration slopes

Model lr carT rF sVM NN

Core 0.919 0.695 0.956 0.764 0.681

Core+CT 0.859 0.661 1.005 0.724 0.447

Core+CT+Lab 0.806 0.541 1.012 0.613 0.451

Table 10 Median validated scaled Brier scores 

Model lr carT rF sVM NN

Core 10.7% 4.1% −13.9% 3.9% 6.5%

Core+CT 15.3% 3.5% 6.9% 9.3% −1.1%

Core+CT+Lab 13.9% −0.9% 9.6% 7.4% −0.7%
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7.8 APPENDIX 3 R-CODE mODEllINg AND vAlIDATION

This appendix contains the R-code with the development and validation of prediction 

models for 6-month mortality with the Core+CT+Lab predictor set in TBI data sets.

General part

# start

setwd(“D: \\”)

rm(list=ls(all=TRUE))

# open libraries

library(foreign)

library(caret)

library(rms)

library(rpart)

library(e1071)

library(randomForest)

library(caTools)

library(nnet)

# read SPSS file

D<- read.spss(“priority100709finalImputed6.sav”, use.value.labels=F, max.value.labels=Inf, 
to.data.frame=TRUE)

# set level of measurement

D$trial<-as.factor(D$trial)

D$d_motor<-as.factor(D$d_motor)

D$i_pupil<-as.factor(D$i_pupil)

D$d_mort<-as.factor(D$d_mort)

D$i_hypoxa<-as.factor(D$i_hypoxa)

D$i_hypots<-as.factor(D$i_hypots)

D$i_ctclas<-as.factor(D$i_ctclas)
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D$i_tsah<-as.factor(D$i_tsah)

D$i_edh<-as.factor(D$i_edh)

D$i_glucos<-as.numeric(D$i_glucos)

D$i_hb<-as.numeric(D$i_hb)

D$i_age<-as.numeric(D$age)

# define dataset with Core+cT+lab predictors and mortality

vars <- c(“d_mort”, “trial”, “age”, “d_motor”, “i_pupil”,”i_hypoxa”,”i_hypots”,”i_ctclas”,”i_tsah”,”i_
edh”,”i_glucos”,”i_hb”)

D<-D[vars]

model-specific part

# loops for development and validation lr

output<-matrix(ncol=11,nrow=210)

k=1

index<-c(74,75,76,77,79,80,81,83,84,85,86,88,89,90,91)

for( i in index)

{

DEV<-D[D$trial==i,]

set.seed(1)

Model<-glm(as.factor(d_mort) ~age+d_motor+i_pupil+i_hypoxa+i_hypots+i_ctclas+i_tsah+i_
edh+i_glucos+i_hb, data = DEV,family=”binomial”)

pdev<-predict(Model,type=”response”)

prev<-mean(as.numeric(DEV$d_mort)-1)

briermaxdev<-prev*(1-prev)

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

a<-chardev[12]

b<-chardev[13]

pdev<-plogis(a+b*qlogis(pdev))

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

index2<-index[index!=i]

for( j in index2)
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{

VAL<-D[D$trial==j,]

pval<-predict(Model,VAL,type=”response”)

prev<-mean(as.numeric(VAL$d_mort)-1)

briermaxval<-prev*(1-prev)

pval<-plogis(a+b*qlogis(pval))

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

auccmc<-AUCcmc(pval)

output[k,]<-c(i,j,1-chardev[11]/briermaxdev,chardev[2],chardev[12],chardev[13],1-charval[11]/brier
maxval,charval[2],charval[12],charval[13],auccmc)

print(k)

k<-k+1

}

}

# loops for development and validation carT

output<-matrix(ncol=11,nrow=210)

k=1

index<-c(74,75,76,77,79,80,81,83,84,85,86,88,89,90,91)

for( i in index)

{

DEV<-D[D$trial==i,]

set.seed(1)

Model<-rpart(as.factor(d_mort) ~age+d_motor+i_pupil+i_hypoxa+i_hypots+i_ctclas+i_tsah+i_
edh+i_glucos+i_hb, data = DEV)

pdev<-predict(Model)[,c(“1”)]

prev<-mean(as.numeric(DEV$d_mort)-1)

briermaxdev<-prev*(1-prev)

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

a<-chardev[12]

b<-chardev[13]

pdev<-plogis(a+b*qlogis(pdev))
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chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

index2<-index[index!=i]

for( j in index2)

{

VAL<-D[D$trial==j,]

pval<-predict(Model,VAL,type=”prob”)[,c(“1”)]

prev<-mean(as.numeric(VAL$d_mort)-1)

briermaxval<-prev*(1-prev)

pval<-plogis(a+b*qlogis(pval))

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

auccmc<-AUCcmc(pval)

output[k,]<-c(i,j,1-chardev[11]/briermaxdev,chardev[2],chardev[12],chardev[13],1-charval[11]/brier
maxval,charval[2],charval[12],charval[13],auccmc)

print(k)

k<-k+1

}

}

# loops for development and validation rF

output<-matrix(ncol=11,nrow=210)

k=1

index<-c(74,75,76,77,79,80,81,83,84,85,86,88,89,90,91)

for( i in index)

{

DEV<-D[D$trial==i,]

set.seed(1)

Model<-randomForest(as.factor(d_mort) ~age+d_motor+i_pupil+i_hypoxa+i_hypots+i_ctclas+i_
tsah+i_edh+i_glucos+i_hb, data = DEV)

pdev<-predict(Model,type=”prob”)[,c(“1”)]

prev<-mean(as.numeric(DEV$d_mort)-1)

briermaxdev<-prev*(1-prev)

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)
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a<-chardev[12]

b<-chardev[13]

pdev<-plogis(a+b*qlogis(pdev))

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

index2<-index[index!=i]

for( j in index2)

{

VAL<-D[D$trial==j,]

pval<-predict(Model,VAL,type=”prob”)[,c(“1”)]

prev<-mean(as.numeric(VAL$d_mort)-1)

briermaxval<-prev*(1-prev)

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

pval<-plogis(a+b*qlogis(pval))

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

auccmc<-AUCcmc(pval)

output[k,]<-c(i,j,1-chardev[11]/briermaxdev,chardev[2],chardev[12],chardev[13],1-charval[11]/brier
maxval,charval[2],charval[12],charval[13],auccmc)

print(k)

k<-k+1

}

}

# loops for development and validation sVM

output<-matrix(ncol=11,nrow=210)

k=1

index<-c(74,75,76,77,79,80,81,83,84,85,86,88,89,90,91)

for( i in index)

{

DEV<-D[D$trial==i,]

set.seed(1)

Model <-svm(as.factor(d_mort) ~age+d_motor+i_pupil+i_hypoxa+i_hypots+i_ctclas+i_tsah+i_
edh+i_glucos+i_hb, data = DEV,probability=T)
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pdev<-predict(Model,DEV,probability=T)

prev<-mean(as.numeric(DEV$d_mort)-1)

briermaxdev<-prev*(1-prev)

pdev<-attributes(pdev)$probabilities[,c(“1”)]

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

a<-chardev[12]

b<-chardev[13]

pdev<-plogis(a+b*qlogis(pdev))

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

index2<-index[index!=i]

for( j in index2)

{

VAL<-D[D$trial==j,]

pval<-predict(Model,VAL,probability=T)

pval<-attributes(pval)$probabilities[,c(“1”)]

prev<-mean(as.numeric(VAL$d_mort)-1)

briermaxval<-prev*(1-prev)

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

pval<-plogis(a+b*qlogis(pval))

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

auccmc<-AUCcmc(pval)

output[k,]<-c(i,j,1-chardev[11]/briermaxdev,chardev[2],chardev[12],chardev[13],1-charval[11]/brier
maxval,charval[2],charval[12],charval[13],auccmc)

print(k)

k<-k+1

}

}

# loops for development and validation NN

output<-matrix(ncol=11,nrow=210)

k=1
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index<-c(74,75,76,77,79,80,81,83,84,85,86,88,89,90,91)

for( i in index)

{

DEV<-D[D$trial==i,]

set.seed(1)

Model<-nnet(as.factor(d_mort) ~age+d_motor+i_pupil+i_hypoxa+i_hypots+i_ctclas+i_tsah+i_
edh+i_glucos+i_hb, data = DEV,size=10)

pdev<-predict(Model)

prev<-mean(as.numeric(DEV$d_mort)-1)

briermaxdev<-prev*(1-prev)

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

a<-chardev[12]

b<-chardev[13]

pdev<-plogis(a+b*qlogis(pdev))

chardev<-val.prob(pdev,as.numeric(DEV$d_mort)-1,DEV,pl=F)

index2<-index[index!=i]

for( j in index2)

{

VAL<-D[D$trial==j,]

pval<-predict(Model,VAL)

prev<-mean(as.numeric(VAL$d_mort)-1)

briermaxval<-prev*(1-prev)

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

pval<-plogis(a+b*qlogis(pval))

charval<-val.prob(pval,as.numeric(VAL$d_mort)-1,VAL,pl=F)

auccmc<-AUCcmc(pval)

output[k,]<-c(i,j,1-chardev[11]/briermaxdev,chardev[2],chardev[12],chardev[13],1-charval[11]/br
iermaxval,charval[2],charval[12],charval[13],auccmc)

print(k)

k<-k+1

}

}
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aBsTracT

introduction

External validation studies are essential to study the generalizability of prediction 

models. Recently a permutation test, focusing on discrimination as quantified by the 

c-statistic, was proposed to judge whether a prediction model is transportable to a 

new setting. We aimed to evaluate this test and compare it to previously proposed 

procedures to judge any changes in c-statistic from development to external validation 

setting.

Methods

We compared the use of the permutation test to the use of benchmark values of the 

c-statistic following from a previously proposed framework to judge transportability of 

a prediction model. In a simulation study we developed prediction mosel with logistic 

regression on a development set and validated them in the validation set. We concen-

trated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects 

were weaker in the validation set compared to the development set, and 2) the case-

mix was less heterogeneous in the validation set and predictor effects were identical in 

the validation and development set. Furthermore we illustrated the methods in a case 

study using 15 datasets of patients suffering from traumatic brain injury.

results

The permutation test indicated that the validation and development set were homog-

enous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 

2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the 

c-statistic and the standard deviation of the linear predictors correctly pointed at the 

more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in 

scenario 2.

conclusion

The recently proposed permutation test may provide misleading results when exter-

nally validating prediction models in the presence of case-mix differences between 

the development and validation population. To correctly interpret the c-statistic found 

at external validation it is crucial to disentangle case-mix differences from incorrect 

regression coefficients.
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8.1 iNTrODUcTiON

Clinical prediction models receive increasing attention for medical practice and re-

search. After the development of a prediction model, an external validation study is 

essential to explore whether predictions done by the model are valid in a new popula-

tion (1,2). The discriminative ability of prediction models is often quantified using a 

concordance (c) statistic (3). The c-statistic measures whether a prediction model can 

discriminate between patients with and without the outcome of interest. For logistic 

regression models the c-statistic is equivalent to the area under the receiver operating 

characteristic (ROC) curve (AUC) (4).

External validation studies are considered the stronger tests for a model compared 

to internal validation procedures such as cross-validation or bootstrap resampling (5). 

The possible differences between the validation and development setting make an 

external validation study a test of ‘transportability’ of a prediction model (6). If the 

validation population contains similar patients as the development population, the 

external validation study could merely be considered a test of the ‘reproducibility’ of 

a prediction model. Reproducibility refers to the ability of a prediction model to give 

valid predictions in a population very similar to the development population, whilst 

transportability refers to the ability to give valid predictions in populations that are 

related to but different from the development population (6). Typical examples of tests 

of transportability are assessment of model performance across different geographical 

regions or in different time periods.

We previously proposed a framework to identify if an external validation study inves-

tigated the reproducibility or transportability of a prediction model (7). This frame-

work consists of three steps, 1) investigate the relatedness of the development and 

validation population, 2) validation of the prediction model in the new population, 

and 3) interpreting the results found at step 2 using the results from step 1. To as-

sess the relatedness between the development and validation sample we proposed a 

membership model, i.e. a model predicting whether a patient is from the development 

or validation sample. Moreover, we suggested to compare the standard deviation of 

the linear predictors between development and validation samples, where the linear 

predictor is the linear combination of the regression coefficients from the model and 

the covariate values in the development and validation samples respectively.

Recently a permutation test was introduced with the aim to consolidate step 1 & 2 

into a single step (8). The permutation test tests the hypothesis that the development 

and validation population are homogeneous. The permutation test obtains a p-value 

by judging the change in c-statistics of the model between the development and vali-

dation samples. The permutation test assesses the degree of homology between the 

development and validation sets. When the permutation test gives a p-value below 
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a pre-specified threshold, typically 0.05, the hypothesis that the development and 

validation samples are homogeneous is rejected. The claim was that the model may 

then not be directly transported to the validation population without further revision 

or updating (8).

Previous research has shown that the c-statistic does not only depend upon the valid-

ity of the prediction model, i.e. correctness of the regression coefficients, but also on 

the case-mix, i.e. the heterogeneity between patients in the population (9). A measure 

of the case-mix heterogeneity is the standard deviation of the linear predictor in a 

sample. Benchmark values of the c-statistic have also been developed to disentangle 

case-mix effects from the effects of incorrect regression coefficients (10). One such 

benchmark value is called the model based c-statistic (mbc). This is the expected c-

statistic in a population given that the predictions made by a model are perfectly valid.

We aimed to evaluate the usefulness of the recently proposed permutation test in 

relation to the previously proposed framework. Specifically, we compare the conclu-

sions from this test with conclusions drawn using earlier proposed measures, i.e. the 

standard deviation of the linear predictor and benchmark values of the c-statistic. We 

evaluated the different measures using a simulation study and in a case study using 15 

datasets containing patients suffering from traumatic brain injury (TBI).

8.2 MeTHODs

We considered three strategies to judge a change in c-statistic when externally validat-

ing a prediction model: a permutation test; the standard deviation of the linear predic-

tor; and benchmark values of the c-statistic.

simulation study

To assess the performance of the proposed permutation test we conducted a simula-

tion study. In the simulation we varied the case-mix differences and predictor effects 

between the development and validation population, we also varied the sample sizes 

available for development and validation. In our simulation study we generated a 

development set D and validation set V using the following model:

y ij~bernoulli(π i j) ,

π i j=logit–1( β jx i j) ,

x i j~N(0 , σ j
2) ,

Where i denotes the patient number and j ∈ {D,V} indicates whether the patient belongs 

to the development or validation set.
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We distinguished three scenarios. In the first scenario we assumed that the case-mix 

distribution and predictor effects in the development and validation dataset are homo-

geneous. In the second situation we assumed that the case-mix is more heterogeneous 

and predictor effects were weaker in the validation set compared to the development 

set. In the third situation we assumed that the case-mix was less heterogeneous in the 

validation set as compared to the development set, but that the predictor effects were 

similar. The different values of the parameters in the different situations are shown in 

table 1.

For each situation we generated development and validation sets containing 40, 100 

or 200 patients, resulting in 9 scenarios in total. We developed a prediction model in 

the development set using logistic regression and validated the resulting model in 

the validation set. Subsequently we calculated the standard deviation of the linear 

predictor in the development and validation sets, the ratio of the standard deviation of 

the linear predictor in the validation and development set, two benchmark values for 

the c-statistic and performed the permutation test. R-scripts used for the simulation 

study are available as supplementary material (Appendix).

case study

Our case study uses data from the IMPACT database (11). This database contains data 

from 15 studies with patients suffering from traumatic brain injury (TBI). This database 

was previously used to develop a prediction model predicting 6-month mortality and 

unfavorable outcome using patient characteristics such as age, motor score and pupil-

lary reactivity (12). In our case study we developed a model predicting 6-month mortal-

ity using the on the international arm of the Tirilizad trial (13). The prediction model 

contained the predictors age, motor score and pupillary reactivity. We subsequently 

Table 1: Parameters of the different scenarios in the simulation study

sD predictor 
development 

population (σD)

sD predictor 
validation 

population (σV)

Coefficient 
development 

population (βD)

Coefficient 
validation 

population (βV)

Homogeneous 
populations

1 1 3 3

Different case-mix 
& predictor effects

1 1.5 3 2

Different case-mix 
& same predictor 
effects

1 0.75 3 3

SD: standard deviation
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validated the developed model in the remaining 14 studies and judged the change in 

c-statistic observed at development and at external validation using the the ratio of 

the standard deviation of the linear predictor in the validation and development set, 

benchmark values of the c-statistic, and the permutation test. All statistical analyses 

were done in R 3.1.2 (14).

Permutation test

The permutation test was developed to test the null hypothesis that the development 

and validation populations are homogeneous. When the nullhypothesis is not rejected 

it should be safe to transport the prediction model from the development to the valida-

tion population. We then claim that the model is valid in the validation population. The 

permutation test starts with calculating the observed c-statistic at external validation, 

denoted by cV, of a prediction model. The c-statistic is calculated by comparing pre-

dictions from the model to observed outcomes. Subsequently patients are randomly 

permuted between the development and validation population. A prediction model 

is developed on the permuted development set and the c-statistic of this model is 

estimated in the permuted validation population. This process is repeated k times. The 

p-value of the permutation test is given by the proportion of times that the c-statistic 

of the model developed on the permuted development set was smaller than cV. When-

ever the p-value is below a prespecified threshold, typically 0.05, the null hypothesis 

is rejected that the development and validation population are homogeneous. The 

prediction model should then be updated before being transported to the validation 

population. For our simulation and case study we used a value of k equal to 1,000.

measures of case-mix

A direct way to investigate the difference in case-mix between the development and 

validation population is to compare the standard deviation (SD) of the linear predic-

tor of the prediction model in the development and validation population. The linear 

predictor is the linear combination of the regression coefficients from the model and 

the covariate values in the development and validation samples respectively:

lpD = XDβD ; lpV = XVβD.

A population with a more heterogeneous case-mix has a higher SD of the linear predic-

tor compared to a more homogeneous case-mix.

Benchmark values

The discriminative ability of a prediction model at external validation can be influenced 

by both the correctness of regression coefficients and the case-mix heterogeneity in 

the validation sample. This was a key point in our proposed framework and other work 

(7,10). Since differences in case-mix have no impact on the validity of the prediction 



Assessing discriminative performance at external validation of clinical prediction models 169

model it is important to distinguish between the influence of incorrect regression 

coefficients and case-mix. Therefore, two benchmark values of the c-statistic were 

proposed, the model based c-statistic (mbc) and the c-statistic obtained by refitting 

the model in the validation sample (crefitted) (10). The mbc is the expected c-statistic in 

a population given that the prediction model is correct. Differences between the mbc 

and observed c-statistic at external validation (cV) indicate the extent of poor model fit 

independent of differences in case-mix between development and validation samples. 

The mbc can be obtained by first calculating the predicted probability for each patient 

in the validation sample and subsequently generating a new outcome value based on 

this probability (10). To ensure stable estimates of the benchmark values at least 100 

repetitions for each subject are required. The refitted c-statistic (crefitted) gives an upper 

bound on the performance of the model in the validation population, if the regression 

coefficients from the prediction model are perfectly valid. Comparison of cV and crefitted 

reflects the influence of incorrect regression coefficients, given a similar case-mix as in 

the validation population. The mbc uses the regression coefficients from the prediction 

model developed in the development sample, while crefitted uses regression coefficients 

from the validation sample. Interpretation of cV is possible by considering the combina-

tion of the validity of the regression coefficients (as learned from comparison to crefitted) 

and the case-mix (difference to development sample learned from comparison to mbc).

8.3 resUlTs

simulation study

In the scenario where the development and validation population were homogeneous, 

and the development and validation sets were relatively small, the median cD and cV 

were both 0.92 (Table 2).

Benchmark values of the c-statistic indicated that the regression coefficients of the 

model and case-mix between the development and validation sets were similar. Since 

the c-statistic is a rank based measure, by definition cV and crefitted were equal to each 

other in our simulations. The standard deviation of the linear predictor was similar in 

the development and validation sets, correctly indicating that the case-mix was similar 

in both samples, the median ratio of both standard deviations was close to 1. The 

permutation test rejected the null hypothesis of homogeneity between the validation 

and development sets in approximately 5% of the generated samples in the simulation 

study. Changing the sample size of the development and validation sets yielded similar 

results, however the interquartile range became somewhat smaller.

When both the case-mix and regression coefficients in the development and validation 

population were different the median cD and cV were both equal to 0.92. The median 
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mbc was equal to 0.96, by definition crefitted was equal to 0.92. This indicated that 

although cV did not change, a substantially higher c-statistic was expected if the regres-

sion coefficients of the original model had been correct. With small sample sizes, the 

median standard deviation of the linear predictor was 3.23 in the development set and 

somewhat larger (4.85) in the validation set, indicating a more heterogeneous case-

mix. The median ratio of the standard deviation of the linear predictor in the validation 

and development sample also indicated that the case mix was more heterogeneous in 

the validation population (1.50). The permutation test rejected the null hypothesis in 

3% of the generated samples. Results using larger sample sizes were similar, however 

the interquartile range became somewhat smaller.

In the third scenario, the case-mix in the validation population was less heteroge-

neous compared to the development population. Using small sample sizes for model 

development and validation, the median cD was 0.92 and the median cV was 0.88. The 

median mbc was equal to 0.89 and median crefitted was 0.88, indicating that the drop in c-

statistic between the development and validation set was due to a less heterogeneous 

case-mix in the validation set rather than incorrect regression coefficients. The median 

standard deviation of the linear predictor in the development population was 3.22 and 

somewhat smaller (2.42) in the validation set, indicating that the case-mix distribution 

was less heterogeneous in the validation set, which was confirmed by the median ratio 

of the standard deviations (0.75). The permutation test rejected the null hypothesis of 

homogeneous population in approximately 18% of the cases. Increasing the available 

sample sizes of the development and validation sets showed similar results, except 

for the permutation test where the proportion of samples where the null hypothesis 

was rejected increased to 39% as the available sample size increased, reflecting more 

statistical power. Again the inter-quartile range became somewhat smaller.

case study

The prediction model developed in the international arm of the Tirilizad trial had a 

c-statistic of 0.71 [0.67-0.74 95%CI]. The standard deviation of the linear predictor 

at development was equal to 0.80. When the model was externally validated the c-

statistic ranged between 0.64 and 0.85 (Table 3).

If the standard deviation of the linear predictor was larger in the validation sample than 

in the development sample, then the model based c-statistic (mbc) was larger than the 

c-statistic at development. This reflected the wider spread of the risk distributions. 

The permutation test indicated evidence of heterogeneity between the development 

and validation sample in 4 out of 14 validations. However, the mbc and the standard 

deviation of the linear predictor indicate that the decrease in c-statistic in the SLIN 

study was mainly attributable to a less heterogeneous case-mix distribution, rather 

than incorrect regression coefficients. The permutation test indicated no evidence of 
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heterogeneity in 10 out of the 14 validation studies. Evaluation of the mbc and stan-

dard deviation of the linear predictor led to the same conclusion for the TIUS and PEG 

studies. In the other 8 cases there was a substantial influence of incorrect regression 

coefficients on the observed c-statistic at external validation, indicating that the model 

was not transportable to these settings.

8.4 DiscUssiON

This study illustrated how two separate phenomena determine differences in observed 

discriminative ability, i.e. the c-statistic, between development and validation settings. 

Case-mix and the correctness of regression coefficients both influence the c-statistic 

of a prediction model when applied in a new datasets. Attempts to provide a single 

summary test for differences in c-statistic are therefore misleading. The recently pro-

posed permutation test incorrectly concluded that the development and validation 

population were not homogeneous in the scenario with different case-mix but similar 

Table 3: External validation results of the model predicting 6-month mortality in TBI patients using 
age, motor score and pupillary reactivity. 

study cV mbc sD lpV ratio sD lpV and sD lpD crefittted p-value permutation test

TINT 0.711 - - - - -

TIUS 0.74 0.73 0.87 1.09 0.74 1.00

SLIN 0.68 0.69 0.71 0.89 0.68 0.00

SAP 0.69 0.74 0.95 1.19 0.74 0.00

PEG 0.76 0.78 1.17 1.46 0.77 1.00

HIT I 0.72 0.77 1.12 1.40 0.79 0.90

UK4 0.81 0.78 1.16 1.45 0.83 1.00

TCDB 0.82 0.80 1.25 1.56 0.83 1.00

SKB 0.68 0.75 1.01 1.26 0.72 0.35

EBIC 0.83 0.79 1.24 1.55 0.85 1.00

HIT II 0.69 0.77 1.10 1.38 0.73 0.00

NABIS 0.69 0.76 1.04 1.30 0.72 0.55

CSTAT 0.75 0.72 0.86 1.08 0.77 1.00

PHARMOS 0.64 0.70 0.76 0.95 0.66 0.00

APOE 0.85 0.73 0.86 1.08 0.85 1.00

1c-statistic of the model at development
cV: c-statistic observed at external validation
mbc: model based c-statistic
SD lpV: standard deviation of the linear predictor in the validation data
SD lpD: standard deviation of the linear predictor in the development data
crefitted: c-statistic of the prediction model refitted in the validation data
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predictor effects. Conversely the permutation test concluded that development and 

validation population were homogeneous when the case-mix was more heterogeneous 

but predictor effects were weaker. Similar patterns were observed in the case study.

The permutation test aimed to consolidate the first two steps in the framework pro-

posed by Debray et al. (7), by judging the heterogeneity between development and 

validation population using the change in c-statistic of the prediction model. The 

c-statistic however does not only depend on whether a prediction model gives valid 

predictions, but also on the case-mix in the underlying population; that was the key 

point in the framework by Debray. The permutation test does not take these case-mix 

differences into account and may break down when these are present.

When validating the IMPACT prediction model, predicting 6-month mortality of 

patients suffering from traumatic brain injury, it was noted that the c-statistic at ex-

ternal validation was higher in datasets from observational studies compared to the 

c-statistic found when validating in datasets from randomized controlled trials (15). 

These differences were attributed to the wider enrollment criteria in the observational 

studies compared to trials, leading to a more heterogeneous case-mix in the observa-

tional studies compared to the trials. Similarly, a recent review found higher c-statistic 

values in some validation studies than in the development studies, again suggesting 

that more heterogeneity at validation is well possible (16). The overall pattern in this 

review was a lower performance at validation than expected, reflecting overoptimism 

and overfitting at model development (4).

At external validation the performance of a prediction model is assessed using data not 

used at model development. Here we focused on judging the change in c-statistic of 

the prediction model at external validation. Validation studies however should also aim 

to assess other model properties, in particular the calibration of a prediction model. 

Calibration refers to the agreement between predicted probabilities and observed out-

comes. It can adequately be assessed using recalibration parameters, and graphically 

using calibration plots (4,17).

The standard deviation of the linear predictor is a simple measure of case-mix het-

erogeneity in a dataset. When the distribution of the linear predictor is skewed the 

standard deviation may not be appropriate as a measure of case-mix heterogeneity. 

We note however that the distribution of the linear predictor is often close to a normal 

distribution (18). At external validation the distribution of the linear predictor should 

be assessed graphically in a ‘validation’ plot (19,20).In sum, the proposed permutation 

test does not take case-mix differences into account and can therefore give misleading 

results in the presence of case-mix differences. The permutation test therefore is only 

useful when there are no case-mix differences between the development and valida-

tion set. Case-mix differences between development and validation setting can readily 

be detected by simple summary measures such as the variance of the linear predictor 
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or benchmark values of the c-statistic. To judge the change in c-statistic of a prediction 

model at external validation it is crucial to disentangle the effects of incorrect regres-

sion coefficients from differences in case-mix heterogeneity between the development 

and validation setting.
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8.5 aPPeNDiX

R-script used for the simulation study

rm(list = ls())

# Simulation study regarding the permutation test and other measures for judging

# the change in c-statistic

library(rms)

perm_auc <- function(D, V, k = 1000, AUCext){

# Permutation test

library(rms)

n_cases_D <- sum(D$y)

n_cases_V <- sum(V$y)

n_controls_D <- sum(1 - D$y)

n_controls_V <- sum(1 - V$y)

cases<- rbind(D[D$y==1, ], V[V$y==1, ])

controls <- rbind(D[D$y==0, ], V[V$y==0, ])

AUC <- rep(0, k)

index_D1 <- 1: n_cases_D

index_D0 <- 1: n_controls_D

index_V1 <- (n_cases_D + 1): (n_cases_D + n_cases_V)

index_V0 <- (n_controls_D + 1): (n_controls_D + n_controls_V)

for(j in 1: k){

cases_j<- cases[sample(1: nrow(cases)), ]

controls_j <- controls[sample(1: nrow(controls)), ]

D_j <- rbind(cases_j[index_D1, ], controls_j[index_D0, ])
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V_j <- rbind(cases_j[index_V1, ], controls_j[index_V0, ])

fit_j <- lrm(y ~ x, data = D_j)

V_j$lp<- predict(fit_j, newdata = V_j)

fit_j_ext <- lrm(y ~ lp, data = V_j)

AUC[j]<- fit_j_ext$stats[“C”]

}

p <- mean(AUC<AUCext, na.rm = T)

res <- list(p = p, AUC = AUC, AUC_ext = AUCext)

return(res)

}

mb.c <- function(xb.hat){

# Model based c-statistic

n<-length(xb.hat)

xb.hat <- rep(xb.hat, 100)

y<- plogis(xb.hat)>=runif(length(xb.hat))

library(pROC)

cstat <- roc(response = y, predictor = xb.hat)

mb.c<- auc(cstat)

return(list(mbc=mb.c))

}

n_sim <- 100

measures<- c(‘C_dev’, ‘C_ext’, ‘sd_dev’, ‘sd_val’, ‘mbc’, ‘ratio_sd’, 

‘permutation’, ‘crefitted’)

res <- array(dim =c(n_sim, length(measures)), 

dimnames = list(n_sim = 1: n_sim,
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measure = measures))

n<- 200 # Number of patients (note ~50% patients experience the event)

sd_d <- 1 # Standard deviation predictor in development population

sd_v <- 1 # Standard deviation predictor in validation population

beta_d <- 3 # Predictor effect development population

beta_v <- 3 # Predictor effect validation population

for(j in 1: n_sim){

Xd <- rnorm(n, sd = sd_d)

Xv <- rnorm(n, sd = sd_v)

yd <- plogis(beta_d * Xd)>=runif(n)

yv <- plogis(beta_v * Xv)>=runif(n)

D <- data.frame(cbind(Xd, yd))

names(D) <- c(‘x’, ‘y’)

V <- data.frame(cbind(Xv, yv))

names(V) <- c(‘x’, ‘y’)

fit_dev <- lrm(y ~ x, data = D)

sd_dev<- sd(fit_dev$linear.predictors)

lp_val<- cbind(1, V$x) %*% fit_dev$coefficients

fit_val <- lrm(V$y ~ lp_val)

refit <- lrm(y ~ x, data = V)

sd_val<- sd(lp_val)

p_value <- perm_auc(D = D, V = V, AUCext = fit_val$stats[‘C’])

res[j, 1] <- fit_dev$stats[‘C’] # Apparent c-statistic
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res[j, 2] <- fit_val$stats[‘C’] # c-external

res[j, 3] <- sd_dev # Standard deviation of the linear predictor development

res[j, 4] <- sd_val # Standard deviation linear predictor at validation

res[j, 5] <- mb.c(lp_val)$mbc # model based c-statistic

res[j, 6] <- sd_val/sd_dev# Ratio standard deviation at validation and development

res[j, 7] <- p_value$p# p-value permutation test

res[j, 8] <- refit$stats[‘C’] # crefitted

}

apply(res, 2, quantile, probs = c(0.5, 0.25, 0.75)) 
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GeNeral DiscUssiON

In this thesis, modern modelling techniques were compared with classical modelling 

techniques in a medical context. We evaluated to what extent modern modelling tech-

niques have advantages in medical prediction problems: modern techniques are more 

flexible and may be better able to capture nonlinearity and interactions between pre-

dictor variables. They may therefore offer better opportunities for predicting medical 

outcomes, such as treatment success or mortality, for identifying risk factors to support 

diagnosis, and even for classifying sources of infections and contaminations to facili-

tate prevention. The aim of this research was to investigate in what circumstances and 

under what conditions relatively modern modelling techniques such as support vector 

machines, neural networks and random forests have advantages in medical prediction 

research over more classical modelling techniques, such as linear regression, logistic 

regression and Cox regression.

ParT i

answers to research questions

The thesis specifically focused on 3 research questions. The summary answers are 

shown in Table 1.

Question 1:

Comparison of modern and traditional modelling techniques:

- What is the performance in predicting intracranial findings on CT scans?

- What is the ability to capture nonlinearity?

Question 2:

Application of modern modelling techniques:

- How can they be applied for survival problems?

- How can they be applied for feature selection in a domain with many variables and 

comparatively few subjects or data points?

Question 3:

Performance of modern modelling techniques:

- What is the performance in relation to the sample size?

- What is the stability of the performance at external validation?
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1a Performance of modern modelling techniques in CT scans
The performance of modern modelling techniques was assessed by comparing the 

performance of two classical modelling techniques (logistic regression and classifica-

tion and regression trees) and five relatively modern modelling techniques (neural net, 

Bayes network, Chi square automatic interaction detection, decision list and support 

vector machines) in risk prediction on intracranial findings on CT-scans (Chapter 2). 

After 10x10 cross-validation, none of the included modern modelling techniques out-

performed the logistic regression model, although Bayes network and neural net per-

formed almost similarly. Besides, the Bayes network model has a presentation format 

that provides more detailed insights into the structure of the prediction problem, which 

might offer advantages in clinical practice. A particularly disappointing performance 

was shown by the support vector machine model. This model also showed a very high 

optimism, which was probably due to the used default setting of the parameters. This 

finding indicates that prediction modelling with the support vector machine technique 

implies the necessity of carefully tuning the parameters, without increasing the risk of 

overfitting.

1b Modern modelling techniques to capture nonlinearity
The role of modern modelling techniques or machine learning techniques in medical 

settings was discussed in Chapter 3. Several predictive modelling issues were dis-

cussed, such as the role of tuning, model uncertainty and predictor selection. Simula-

Table 1 Summary questions and answers

Question answer chapter

1a Comparison of modern techniques in 
CT diagnosis

Performance of modern modelling techniques 
was not better than logistic regression.

2

1b Ability to capture nonlinearity Modern modelling techniques such as RCS and 
MFP are well suited to capture nonlinearity.

3

2a Application of modern techniques in 
survival problems

Modern modelling techniques can be used 
straightforwardly to predict survival by using 
“pseudo values”.

4

2b Feature selection and prediction in 
“p>n” problems

Extensive bootstrapping led to models with a 
good performance based on a sparse feature 
set.

5

3a Data hungriness of modern modelling 
techniques

Modern modelling techniques are far more 
data-hungry than traditional modelling 
techniques.

6

3b Stability of the performance at 
external validation

Modern modelling techniques showed high 
optimism at external validation.
Permutation test for transportability may 
provide misleading results.

7/8
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tion studies showed that the modelling techniques multi fractional polynomials (MFP) 

and restricted cubic splines (RCS) both are well able to capture nonlinearity. These 

techniques are considered to be standard tools in regression modelling. The relation 

between the performance of the models generated with these techniques and sample 

size is reflected in Figure 1. The performance of MFP and RCS models was compared for 

increasing sample sizes (100 to 5000) based on simulated data (n=1,000,000) gener-

ated from the Mease model [1]. The MFP2 models have 4 degrees of freedom, 2 for 

finding the transformation and 2 for the coefficients. The RCS3 and RCS5 models have 2 

and 4 degrees of freedom respectively [2]. Models were validated in a holdout sample 

with n=500,000. With increasing sample size, the optimism of the models decreased 

and the validated performance increased. For sample sizes =< 500, the validated 

performance of the RCS3 models was best and for sample sizes > 500, the validated 

performance of the MFP2 models was best. However, the differences were small from 

n>500 and negligible from n>2000 (Figure  1).

2a Modern modelling techniques for survival problems
The use of modern modelling techniques in survival problems is hampered by the fact 

that these techniques are not suited for time-to-event outcomes (Chapter 4). Sometimes 

it is necessary to transform the predictor or outcome variables (e.g. log-transformation 

or categorization). In this case, the time-to-event outcome was transformed into new 

Figure 1 AUC of RCS and MFP models in relation to the sample size 
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single variables at certain time points, so-called pseudo values. These pseudo values 

were used to compare the performance of five modelling techniques. After bootstrap 

validation (200x), the best performance was achieved by classical modelling tech-

niques. The logistic regression model was best for 60-month survival, and the general 

linear model was best for overall survival. However, the other models, including neural 

net, classification and regression trees and three variants of support vector machine 

models, performed almost equally well.

2b Modern modelling techniques for feature selection with p>n
The feature selection ability and validated predictive performance of modern model-

ling techniques was studied in the domain of legionella pneumophila. We evaluated 

many potential features (p) for classifying infections as clinical or environmental in 

a relatively small data set (p>n, Chapter 5). In such a situation, commonly used tech-

niques are VARSEL-RF and SVM-RFE, which are based on stepwise elimination of irrel-

evant features. The result is a sparse set of important predictors. We showed that good 

prediction models could also be obtained by means of modern modelling techniques 

such as random forest, support vector machines and LASSO, which can first be used 

to preselect relevant features using bootstrapping and then to develop a prediction 

model with those selected features. The stability of the relevant feature sets was mod-

est when determined by investigating the most important features of each bootstrap 

round. Our findings show that random forest and LASSO even performed slightly better 

than the commonly used techniques VARSEL-RF and SVM-RFE.

3a Modern modelling techniques and data hungriness
An important aspect in developing a prediction model is the required sample size of the 

development set. For logistic regression modelling, a common rule of thumb is that at 

least 10 events per variable (EPV) are required for sensible prediction modelling [3]. For 

other modelling techniques, such a rule of thumb is not available. The required sample 

size or “data hungriness” of modern modelling techniques was studied by sampling 

with increasing sample sizes from existing data sets (Chapter 6). Our analyses showed 

that modern modelling techniques such as support vector machines, neural networks 

and random forests may need over 10 times as high an EPV value (EPV>100) to achieve 

a stable AUC and a small optimism. This implies that such modern techniques should 

only be used in medical prediction problems if very large data sets are available. At 

present, this limits their usefulness in a medical context, since high-quality medical 

data sets are often small and have a poor signal-to-noise ratio. In the future, however, 

the access to, for example, routinely collected electronic health records (EHR) will offer 

opportunities for creating large databases with many patient records, and depending 

on the richness and quality of the data, modern modelling techniques may be applied.
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3b Performance at external validation
The performance of five different modelling techniques at internal and external valida-

tion was investigated using fifteen data sets with TBI patients (Chapter 7). At external 

validation, the logistic regression models performed best, followed by random forest 

and support vector machine models. The CART models showed a poor performance at 

external validation, while these had been advocated specifically for this setting [4]. 

The most stable performance was achieved by the logistic regression models and the 

random forest models. Our study confirmed that external validation is an important 

step before applying a prediction model in a new setting. External validation aims to 

address the performance of a model in patients from a different but plausibly related 

setting that still represents the underlying disease domain. However, a data set with 

such patients is not always available, and in that case, internal validation is the only 

possibility. Again, the access to electronic heath records (EHR) may offer opportunities 

for creating validation data sets for external validation.

In Chapter 8, the transportability of a model was discussed based on a proposed 

permutation test for judging whether a prediction model is transportable to a new 

setting. The use of the permutation test was compared to the use of benchmark values 

of the refitted AUC and the model-based AUC. The conclusion was that the proposed 

test may provide misleading results in the presence of case mix differences between 

the development set and the validation set. The model-based AUC was also used in 

Chapter 7 when investigating the external validity of prediction models using fifteen 

data sets with TBI patients to gain insight into case mix differences.

Strengths and weaknesses
As mentioned above, an important aspect of various modern modelling techniques 

is the tuning of the hyper parameters to determine the best parameter setting based 

on the development set. In this thesis, a limitation was the use of default settings for 

the parameters as far as possible, except in predicting survival (Chapter 4). Although 

tuning of the hyper parameters is generally recommended, it must be kept in mind 

that this will generally lead to higher optimism. Therefore, validation of the optimized 

models is essential. Another limitation is that we did not test the modern modelling 

techniques in settings with very large data sets. In this thesis, most data sets had small 

to intermediate sizes.

One of the strengths of this thesis is that modern modelling techniques were compared 

in different medical settings with respect to different outcomes (dichotomous, continu-

ous and time-to-event outcomes). Another strength is that thorough simulations were 

performed, especially for insight into the sample size that is required for a good and 

stable performance.
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ParT ii

a perspective on prediction modelling

In this part of the discussion, various further aspects of predictive modelling will be 

discussed.

Understanding the modelling techniques
In this thesis, various modelling techniques were applied and compared. A disadvantage 

of modern modelling techniques is that for most medical researchers the underlying 

algorithm is a black box. By contrast, classical modelling techniques using regression 

have the advantage that the resulting model is a relatively simple mathematical for-

mula. The coefficients in this formula are calculated by optimizing the likelihood or the 

mean squared error, possibly with some form of penalization to optimize predictive 

performance. The coefficients can be used for instance to calculate odds ratios, hazard 

ratios, and rate ratios, all of which represent some form of relative risk. To fully under-

stand the underlying algorithm of a modern modelling technique, a researcher needs 

in-depth mathematical and statistical knowledge. For the application of these model-

ling techniques, however, it may be sufficient to have some general knowledge about 

the working of the modelling techniques. In each chapter, we therefore described the 

modelling techniques used in this thesis at the level of knowledge required for ap-

plying these techniques (Chapter 2-8). This level includes knowledge of what kind of 

variables are permitted for the input and output, which model parameters are involved 

and what their function is, and how the output should be interpreted.

Tuning model parameters
Some of the modern modelling techniques have so-called hyper parameters. Examples 

are the number of trees for random forest models, the tree-depth for tree models and 

the regularization parameter for support vector machine models. There are two pos-

Table 2 Strengths and weaknesses

aspect strength Weakness

Modelling 
techniques

-  Most common modelling 
techniques considered

-  Different performance measures 
used

- Other techniques not considered
-  Use of default settings for 

parameters instead of tuning

Medical settings - Variety in settings
- Range of sample sizes
- Different types of outcomes

-  Specific characteristics may have 
driven conclusions

Simulation sets - True model known
- Sample size can be varied
- Full control over interactions

- Real world may be different
-  Unrealistic functional form in 

medicine
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sibilities to set the hyper parameters that are involved. One possibility is to use default 

settings, which are sometimes related to findings in the data. Another possibility is 

tuning the hyper parameters of a modelling technique using a grid search over sup-

plied parameter ranges and using cross-validation to find the best parameter setting 

(Chapter 4). With the best parameter setting, a model can be developed on a develop-

ment part of the data set, followed by validation of the model on a validation part.

To illustrate the effect of tuning the hyper parameters instead of using default set-

tings, a sensitivity analysis (bootstrap resampling, n=200) was performed with three 

different support vector machine modelling techniques using the HNSCC data base. 

The outcome variable was dead or alive at 60 months and the eight predictor variables 

involved were Age, Gender, Tumor location, T-N-M classification, Prior malignancies and 

ACE27 as described in Chapter 4. Table 3 shows the mean AUC-values and calculated 

optimism as a result of this analysis. The validated AUC-values with tuning are slightly 

higher than the validated AUC-values with the default settings. However, optimism is 

also higher, meaning that tuning has its price.

Performance measures
To measure the performance of a model, we used the area under the receiver operator 

curve (AUC) to indicate the discriminatory ability of a model in case of a dichotomous 

outcome (Chapter 2-8), and in case of a continuous outcome we used the mean squared 

error (MSE) or the root of the mean squared error (RMSE) (Chapter 4). Calibration of the 

models was done using the Cox calibration framework, but only in Chapter 7. Another, 

less frequently used measurement for performance is the Brier score. We used a vari-

ant of this score, the scaled Brier score, for performance measurement in Chapter 7, for 

better interpretability.

It is difficult to define value judgments on what is a good or excellent performance. An 

interesting development is the focus on decision-analytic summary measures of model 

performance, specifically the calculation of Net Benefit (NB) [5]. Net Benefit is a simple 

type of decision analysis, with benefits and harms put on the same scale so that they 

can be compared directly [6]. Explaining such measures to clinicians is challenging. A 

Table  3 Results sensitivity analysis

With tuning With default settings

Type sVM aUc 
bootstrap

aUc 
validated

Optimism aUc
bootstrap

aUc 
validated

Optimism

Linear 0.805 0.794 0.011 0.805 0.794 0.011

Polynomial 0.862 0.812 0.051 0.792 0.774 0.018

Radial 0.871 0.812 0.059 0.820 0.801 0.019
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simple interpretation is that an NB higher than a reference of treat all or treat none 

implies that the model is useful.

Net benefit can also be expressed on a relative scale as Relative Utility. This scaling may 

be more attractive to some but not all researchers. Expression of NB on an absolute 

scale is consistent with decision making and cost-effectiveness, where the increase in 

effectiveness is balanced to the increase in costs.

Physician versus prediction model
In clinical practice, medical decision making is difficult. Prediction models may assist 

treating physicians to inform patients on the probability of an outcome, such as a 

5-year disease-free period, or to classify a patient according to a certain risk [10]. The 

latter may also be important for communication between physicians and their patients. 

However, these calculations alone should never dictate patient care and are no substi-

tute for professional judgement.

Future developments

Big Data
The future of medical prediction research will be strongly influenced by the procure-

ment and analysis of “Big Data”. In 2013, IBM predicted that with the sharp increase 

of medical images and electronic medical records, medical professionals may utilize 

big data to extract useful clinical information from masses of data to obtain a medical 

history and forecast treatment effects, thus improving patient care and reducing cost 

[7]. Big data analysis is the process of examining large data sets containing a variety 

of data types to uncover hidden patterns, unknown correlations, trends and other 

useful information. Combining and analyzing electronic medical records, financial and 

operational data, clinical data and genomic data to match treatments with outcomes 

can help to predict patients at risk for disease or readmission and to provide more 

efficient care. Big data analytics and applications in healthcare are at a nascent stage 

of development, but their maturing process can be accelerated by rapid advances in 

platforms and tools (“Hadoop” for example) [8]. For predictive modelling with big data, 

the most frequently used modelling techniques are machine learning techniques, such 

as Bayesian networks [9]. However, this thesis shows that the advantages of machine 

learning techniques may be quite limited. Moreover, these techniques showed high 

risks of overfitting.

Technological innovation
Until fairly recently, applying relatively modern techniques for medical investiga-

tions was hampered by the fact that these techniques require in-depth statistical and 
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mathematical knowledge as well as knowledge in the field of informatics. Nowadays, 

however, these techniques are readily available in user-friendly programs that are 

incorporated in many software packages, such as R, SPSS modeler and Weka. Also, 

making the necessary calculations for the application of these techniques has become 

far less time-consuming due to the increased capacity and increased speed of modern 

computers.

New modelling techniques may be particularly useful for analyzing large databases 

with enormous numbers of patient records. Simulations can be performed to test the 

applicability and performance of different modelling techniques, in which predefined 

relations between predictor variables and outcome variables are used.

Overall conclusion

In medical research and clinical practice, the modern modelling techniques evalu-

ated in this thesis did not have important advantages over more classical modelling 

techniques, such as linear, logistic and Cox regression. These classical modelling 

techniques outperformed the relatively modern modelling techniques when predicting 

risk or predicting survival based on small- and medium-sized data sets. Since modern 

modelling techniques such as support vector machines, neural networks and random 

forests are more than ten times more data-hungry than regression techniques, a new 

rule of thumb for applying these techniques might be that the development set should 

contain at least 100 events per variable. If such large data sets are available, these 

techniques may have advantages.
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sUMMary

The aim of this research is to investigate in what circumstances and under what condi-

tions relatively modern modelling techniques such as support vector machines, neural 

networks and random forests might have advantages in medical prediction research 

and clinical practice over more classical modelling techniques, such as linear regres-

sion, logistic regression and Cox regression.

One of the areas where modern modelling approaches have been advocated as an 

alternative to logistic regression is trauma research. Specifically, CART methods have 

been promoted. In Chapter 2 we investigated whether alternative modelling techniques 

might improve the performance of prediction rules for intracranial traumatic findings 

in patients with minor head injury. These prediction rules were designed to reduce the 

use of computed tomography (CT) without missing patients at risk for complications. We 

re-analyzed 3181 patients with minor head injury who had received CT scans between 

February 2002 and August 2004. Of these patients 243 (7.6%) had intracranial trau-

matic findings and 17 (0.5%) underwent neurosurgical intervention. We compared the 

sensitivity, specificity and area under the receiver operator curve of various modelling 

techniques and found that no modern modelling technique outperformed the logistic 

regression model. However, the Bayes network model had a presentation format which 

provided more detailed insights into the structure of the prediction problem.

The role of modern modelling techniques or machine learning techniques in medical 

settings was discussed in Chapter 3. Several predictive modelling issues such as tun-

ing, model uncertainty and predictor selection were discussed. The discussion focused 

on the ability of machine learning techniques to capture nonlinearity in medical data. 

Simulation studies showed that modelling techniques such as fractional polynomials 

and restricted cubic splines are able to capture nonlinearity and that these techniques 

are considered as default tools in regression modelling.

In Chapter 4, we addressed the challenges that survival data pose to the application of 

modern modelling techniques. We used pseudo values to enable statistically appropri-

ate analyses of survival outcomes predicted by means of seven alternative modelling 

techniques. We analyzed survival in 1282 Dutch patients with newly diagnosed Head 

and Neck Squamous Cell Carcinoma (HNSCC) with conventional Kaplan-Meier and Cox 

regression analysis. We subsequently calculated pseudo values to reflect the indi-

vidual survival patterns. We used these pseudo values to compare the performance of 

models based on recursive partitioning (RPART), neural nets (NNET), logistic regression 

(LR), general linear models (GLM) and three variants of support vector machines (SVM) 
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with respect to dichotomous 60-month survival, and continuous pseudo values at 60 

months or estimated survival time [13]. The best performance was achieved by the 

logistic regression model and the general linear model, followed by support vector 

machines with a linear kernel.

Chapter 5 addresses the genetic comparison of clinical and environmental Legionella 

strains, which forms an essential part of outbreak investigations. DNA microarrays of-

ten comprise many thousands of DNA markers (features). Feature selection and the 

development of prediction models are particularly challenging in this domain with 

many variables and comparatively few subjects or data points. We compared modelling 

techniques to develop prediction models for classifying legionella infections as clini-

cal or environmental. We analyzed a database containing 222 Legionella pneumophila 

strains with 448 continuous markers and a dichotomous outcome (clinical or envi-

ronmental) with four modelling techniques: classification and regression trees (CART), 

random forests (RF), support vector machines (SVM) and least absolute shrinkage and 

selection operator (LASSO). We found that in this domain, good prediction models were 

provided by the RF and LASSO techniques.

In Chapter 6, we studied the predictive performance of different modelling techniques 

in relation to the effective sample size. We labelled this relation “data hungriness”. 

We performed simulation studies based on three clinical cohorts: 1282 patients with 

head and neck cancer (5-year survival 47%), 1731 patients with traumatic brain injury 

(6-month mortality 22.3%), and 3181 patients with minor head injury (7.6% with CT 

scan abnormalities). We compared three relatively modern modelling techniques: sup-

port vector machines (SVM), neural nets (NN) and random forests (RF), and two classical 

techniques: logistic regression (LR) and classification and regression trees (CART). Data 

hungriness was defined by plateauing of AUC and small optimism (difference between 

the mean apparent AUC and the mean validated AUC <0.01) [14]. The analysis showed 

that modern modelling techniques such as support vector machines, neural networks 

and random forests may need over 10 times as many events per variable to achieve 

a stable AUC and a small optimism as classical modelling techniques, such as logistic 

regression. This implies that such modern techniques should only be used in medical 

prediction problems if very large data sets are available.

In Chapter 7, we compared the externally validated performance of five prediction 

models for 6-month mortality of TBI patients with three predictor sets of increasing 

complexity. We used the IMPACT database on TBI patients with data of 15 underlying 

studies to compare the modelling techniques logistic regression (LR), classification and 

regression trees (CART), random forests (RF), support vector machines (SVM) and neural 
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nets (NN). External validation of the models was done by developing a model on one of 

the 15 data sets, followed by applying the model to each of the 14 remaining data sets. 

This process was repeated 15 times. The area under the receiver operator curve (AUC) 

was used to assess the performance of the models. The logistic regression models 

performed best, followed by random forest and support vector machine models. The 

CART models showed a poor performance. Our findings confirm that external validation 

is a necessary step before applying a prediction model in a new setting.

In Chapter 8, the transportability of a model was discussed based on a proposed per-

mutation test for judging whether a prediction model is transportable to a new setting. 

The use of the permutation test was compared to the use of benchmark values of the 

refitted AUC and the model-based AUC. The conclusion was that the proposed test 

may provide misleading results in the presence of case mix differences between the 

development and validation set.
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saMeNVaTTiNG

Het doel van dit onderzoek is te onderzoeken onder welke omstandigheden en on-

der welke condities relatief moderne modelleringstechnieken zoals support vector 

machines, neural networks en random forests voordelen zouden kunnen hebben in 

medisch-wetenschappelijk onderzoek en in de medische praktijk in vergelijking met 

meer traditionele modelleringstechnieken, zoals lineaire regressie, logistische regres-

sie en Cox regressie.

Een van de gebieden waar moderne modelleringstechnieken werden aanbevolen 

als alternatief voor logistische regressie is trauma onderzoek. Met name CART werd 

aanbevolen als modelleringstechniek. In hoofdstuk 2 is onderzocht of moderne 

modelleringstechnieken de prestaties van voorspellingsregels voor intracraniële trau-

matische bevindingen bij patiënten met klein hoofdletsel zouden kunnen verbeteren. 

Deze voorspellingsregels werden ontworpen om het gebruik van computertomografie 

(CT) te verminderen zonder patiënten met risico op complicaties te missen. Er werden 

nieuwe analyses gemaakt van 3181 patiënten met klein hoofdletsel die tussen februari 

2002 en augustus 2004 CT-scans hebben ondergaan. Van deze patiënten hadden 243 

(7.6%) intracraniële traumatische bevindingen en 17 (0.5%) hadden een neurochi-

rurgische ingreep ondergaan. Met maten als sensitiviteit, specificiteit en oppervlakte 

onder de receiver operator curve werden verschillende modelleringstechnieken ver-

geleken, met als uitkomst dat geen van de moderne modelleringstechnieken beter 

presteerde dan het logistische regressie model. Echter, het Bayes netwerkmodel had 

een presentatievorm die meer gedetailleerde inzichten biedt in de structuur van het 

predictieprobleem.

De rol van moderne modelleringstechnieken of machine learning technieken in me-

dische omgevingen wordt besproken in hoofdstuk 3. Verschillende aspecten van het 

maken van predictiemodellen kwamen aan de orde, zoals tuning, model onzekerheid 

en de selectie van predictoren. De discussie richtte zich op het vermogen van machine 

learning technieken om met niet-lineariteit in medische gegevens om te gaan. Simu-

latiestudies toonden aan dat modelleringstechnieken zoals fractional polynomials 

(FP) en restricted cubic splines (RCS) niet-lineariteit kunnen modelleren en dat deze 

technieken kunnen worden beschouwd als standaard hulpmiddelen bij modellering 

met regressietechnieken.

In hoofdstuk 4 wordt ingegaan op de uitdagingen die het voorspellen van survival 

met zich meebrengt voor de toepassing van moderne modelleringstechnieken. We 

gebruikten zogenaamde pseudo-values om statistische analyses van survival mogelijk 
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te maken met zeven moderne modelleringstechnieken. De overleving van 1282 Ne-

derlandse patiënten met recent gediagnosticeerd hoofd-hals carcinoom (in het Engels 

afgekort als HNSCC) werd geanalyseerd met conventionele Kaplan-Meier en Cox regres-

sie analyse. Pseudo-values werden berekend om individuele overlevingspatronen van 

patiënten weer te geven. Met behulp van deze pseudo-values werden de prestaties 

vergeleken van modellen gebaseerd op recursieve partitioning (RPART), neural nets 

(NN), logistic regression (LR), general linear models (GLM) en drie varianten van support 

vector machines (SVM) ten aanzien van de 60-maands overleving, de pseudo-values 

bij 60 maanden en de geschatte overlevingstijd. Het LR-model en het GLM-model 

presteerden het best, gevolgd door het SVM-model met een lineaire kernel.

Hoofdstuk 5 behandelt de genetische vergelijking van klinische en omgeving gerela-

teerde legionella stammen, hetgeen een wezenlijk onderdeel vormt van onderzoeken 

van legionella-uitbraken. DNA microarrays bevatten vaak vele duizenden DNA-markers 

(variabelen). De selectie van relevante variabelen en de ontwikkeling van predic-

tiemodellen is een probleem in dit domein met veel variabelen en relatief weinig 

gegevenspunten. Verschillende modelleringstechnieken voor het ontwikkelen van 

predictiemodellen werden vergeleken voor het categoriseren van legionella-infecties 

als klinisch of omgeving gerelateerd. We analyseerden een database met 222 Legio-

nella pneumophila stammen met 448 permanente markers en een dichotome uitkomst 

(klinisch of omgeving gerelateerd) met behulp van vier modelleringstechnieken: clas-

sification and regression trees (CART), random forests (RF), support vector machines 

(SVM) en least absolute shrinkage and selection operator (LASSO). De technieken RF en 

LASSO leverden goede predictiemodellen op voor dit domein.

In hoofdstuk 6 worden de voorspellende prestaties van verschillende modellerings-

technieken in relatie tot de effectieve steekproefomvang bestudeerd. Deze relatie 

wordt de “data hungriness” genoemd. Simulatie studies werden uitgevoerd op basis van 

drie klinische cohorten: 1282 patiënten met hoofd-hals carcinoom (5-jaars overleving 

47%), 1731 patiënten met traumatisch hersenletsel (6-maanden mortaliteit 22.3%) 

en 3181 patiënten met klein hoofdletsel (7.6 % met CT-scan afwijkingen). Drie relatief 

moderne modelleringstechnieken werden vergeleken: support vector machines (SVM), 

neural nets (NN) en random forests (RF) en twee klassieke technieken: logistische 

regressie (LR) en classification and regression trees (CART). De data hungriness werd 

vastgesteld op basis van de gevalideerde AUC en het optimisme van het model. Uit de 

analyse bleek dat moderne modelleringstechnieken zoals support vector machines, 

neural nets en random forests meer dan 10 keer zoveel “events” per variabele (EPV) 

nodig hebben als klassieke modelleringstechnieken zoals logistische regressie om een 

stabiele AUC en een laag optimisme te bereiken. Dit betekent dat dergelijke moderne 
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technieken alleen voor medische predictieproblemen kunnen worden gebruikt als er 

zeer grote datasets beschikbaar zijn.

In hoofdstuk 7 worden de extern gevalideerde prestaties van vijf predictiemodellen 

vergeleken voor de 6-maands mortaliteit van TBI patiënten op basis van drie sets met 

predictoren van toenemende complexiteit. We gebruikten de IMPACT-database met 

gegevens van 15 onderliggende studies om de modelleringstechnieken logistische 

regressie (LR), classification and regression trees (CART), random forests (RF), support 

vector machines (SVM) en neural nets (NN) te vergelijken. Externe validatie van de 

modellen werd uitgevoerd door een model te ontwikkelen op één van de 15 datasets, 

gevolgd door toepassing van het model op elk van de 14 resterende datasets. Deze 

werkwijze werd 15 keer herhaald. De oppervlakte onder de receiver operator curve 

(AUC) werd gebruikt om de prestaties van de modellen te kunnen beoordelen. De 

LR-modellen presteerden het best, gevolgd door de RF en SVM modellen. De CART 

modellen presteerden slecht. Onze bevindingen bevestigen dat externe validatie 

een noodzakelijke stap is voordat een predictiemodel in een nieuwe situatie wordt 

toegepast.

In hoofdstuk 8 wordt de transporteerbaarheid van een predictiemodel besproken 

op basis van een voorgestelde permutatietest die zou kunnen beoordelen of een 

predictiemodel naar een nieuwe situatie kan worden getransporteerd. Het gebruik 

van deze permutatietest werd vergeleken met het gebruik van benchmarkwaarden 

van verschillende typen AUC (“refitted” en “model-based”). De conclusie was dat de 

voorgestelde test misleidende resultaten kan opleveren indien er case-mix verschillen 

zijn tussen de data waarop het model wordt ontwikkeld en de data waarop het model 

wordt gevalideerd.
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