
– 1 – 
 

Additional File 1: Additional Documentation for 

Dynamic properties of independent chromatin domains measured by 
correlation spectroscopy in living cells 

Malte Wachsmuth1*, Tobias A. Knoch2 and Karsten Rippe3 

1 Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 

 Meyerhofstrasse 1, D-69117 Heidelberg, Germany 

2 Biophysical Genomics Group, Dept. Cell Biology & Genetics, Erasmus Medical Center, Dr. 

 Molewaterplein 50, NL-3015 GE Rotterdam, The Netherlands 

3 Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & 

 BioQuant, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany  

* Correspondence: m.wachsmuth@gmx.net 

 

Content 

Supplementary Text 

1. Static properties of polymers 

2. Dynamic properties of polymers 

3. Fluorescence correlation spectroscopy of polymer relaxation 

4. Photobleaching experiments of chromatin-associated proteins 

5. Determination of eu- and heterochromatin nucleosome concentration from images 

6. Determination of nuclear solvent viscosity 

Supplementary Figures 

Supplementary Figure S1:  Profile-based peak detection for genomic contact probability maps 

Supplementary Figure S2: Structural analysis of 5C data 

Supplementary Figure S3: Structural analysis of T2C data 

Supplementary Figure S4: Multiscale properties of simulated domain topologies 

Supplementary Figure S5: Experimental and simulated 5C data and domain structure 

Supplementary Figure S6: Experimental and simulated T2C data and domain structure 

Supplementary Figure S7: Image intensity analysis and classification 

Supplementary Figure S8: FCS in the presence of photobleaching 

Supplementary Figure S9: Confocal and light-sheet FCS on different scales 

Supplementary Figure S10: FCS in fixed HeLa cells expressing H2A-EGFP 

Supplementary Figure S11: Strip profile analysis of FRAP experiments 

Supplementary Figure S12: Simulated FRAP experiments 

Supplementary References   



– 2 – 
 

Supplementary Text 

Static properties of polymers 

1.1. The linear freely jointed chain 

The freely jointed chain forms the basis to derive static and dynamic properties of polymers [1, 2]. 

Being a mere theoretical construct, it is well suited to describe more realistic models such as the 

Gaussian, the persistent/worm-like chain or the Kratky-Porod model. 

The freely jointed chain is a linear chain of rigid rods of length b that are connected with completely 

flexible joints. Each segment i corresponds to the vector ui of length l and the end-to-end vector is thus 
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The mean squared end-to-end distance is given as  
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where b is the so-called Kuhn segment length and L the total contour length. Any hydrodynamic, 

electrostatic or excluded volume effects and interactions are disregarded. 

1.2. The persistent or worm‐like chain, Kratky‐Porod model 

These simplifications hold as well for continuous flexible or persistent chains where b becomes related 

to the elastic properties of the chain. It can be shown that for a continuous Markov chain, the average 

angle between segments at a distance s obeys 
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i.e., the chain has an exponentially decaying directional memory, whose characteristic length lp is the 

so-called persistence length. The Kratky-Porod model relates this so far empirical number to the 

bending elasticity or the energy required to bend it into a certain curvature. 

In the continuous model, tangential vectors instead of segments are used to calculate the the mean 

squared end-to-end distance: 
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The second case shows that in the long contour length limit, the worm-like chain behaves like a freely 

jointed chain and the Kuhn segment length relates to the persistence length as 
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1.3. The Gaussian chain 

If the direction of real or virtual (Kuhn) segments of a polymer are stochastically independent or 

feature an exponentially decaying correlation the central limit theorem allows to describe the end-to-

end distribution of the chain with a Gaussian function 
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In case segments are completely independent at distances larger than b, the polymer is a Markov chain, 

and for points chosen equally distributed along the chain and sufficiently far apart the pair-wise 

distance distributions are independent and Gaussian, too, i.e., subchains behave in the same way. 

Thus, both freely jointed and worm-like chains can be described as Gaussian chains of virtual beads 

on a string that have a Gaussian distance distribution. Their spacing usually does not match the 

chemical bond length but is chosen such that their static and dynamic properties match the real 

polymer. This serves as a basis to derive the dynamic properties of polymers in the Rouse and Zimm 

models. 

1.4. Properties of Gaussian chains 

The most obvious characteristic size of a coiled linear chain is the mean squared end-to-end distance, 

which can also be identified with the correlation length of the coil and which defines the order of 

magnitude of all characteristic size properties. 

The radius of gyration is defined as the mean squared mutual distance of all segments or equivalently 

the mean squared distance of the segments from the center of mass: 
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It is experimentally accessible with scattering methods [3] and determines internal relaxation 

processes. 

The hydrodynamic radius corresponds to the radius of a sphere with the same diffusion coefficient as 

the coiled chain. It is defined as 
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The variance of the mean squared end-to-end distance is of the same order as the end-to-end distance 

itself 
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The same applies to the radius of gyration and provides an estimation for size fluctuations in different 

geometries and topologies. 

According to the central limit theorem, the density distribution of segments around the center of mass 

obeys a Gaussian distribution. In a continuous approximation of the chain, the density distribution and 

the occupied volume are 
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(10) 

the latter allowing to determine average densities or concentrations. Applying Equation (9) to the 

definition of the radius of gyration results in an estimation of the upper volume limit induced by 

fluctuations: 
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1.5. Real polymers: interactions between segments 

A real polymer is always in a balance between an excluded volume effect represented by a hard and 

sharp repulsive potential and a weak attractive interaction (van der Waals, electrostatic or entropic) 

that depends strongly on the solvent conditions [1]: in a ‘good solvent’, the excluded volume 

interaction dominates and the polymer coil is swollen compared to the ideal chain. In a ‘theta solvent’, 

repulsive and attractive interactions compensate each other such that the chain behaves like an ideal 

self-permeating polymer. The last case is a ‘poor solvent’ where the attractive potential dominates, the 

polymer collapses and it assumes a globular state. This concept was first introduced by Kuhn and 

Flory [4, 5] and subsequently refined using perturbation calculations and the concept of 

renormalization groups. In order to distinguish the different cases one can define a swelling coefficient 
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as the ratio of the radii of gyration of the real and the ideal polymer. It depends on the chain length, 

resulting in a different dependence of the mean squared distance of two segments [2]: 
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For a discrete to a continuous parametrization of the chain, the radius of gyration is 
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(14) 

For the distance distribution of two segments or beads 
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again, the three cases must be treated separately. For the ideal and the globular chain, the 

compensation and overcompensation, respectively, of the repulsive by the attractive interaction allows 

to consider the polymer as soft chain [6] and to describe the segment distances as  Gaussian 

distributions when neglecting correction terms of order r2 and higher [7]: 
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which yield the mean squared segment distances according to    rrrd nmnm
232R . 

For the swollen chain, however, we apply the following conceptual constraints and approximations [1, 

2]: 

(i) it must be normalized, 

(ii) it must yield the above-mentioned mean squared distance, Equation (14), 

(iii)    
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1.6. Blobs as globular substructures of the chain 

The emergence of globular substructures of a polymer chain in theta- or good-solvent conditions such 

as the chromatin fiber can be explained as the formation of a chain of so-called ‘blobs’ when the 

system is at semi-dilute concentrations [8, 9], i.e., when the concentration is too high for individual 

molecules to be considered isolated, see also Section 2.9 for further details. The blobs themselves have 

the same static and dynamic properties of the whole molecule under highly diluted conditions. They 

can be described as shorter independent linear chains in theta- or good-solvent conditions. 

1.7. Properties of circular polymers 

In addition, globular substructures may result from the formation of of loops. Therefore, here we 

describe the static properties of cicrular polymers following the same scheme as above [1, 10, 11]. 

However, only the ideal and the swollen chain are considered because under poor-solvent conditions, 

it inherently forms globular structures. The spatial distance distribution of two segments of a ring is 

composed of both possible paths, resulting in an effective segment distance along the chain 
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and a mean squared distance of 
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This yields a radius of gyration of 
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1.8. Branched polymers: stars and rosettes 

For loops and even more for branched polymers, a mean squared end-to-end distance cannot be 

determined and the mean squared pair-wise segment distance, i.e., the radius of gyration, is used to 

compare macromolecules of different topologies. Since in branched polymers, the density grows with 

increasing branching ratio, an excluded volume effect should also be more prominent. 

The radius of gyration is calculated as the sum of the mean squared segment distance within branches 

and between branches. We restrict the previously established approach [12-14] to a single multiple 

branching point and extend it from ideal to swollen molecules. This yields for the 



– 7 – 
 

(i) ideal star-like branched linear chain (theta-solvent conditions with 21 ) the contributions  

     

, 
23

6

branchesbetween 
2

1

2
1

branches,within 
62

2

2
2

2

2

00
2

2

2

2

00
2

2








 











f

fNb
R

f

fNb
nmdmdn

N

b
ff

f

Nb
nmdmdn

N

b
f

g

fNfN

fNfN

 

(21) 

(ii) ideal rosette-like branched circular chain (theta-solvent conditions with 21 ) the 
contributions
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(iii) swollen star-like branched linear chain (good-solvent conditions with 53 ) using the same 

approach as above 
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(iv) swollen rosette-like branched circular chain (good-solvent conditions with 53 ) 
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1.9. Contact probabilities of polymer segments 

The chromatin fiber of a chromosome might be organized in an intricate manner including loops and 

clusters thereof, but the underlying single linear molecule allows to arrange the polymer segments 

sequentially. Depending on the topology, the effective contour length or distance  between two 

segments with the indices m and n can be calculated using mn   for linear and Equation (18) for 

circular stretches. As an example, segment m is connected to segment pkmn   through a linear 

stretch of k segments and a stretch of p segments into a loop of L segments. The effective distance is 

thus  Lpk ,0, . Depending on the topology and the physical properties of the fiber as well as 

on the solvent conditions, the contact probability, defined as the probability that the two segments 

come as close as the contact distance dc or closer to each other, is calculated using Equation (16) and 

(17): 



– 8 – 
 

 

   

 

 







































































































 

5

3
22.1exp

29.0

3

1

2

3
exp

2

3

2

1

2

3
exp

2

3

,,

,,,4,,

25

53
28.0

28.353

232

223

232

2

223

2

0

2

b

r
r

b

b

r

b

b

r

b

br

brrdrdbp
cd

c

 

 

 





































































































































.
5

3
22.1,312.11

,
3

1

2

3
exp

2

32

2

3
erf

,
2

1

2

3
exp

2

32

2

3
erf

,,

25

53upperinc,

232

221

232

2

21

21

232

2

2

221

2

2

21

21

2

2

b

d

b

d

b

d

b

d

b

d

b

d

b

d

bdp

c

ccc

ccc

c  (25)

 

 

With this, modelling of the topological sequence of linear, looped or clustered stretches enables to 

calculate intrachromosomal interaction maps as known e.g. from 3C, 4C, 5C, Hi-C or T2C studies [15-

17]. 

Dynamic properties of polymers 

1.10. Rouse model for a linear chain 

In order to determine the dynamic properties of polymers, Rouse [1, 18] proposed to model the 

molecules as Gaussian chains of beads connected with springs. Their spacing b is the the Kuhn 

segment length, which does not necessarily correspond to the bond length between monomeric units 

but is determined by the physical properties of the molecule, i.e., the thermally induced root mean 

squared distance of neighboring beads sensing a harmonic potential U. 

Then, for every segment n, the Langevin equation is given as 
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In the Rouse model, the excluded volume interaction and the hydrodynamic interaction (represented 

by the mobility or Oseen tensor Ĥ ) are neglected so that this case is often referred to as free-draining 

polymer. The Oseen tensor and the interaction potential are written as 
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where  stands for the friction coefficient, k for the entropic spring constant and F for the thermally 

induced random forces. With a transition from a discrete to a continuous model, the Langevin equation 

simplifies to 
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with the boundary conditions 
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and the moments of the random forces 
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(30) 

An appropriate transform gives normal coordinates Xp according to 
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for which the equations of motion are then written as 
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where 
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For 0p , a solution can be found employing the autocorrelation function of the normal coordinates: 
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(34) 

i.e., they represent independent modes with exponentially decaying correlation functions. 

For 0p , on the other hand, one can show using the inverse transform 

      









 


1

0 cos2
p

pn N

np
ttt XXR

 

(35) 



– 10 – 
 

that the mean squared displacement (MSD) of the center of mass of the molecule is described by 

      .with60 2
00 
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(36) 

It is worth noting that the end-to-end distance relaxation is dominated by the first mode. This mode 

corresponds to the rotation of the molecule and thus relates its relaxation time directly to the radius of 

gyration. However, especially the mass dependence of the diffusion coefficient D and of the relaxation 

times is contradictory to experimental observations mainly because the hydrodynamic interaction was 

disregarded so that the Rouse model serves as a good conceptual basis but must be adpated to 

experimental reality. 

A readout that is well accessible experimentally for chromatin in the nucleus of a living cell in 

interphase is the relative movement of a segment with respect to the center of mass averaged over all 

segments, i.e., averaged over  Nn ,0 . The corresponding correlation function reads 
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i.e., all modes contribute to the averaged movement of the segments according to their amplitude. 

Likewise, the mean squared displacement of a segment again with respect to the center of mass and 

averaged over all segments can be obtained, which shows confined diffusion behaviour: 
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1.11. Rouse model for a ring 

For a closed circular chain, the same approach is applied [19], however with different boundary 

conditions: 
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The transform is rewritten as 
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and the parameters are 
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and the relaxation of the modes changes to 
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(42) 

Thus, the relaxation modes of a circular polymer are the even modes of a linear chain of the same 

length. The same result as for a linear chain is obtained for the zero order mode, the translational 

diffusion. Also the averaged segment movement relative to the center of mass is given as position 

correlation function and mean squared displacement, respectively: 
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(43) 

1.12. Zimm model for an ideal linear chain 

The Zimm model is an extension of the Rouse model describing a so-called non-draining polymer, for 

which the hydroynamic interaction is also taken into account [20]. The formal approach is the same as 

for the Rouse model, however, the Oseen tensor or mobility matrix reads 
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(44) 

yielding now a set of coupled differential equations 
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(45) 

In order to simplify them, it is assumed that the system is sufficiently equilibrated, such that the 

distance-dependent parameters of the mobility matrix can be averaged over the steady state 

distribution. For the ideal chain under theta-solvent conditions, this distribution is Gaussian, Equation 

(16), and the Oseen tensor in Equation (45) is replaced by 
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This so-called preaveraging approximation linearizes the Langevin equation. Furthermore, using the 

same normal coordinates as in the Rouse model, it can be shown that the transform of  mnh   is 

diagonal in the mode number: 
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(47) 

Thus, the differential equations for the normal coordinates are the same uncoupled ones as in the 

Rouse model with 
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(48) 

For the diffusion coefficient and the relaxation times and amplitudes, we obtain 
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(49) 

It is worth noting that the relaxation times are 2-fold larger than in the original publication [20], but in 

good agreement with more recent, corrected values [8, 21, 22] after employing the correction factor 

resulting from perturbation calculations [1]. Using Equation (37) one can show that the overall 

amplitude of segment fluctuations equals the radius of gyration: 
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(50) 

confirming the more qualitative estimation, Equation (9), made before. 

1.13. Zimm model for a swollen linear chain 

For a swollen chain under good-solvent conditions, the excluded volume interaction must be taken 

into account. Instead of replacing the Oseen tensor by the Rotne-Prager tensor [23-27], we employ the 

Oseen tensor but use a non-Gaussian distance distribution, Equation (17), for the preaveraging 
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approximation, which we consider more appropriate for a considerably flexible and soft polymer like 

the chromatin fiber: 
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Again, the Langevin equations are linearized and diagonalized, and the difference to the ideal case is 

covered by modified parameters ppk ,  – the linearization approximation. In full analogy to the case 

of the ideal chain, the hydrodynamic interaction matrix can be derived: 
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Now, the generalized spring constant can be determined using the equipartition theorem stating that 

each mode carries an energy of 
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and using Equation S(35), integration by parts and the relation 
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(54) 

the generalized spring constant reads 
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(55) 

In the last step, the numerical factor was adapted to fulfill for the overal amplitude of the segment 

fluctuations 
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For the diffusion coefficient and the relaxation times and amplitudes, we obtain 
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(57) 

1.14. Zimm model for a globular linear chain 

For a globular chain under poor-solvent conditions, again the preaveraging approximation is employed, 

however, with a more compact Gaussian segment distance distribution, Equation (16), which we 

consider appropriate for the globular configuration of a considerably flexible and soft polymer like the 

chromatin fiber: 
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(58) 

Again, the Langevin equations are linearized and diagonalized, and the difference to the ideal case is 

covered by modified parameters ppk ,  – the linearization approximation. In full analogy to the case 

of the ideal chain, the hydrodynamic interaction matrix can be derived: 
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We could show, see Equation (55), that the generalized spring constant obeys 
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and the proportionality factor is adjusted such that for 31 , 
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(61) 

is fulfilled. This yields the diffusion coefficient and the relaxation times and amplitudes: 
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1.15. Zimm model for an ideal circular chain 

In order to obtain the dynamic parameters of an ideal circular chain under theta-solvent conditions, the 

concept of the Rouse model for circular chains and the preaveraging and linearization approximations 

of the Zimm model for ideal linear chains can be combined [19, 28, 29]. We assume for the segment 

distance distribution (for both theta- and good-solvent conditions) 
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(63) 

This is used for the preaveraging approximation in analogy to Equation (46) 
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Again, the Langevin equation is linearized and diagonalized: in full analogy to the case of the ideal 

chain, the hydrodynamic interaction matrix reads 
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Including the same corrections from perturbation calculations as for the linear chain, see Equation (49), 

we obtain for the diffusion coefficient and the relaxation times and amplitudes 
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Just as for the Rouse model for a circular chain, the Zimm model also fulfills 
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1.16. Zimm model for a swollen circular chain 

For good-solvent conditions, we employ the approaches used for a swollen linear chain and an ideal 

circular chain. The segment distance distribution is described in analogy to Equation (17) and (63) as 
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This yields after the preaveraging approximation for the diagonal hydrodynamic interaction matrix 

 

. 
287.0

, 0,for
10568.0

5300

5253

bN
h

qp
qbN

h

s

pq
s

pq









 

(69)

 

Again, the generalized spring constant and the mode amplitudes can be calculated using the 

equipartition theorem stating that each mode carries an energy of 
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and with the same approach as used for the linear chain, yet replacing mn   with  Nnm ,,  and 

executing some of the integrations numerically, the diffusion coefficient and the relaxation times and 

amplitudes read 
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(71) 

Again, Equation (67) is fulfilled. 

1.17. Zimm model for branched polymers 

As shown in the previous sections and concluded in previous publications [13, 20, 30-32], the dynamic 

properties of a polymer such as the diffusion coefficient as well as amplitudes and characteristic times 

of relaxation modes are mostly determined by the radius of gyration, which describes the effective 

volume occupied by the molecule, in only weak dependence on the topology and the compaction of 
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the molecule. This could also be confirmed for star-like branched polymers whose relaxation is akin to 

linear molecules [33]. 

Zimm and Kilb [13] showed that for a given number N of segments of a non-draining polymer under 

theta-solvent conditions, the relaxation time depends on the branching ratio as 23
1

 f . This is in 

good agreement with our findings: combining Equation (21) and (49) yields 

  233233
1 23  fffRg  for larger f. Grest et al. [31] found for a large branching ratio f 

under good-solvent conditions and 7.1
1

 f , which is again in quite good agreement with our 

findings: Equation (23) and (57) yield   8.13.35.13
1 59.259.3  fffRg  for larger f. Therefore 

we conjecture that Equation (49), (57), (66) and (71) apply to both linear/circular and branched 

star-/rosette-like polymers, and the branching ratio dependence is covered by the respective 

dependencies of the radii of gyration, Equation (21)‒(24), for both small and large f. 

1.18. Scaling considerations to distinguish semi‐dilute from dilute and concentrated conditions 

All considerations and results above were obtained assuming a dilute system, i.e., only a single chain 

molecule is regarded. However, at higher concentrations, this assumption is not valid and separate 

chains become entangled. The application of scaling laws to semi-dilute polymer solutions showed 

that all interactions between chain segments are effectively screened above a characteristic distance, 

the correlation length [8, 9]. If this is smaller than the characteristic length of the molecules, e.g. the 

mean squared end-to-end distance, each molecule can be described as a chain of topologically and 

dynamically independent ‘blobs’. Their internal properties are identical to those of a single 

independent chain molecule, including hydrodynamic and excluded-volume interactions so that their 

dynamics can be described with the Rouse-Zimm formalism [23, 34-36]. The screening on length 

scales beyond the correlation length and corresonding times results in a purely Rouse-like behaviour 

of the chain of blobs on a significantly slower time scale. The transition from dilute to semi-dilute 

conditions sets in when the volume that a single independent chain would occupy becomes larger than 

the actually available volume or, in other words, when the actual global segment or monomer 

concentration c is higher than it would be inside a single independent chain, c*. Using Equation (10) 

for a chain consisting of N Kuhn segments the critical concentration threshold is: 
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The number of monomers per blob [8] is given as: 
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(73) 

When assuming a nucleosome concentration of 140 µM [37, 38], a range of 35–80 nm for the 

chromatin persistence length and 1.1–5.5 nucleosmes/11 nm for the mass density, we obtain a range of 

1050–12000 chromatin segments/µm3, well above the threshold of 13–46 segments/µm3 critical 

concentration. On the other hand, the nuclear volume fraction occupied by chromatin is 10–20% [38, 

39], i.e., well below the threshold for a concentrated polymer solution [1]. Therefore, the concentration 

regime of chromatin in mammalian interphase nuclei is semi-dilute, and blob formation is likely to 

occur. In addition to this generic formation of independent domains, further physical and topological 
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constraints may contribute like the formation of loops, loop clusters or globules. Independent of the 

actual nature of the domains, the treatment of chromatin dynamics using the Rouse-Zimm formalism 

as carried out above is appropriate. 

1.19. Adiabatic accessibilty of a fluctuating polymer for diffusive tracer molecules 

The volume effectively occupied by a polymer molecule is characterized by its radius of gyration and 

Equation (10). The net volume of the polymer chain Vc, however, is determined by its contour length L 

and its diameter d. A repulsive interaction between the polymer and a tracer molecule of radius Rh will 

increase the volume, from which the tracer is excluded, such that the effective diameter of the polymer 

chain is increased by 2Rh  [40]. The effective chain volume is thus 
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From a comparison of the effectively occupied volume, Equation (10), and the effective chain volume, 

Equation (74), the accessibility can be defined as 
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The dynamic properties of the polymer result in a fluctuating occupied volume. The time scale of 

these fluctuations is defined by the relaxation kinetics of the polymer as described above. When this is 

slower than the diffusional mobility of the tracer molecules, these fill the available volume, the 

complement to the effective chain volume, adiabatically. The diffusional accessibility of the polymer 

molecule is thus defined by the maximum rather than the mean occupied volume, i.e., in Equation (75) 

we replace V with VV  , see Equation (11), and we get the dynamic accessibility 

 ,erf11 













VV

V

VV

V cc

 

(76) 

which is higher than the static accessibilty, Equation (75).

 
Fluorescence correlation spectroscopy of polymer relaxation 

Photon correlation techniques, especially dynamic light scattering, are widely used approaches to 

study polymer dynamics [3, 21]. More recently, in a number of studies intramolecular dynamics have 

been investigated with FCS [41-48]. Especially the uncoupling of the center-of-mass (CM) diffusion 

from the higher order relaxation modes by trapping or tracking [45, 49] provided detailed insight into 

the internal dynamics, requiring a series representation of relaxation modes for a comprehensive 

understanding [45, 46, 48]. In summary, as shown for double-stranded DNA, the mean-squared 

displacement of polymer segments can be described as confined diffusion relative to the CM, the 

hydrodynamic interaction must be taken into account and molecules with a sufficiently large ratio of 

contour to persistence length, i.e., ‘soft’ polymers, show Zimm relaxation behaviour. 

1.20. Diffusion in a harmonic potential as seen with FCS 

The relaxation processes of a polymer result in local concentration fluctuations of polymer segments 

even for the case that the zero order relaxation, the center of mass diffusion, is negligible. Since every 
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relaxation mode is independent of the others and has an exponentially decaying position correlation 

function [1], it can be represented by a diffusion process in a harmonic potential, which is an Ornstein-

Uhlenbeck process, the simplest example of a stationary Markov process with a Gaussian probability 

distribution at all times [50]. 

Let us assume Brownian motion in a harmonic potential 
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centered at rc. The Langevin equation is 
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where the random force generates the fluctuations. Assuming isotropy, i.e., the spring constant and 

friction matrix become scalar, and overcritical damping, i.e., the inertia term can be neglected, the 

Langevin equation simplifies to 
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The resulting additional flux is represented by a corresponding term in the Smoluchowski or Fokker-

Planck equation 
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The solution in 3D under the assumption that the diffusing particle is at time zero at a position r1, 

   1212 0,, rrrr DP , turns out to be 
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with the stationary distribution 
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The position autocorrelation function of such a diffusing particle decays with 

  k relaxrelax   ,exp  as expected. 

The application of this Greens function to the FCS theory and subsequently averaging over all 

positions relative to the center of the FCS focus results in the autocorrelation function 
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where N is the number of molecules in the focus, relax D  the ratio of diffusion correlation time 

and relaxation time and 00 wz  the structure parameter of the focal volume, i.e., the ratio of axial 

and lateral focal radii [51]. For an infinitely weak potential, the correlation function for free diffusion 

is recovered. 

When disregarding the constant term in Equation (83), an estimation of the MSD of the segments can 

be extracted from the correlation function [47] by comparing it to 
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1.21. Zimm relaxation modes in FCS 

The polymer relaxation process can be described as a weighted sum of diffusive components, 

Equation (37), within the framework of the Zimm model for the different conditions and topologies. 

The weighting is based on the mode number dependence of the mode amplitudes 
2
pX . The only 

difference made between single chains (circular or linear) and branched molecules (stars or rosettes) is 

the dependence of the radius of gyration on the branching ratio. The relaxation time τ1 from a fit of the 

model function to experimental data yields the radius of gyration according to Equation (49), (57), 

(62), (66) or (71), provided that the nuclear solvent viscosity is determined independently. With the 

knowlegde of the Kuhn segment length (through the persistence length), a branching ratio-dependent 

contour length can be determined. In the context of the 30 nm chromatin fiber, the genomic content is 

obtained. 

1.22. Measuring the nucleoplasmic viscosity 

The effective viscosity of the nucleoplasm affects chromatin segment diffusion. It is scale-dependent 

and varies between a small value for short distances as sensed by rotational diffusion and the value 

accessible with FCS when comparing apparent diffusion coefficients in vivo and in water on the scale 

of the observation volume, i.e., the focal volume of the confocal microscope [52, 53]. The 

corresponding intracellular apparent diffusion coefficient on different scales can be described using 

the concept of anomalous diffusion, which yields for the mean squared displacement 
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parametrized by the transport coefficient  and the anomaly parameter . For free diffusion e.g. in 

solution they become 1  and D6 . The FCS autocorrelation function of fluorescent molecules 

inside living cells with the known model function for anomalous diffusion reads 

  
1

2

1

1
11exp1

1









































































DDT

TTN
G

 

(86)
 

where N is the mean number of molecules in the focal volume, T the fraction of molecules in a non-

fluorescent state, T their dwell time in this state, DwD 42
0  the diffusional dwell time of the 

molecules having an apparent diffusion coefficient D inside the focal volume of a lateral diameter w0 



– 21 – 
 

and a structure parameter . Fitting FCS data of fluorescent molecules acquired both inside cell nuclei 

and in solution with this model function yields diffusion times whose ratio determines the relative 

viscosity of the nucleoplasm compared to water on the length scale w0 according to

  solution cell 0rel D,D,w  . Using the mean squared displacement, Equation (85), and the measured 

intracellular anomaly parameter, the relative viscosity can be calculated for any length scale 

    .0rel

22

0
rel w

w

x
x 












 

(87) 

In order to determine the effective nucleoplasmic viscosity this is averaged over the whole range 

00 wx  : 
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Photobleaching experiments of chromatin‐associated proteins 

In order to estimate binding properties of a nuclear protein, we have combined fluorescence 

recovery/redistribution after photobleaching (FRAP) and continuous fluorescence photobleaching (CP) 

with optimized experimental settings. 

1.23. FRAP of a two‐dimensional strip 

We performed FRAP experiments with reduced numerical aperture und increased pinhole size such 

that bleaching occurs approximately through the complete depth of the cell nucleus [54]. Moreover, 

we bleached the fluorescence in a strip-like area that spans the whole nucleus in one direction and is 

relatively small, of width 2a, compared to the nuclear elongation in the other direction that we refer to 

as x-axis. Under these conditions, we can consider the diffusional redistribution of fluorescent 

molecules as an effectively one-dimensional process. A solution of the diffusion equation or Fick’s 

2nd law of diffusion for the one-dimensional concentration distribution over time 
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under the postbleach start condition with the bleach depth p 
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is found to be 
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which can be transformed directly into a fluorescence intensity distribution over time for the 

postbleach image series. An initial broadening of the distribution results from diffusion during 

bleaching and the approximate Gaussian bleach and detection profile. 
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To account for diffusion and association to/dissociation from immobilized binding sites with 

dissociation rate koff, albeit in an uncoupled manner and in pseudo-first-order approximation, the 

distribution can be integrated over the bleach region, axa  . Assuming a rapidly diffusive free 

fraction, freef , a slowly diffusive fraction, difff , and a transiently bound and immobilized fraction, 

difffree1 ff  , this yields the intensity signal over time 
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Fig. S11, S12 show how to experimentally assess the profile and how the two processes, binding and 

diffusion, contribute to the molecular redistribution in space and time. 

1.24. Continuous photobleaching in the presence of two binding states 

As an alternative to the FRAP approach, CP can be used to retrieve interaction properties, especially 

dissociation rates, for the binding and immobilization of nuclear proteins [55] because the choice of a 

diffraction-limited bleaching and observation volume in combination with sub-millisecond time 

resolution allows to decouple diffusion and binding. The FRAP analysis showed that the mobility 

behaviour can neither be described by a simple diffusion model nor by a simple reaction model. 

Moreover, the apparent diffusion coefficient obtained from FRAP using a combined diffusion and 

reaction model, Equation (92), is significantly smaller than measured with FCS. Therefore, we extend 

the established CP model function for a single association/dissociation step to two such steps, resulting 

in the modified model function for two bound fractions 2bound,1bound,   , ff  with small dissociation rates 

compared to the focal bleaching rate, i.e., 2off,1off, , kk : 
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The bleaching rate  takes global bleaching of the pool of fluorescent molecules into account. Fitting 

CP data allows to obtain th two dissociation rates of two binding states of a nuclear chromatin-binding 

protein. 

1.25. Point FRAP in the presence of diffusion and two binding states 

We could show previously [56] that point FRAP can be used to study fast diffusion and binding 

processes. As shown there, one must take diffusion during the photobleaching step into consideration 

in the presence of a fast diffusive fraction. We did this here and fitted the recovery data with a 
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combination of a coupled diffusion-reaction step and an uncoupled additional binding contribution, i.e., 

following the same scheme as used for CP. Details are as described in Im et al. [56]. 

1.26. Model for linker histone H1 binding 

Based on the FRAP and CP observations and in agreement with other studies [57-61] we suggest the 

following model for linker histone H1 binding to nucleosomes: 

‒ H1 has two binding sites for DNA, 

‒ it binds loosely and reversibly at the nucleosome entry-exit site at binding site 1 with reate 

constants onk  and 1off,k , 

‒ the loosely associated complex of H1 and the nucleosome switches eventually and irreversibly to 

a tightly bound conformation by engaging binding site 2 with rate constant switchk , 

‒ H1 dissociates from the tightly bound state with rate constant 2off,k , 

‒ re-association with chromatin only through the initial pathway. 

The corresponding rate equations for the concentrations (and equivalently fractions) of free and bound 

H1 molecules read 
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In steady state equilibrium, i.e., 0 tci  for all t, the dissociation rates and the fractions can be 

obtained from FRAP and CP, and for a complete description of the kinetics, the association and the 

switch rate can be derived using 
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Determination of eu‐ and heterochromatin nucleosome concentration from images 

We used an intensity threshold-based segmentation of the nucleus to determine the mass fractions of 

eu- and heterochromatin. Fig. S7 shows how we selected the lower intensity threshold for the overall 

chromatin distribution. The mean intensity of the segmented area served as reference for the mean 

nucleosome concentration. Next, we set an additional upper threshold such that ~12.5% of the area 

(and thus volume) were excluded additionally. Selecting for intensities lying between the thresholds 

provided us with a mean intensity representing the euchromatin concentration. Finally, we used the 

second threshold as a lower limit for segmentation of heterochromatin such that the corresponding 

mean intensity represented the heterochromatin concentration. In summary, this yielded a mass 

fraction of 19.0±1.5% and 81.0±1.5% and a relative nucleosome concentration of 1.56±0.05 and 

0.91±0.01 for hetero- and euchromatin, respectively, compared to the mean concentration. 
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Determination of nuclear solvent viscosity 

To determine the effective nuclear solvent viscosity as sensed by the chromatin fiber we had to take 

into consideration that fiber relaxations take place on all length scales between 0 and a few 100 nm. 

Since nuclear diffusion usually shows a pronounced deviation from free diffusion, we had to compare 

nuclear diffusion properties with those in aqueous solution in order to properly estimate the effective 

nuclear viscosity as described above. Therefore, we injected FITC-labeled 150 kDa dextran molecules 

with a hydrodynamic radius of ~13 nm [62], i.e., comparable to the dimensions of the chromatin fiber, 

into nontransfected MCF7 cell nuclei and acquired FCS data. This yielded a cellular diffusion 

correlation time τD = 890±37 µs and an anomaly parameter α = 0.80±0.02. In aqueous solution, we 

obtained τD = 136±6 µs and α = 1. By means of Equation (88), this resulted in an effective viscosity 

3.03.4rel  . 
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Supplementary Figures 

 

Supplementary  Figure  S1:  Profile‐based  peak  detection  for  genomic  contact  probability 
maps 

a First step of peak detection, comprising a global hybrid, i.e., mean of average and maximum, 

projection over a manually selected domain and curve peak detection as described in Methods. b 

Second step, consisting of successive local mean of average and maximum projections at the peak 

locations detected in a, yielding pairs of interacting genomic sites. 
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Supplementary Figure S2: Structural analysis of 5C data 

a Symmetrized contact probability map extracted from experimental 5C data [63] in linear 

representation. The highlighted region corresponds to a domain that is shown in more detail in b, 

where the peak analysis described in Fig. S1 yielded local contact probability maxima identified in the 

one (green squares) and in the other projection direction (pink circles). Peaks were interpreted as 

sequence of loops between genomic site pairs (red arches) forming the domain (black arch). c Local 

projections (red) around the globally detected peak loci (relative genomic positions in kb given as 

numbers in panels) and locally detected peak loci (black). 
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Supplementary Figure S3: Structural analysis of T2C data 

a Symmetrized contact probability map extracted from experimental T2C data in linear representation. 

The highlighted region corresponds to a domain that is shown in more detail in b, where the peak 

analysis described in Fig. S1 yielded local contact probability maxima identified in the one (green 

squares) and in the other projection direction (pink circles). Peaks were interpreted as sequence of 

loops between genomic site pairs (red arches) forming the domain (black arch). c Local projections 

(red) around the globally detected peak loci (relative genomic positions in kb given as numbers in 

panels) and locally detected peak loci (black). 
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Supplementary Figure S4: Multiscale properties of simulated domain topologies 

a To check the validity of the numerical model for chromatin conformations, we determined for 20 

simulated conformations the averaged radius of gyration Rg for a linear chain, e.g. in a blob, depending 

on the number of Kuhn segments N of length b (circles). A fit with a power function (black line) 

yielded Rg
2 ~ N1.06 and lay nicely between the expected dependences for theta- (blue) and good-solvent 

conditions (red), Equation S14. b Same as a for a globule. The fit yielded Rg
2 ~ N0.73. c Same as a for a 

loop and Equation S20. The fit yielded Rg
2 ~ N1.10. d Same as a for a loop cluster/rosette, but for N = 

320 segments and depending on the number of loops per domain. The values lay nicely between the 

expected dependences for theta- (blue) and good-solvent conditions (red), Equation S22 and S23. e 

Linear contact probability calculated for a 20fold repetition of the globular domain configuration used 

for Fig. 1e and described in Methods, forming a virtual 100 Mb chromosome confined to a ~2.4 µm 

diameter volume. The viewpoint calculation (red) is based on a fixed first position at the beginning of 

the chromosome. After an initial steep decay, it shows a region with smaller slope between 100 kb and 

1 Mb corresponding to the domain, followed by an again steeper decay that approaches a plateau due 

to the chromosomal confinement. Alternatively, the probabilities are averaged over all possible 

combinations (blue), resulting in a less modulated decay. f Same as e for a 20fold repetition of the 

loop/rosette domain configuration used for Fig. 1d and described in Methods. The viewpoint 

calculation (red) shows clear plateaus for the domains superimposed with peaks for the loops. The 

averaged calculation (blue) mostly features the first domain plateau. 
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Supplementary Figure S5: Experimental and simulated 5C data and domain structure 

a Experimental 5C data [63] corresponding to the highlighted domain in Fig. S2, from which peak 

locations where extracted. b Interpreting them as sequence of genomic site pairs connected by looping 

allowed to compute a simulated 5C map with Equation (25) at the same sampling, showing good 

agreement with the experimental map. c Renderings of statistically equivalent domain conformations 

formed by the loops (gray circles: radius of gyration). Transitions between such conformations are the 

relaxations observed with FCS and occur on the time scale of 100 ms. 

 

 

Supplementary Figure S6: Experimental and simulated T2C data and domain structure 

a Experimental T2C data [64] corresponding to the highlighted domain in Fig. S3, from which peak 

locations where extracted. b Interpreting them as sequence of genomic site pairs connected by looping 

allowed to compute a simulated T2C map with Equation (25) at the same sampling, showing good 

agreement with the experimental map. c Renderings of statistically equivalent domain conformations 

formed by the loops (gray circles: radius of gyration). Transitions between such conformations are the 

relaxations observed with FCS and occur on the time scale of 100 ms. 
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Supplementary Figure S7: Image intensity analysis and classification 

a Definition of lower threshold for nuclear segmentation as minimum between background pixels 

(large peak left) and actual chromatin signal (smaller peak right). Disregarded pixels are highlighted in 

red both in the histogram and in the image. b The upper threshold is defined as described in the 

Supplementary Text, allowing to segment exclusively the euchromatin contribution. c The upper 

threshold is also used to segment exclusively the heterochromatin contribution. 
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Supplementary Figure S8: FCS in the presence of photobleaching 

a Fluorescence intensity trace of EYFP expressed in a HeLa cell [56], showing strong photobleaching. 

When zooming in to a smaller time window, the intensity is virtually stationary (insert). b When 

conventionally calculating the ACF (red), the photobleaching was reflected by an offset and a shoulder, 

making further analysis difficult. With a window size of 2 s, the local average-based ACF calculation, 

Equation S4, yielded an ACF (blue) that could be easily fitted with model functions. c Same as a for 

H1-EGFP in MCF7 cells as used in this study. d Same as b for a window size of 5 s. e Dependence of 

the ACF on the window size, suggesting a range of usable values. f Diffusion correlation times from 

fitting the tails of the AFCs in e. Without correction, the fit did not converge properly, whereas for a 

range of window sizes, we obtained virtually the same number so that a proper choice of the window 

size could be made as indicated. g Fluorescence intensity traces from FCS measurements of H2A-

EGFP in a HeLa cell nucleus acquired with different laser intensities (2%, 6% and 10% nominal 

AOTF transmission), corresponding to 0.2, 0.9 and 2.2 μW excitation at 488 nm). h Fitting the 

resulting correlation functions with a pure diffusion model, Equation 5, yielded diffusion correlation 

times (slow component from a two-component fit) that did not depend on the laser intensity (N = 31, 

31, 29 for the respective intensity values). 
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Supplementary Figure S9: Confocal and light‐sheet FCS on different scales 

a Light-sheet fluorescence intensity image of H2A-EGFP stably expressed in a HeLa cell (see [65] for 

the light-sheet imaging and 2D-FCS setup and method). Fitting the light-sheet 2D-FCS correlation 

functions acquired in the red region with a two-component anomalous diffusion model, Equation 5, 

allowed to generate maps and histograms of diffusion correlation times of the slow component. b 3x3 

binning results in a focal volume with a radius of ~700 nm and c 6x6 binning in a radius of ~1100 nm. 

For both cases, the distributions of diffusion correlation times are very similar with almost identical 

mean values and standard deviations. d Moreover, extracting the same parameter from ~80 confocal 

FCS measurements (focal radius ~200 nm) in the same cell line resulted in a similar distribution and 

virutally the same mean value. If the relaxation times observed here were imaging artifacts, the 

observed relaxation times/diffusion correlation times would strongly depend on the focal size. 

However, they do not depend on the focal volume, strongly corroborating the interpretation of the 

fluctuations as polymer relaxations rather than free diffusion. e Analyzing only the first 30 s or f the 

second 30 s of each of the ~80 measurements from d yielded very similar distributions and mean 

values of the diffusion correlation time. 

 

 

Supplementary Figure S10: FCS in fixed HeLa cells expressing H2A‐EGFP 

a, c Fixed HeLa cells expressing H2A-EGFP. b, d FCS measurements in the nuclear (1) and nucleolar 

(2) periphery and in the nucleoplasm (3) did not show any significant correlation, indicating that the 

fixation strongly suppresses the polymer relaxations as seen with FCS. 
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Supplementary Figure S11: Strip profile analysis of FRAP experiments 

Intensity profiles extracted from the cell in Fig. 3a for the prebleach (pre), first postbleach (0 s) and a 

later postbleach time point (43.3 s). To remove the spatial heterogeneity distribution, the profiles were 

normalized to the prebleach distribution. Then they could be fitted well with Equation S91 to yield 

apparent diffusion coefficients. 

 

 

Supplementary Figure S12: Simulated FRAP experiments 

a Visualized spatio-temporal distribution of purely diffusive molecules after bleaching a strip into an 

otherwise homogeneous distribution. The red profile represents the cross-section at y = 0. b Same as a, 

however, the molecules are immobilized such that bleached ones are only replaced following 

dissociation and subsequent association of still fluorescent ones. Diffusion is significantly faster than 

binding. Comparing the profiles revealed that (effective) diffusion contributed significantly to the 

H1.0 redistribution after photobleaching. 
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