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Abstract: This paper links the field of potential theory — i.e. the Dirichlet and Neumann

problems for the heat and Laplace equation — to that of the Feynman path integral, by

postulating the following seemingly ill-defined potential:

V (x) := ⌥�
2

2
r2

x

x2D

where the volatility is the reciprocal of the mass (i.e. m = 1/�2) and ~ = 1. The Laplacian

of the indicator can be interpreted using the theory of distributions: it is the d-dimensional

analogue of the Dirac �0-function, which can formally be defined as @2
x

x>0

.

We show, first, that the path integral’s perturbation series (or Born series) matches the

classical single and double boundary layer series of potential theory, thereby connecting

two hitherto unrelated fields. Second, we show that the perturbation series is valid for

all domains D that allow Green’s theorem (i.e. with a finite number of corners, edges

and cusps), thereby expanding the classical applicability of boundary layers. Third, we

show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary

condition; showing for the first time a particularly close connection between these two

classical problems. Fourth, we demonstrate that the perturbation series of the path integral

converges as follows:

mode of convergence absorbed propagator reflected propagator

convex domain alternating monotone

concave domain monotone alternating

We also discuss the third boundary problem (which poses Robin boundary conditions) and

discuss an extension to moving domains.
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1 Introduction

This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems

for the heat and Laplace equations — to that of the Feynman path integral, by postulating

the following seemingly ill-defined potential:

V (x) := ⌥�
2

2
r2

x

x2D

where the Laplacian of the indicator can be interpreted using the theory of distributions.

This is important for three reasons:
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1. Although potential theory was introduced by Green as early as 1828, [1], this paper

shows for the first time that single and double boundary layers are equivalent and

follow directly from the first- and last-passage decompositions of the Brownian path.

2. Path integrals were introduced by Feynman in 1948, [2], but the di�culty of in-

corporating boundary conditions has persisted. This paper shows how to impose

absorbing, reflecting or elastic boundary conditions in d � 1 dimensions, by using

singular potentials such as above.

3. The Dirac �-function and its derivative �0(x) have been known at least since Dirac’s

seminal work [3] of 1930. Both the one-dimensional version and the multi-dimensional

generalisations, as they are usually made, are only non-zero at a single point. How-

ever, a di↵erent generalisation is possible. A point in one dimension can be considered

as the boundary of a halfline, and the Dirac �-function and its derivative can for-

mally be viewed as @
x x>0

(the inward derivative of the indicator) and @2
x

x>0

(the

Laplacian of the indicator). The latter view is taken in this paper. This leads to

the multidimensional versions �n
x

· r
x x2D and r2

x

x2D, respectively, which are

supported by surfaces rather than points. Both quantities have — to the author’s

best knowledge — not formally been defined before. Apart from their use in this

paper, we suspect that they may have further, independent utility.

For practical purposes we shall approximate the indicator
x2D by a bump function that

we shall indicate by I

✏

(x), which is smooth1 for all ✏ > 0, and approximates the indicator

from below, i.e.

I

✏

(x) � 0 I

✏

(x) 
x2D lim

✏&0

I

✏

(x) =
x2D (1.1)

It will become clear that this choice is the natural one to make. This introduction discusses

these three contributions sequentially.

1.1 Potential theory

Potential theory calls for the construction of harmonic functions, i.e. satisfying r2

f = 0

in D, with the further condition that they satisfy certain boundary conditions at @D. The

Dirichlet problem prescribes the value at @D, while the Neumann problem prescribes the

normal derivative at @D. Green [1] realised as early as 1828 that the problem can be

reduced to finding the Green function, as it is now known. Furthermore, he realised that

nature solves the problem: an electric charge at x, placed inside a perfect conductor, causes

an electric potential at y that is equal to the Green function of the Dirichlet problem.

It turns out that the classical Dirichlet problem is not solvable for geometries with

isolated boundary points (see [4]) or sharp thorns (see [5]). But the modified Dirichlet

problem is well-defined: it only asks for the boundary conditions to be satisfied at all

regular boundary points (see e.g. [6]). Physicists never worried about such peculiar cases,

because nature solves the modified problem: an induced charge density on the conductor

1
At least in the direction normal to the boundary, if the boundary is piecewise smooth.
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will exist, even if the conductor is shaped like a thorn. At irregular boundary points

multiple ‘normal’ directions exist, and an electrical force acting in any of those is allowed.

Kakutani [7] realised that Brownian motion can be used to solve the modified Dirichlet

problem. The solution at x can be obtained by 1) simulating many Brownian motions

starting at x until they hit @D, by 2) assigning to each path the supposed boundary

value at its first passage over @D, and by 3) taking an expectation over all paths. This

prescription solves the modified Dirichlet problem, because, as Chung [8, p. 54] notes:

although there may be irregular points on @D, almost no path will ever hit

them. Thus they are not really there so far as the paths are concerned.

Brosambler’s [9] discovery, that reflected (rather than absorbed) Brownian motion

could reproduce the solution to the Neumann problem, further strengthened the case for

the use of stochastic processes to study partial di↵erential equations. Elastic Brownian

motion (which is either absorbed or reflected each time it hits the boundary) turned out to

be useful for the third boundary value problem, which poses Robin boundary conditions.

Subsequent literature (e.g. [10–19]) followed the now classical approach by Balian and

Bloch [20]: to find the Green function for the problem, the ansatz of a double (single)

boundary layer is made for the Dirichlet (Neumann) problem. In contrast, we show that

1) neither single nor double boundary layers need to be based on an ansatz, but, in fact,

follow from the first- and last-passage decompositions of Brownian paths, 2) either problem

may be solved with either method and their distinction thus is arbitrary, and 3) boundary

layers may be used for irregular as well as regular domains. The literature above has only

considered smooth domains, again by following the example of [20].

The extension from smooth domains to piecewise smooth domains may seem of only

minor relevance. But the following question, since being raised by Kac [21], has received

much attention (e.g. [22–24]): if all the eigenvalues of the Dirichlet (or Neumann) solution

are given, can one uniquely reconstruct the domain? It turns out that the answer is ‘yes’

if the domain is smooth and ‘no’ if sharp corners are allowed. We merely require that the

domain D allows Green’s second identity (allowing edges, corners and cusps), and thus we

provide a tool for calculating the Green function for domains of either type.

1.2 Path integrals

Feynman [2] developed path integrals to describe the movement of a quantum particle

under the influence of a potential V . Kac gave the probabilistic interpretation in [25]

and [26]: a Brownian particle moves freely, but may be annihilated by a positive potential

V . The probability that this happens, at any location, equals the product of the strength

of the potential at that location and the (infinitesimal) amount of time spent there. And

a negative potential creates particles, again at a rate corresponding to its magnitude.

But there are several problems regarding path integrals. First, path integrals can only

be calculated exactly very occasionally, although perturbation series (or Born series) can

be easily written down; see e.g. [27, p. 128] or [28, p. 161]. Second, the treatment of even

the simplest boundary-value problems is notoriously complicated within the path integral

framework. Kleinert, for example, writes in [29]:

– 3 –
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Considering the present widespread use of path integrals [. . . ], it is surprising

how many standard text book problems of quantum mechanics have not been

solved within this framework. [. . . ] In this note we would like to exhibit the path

integration for the particle in a box (infinite square well). While in Schrödinger

theory this system has a trivial solution, a careful classification of paths is

needed before Feynman’s formula can be evaluated.

The paper then shows how to evaluate Feynman’s formula for the one-dimensional particle

in a box. No progress, however, has been made in evaluating Feynman’s formula for

bounded domains in d � 1. Boundary-value problems confine the particle to a particular

region of space, but the Gaussian integrals are much easier, at least analytically, if they

stretch across the whole real line.

Even in the one-dimensional case discussed above, it is tempting to postulate an infinite

potential outside of the box. The interpretation is that of an infinite annihilation rate, such

that every Brownian path spending even a small time outside the box is annihilated. We

could take V (x) =
x/2D and let the coupling constant �!1, so that the annihilation rate

outside the box goes to infinity. But, if we let � ! 1, then all terms in the perturbation

series (or Born series) become infinite. Even though the series formally still converges,

this obviously diminishes its practicality. To overcome this problem, the use of Dirac �-

function potentials has been suggested, which are infinite at the edge of the box but zero

beyond. Various authors (e.g. [30–34]) have considered these so-called point interactions.

All perturbation terms are now finite and the series thus converges in a meaningful manner,

but the Dirac �-potential is not strong enough to confine the particle. It is a textbook result

that a particle can tunnel through a Dirac �-potential. Again we could let � ! 1, but

then all perturbation terms become infinite. While we already know the solution for the

one-dimensional particle in a box, it is not clear what potential manages to 1) replicate the

solution and 2) allow for a meaningful perturbation series.

A further problem with point interactions is that how to generalise them to treat

higher-dimensional boundary problems is not obvious. There seems to be scarce literature

on what we may call surface interactions. One purported reason is that treating singular

potentials is hard, even in d = 1.

1.3 Intuition for the Laplacian of the indicator

In this paper we show that a Brownian motion that is absorbed (reflected) at @D is consis-

tent with a path integral formulation when the particle is allowed in all of Rd but is acted

upon by a potential V , where the potential is proportional to minus (plus) the Laplacian

of the indicator of some domain D. For practical purposes, we approximate the indicator

using a bump function that is identically zero outside of D: see e.g. the one-dimensional

example in figure 1, where the domain is taken to be the positive real line; and the two-

dimensional example in figure 2, where the domain is taken to be an ellipse.

In terms of why this potential does the job, we can say the following. The second

derivative of the indicator has ‘higher’ peaks than the first derivative. While the Dirac

– 4 –
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Figure 1. This graph shows I
✏

(x), I 0
✏

(x) and I

00
✏

(x) when the domain is taken to be the positive real
line. As in [35, p. 206], we have chosen I

0
✏

(x) as the C1 function I

0
✏

(x) = c/✏ exp
�

1/([1� x/✏]2 � 1)
�

for x between 0 and 2✏, and zero otherwise. The constant c is chosen such that its integral equals 1.
Intuitively we can think of a positive (negative) potential as destroying (creating) particles. This
helps to explain why the potential �2

/2 I 00
✏

(x), as in the rightmost graph, is absorbing from the left
and reflecting from the right.

�-function is absolutely integrable, the Dirac �0-function is not. Therefore, the potential is

indeed strong enough to contain the particle.

But we have also noted that positive potentials destroy paths, while negative potentials

create paths. Through the limiting procedure in figures 1 and 2, we see that the Laplacian

of the indicator has a positive and a negative peak. The positive peak destroys a particle,

while the negative peak creates one. If a Brownian particle approaches the potential and is

first presented with the positive peak, then the Brownian particle is destroyed. If it is first

presented with the negative peak, however, an extra particle is created. This extra particle

is subsequently destroyed by the positive peak, and only the original particle remains: it

is reflected o↵ the boundary. While not overly rigorous, this intuition may help to explain

why the potential for the absorbed and reflected propagators di↵ers only by a sign.

As a result, the �2/2 �0-potential is reflecting from above. Thus, for x > 0, we obtain

the following propagation density:

 (y, t|x, s) =

8

<

:

B(y, t|x, s) +B(y, t|x⇤, s) x > 0, y > 0,

0 x > 0, y < 0,
(1.2)

The free-Brownian propagator from space-time coordinate (x, s) to (y, t) is denoted by

B(y, t|x, s) (defined in subsection 2.1), and x

⇤ is the mirror-coordinate of x, i.e. x⇤ = �x.
When the starting point x is above zero, the boundary at zero is reflecting and the particle

can never reach y < 0. It is thus clear that  is discontinuous in y, for x > 0. The

derivative, however, is continuous (zero on both sides). For the heat equation, which is of

second order in the space variable, it is commonly understood that discontinuities in the

derivative correspond to Dirac �-potentials, while discontinuities in the value correspond to

Dirac �0-potentials. Our  of (1.2) could thus be expected to satisfy a partial di↵erential

equation involving a Dirac �0-function. But as it happens, the Dirac �0-potential has caused

– 5 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
2

Figure 2. While for any ✏ > 0 the negative bump function is continuously di↵erentiable to all
orders, for ✏ & 0 we get �

x2D

, �n · r
x x2D

and �r2
x

x2D

. Purely intuitively we can think
of the rightmost graph as resembling an elliptical castle, with a moat in front of the castle walls.
The wall annihilates particles while the moat creates them, such that the castle reflects Brownian
particles that approach it from the outside. Particles that approach the wall from the inside are
annihilated.

controversy. This began with an exchange of arguments between two parties [36–38], and

was resolved by an independent note [39], or so it seemed. A more recent paper [40] claims

that even this resolution had its flaws.

In essence, the source of the controversy is the following: on the one hand, we know

that the second derivative of a discontinuity — in the distributional sense — equals a Dirac

�

0-function. Often, the Dirac �-function is considered as the limit of a Gaussian centred

at zero, or otherwise as the limit of a family of even distributions. In either case, the

Dirac �-function is symmetric and, as emphasised in e.g. [39], it deals with discontinuous

integrands f as follows:
Z

✏

�✏

�(y) f(y) dy =
1

2
(f(0+) + f(0�) 8✏ > 0 (1.3)

Although a Gaussian centred at zero is even, its derivative is odd. When f is discontinuous

across zero, therefore, the following quantity does not exist:
Z

✏

�✏

�

0(y) f(y) dy = ±1 8✏ > 0 (1.4)

This was also was noted by [40, p. 3943] and can be checked by direct calculation, or by

realising that the ‘slope’ of f is ±1 at zero when f is discontinuous there. Therefore,

we cannot claim that 1)  is discontinuous across zero, as well as that 2)  satisfies the

Schrödinger equation with a Dirac �0-potential. The latter involves the term �

0
 , which is

undefined for discontinuous  . Still, it is clear that our  of (1.2) is discontinuous, so what

PDE should it satisfy? In fact, a slightly di↵erent route to the problem turns out to be

fruitful. Consider a smooth potential V
✏

that is singular in the limit ✏& 0. In section 3.3

we show that in such a case the following decompositions hold:

 (y, t|x, s) = B(y, t|x, s)� lim
✏&0

t

Z

s

d⌧

1
Z

�1

d↵ B(y, t|↵, ⌧)V
✏

(↵) (↵, ⌧ |x, s),

 (y, t|x, s) = B(y, t|x, s)� lim
✏&0

t

Z

s

d⌧

1
Z

�1

d↵  (y, t|↵, ⌧)V
✏

(↵)B(↵, ⌧ |x, s).

(1.5)
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These decompositions are well suited to obtaining series solutions: we can substitute the

equations into themselves, substituting the definition of  , as given by the left-hand side,

into  on the right-hand side. This series solution is well-behaved for all smooth potentials,

and may (or may not) be well-behaved for singular potentials. For the Dirac �0-potential,

when viewed as the limit of the derivative of a Gaussian centred at zero, the series is

not well-behaved: its second correction term is infinite. If, instead, we take the Dirac �0-

function as in the right-most graph in figure 1, then each term in the series is well-behaved.

Therefore we take the potential V
✏

(x) as follows:

V

✏

(x) =
�

2

2
I

00
✏

(x), (1.6)

where it is crucial that the bump function I

✏

(x) approaches the indicator
x>0

from be-

low, i.e.

I

✏

(x) � 0 I

✏

(x) 
x2D lim

✏&0

I

✏

(x) =
x2D (1.7)

One may check by direct calculation that  of (1.2) satisfies the decompositions (1.5) when

the potential is given by (1.6), and when both x, y > 0. In fact, it does not matter how

 is defined for y < 0: as long as  is equal to the reflected density for x, y > 0, the

decompositions (1.5) hold for x, y > 0. This is because the potential (1.6) only ‘feels’

whatever is to the right of the origin. In fact, the absorbed density

 (y, t|x, s) =

8

<

:

B(y, t|x, s)�B(y, t|x⇤, s) x > 0, y > 0,

0 x > 0, y < 0,
(1.8)

satisfies the decompositions (1.5) with the potential

V

✏

(↵) = ��
2

2
I

00
✏

(x). (1.9)

for x, y > 0. The solution  of (1.8) is not even discontinuous across zero. Thus we

conclude that the ‘right-handed’ Dirac �0-potential, as defined by I

00
✏

, does not necessarily

lead to discontinuities in  , and can be used to incorporate both absorbing and reflecting

boundary conditions.
In both the reflecting and absorbing case, we may use the decompositions (1.5) to

obtain a series solution that is well-behaved. Substituting the first decomposition into
itself, we obtain

 (y, t|x, s) = B(y, t|x, s)� lim
✏&0

t

Z

s

d⌧

1
Z

�1

d↵ B(y, t|↵, ⌧)V
✏

(↵)B(↵, ⌧ |x, s)

+ lim
✏&0

t

Z

s

d⌧2

1
Z

�1

d↵2 B(y, t|↵2, ⌧2)V✏

(↵2)

0

@lim
✏&0

⌧2
Z

s

d⌧1

1
Z

�1

d↵1 B(↵2, ⌧2|↵1, ⌧1)V✏

(↵1) (↵1, ⌧1|x, s)

1

A

The free term on the right-hand side remains for both the absorbed and reflected solu-

tions  . Depending on the sign of the potential, the first correction term gives either

+B(y, t|x⇤, s) or �B(y, t|x⇤, s), and the second correction term vanishes. We have thus

– 7 –
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obtained a consistent prescription: if we let ✏ & 0 in the potential ±�

2

2

I

00
✏

(x), then the

solution will approach  of (1.2) or (1.8) for all x, y > 0. When the limit is reached, both

solutions satisfy the decompositions (1.5). Lastly, the term I

00
✏

(y) (y, t|x, s) exists, and can

be integrated to give the result �@
y

 (y, t|x, s)|
y=0+

.

In addition to treating boundaries that are purely absorbing or reflecting, we can also

treat ‘elastic’ boundaries. Elastic boundaries reflect the Brownian particle with probability

 dt and absorb it with probability (1� dt), when dt is the infinitesimal time spent at the

boundary and where  > 0. For an elastic boundary at zero for d = 1 see e.g. [41] to find

the following propagation density:

 (y, t|, x, s) = B(y, t|x, s) +B(y, t|x⇤, s)� 2

Z 1

0

d↵ e

�↵

B(y + ↵, t|x⇤, s) x > 0, y > 0

(1.10)

This can be obtained by taking a reflecting Brownian motion and putting an annihilating

Dirac �-potential just above zero. We can confirm by direct calculation that  of (1.10)

satisfies the decompositions (1.5) for x, y > 0, when the potential is equal to

V

✏

(x) =
�

2

2
I

00
✏

(x) + �

2

I

0
✏

(x), (1.11)

and where the bump function is again given by (1.7). It is clear, both from the solu-

tion (1.10) as well as from the potential (1.11), that elastic Brownian motion becomes

reflected Brownian motion as  & 0. What is not clear from (1.11), however, is that as

 % 1 we obtain absorbed Brownian motion. We know by physical intuition that the

boundary must become absorbing as %1. For the one-dimensional case, we can do the

integration in (1.10) for %1 and show that, in this limit, the elastic density indeed goes

to the absorbed density.

As we have shown, the Dirac �0-interaction is non-trivial even in one dimension. We

di↵er further from the literature on point interactions by treating the higher-dimensional

analogues of the Dirac �- and �0-function as �n ·r
x x2D and r2

x

x2D, respectively. The

elastic potential in d dimensions, for example, can be written as

V

✏

(x) =
�

2

2
r2

x

I

✏

(x)� �2 n
x

·r
x

I

✏

(x). (1.12)

Here n
x

can be defined to exist for all x, for example as the outward normal of the boundary

point nearest to x. The potential scales with �

2, because when paths are more volatile,

potentials with small support need to grow in magnitude to achieve the same e↵ect.

The Laplacian of the indicator is supported by a surface, whereas the usual higher-

dimensional generalisations of Dirac �-functions and its derivatives are supported by points.

This generalisation is useful because surface interactions can lead to boundary conditions

in d � 1, while point interactions cannot. Naturally, point and surface interactions coincide

for d = 1.

This paper is organised as follows: section 2 discusses Brownian motion in the context

of potential theory. It shows that the classical single and double boundary layers follow

from first- and last-passage distributions of Brownian motion (i.e. they are equivalent),

– 8 –
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and that they are useful for irregular domains. Section 3 discusses Brownian motion in

the context of path integrals. It derives first- and last-interaction decompositions in the

presence of a (possibly singular) potential V . Section 4 shows that sections 2 and 3 can be

unified if one postulates derivatives of the bump function as the potential. Finally section 5

shows how to extend this work to moving boundaries.

2 Brownian motion and potential theory

2.1 Brownian motion with boundary conditions

In d dimensions, the transition density of a standard Brownian motion is as follows:

B(y, t|x, s) = 1

[2⇡(t� s)]d/2
e
� |y�x|2

2�2(t�s) (2.1)

where B(y, t|x, s) is equal to the (marginal) probability that a Brownian particle moves

from the ‘backward’ space-time coordinate (x, s) to the ‘forward’ space-time coordinate

(y, t). Formally, Brownian motion is defined as a continuous process, with independent

increments, such that the increment during dt is normally distributed with mean zero and

variance dt. The explicit representation (2.1) shows that the Brownian density B satisfies

forward PDE

⇣

@

@t

� 1

2
r2

y

⌘

B(y, t|x, s) = 0

backward PDE

⇣

@

@s

+
1

2
r2

x

⌘

B(y, t|x, s) = 0

forward STC lim
s%t

B(y, t|x, s) = �(|y � x|)

backward STC lim
t&s

B(y, t|x, s) = �(|y � x|)

(2.2)

where PDE stands for partial di↵erential equation and STC stands for short-time condition.

The STCs are satisfied because during a short time period the particle stays where it is,

and the PDEs are satisfied because the transition density is unbiased, i.e.

B(y, t|x, s) = EB(y � dB, t� dt|x, s)
B(y, t|x, s) = EB(y, t|x+ dB, s+ ds)

and using Itô’s lemma gives both PDEs.

The transition density of absorbed Brownian motion (ABM) in D is indicated by

A(y, t|x, s) and satisfies the following set of equations:

forward PDE

⇣

�

2

2
r2

y

� @

@t

⌘

A(y, t|x, s) = 0

backward PDE

⇣

�

2

2
r2

x

+
@

@s

⌘

A(y, t|x, s) = 0

forward BC A(�, t|x, s) = 0 � 2 @Dr

backward BC A(y, t|�, s) = 0 � 2 @Dr

forward STC lim
s%t

A(y, t|x, s) = �(|y � x|)

backward STC lim
t&s

A(y, t|x, s) = �(|y � x|)

(2.3)
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for x, y 2 D. BC stands for boundary condition and the BC holds at all regular boundary

locations �, indicated by @Dr. Our definition of a regular boundary point is one that allows

a tangent plane. The BCs are satisfied because no Brownian particle can move to or from a

regular boundary point without being absorbed. We do not need to specify what happens

at irregular boundary points, because ‘almost no path will ever hit them’ [8, p. 54]).

The transition density of reflected Brownian motion (RBM) is indicated by R(y, t|x, s)
and satisfies the following set of equations:

forward PDE

⇣

�

2

2
r2

y

� @

@t

⌘

R(y, t|x, s) = 0

backward PDE

⇣

�

2

2
r2

x

+
@

@s

⌘

R(y, t|x, s) = 0

forward BC n

�

·�!r
�

R(�, t|x, s) = 0 � 2 @Dr

backward BC R(y, t|�, s) �r
�

· n
�

= 0 � 2 @Dr

forward STC lim
s%t

R(y, t|x, s) = �(|y � x|)

backward STC lim
t&s

R(y, t|x, s) = �(|y � x|)

(2.4)

where the BCs are satisfied because a Brownian particle is reflected in the inward normal

direction, at any regular boundary point �. As a result R(y, t|�, s) and R(y, t|� + ✏, s) are

equal to first order in ✏, if � is a regular boundary coordinate and ✏ is a small displacement in

the inward normal direction. Again we do not specify what happens at irregular boundary

points.

The transition density of elastic Brownian motion (EBM) is indicated by E(y, t|x, s)
and satisfies the following set of equations:

forward PDE

⇣

�

2

2
r2

y

� @

@t

⌘

E(y, t|x, s) = 0

backward PDE

⇣

�

2

2
r2

x

+
@

@s

⌘

E(y, t|x, s) = 0

forward BC n

�

·�!r
�

E(�, t|x, s) = (�)E(�, t|x, s) � 2 @Dr

backward BC E(y, t|�, s) �r
�

· n
�

= (�)E(y, t|�, s) � 2 @Dr

forward STC lim
s%t

E(y, t|x, s) = �(|y � x|)

backward STC lim
t&s

E(y, t|x, s) = �(|y � x|)

(2.5)

where the BCs are satisfied because a Brownian particle is either reflected in the normal

direction or absorbed with a certain probability. For each infinitesimal unit of time spent

on the boundary, the probability of absorption is equal to (�)dt and that of reflection

(1� (�))dt, where (�) � 0 and may depend on �. When  is constant and when a total

time t is spent on the boundary, consisting of n infinitesimal units dt, then the probability

of survival becomes (1�  t/n)n ! e

� t.
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2.2 First- and last-passage (or reflection) decompositions

Our original research on Brownian motion starts here. We start by writing down the

following identities for ABM:

FP A(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

D

d↵ B(y, t|↵, ⌧)A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s) �
Z

t

s

d⌧

@

@⌧

Z

D

d↵ A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(2.6)

where these indenties hold by the virtue of the fundamental theorem of calculus and the

STCs satisfied by B and A. First, by the fundamental theorem of calculus we have:

FP A(y, t|x, s) = B(y, t|x, s) +
✓

lim
⌧%t

� lim
⌧&s

◆

Z

D

d↵ B(y, t|↵, ⌧)A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s) �
✓

lim
⌧%t

� lim
⌧&s

◆

Z

D

d↵ A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(2.7)

and, second, the STCs satisfied by B and A show that both identities hold as long as x

and y are in the interior of D. The nomenclature of first-passage (FP) and last-passage

(LP) decompositions will now be explained. We define the first-passage time ⌧FP as the

first time in the interval [s, t] that @D is crossed, or as infinite if there is no passage in

[s, t], i.e. inf{?} = 1. Similarly, we define the last-passage time ⌧LP as the last time in

the interval [s, t] that @D is crossed, or as negative infinity if there is no passage in [s, t],

i.e. sup{?} = �1. Therefore the quantity
Z

D

d↵B(y, t|↵, ⌧)A(↵, ⌧ |x, s)

counts paths from (x, s) to (y, t) where the first passage (if at all) happens after time ⌧ .

With these definitions, we can write:

FP P (B
t

2 dy; ⌧FP � ⌧ |B
s

= x) =

Z

D

d↵B(y, t|↵, ⌧)A(↵, ⌧ |x, s),

LP P (B
t

2 dy; ⌧LP  ⌧ |B
s

= x) =

Z

D

d↵A(y, t|↵, ⌧)B(↵, ⌧ |x, s),
(2.8)

where the semi-colon indicates a joint probability. The free propagator B allows passages

while not requiring them, and therefore it is crucial that we specified inf{?} = 1 and

sup{?} = �1. Di↵erentiating, we get

FP P (B
t

2 dy; ⌧FP 2 d⌧ |B
s

= x) = � @

@⌧

Z

D

d↵B(y, t|↵, ⌧)A(↵, ⌧ |, s)

LP P (B
t

2 dy; ⌧LP 2 d⌧ |B
s

= x) =
@

@⌧

Z

D

d↵A(y, t|↵, ⌧)B(↵, ⌧ |, s)
(2.9)
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The absorbed density requires that no passages occur; neither first nor last passages. There-

fore we subtract from the free density the integral (over ⌧) of all paths with a first or last

passage at time ⌧ , i.e.

FP A(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

D

d↵ B(y, t|↵, ⌧)A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s) �
Z

t

s

d⌧

@

@⌧

Z

D

d↵ A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(2.10)

and we have re-derived our identities, but now with a probabilistic intuition. In the ‘deriva-

tion’ of these identities, we have used the STCs but not the PDEs or BCs. Di↵erentiation

under the integral sign is allowed and we can use the PDEs of (2.3), to obtain

FP A(y, t|x, s) = B(y, t|x, s)� �

2

2

Z

t

s

d⌧

Z

D

d↵ B(y, t|↵, ⌧)
n �r2

↵

��!r2

↵

o

A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D

d↵ A(y, t|↵, ⌧)
n �r2

↵

��!r2

↵

o

B(↵, ⌧ |x, s)
(2.11)

where the direction of the arrows indicates the direction of di↵erentiation. We feel that this

notation makes equations more readable. Then we use Green’s second identity — which is

valid for domains with a finite number of edges, corners and cusps — to obtain

FP A(y, t|x, s) = B(y, t|x, s) + 1

2

Z

t

s

d⌧

I

@D

d� B(y, t|�, ⌧)
n �
@

�

�
�!
@

�

o

A(�, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)� 1

2

Z

t

s

d⌧

I

@D

d� A(y, t|�, ⌧)
n �
@

�

�
�!
@

�

o

B(�, ⌧ |x, s)
(2.12)

where @
�

is the (by �2) scaled inward normal derivative, i.e.

�!
@

�

f(�, �) := ��2 lim
↵!�

n

�

·�!r
↵

f(↵, �)

f(�,�)
 �
@

�

:= ��2 lim
↵!�

n

�

·�!r
↵

f(�,↵)
(2.13)

where ↵ is an interior coordinate, and where � is a regular boundary coordinate. The BCs

require A to be zero on all regular parts of the boundary, and since the irregular parts have

zero measure on the surface, we are left with the following:

FP A(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

I

@D

r

d� B(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

I

@D

r

d� A(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

B(�, ⌧ |x, s)
(2.14)

where the di↵erential operators point towards the absorbed density A in both cases. We

also notice that a positive term is subtracted from the free density to obtain the absorbed
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density. In the last pair of equations, it should make no di↵erence whether the integration

is over the entire boundary @D or over its regular part @Dr, since there is only supposed

to be a finite number of irregular boundary points.

The FP decomposition has been obtained before, through the path decomposition ex-

pansion that was developed in [42] and [43] and extended by [44] and [45]. Both original

and subsequent proofs rely on a detailed treatment involving time-slicing and a limit in

which the number of slices goes to infinity. Our derivation is arguably simpler (fewer steps

and a clear intuition), we derive twice the result (i.e. two decompositions rather than one),

we put an explicit requirement on the domain (i.e. Green’s second identity), and we allow

a generalisation to other boundary conditions (for e.g. a reflecting boundary, see below).

On a related but di↵erent note, we observe that the absorbed propagator A is symmet-

ric in the spatial coordinates x and y, as a direct consequence of the FP/LP pair in (2.14).

This deserves some attention, since Chung, for example, writes [8, p. 90]):

By the way, there is NO probabilistic intuition for the symmetry of [the ab-

sorbed transition density].

where the capitals appear in the reference. Our set of equations, however, can easily be

interpreted when we realise that

FP P
�

B

t

2 dy; ⌧FP 2 d⌧ ; B
⌧

FP 2 d�

�

�

B

s

= x

�

= B(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s)

LP P
�

B

t

2 dy; ⌧LP 2 d⌧ ; B
⌧

LP 2 d�

�

�

B

s

= x

�

= A(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

B(�, ⌧ |x, s)
(2.15)

Thus the spatial symmetry follows ultimately from a time reversal, where first becomes

last and vice versa. Chung himself notes in [46] why last-passage times are much less

popular than first-passage times: the last passage is not a stopping time (i.e. it cannot

be known immediately after the last passage that it is, indeed, the last passage). Chung

argues that it is desirable that the first- and last-passage times are put on equal footing,

and our approach does exactly that.

We have used all six PDEs, STCs and BCs of (2.3) in the derivation of the pair (2.14),

i.e. all conditions that specify A uniquely have now been used — as has Green’s second

identity on the domain. We state the following proposition:

Proposition 1. FP and LP decompositions of ABM. For all x, y 2 D, where D allows
Green’s theorem, and for all � 2 @Dr, the following formulations of ABM are equivalent:

⇣

�

2

2 r
2
y

� @

@t

⌘

A(y, t|x, s) = 0
⇣

�

2

2 r
2
x

+ @

@s

⌘

A(y, t|x, s) = 0

A(�, t|x, s) = 0

A(y, t|�, s) = 0

lim
s%t

A(y, t|x, s) = �(|y � x|)

lim
t&s

A(y, t|x, s) = �(|y � x|)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

FP A(y, t|x, s) = B(y, t|x, s)

�
Z

t

s

d⌧

I

@D

r

d� B(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)

�
Z

t

s

d⌧

I

@D

r

d� A(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

B(�, ⌧ |x, s)

(2.16)

– 13 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
2

where @
�

is the (by �2) scaled inward normal derivative as defined in (2.13), and where the

arrow indicates the direction of the di↵erentiation.

Looking back at equation (2.12), we could also have changed the signs of terms that

are zero, instead of discarding them. This would have led to

FP A(y, t|x, s) = B(y, t|x, s)� 1

2

Z

t

s

d⌧

I

@D

d� B(y, t|�, ⌧)
n �
@

�

+
�!
@

�

o

A(�, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)� 1

2

Z

t

s

d⌧

I

@D

d� A(y, t|�, ⌧)
n �
@

�

+
�!
@

�

o

B(�, ⌧ |x, s)
(2.17)

By the divergence theorem, we would have obtained

FP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D

d↵ r2

↵



B(y, t|↵, ⌧)A(↵, ⌧ |x, s)
�

LP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D

d↵ r2

↵



A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
� (2.18)

This does not have as clear a probabilistic intuition as Proposition 1, but these expressions

are highly suited to a series solution: substitute the definition of A, as given by the left-

hand side, into the expression for A on the right-hand side. The obtained series solution

looks like that obtained in e.g. [47], by the parametrix method.

Having discussed the first- and last-passage decompositions at length, the following

first-reflection (FR) and last-reflection (LR) decompositions suggest themselves:

FR R(y, t|x, s) = A(y, t|x, s)�
Z

t

s

d⌧

@

@⌧

Z

D

d↵R(y, t|↵, ⌧)A(↵, ⌧ |x, s)

LR R(y, t|x, s) = A(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

D

d↵A(y, t|↵, ⌧)R(↵, ⌧ |x, s)
(2.19)

which hold by the virtue of the fundamental theorem of calculus and the STCs. It turns

out, however, that it is more useful to write the reflected density in terms of the free density,

and to do this we replace the absorbed density A by the free density B:

FR R(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

@

@⌧

Z

D

d↵R(y, t|↵, ⌧)B(↵, ⌧ |x, s)

LR R(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

D

d↵B(y, t|↵, ⌧)R(↵, ⌧ |x, s)
(2.20)

where we have kept the names FR and LR, even though that interpretation has now become

a little problematic. But both identities still hold by the virtue of the fundamental theorem

of calculus and the STCs, and proceeding with the same steps as in the absorbed case, we

obtain:

– 14 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
2

Proposition 2. FR and LR decompositions of RBM. For all x, y 2 D, where D

allows Green’s theorem, and for all � 2 @D

r, the following formulations of RBM are

equivalent:
⇣

�

2

2 r
2
y

� @

@t

⌘

R(y, t|x, s) = 0
⇣

�

2

2 r
2
x

+ @

@s

⌘

R(y, t|x, s) = 0
�!
@

�

R(�, t|x, s) = 0

R(y, t|�, s)
 �
@

�

= 0

lim
s%t

R(y, t|x, s) = �(|y � x|)

lim
t&s

R(y, t|x, s) = �(|y � x|)

9

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

;

=

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

FR R(y, t|x, s) = B(y, t|x, s)

+

Z

t

s

d⌧

I

@D

r

d� R(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

B(�, ⌧ |x, s)

LR R(y, t|x, s) = B(y, t|x, s)

+

Z

t

s

d⌧

I

@D

r

d� B(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

R(�, ⌧ |x, s)

(2.21)

where @
�

is the (by �2) scaled inward normal derivative as defined in (2.13), and where the

arrow indicates the direction of the di↵erentiation.

Whereas the absorbed density A is always smaller than the free density B, it is not

the case that the reflected density is always larger than the free density B. The reflected

density equals the free density B plus a weighted average of boundary densities of R. We

have that

⇢

1

2

�!
@

�

�

B(�, ⌧ |x, s) = n

�

· � � x

t� s

B(�, t|x, s) � 0 if D is convex

with strict inequalities if D is strictly convex. Thus for a convex space, the reflected density

is everywhere larger than the free density. Intuitively, every point in a convex domain is

like a ‘focal’ point, where more paths are directed than in the absence of the boundary.

The same exercise can be repeated for elastic Brownian motion, to obtain that (2.5)

is equal to

FR E(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

I

@D

r

d� E(y, t|�, ⌧)
⇢

1

2

�!
@

�

� �

2

2
(�)

�

B(�, ⌧ |x, s)

LR E(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

I

@D

r

d� B(y, t|�, ⌧)
⇢

1

2

 �
@

�

� �

2

2
(�)

�

E(�, ⌧ |x, s)
(2.22)

In the limit where (�)& 0, we recover the integral equations governing RBM.

2.3 Tangent-plane decompositions and series solution

The integral equations of Proposition 1 have the property that the absorbed density A

appears on the left-hand side, while the normal derivative of A appears on the right-hand

side. The trick for solving integral equations like this is to make sure that the same

quantity — in this case the normal derivative — appears on both sides of the equation.

Thus we apply 1

2

�!
@

�

to the left of the FP decomposition, and 1

2

 �
@

�

to the right of the LP
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decomposition, i.e.

FP

⇢

1

2

�!
@

�

�

A(�, t|x, s) =
⇢

1

2

�!
@

�

�

B(�, t|x, s)

�
⇢

1

2

�!
@

�

�

Z

t

s

d⌧

I

@D

d� B(�, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s)

LP A(y, t|�, s)
⇢

1

2

 �
@

�

�

= B(y, t|�, s)
⇢

1

2

 �
@

�

�

�

0

@

Z

t

s

d⌧

I

@D

d� A(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

B(�, ⌧ |�, s)

1

A

⇢

1

2

 �
@

�

�

(2.23)

Using Lemma 1 in section A to push the di↵erential boundary operators through the

integral signs, we get

FP
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1

2

�!
@

�

�

A(�, t|x, s) =
⇢

1

2

�!
@

�

�
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�
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+
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�
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Z
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d� A(y, t|�, ⌧)
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A(y, t|�, s)

⇢

1

2

 �
@

�

�

(2.24)

Collecting terms, we obtain what we shall call the tangent-plane decomposition:

FP

⇢

1

2

�!
@

�

�

A(�, t|x, s) =
�!
@

�

B(�, t|x, s)
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A(�, ⌧ |x, s)

LP A(y, t|�, s)
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@
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�
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d⌧

I

@D

d� A(y, t|�, ⌧)
⇢
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@
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B(�, ⌧ |�, s)
 �
@

�

(2.25)

where the factors of 2 are crucial and the factorisation is carefully chosen. First, we notice

from the first-passage decomposition that the first-passage density at (�, t), which appears

on the left-hand side, is related to the first-passage density at all other space-time locations

(�, ⌧), for all � and ⌧ . This was to be expected, since the shape of the entire boundary

influences the first-passage density at any single location.

The only case when the first-passage density decouples from other locations is when

the domain is halfspace: the first-passage density for a halfspace consists only of the first
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term in (2.25). This is because the second term in (2.25) equals zero, i.e.

Z

t

s

d⌧

I

@D

d�

�!
@

�

B(�, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s)

equals zero for a halfspace, because

�!
@

�

B(�, t|�, ⌧) = n

�

· � � �
t� ⌧ B(�, t|�, ⌧)

where for a halfspace we have that n
�

·(���) = 0 because n
�

and (���) are perpendicular.
For a halfspace, therefore, the first term in the tangent-plane decomposition is the only

term.

In general, we conclude that the first-passage density at any location �, depends on the

first-passage density at all other locations � through a certain ‘weight’, where this weight

can be positive or negative and takes the sign of n
�

· (� � �). It is not hard to check that

the following variational inequalities hold for convex and concave spaces:

Convex domain n

�

· (� � �) � 0 �, � 2 @D
Convave domain n

�

· (� � �)  0 �, � 2 @D
(2.26)

As a result, the first-passage density at any location of a convex domain is smaller than

the corresponding first-passage density over the tangent plane at that location. And the

opposite holds for a concave domain.

Consider, for the time being, a convex domain D, implying that all the tangent planes

lie outside of D. If a particle is not allowed to leave D, then it is not allowed to cross any

of the tangent planes defined by @D. The joint probability that a first-passage occurs at

the space-time coordinate (�, t) can be estimated by the probability that the particle hits

the tangent plane defined by � for the first time at (�, t) — but this is an overestimate.

Therefore we must subtract from this initial estimate the probability that the particle

leaves the domain at some other space-time location (�, ⌧) and then hits the tangent plane

defined by � at (�, t) — and we should sum over all � and ⌧ . We see that the right-hand

side of the FP decomposition in (2.25) does exactly this. This interpretation is new.

The tangent-plane decompositions are useful not only because of their interpretation,

but also because they feature the same quantity on both sides of the equation. The idea

behind solving integral equations like (2.25) comes from the ‘successive approximation

method’ as in [48, p. 566, 632, 811] or, equivalently, the ‘Neumann series’ as in [49, p. 78].

The idea is simple: we use the left-hand side of the equation as the definition for the

unknown quantity appearing on the right-hand side, and do this repeatedly to obtain an

infinite series solution. Once a series solution for @A has been obtained, we can substitute

it back into the expression for A itself. If the series converges then it must be the answer

that we are looking for, and thus we conclude:
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Proposition 3. Formal ABM series solution. The formal solution to problem (2.3) is

given by the following first- or last-passage series:

FP A(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(�1)i
"

Z

d✓

i

. . .

Z

d✓

1

s✓1...✓

i

t

# "

I

d�

i

. . .

I

d�

1

#

⇥B(y, t|�
i

, ✓

i

)

"

i

Y

k=2

�!
@

�

k

B(�
k

, ✓

k

|�
k�1

, ✓

k�1

)

#

�!
@

�1B(�
1

, ✓

1

|x, s)

LP A(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(�1)i
"

Z

d✓

i

. . .

Z

d✓

1

s✓1...✓

i

t

# "

I

d�

i

. . .

I

d�

1

#

⇥B(y, t|�
i

, ✓

i

)
 �
@

�

i

"

i�1

Y

k=1

B(�
k+1

, ✓

k+1

|�
k

, ✓

k

)
 �
@

�

k

#

B(�
1

, ✓

1

|x, s)

where the FP and LP series are identical, term-by-term, and where the modes of convergence

are as follows:

domain mode of convergence

convex domain alternating

concave domain monotone

but where convergence itself is taken for granted.

For a halfspace, only the free term and the first perturbation term are non-zero. We

obtain

A

HS(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d✓

1

I

d�

1

B(y, t|�
1

, ✓

1

)
�!
@

�1B(�
1

, ✓

1

|x, s)

= B(y, t|x, s)�
Z

t

s

d✓

1

I

d�

1

B(y, t|�
1

, ✓

1

)
�!
@

�1B(�
1

, ✓

1

|x⇤, s)

= B(y, t|x, s)�B(y, t|x⇤, s)

where x

⇤ is the mirror-coordinate of x (x⇤ = �x for d = 1) and where we have reproduced

the solution for a halfspace that is normally obtained through the method of images.

In general, all terms survive and all terms in the square brackets in Proposition 3 are

positive (negative) for a convex (concave) domain, and therefore the mode of convergence

is alternating (depends on x). Unfortunately, the sign of
�!
@

�

B(�, ✓|x, s) may change as

� moves along a concave boundary. Where it has a fixed sign, the series converges in a

monotone fashion. Where it has a fixed but di↵erent sign, the series also converges in a

monotone fashion, except in the other direction. Because we can split the series solution

into two parts where both converge in a monotone fashion (albeit in other directions), we

say simply that the series converges in a monotone fashion.
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For the reflected density, we have found the following integral equations:

FR R(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

I

@D

d� R(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

B(�, ⌧ |x, s)

LR R(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

I

@D

d� B(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

R(�, ⌧ |x, s)
(2.27)

We apply the operators lim
x!�

and lim
y!�

and use Lemma 2 in A to push the limits

through the integrals, collect terms and obtain the reflected tangent-plane decompositions:

FR R(y, t|�, s) = 2B(y, t|�, s) +
Z

t

s

d⌧

I

@D

d� R(y, t|�, ⌧)
�!
@

�

B(�, ⌧ |�, s)

LR R(�, t|x, s) = 2B(�, t|x, s) +
Z

t

s

d⌧

I

@D

d� B(�, t|�, ⌧)
 �
@

�

R(�, ⌧ |x, s)
(2.28)

where the factors of 2 are crucial. As before, for a halfspace only the first term in the

tangent-plane decomposition survives. For e.g. a convex domain, we may estimate the

reflected probability density R at � as if there was (only) a reflecting tangent plane at �.

This gives rise to the first term on the right-hand side, which is 2B. But for a convex

domain with a reflecting boundary, every location is like a focal point: more paths are

directed there. Therefore we must add to the initial estimate the probability that the

particle reflects o↵ the boundary somewhere else, and only then reaches the tangent plane

at � for the first time at (�, t). By a repeated substitution we find that

Propostion 4. Formal RBM series solution. The formal solution to problem (2.4) is

given by the following first- and last-reflection series:

FR R(y, t|x, s) = B(y, t|x, s) +
1
X
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LR R(y, t|x, s) = B(y, t|x, s) +
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(2.29)

where the FR and LR series are identical, term-by-term, and where the mode of convergence

is as follows:

domain mode of convergence

convex domain monotone

concave domain alternating

but where convergence itself is taken for granted.
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The only di↵erence with the absorbed series is that all terms here appear with a positive

sign. For a halfspace, only the free term and the first perturbation term are non-zero. We

obtain

R

HS(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d✓

1

I

d�

1

B(y, t|�
1

, ✓

1

)
�!
@

�1B(�
1

, ✓

1

|x, s)

= B(y, t|x, s) +B(y, t|x⇤, s)

where x

⇤ is the mirror-coordinate of x (x⇤ = �x for d = 1). In general, all perturbation

terms survive. Similar series for reflected Brownian motion have been derived by the

parametrix method in e.g. [47, p. 261], [50, 51]. The series solution is based on an ansatz,

only one of the two series is derived, and it is thought to hold for smooth domains only.

For the elastic case, we obtain similarly

FRE(y, t|x, s)

= B(y, t|x, s) +
1
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(2.30)

It is obvious that this series solution becomes less useful if we let  ! 1, because the

series then no longer converges. However, we do know that E ! A as  ! 1, and we

have a series solution for A. In practice, therefore, the situation is only problematic when

 is quite large but not infinite.

Berry and Dennis ([52]) treat a 2d circle, where (�) = sin(�)/(1� ✏ cos(�)) for �⇡ 
�  ⇡. In the limit where ✏ % 1 they obtain (�) = cot(�/2). This means that the

boundary destroys particles at rate |(�)| for y > 0, while creating particles at rate |(�)|
for y < 0. If (�)d� is absolutely integrable, then the series solution (2.30) exists. But

for ✏ % 1, we obtain (0+) = 1, (0�) = �1 in a non-integrable way. Such particle

creation at an infinite rate is problematic since no equilibrium state will exist. Suppose

a circle-boundary is fully absorbing for y > 0, and reflecting/creating at rate |(�)| for
y < 0, then some equilibrium distribution may exist, unless the creation goes to infinity so

quickly that more particles are created than can be absorbed. A particle can be absorbed

only once, but it can visit the reflecting/creating boundary more than once, suggesting

that this side will ‘dominate’. This view may complement that presented by Marletta and

Rozenblum [53], who have commented on this issue from a mathematical point of view.
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Lastly, we need to prove that the first- and last-passage (or reflection) series are iden-

tical, term by term. In short-hand, we first note that by Lemma 3 (in section A) we

obtain Z I

B

�!
@ B =

Z I

B

 �
@ B for x, y 2 D

which proves that the first perturbation terms are equal. Is it also the case that
Z I Z I

B

�!
@ B

�!
@ B

?

=

Z I Z I

B

 �
@ B

 �
@ B

Using Lemma 3 in section A twice, we obtain
Z I Z I

B

�!
@ B

�!
@ B =

Z I Z I

B

 �
@ B

�!
@ B +

Z I

B

�!
@ B

=

Z I Z I

B

 �
@ B

 �
@ B �

Z I

B

 �
@ B +

Z I

B

�!
@ B

=

Z I Z I

B

 �
@ B

 �
@ B

where we must be careful not to obtain terms like
Z I Z I

B

�!
@ B

 �
@ B =1

and similarly for higher order perturbation terms.

2.4 Green functions and single and double boundary layers

Now suppose that a source at x emits one Brownian particle, and we ask what the expected

amount of time is that the particle spends in the neighbourhood of any location in space,

given that we observe the Brownian particle for an (infinitely) long time. We have the free

Green function G

B

as follows

G

B

(y, x) := E
x

Z 1

s

�(|B
⌧

� y|)d⌧ =

Z 1

s

B(y, ⌧ |x, s) d⌧ (2.31)

For d � 3 the free Green function is finite and the integration can be performed to give:

G

B

(y, x) =
1

�

2

�(d/2� 1)

2⇡d/2
|y � x|2�d (2.32)

where � denotes the gamma function. Similarly, the Green function associated with ABM

is defined by

G

A

(y, x) :=

Z 1

s

A(y, t|x, s) dt (2.33)

and satisfies

�

2

2
r2

y

G

A

(y, x) =
�

2

2
r2

x

G

A

(y, x) = ��(|y � x|)

G

A

(�, x) = G

A

(y,�) = 0
(2.34)

for all x and y in the interior and for all regular boundary coordinates �. In the Brownian

interpretation, the absorbed Green function is zero at the boundary because an absorbed

Brownian motion will spend zero time there.
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By integrating the series solutions of Proposition 3 over time, we get two series for the

absorbed Green function:

FPG
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(y, x) = G

B

(y, x)
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(2.35)

with the same modes of convergence as those in Proposition 3. To contrast our result with

the literature, we provide the following Corollary:

Corollary 1. GA as SBL or DBL. The absorbed Green function G

A

can be found by a

double boundary layer (DBL) or single boundary layer (SBL):

FP G

A

(y, x) = G

B

(y, x)�
Z

@D
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�!
@

�

G

B

(�, x)
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Z
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d� µSBL(y,�)GB

(�, x)
(2.36)

with the following definitions of µDBL and µSBL:
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(2.37)

where the DBL naturally follows from the first-passage decomposition, and the SBL naturally

follows from the last-passage decomposition.

We only provide this Corollary to emphasise that the di↵erence between single and

double boundary layers is arbitrary: what looks like a first passage or double boundary

layer from the point of view of x looks like a last passage or single boundary layer from the

point of view of y. In other words, single and double boundary layers are only as di↵erent as

first- and last-passage decompositions; i.e. not that di↵erent. In [20], the multiple reflection

expansion is derived from the from the ansatz of a double boundary layer and this approach

has persisted in e.g. [10–19].

From the pair of FP and LP series, it is obvious that G

A

is symmetric. But if only

one series is derived by an ansatz, then it is not obvious that the absorbed Green function

G

A

is symmetric, or that it satisfies the boundary conditions, as noted in [14]. To show
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that the series is indeed symmetric, [14] suggest a symmetrisation procedure which involves

singular terms like the following

1
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The di↵erence is subtle, but a quantity that does exist, is the following:

1
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I
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1
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1
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@
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where the di↵erential operator with arrows both ways works on two sides. The ‘symmetri-

sation’ mistake of [14] is inherited by e.g. [16]. The term that we propose is considered in

detail in section 4.

Apart from the equivalence of single and double boundary layers, we further wish

to emphasise that our result relies only on the applicability of Green’s second identity.

The original paper [20] was subtitled ‘Three dimensional problem with smooth boundary

surface’ and the subsequent literature also assumes smooth boundaries.

The reflected Green function exists in d � 3, if the domain is infinite. We do not

present the result explicitly, but in that case the reflected Green function can also be

written as either a single or double boundary layer — by integrating Proposition 4 over an

infinite time.

3 Brownian motion and path integrals

3.1 The Schrödinger equation in a probabilistic setting

In quantum mechanics the motion of a particle is determined by the Schrödinger equation.

We will transform the Schrödinger equation into a probabilistic setting by going to imagi-

nary time (t! �i t). Larger mass m of a particle (i.e. higher inertia) is analogous to lower

variance �2 of a Brownian motion, suggesting we set m = 1

�

2 . With these changes and

with ~ = 1, our version of the Schrödinger equation reads as follows:

forward PDE

⇣

�

2

2
r2

y

� @

@t

� �V (y)
⌘

 

V

(y, t|x, s) = 0

backward PDE

⇣

�

2

2
r2

x

+
@

@s

� �V (x)
⌘

 

V

(y, t|x, s) = 0

forward BC lim
|y|!1

 

V

(y, t|x, s) = 0

backward BC lim
|x|!1

 

V

(y, t|x, s) = 0

forward STC lim
s%t

 

V

(y, t|x, s) = �(|y � x|)

backward STC lim
t&s

 

V

(y, t|x, s) = �(|y � x|)

(3.1)

where PDE stands for partial di↵erential equation, BC stands for boundary condition and

STC stands for short-time condition. The coordinates (y, t) and (x, s) are referred to as

the ‘forward’ and ‘backward’ space-time coordinates, respectively. We use the symbol  
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since this is customary in quantum mechanics, but in our case  is a probability density,

where the dependence on the potential is indicated by the subscript. The coupling constant

� measures the ‘strength’ of the coupling with the potential V .

The PDEs can be seen to hold through the following probabilistic interpretation. Sup-

pose that we have a Brownian motion as before, except we add the possibility that some

catastrophic event happens, during time ds, annihilating the particle and reducing to zero

the probability of propagation to any location, at any later time. This event we call an

interaction with the potential. Suppose that an interaction happens with a probability

that is a product of the strength of the potential at a certain location, and the time spent

there. This means that during ds, and at location x, an interaction happens with proba-

bility �V (x) ds. The transition density  
V

must be unbiased, and the ‘catastrophic event’

interpretation implies that we must have

 

V

(y, t|x, s) = (1� �V (x) ds) E  

V

(y, t|x+ dB, s+ ds) + �V (x) ds⇥ 0

where with probability (1� �V (x) ds) the particle stays alive and where with probability

�V (x) ds the particle is annihilated by the potential. Using Itô’s lemma we obtain to first

order in ds that
✓

�

2

2
r2

x

+
@

@s

� �V (x)

◆

 

V

(y, t|x, s) = 0

and similarly for the forward PDE. If the Brownian particle is not annihilated but instead

another Brownian particle is created, then with probability �V (x) ds the propagation

density doubles, i.e.

 

V

(y, t|x, s) = (1� �V (x) ds)E 
V

(y, t|x+ dB, s+ ds)

+ �V (x) ds⇥ 2E 
V

(y, t|x+ dB, s+ ds)

= (1 + �V (x) ds)E 
V

(y, t|x+ dB, s+ ds)

which, to first order in ds, leads by Itô’s lemma to

✓

�

2

2
r2

x

+
@

@s

+ �V (x)

◆

 

V

(y, t|x, s) = 0

This could have been obtained immediately by switching the sign of V . Thus positive

potentials annihilate particles, while negative potentials create particles.

The STCs are satisfied, finally, because the probability of an interaction is proportional

to ds and thus within a very short period of time, the Brownian particle stays 1) alive and

2) where it is.

3.2 First- and last-interaction decompositions

Our original research starts on the Schrödinger equation starts here. In this section we

will think of V as positive, i.e. annihilating particles. Then  

V

(y, t|x, s) represents the

probability that the particle moves from (x, s) to (y, t) with zero interactions, i.e. without

being annihilated by the potential. Using the STCs and the fundamental theorem of
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calculus, we can write down the following first-interaction (FI) and last-interaction (LI)

decompositions:

FI  
V

(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

Rd

d↵ B(y, t|↵, ⌧) 
V

(↵, ⌧ |x, s)

LI  
V

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

@

@⌧

Z

Rd

d↵  

V

(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(3.2)

where B equals the free Brownian propagator. The FI and LI decompositions hold by the

virtue of the fundamental theorem of calculus and the STCs, i.e. first we have

FI  
V

(y, t|x, s) = B(y, t|x, s) +
✓

lim
⌧%t

� lim
⌧&s

◆

Z

Rd

d↵ B(y, t|↵, ⌧) 
V

(↵, ⌧ |x, s)

LI  
V

(y, t|x, s) = B(y, t|x, s)�
✓

lim
⌧%t

� lim
⌧&s

◆

Z

Rd

d↵  

V

(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(3.3)

and the STCs show that both decompositions hold. To explain the nomenclature, we

introduce the first-interaction time ⌧FI and last-interaction time ⌧LI. They are defined

as the first and last times that an interaction happens in the interval [s, t]. We use the

conventions inf{?} = 1 and sup{?} = �1 such that e.g. ⌧FI is infinite if no interaction

happens in the interval [s, t]. With these definitions we have

FI P
�

B

t

2 dy; ⌧FI � ⌧
�

�

B

s

= x

�

=

Z

Rd

d↵ B(y, t|↵, ⌧) 
V

(↵, ⌧ |x, s)

LI P
�

B

t

2 dy; ⌧LI  ⌧
�

�

B

s

= x

�

=

Z

Rd

d↵  

V

(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(3.4)

Di↵erentiating, we find

FI P
�

B

t

2 dy; ⌧FI 2 d⌧

�

�

B

s

= x

�

= � @

@⌧

Z

Rd

d↵ B(y, t|↵, ⌧) 
V

(↵, ⌧ |, s)

LI P
�

B

t

2 dy; ⌧LI 2 d⌧

�

�

B

s

= x

�

=
@

@⌧

Z

Rd

d↵  

V

(y, t|↵, ⌧)B(↵, ⌧ |, s)
(3.5)

Then we subtract from the free density an integral (over ⌧) over all paths with a first or

last interaction at time ⌧ , and obtain

FI  
V

(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

@

@⌧

Z

Rd

d↵ B(y, t|↵, ⌧) 
V

(↵, ⌧ |x, s)

LI  
V

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

@

@⌧

Z

Rd

d↵  

V

(y, t|↵, ⌧)B(↵, ⌧ |x, s)
(3.6)

And thus we have re-derived the set of identities through a probabilistic intuition. While

the interpretation of first and last interactions presents itself naturally for a positive (i.e.
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annihilating) potential, it is obvious that both identities hold for any reasonably behaved

potential, since they only rely on the STCs. Using the PDEs of (3.1), we get

FI  
V

(y, t|x, s) = B(y, t|x, s)

�
Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)
✓

�

2

2

 �r2

↵

� �

2

2

�!r2

↵

+ �V (↵)

◆

 

V

(↵, ⌧ |x, s)

LI  
V

(y, t|x, s) = B(y, t|x, s)

+

Z

t

s

d⌧

Z

Rd

d↵ 

V

(y, t|↵, ⌧)
✓

�

2

2

 �r2

↵

� �

2

2

�!r2

↵

� �V (↵)

◆

B(↵, ⌧ |x, s)

(3.7)

where the direction of the arrows indicates the direction of di↵erentiation. Using Green’s

identity for the di↵erentiated terms, we can transform the integral over the ‘interior’ of Rd

to one over the ‘boundary’ of Rd. The BCs demand that the boundary terms disappear,

and thus we obtain:

Propostion 5. FI and LI decomposition of  V . The following formulations of a

Brownian motion, in the presence of a well-behaved potential V , are equivalent:
⇣

�

2

2
r2

y

� @

@t

� �V (y)
⌘

 

V

(y, t|x, s) = 0

⇣

�

2

2
r2

x

+
@

@s

� �V (x)
⌘

 

V

(y, t|x, s) = 0

lim
|y|!1

 

V

(y, t|x, s) = 0

lim
|x|!1

 

V

(y, t|x, s) = 0

lim
s%t

 

V

(y, t|x, s) = �(|y � x|)

lim
t&s

 

V

(y, t|x, s) = �(|y � x|)

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

FI  
V

(y, t|x, s) = B(y, t|x, s)

�
Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)�V (↵) 
V

(↵, ⌧ |x, s)

LI  
V

(y, t|x, s) = B(y, t|x, s)

�
Z

t

s

d⌧

Z

Rd

d↵  

V

(y, t|↵, ⌧)�V (↵)B(↵, ⌧ |x, s)

(3.8)

To physicists, the integral equations on the right-hand side are sometimes known as

the Lippmann-Schwinger or Dyson equations, but our derivation and interpretation are

di↵erent. By repeated substitution of the equations into themselves, the solution may be

written as

 

V

(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(��)i (K⇤)iB(y, t|x, s)

 

V

(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(��)iB(y, t|x, s) (⇤K)i
(3.9)

where the operator K is defined as follows

K ⇤ f(y, t|x, s) :=
Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)V (↵) f(↵, ⌧ |x, s)

f(y, t|x, s) ⇤K :=

Z

t

s

d⌧

Z

Rd

d↵ f(y, t|↵, ⌧)V (↵)B(↵, ⌧ |x, s)
(3.10)
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3.3 Decomposition for singular potentials

Let us introduce a potential V
✏

(x) that is non-singular for all ✏ > 0. We are interested in

the limit where ✏ goes down to zero. We define  
✏=0

as follows:

 

✏

(y, t|x, s) :=  

V

✏

(y, t|x, s)
 

✏=0

(y, t|x, s) := lim
✏&0

 

✏

(y, t|x, s) (3.11)

The limit  
✏=0

(y, t|x, s) does not exist for any singular potential V
✏

. But there are singular

potentials V

✏

for which the limit  
✏=0

(y, t|x, s) does exist, at least for x and y away from

the singularity of V
✏

. We will assume that the limit  
✏=0

indeed exists and proceed from

there. For all ✏ > 0, the FI and LI decompositions of Proposition 5 should apply, i.e.

FI  
✏

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)�V
✏

(↵) 
✏

(↵, ⌧ |x, s)

LI  
✏

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

Z

Rd

d↵  

✏

(y, t|↵, ⌧)�V
✏

(↵)B(↵, ⌧ |x, s)
(3.12)

Applying to both sides the limit where ✏ goes to zero, we obtain:

FI  
✏=0

(y, t|x, s) = B(y, t|x, s)� lim
✏&0

Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)�V
✏

(↵) 
✏

(↵, ⌧ |x, s)

LI  
✏=0

(y, t|x, s) = B(y, t|x, s)� lim
✏&0

Z

t

s

d⌧

Z

Rd

d↵  

✏

(y, t|↵, ⌧)�V
✏

(↵)B(↵, ⌧ |x, s)
(3.13)

We cannot push the limit through the integrals on the right-hand side, because the potential

V

✏

is singular in the limit where ✏ goes to zero. But the quantity  
✏

, which also appears

under the integral on the right-hand side, should remain well-behaved — by assumption.

Given that the limit of a product is equal to the product of limits, we can push the limit

regarding  
✏

through the integral sign, and obtain the following Proposition:

Propostion 6. Decomposition for singular potentials. If it exists, the propagator

 

✏=0

satisfies the following decompositions:

FI  
✏=0

(y, t|x, s) = B(y, t|x, s)� lim
⇣&0

Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)�V
⇣

(↵) 
✏=0

(↵, ⌧ |x, s),

LI  
✏=0

(y, t|x, s) = B(y, t|x, s)� lim
⇣&0

Z

t

s

d⌧

Z

Rd

d↵  

✏=0

(y, t|↵, ⌧)�V
⇣

(↵)B(↵, ⌧ |x, s).
(3.14)

These equations may be written as

FI  
✏=0

(y, t|x, s) = B(y, t|x, s)� �L ⇤  
✏=0

(y, t|x, s)

LI  
✏=0

(y, t|x, s) = B(y, t|x, s)� � 
✏=0

(y, t|x, s) ⇤ L
(3.15)
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provided that we introduce the operator L as follows

L ⇤ g(y, t|x, s) := lim
⇣&0

Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)V
⇣

(↵) g(↵, ⌧ |x, s)

g(y, t|x, s) ⇤ L := lim
⇣&0

Z

t

s

d⌧

Z

Rd

d↵ g(y, t|↵, ⌧)V
⇣

(↵)B(↵, ⌧ |x, s)
(3.16)

And by repeated substitution, the following series solution is obtained:

 

✏=0

(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(��)i (L⇤)iB(y, t|x, s)

 

✏=0

(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(��)iB(y, t|x, s) (⇤L)i
(3.17)

As an example of a well-known singular potential, we consider the propagator for the

one-dimensional Dirac �-potential at zero. It can be found in e.g. [54, p. 381], and is as

follows

 (y, t|x, s) = B(y, t|x, s)� �
Z 1

0

d↵ e

��↵

B(|y|+ |x|+ ↵, t|0, s) (3.18)

It can be checked by direct calculation that it satisfies the integral equations (3.14), when

the potential V is taken to be a Gaussian, for example, that approaches the Dirac �-

function. Consequently, the series solution (3.17) converges in an alternating fashion to

the exact solution (3.18). For the Dirac �-function, both the solution and all correction

terms are continuous at zero. Therefore it makes no di↵erence if the Dirac �-function is

taken to be symmetric or not.

3.4 The Feynman-Kac formula

The Feynman-Kac formula, which appeared in [25], suggests itself through the interpreta-

tion of V as a rate of killing. It is useful because it allows us to write the series solution of

Proposition 5 in a very compact manner. We will only derive it heuristically; for a more

formal treatment, see e.g. [55].

We slice up the time from s to t up such that there are N intermediate locations. The

length of each time interval is ✏ = (t� s)/(N + 1). Using the subscript i to indicate time,

we define ⌧
i

= s + i ✏. Let i run from 0 to N + 1 such that ⌧
0

= s and ⌧

N+1

= t. Thus

there are N intermediate times. The path from (x, s) to (y, t) is defined by N intermediate

locations {B
⌧1 , . . . , B⌧

N

}. The probability of survival of this path is a product of N + 1

probabilities: one for each intermediate location, and one for the end-point (it is assumed

that the particle is not annihilated at the starting point). Therefore the probability of

survival equals

N+1

Y

i=1

(1� �V (B
⌧

i

) ✏) ⇡
N+1

Y

i=1

e

��V (B

⌧

i

) ✏ = e

��

P
N+1
i=1 V (B

⌧

i

) ✏ ! e

��

R
t

s

V (B

⌧

)d⌧ (3.19)

and where the last relationship holds in the limit for large N . If the above is the probability

that a given path should survive (with N known intermediate locations), then the proba-

bility that any path should survive is obtained by taking an expectation over all possible
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intermediate locations, i.e. over all paths. If we want the path to end up at y then we

need to take an expectation over all paths while forcing the last position to be y. We can

achieve this by plugging in a �-function at y. With this heuristic, we are lead to propose

the Feynman-Kac formula as follows:

 

V

(y, t|x, s) = E
x

"

�(B
t

� y) exp
h

� �
Z

t

s

V (B
⌧

) d⌧
i

#

(3.20)

We note that a positive potential, which kills paths, leads to a propagator  
V

which is

smaller than the free propagator B. A negative potential, which creates paths, causes  
V

to be larger than the free density B.

4 The Laplacian of the indicator

The first/last interaction decompositions of section 3 are very similar to the first/last

passage decompositions of section 2. In this section, we show that those sections are not

merely similar, but equivalent, if we postulate a particular singular potential V .

4.1 Di↵erentiating the indicator

First, recall the fundamental theorem of calculus:
Z

b

a

@f(x)

@x

dx = lim
x%b

f(x)� lim
x&a

f(x) (4.1)

for a trial function f that is defined in the interval (a, b), i.e. it does not need to be defined

outside the interval. Now take a < 0 and b > 0. Then we have that
Z

b

a

f(x)
@

x>0

@x

dx =

Z

b

a

@

@x

�

f(x)
x>0

�

dx�
Z

b

a

@f(x)

@x

x>0

dx

= lim
x%b

f(x)�
Z

b

0

@f(x)

@x

dx

= lim
x&0

f(x)

(4.2)

Even though derivatives of the indicator function do not exist at zero, following the usual

rules of partial integration produces the ‘correct’ answer. Notice how it gives the value of

f just to the right of zero. If we take a bump function I

✏

(x) that approaches the indicator

x>0

from below, then

lim
✏&0

Z

b

a

f(x)
@I

✏

(x)

@x

dx = lim
x&0

f(x)

This result agrees with what we obtained above, by a naive application of an integration

by parts, but only because we have chosen our bump function to approach the indicator

from below. We now turn to double derivatives. In one dimension, for a < b, we may write
Z

+1

�1

@

2

a<x<b

@x

2

f(x) dx =

Z

+1

�1
a<x<b

@

2

f(x)

@x

2

dx

=

Z

b

a

@

2

f(x)

@x

2

dx

=
⇣

lim
x%b

� lim
x&a

⌘

@f(x)

@x

(4.3)
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where the first equality follows from the fact that two integrations by parts yield no bound-

ary terms, because
a<x<b

and @

x

a<x<b

both vanish at infinity. The third line can be

seen as a ‘sum’ of ‘outward normal derivatives’ — where the ‘sum’ is over two boundary

locations. This sum becomes an integral in higher dimensions, which we show as follows:
Z

Rd

r2

x

x2D f(x) dx =

Z

Rd

x2Dr2

x

f(x) dx

=

Z

D

r2

x

f(x) dx

=

I

@D

lim
↵!�

n

�

·r
↵

f(↵) d�

(4.4)

where the first equality follows from Green’s second identity and the fact that
x2D as well

as r
x x2D are zero when evaluated at the ‘boundary’ of Rd. Just as in the one-dimensional

case, we get a sum (or integral) over the normal derivative at all boundary locations. For

a finite domain (or when f vanishes at infinity), we obtain by the divergence theorem
Z

Rd

r2

x

⇥

x2D f(x)
⇤

dx = 0,
Z

Rd

r2

x

x2D f(x) dx+

Z

Rd

x2Dr2

x

f(x) dx = �2
Z

Rd

r
x x2D ·r

x

f(x) dx,
I

@D

lim
↵!�

n

�

·r
↵

f(↵) d� = �
Z

Rd

r
x x2D ·r

x

f(x) dx.

The third equality follows from our previous analysis. We may choose f such that r
x

f(x)

behaves like n

x

f(x) near the boundary. In this case we obtain
I

@D

lim
↵!�

f(↵) d� = �
Z
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f(x)n
x

·r
x x2D dx, (4.5)

where ↵ moves to the boundary point � from the inside ofD. This shows that �n
x

·r
x x2D

is the proper generalisation of the Dirac �-function or the inward normal derivative @
x x>0

in one dimension.

4.2 ABM and EBM by potentials

In this subsection we will show how to write the integral equations of ABM and EBM as

caused by a potential. Recall that, by virtue of the STCs alone, for ABM we have the

following pair of identities:
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(4.6)

As usual, by using the PDEs we obtain:
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2

2

Z

t

s

d⌧

Z

D

d↵ B(y, t|↵, ⌧)
n �r2

↵

��!r2

↵

o

A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D

d↵ A(y, t|↵, ⌧)
n �r2

↵

��!r2

↵

o

B(↵, ⌧ |x, s)
(4.7)
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Proceeding as before, we use Green’s second identity to obtain

FP A(y, t|x, s) = B(y, t|x, s) + 1

2
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LP A(y, t|x, s) = B(y, t|x, s)� 1
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B(�, ⌧ |x, s)
(4.8)

where @
�

is again the scaled inward normal derivative. The BCs of require that A is zero

on the boundary, or at least on all regular parts. Instead of discarding the boundary terms

that vanish by the BCs, we may change their sign to obtain:

FP A(y, t|x, s) = B(y, t|x, s)� 1
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LP A(y, t|x, s) = B(y, t|x, s)� 1
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(4.9)

By the divergence theorem this equals

FP A(y, t|x, s) = B(y, t|x, s) + �

2
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d↵ r2
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B(y, t|↵, ⌧)A(↵, ⌧ |x, s)
�
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A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
� (4.10)

Nothing stops us from extending the integration over all of Rd as long as we also insert an

indicator function
↵2D into the integrand, i.e.

FPA(y, t|x, s) = B(y, t|x, s)�
Z
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s

d⌧
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Rd

d↵

↵2D

✓
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B(y, t|↵, ⌧)A(↵, ⌧ |x, s)
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A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
�

(4.11)

where no definition for A is required outside of D (and any definition is allowed), since

the indicator is zero there. Both the indicator and its divergence vanish at the ‘boundary’

of Rd. Using Green’s theorem where the boundary terms disappear, the Laplacian now

operates on the indicator function as follows:

FP A(y, t|x, s) = B(y, t|x, s)�
Z

t
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d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)

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↵

↵2D
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A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)�
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Z
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d↵ A(y, t|↵, ⌧)

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2

2
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↵

↵2D

�

B(↵, ⌧ |x, s)
(4.12)

We have previously shown that a Brownian particle that is allowed in all of Rd but acted

upon by a potential V satisfies the FI and LI decompositions in Proposition 5. Comparing,

we can associate the absorbing potential in the following way:

V (↵) := ��
2

2
r2

↵

↵2D
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The above may seem purely formal, but it does suggest the following limiting procedure:

FP A(y, t|x, s) = B(y, t|x, s)� lim
✏&0

Z
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d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)

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A(↵, ⌧ |x, s)

LP A(y, t|x, s) = B(y, t|x, s)� lim
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d↵ A(y, t|↵, ⌧)


� �

2

2
I

00
✏
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B(↵, ⌧ |x, s)
(4.13)

where we have used the short-hand I

00
✏

= r2

I

✏

. Now we do have a prescription that is

well-defined, and we may compare with the FI and LI decompositions in Proposition 6,

which were specifically formulated for singular potentials, to check that the potential V

may be identified as follows:

V (↵) := ��
2

2
lim
✏&0

r2

↵

I

✏

(↵)

For the elastic density E we can derive a similar result. We start with the following

identities, which hold by the virtue of the STCs:

FR E(y, t|x, s) = B(y, t|x, s)�
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d↵B(y, t|↵, ⌧)E(↵, ⌧ |x, s)
(4.14)

As usual we may use the PDEs under the integral sign, and use Green’s second identity to

obtain

FR E(y, t|x, s) = B(y, t|x, s)� 1
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LR E(y, t|x, s) = B(y, t|x, s) + 1
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(4.15)

Using the boundary conditions, we may write this as

FR E(y, t|x, s) = B(y, t|x, s) + 1

2

Z

t

s

d⌧

I

@D

d� E(y, t|�, ⌧)
n �
@

�

+
�!
@

�

o

B(�, ⌧ |x, s)

��2
Z

t

s

d⌧

I

@D

d�E(y, t|�, ⌧)(�)B(�, ⌧ |x, s)
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(4.16)
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Using the divergence theorem, we have

FRE(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

Z

D

d↵
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2
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
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(4.17)

We may use the bump function to write this as

FRE(y, t|x, s) = B(y, t|x, s)� lim
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(4.18)

where no definition for E is required outside of D (and any definition is allowed), since the

bump function is zero there. By Green’s theorem where the boundary terms disappear, we

obtain

FRE(y, t|x, s) = B(y, t|x, s)� lim
✏&0
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(4.19)
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Using (4.5), we may write this as

FR E(y, t|x, s) = B(y, t|x, s)�
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(4.20)

Comparing with the FI and LI decompositions for singular potentials in Proposition 6,

we can formally define the elastic potential as follows:

V (↵) := lim
✏&0

✓
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↵

I
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(↵)� �2 (↵)n
↵
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↵

I
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◆

where (↵) and n

↵

, which were originally only defined on the boundary, may be defined

at any ↵ as being equal to (�) and n

�

, where � is the nearest boundary point.

4.3 Main theorem

We now present the our main theorem:

Theorem 1. Laplacian of the indicator. For all x, y 2 D and for all domains D

allowing Green’s theorem, the absorbed Brownian propagator can be written as the following

Feynman-Kac path integral:

A(y, t|x, s) = lim
✏&0

E
x

"

�(B
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� y) exp
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(B
⌧

) d⌧
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#

8x, y 2 D

while the elastic Brownian propagator can be written as:

E(y, t|x, s) = lim
✏&0

E
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#

where the reflected propagator R can be obtained by letting & 0.

Proof. Recalling the definition of the integral operator L in (3.16), we obtain

A(y, t|x, s) = B(y, t|x, s) +
1
X

i=1

(�1)i (L⇤)iB(y, t|x, s) (4.21)

where the operator L is defined by (3.16), and where

V

✏

(x) = ��
2

2
r2

x

I

✏

(x) (4.22)
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Now consider the first perturbation term, which is �L ⇤B. Using the short-hand I

00
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(x) =
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x
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(x), we obtain
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where the first equality follows by Green’s theorem, the third by the divergence theorem,

and the fourth by Lemma 3. For a convex domain D, the result is negative and indeed

equals the first order term in Proposition 3. For the second correction term, we need to

consider +L ⇤ L ⇤B, i.e.
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where the order of limits and integrations is crucial. By the analysis of the first perturbation

term we obtain that
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By Green’s theorem, we obtain
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And by taking the limit, we get
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By the divergence theorem, we then obtain
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When written out, this becomes
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By Lemma 1 we can push the di↵erential operator through the integral in the second term,

to obtain
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Now, no more di↵erentiations point through integral operators, so we may finally pull all

the integrals towards the left, to obtain
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Changing the direction of an arrow, in the first term, by taking into account Lemma 3, we

obtain
Z

t

s

d⌧

2

Z

⌧2

s

d⌧

1

I

@D

d�

2

I

@D

d�

1

B(y, t|�
2

, ⌧

2

)

⇢

1

2

�!
@

�2

�

B(�
2

, ⌧

2

|�
1

, ⌧

1

)
n�!
@

�1

o

B(�
1

, ⌧

1

|x, s)

+

Z

t

s

d⌧

2

I

@D

d�

2

B(y, t|�
2

, ⌧

2

)

⇢

1

2

�!
@

�2

�

B(�
2

, ⌧

2

|x, s)

+

Z

t

s

d⌧

2

Z

⌧2

s

d⌧

1

I

@D

d�

2

I

@D

d�

1

B(y, t|�
2

, ⌧

2

)

⇢

1

2

�!
@

�2

�

B(�
2

, ⌧

2

|�
1

, ⌧

1

)
n�!
@

�1

o

B(�
1

, ⌧

1

|x, s)

�
Z

t

s

d⌧

2

I

@D

d�

2

B(y, t|�
2

, ⌧

2

)

⇢

1

2

�!
@

�2

�

B(�
2

, ⌧

2

|x, s)

– 36 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
2

Two terms cancel, and collecting the other two, we finally get

L ⇤ L ⇤B(y, t|x, s)

=

Z

t

s

d⌧

2
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This shows that not only the first but also the second perturbation term of Theorem 1 is

equal to the corresponding one in Proposition 3. We noticed earlier that the only di↵erence

between the absorbed perturbation series in Proposition 3 and reflected perturbation series

in Proposition 4 is that the signs in front of the perturbation terms are di↵erent. We now

realise that this is simply because the potential generating them di↵ers by a sign. With

the same methods as above — i.e. using Lemma 1 to push di↵erential operators through

integrals, and by using Lemma 3 to change the direction of arrows — we can show that

all higher order perturbation terms are also equal to those in Propositions 3 and 4. This

completes the proof.

5 Moving boundaries

5.1 Time-dependent domains with absorbing BCs

We denote the time-dependent domain by D(·). The domain and its boundary at a specific

time t are indicated byD(t) and @D(t). The absorbed transition density A(y, t|x, s) satisfies
the following set of equations:

forward PDE

✓

@

@t

� 1

2
r2

y

◆

A(y, t|x, s) = 0 x 2 D(s) y 2 D(t),

backward PDE

✓

@

@s

+
1

2
r2

x

◆

A(y, t|x, s) = 0 x 2 D(s) y 2 D(t),

forward BC A(�, t|x, s) = 0 x 2 D(s) � 2 @D(t),

backward BC A(y, t|�, s) = 0 � 2 @D(s) y 2 D(t),

forward STC lim
s%t

A(y, t|x, s) = �(|y � x|) x 2 D(t) y 2 D(t),

backward STC lim
t&s

A(y, t|x, s) = �(|y � x|) x 2 D(s) y 2 D(s).

(5.1)

where the boundary conditions hold at regular boundary points, and where we assume that

the boundary moves with an integrable speed at all times. Writing down the first- and

last-passage decompositions and proceeding as in the case of a static domain, we derive a

similar pair of integral equations:

FP A(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

I

@D(⌧)

d� B(y, t|�, ⌧)
⇢

1

2

�!
@

�

�

A(�, ⌧ |x, s),

LP A(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

I

@D(⌧)

d� A(y, t|�, ⌧)
⇢

1

2

 �
@

�

�

B(�, ⌧ |x, s),
(5.2)
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with the only di↵erence that the integration is now over the time-dependent domain D(⌧).

We can rewrite these decompositions as

FP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D(⌧)

d↵ r2

↵



B(y, t|↵, ⌧)A(↵, ⌧ |x, s)
�

,

LP A(y, t|x, s) = B(y, t|x, s) + �

2

2

Z

t

s

d⌧

Z

D(⌧)

d↵ r2

↵



A(y, t|↵, ⌧)B(↵, ⌧ |x, s)
�

.

(5.3)

We may substitute these equations back into themselves to obtain a series solution. For a

time-dependent potential V , the first- and last-interaction decompositions of Proposition 5

turn into

FI 
V

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

Z

Rd

d↵ B(y, t|↵, ⌧)�V (↵, ⌧) 
V

(↵, ⌧ |x, s),

LI 
V

(y, t|x, s) = B(y, t|x, s)�
Z

t

s

d⌧

Z

Rd

d↵  

V

(y, t|↵, ⌧)�V (↵, ⌧)B(↵, ⌧ |x, s).
(5.4)

The only di↵erence is that V is now time- as well as space-dependent. Proceeding heuris-

tically as before, we can show that the potential is given by

V (↵, ⌧) = ��
2

2
r2

↵

↵2D(⌧)

,

= ��
2

2
lim
✏&0

r2

↵

I

✏

(↵, ⌧),

where I

✏

(↵, ⌧) approaches
↵2D(⌧)

from below.

5.2 Time-dependent domains with reflecting BCs

Consider now reflected Brownian motion in the time-dependent domain D(·). In e.g. [56],

a set of backward equations can be found. We add a set of forward equations to obtain

the full set:

forward PDE

✓

@

@t

� 1

2
r2

y

◆

R(y, t|x, s) = 0 x 2 D(s) y 2 D(t),

backward PDE

✓

@

@s

+
1

2
r2

x

◆

R(y, t|x, s) = 0 x 2 D(s) y 2 D(t),

forward BC

⇣�!
@

�

� 2�̇(t) · n
�

(t)
⌘

R(�, t|x, s) = 0 x 2 D(s) � 2 @D(t),

backward BC R(y, t|�, s)
 �
@

�

= 0 � 2 @D(s) y 2 D(t),

forward STC lim
s%t

R(y, t|x, s) = �(|y � x|) x 2 D(t) y 2 D(t),

backward STC lim
t&s

R(y, t|x, s) = �(|y � x|) x 2 D(s) y 2 D(s).

(5.5)

The backward BC is unchanged from the time-independent case, but the forward BC may

be surprising. It can be derived as follows. By Chapman-Kolmogorov, we have

R(y, t|x, s) =
Z

D(⌧)

d↵R(y, t|↵, ⌧)R(↵, ⌧ |x, s), (5.6)
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for s  ⌧  t. The left-hand side does not depend on ⌧ . Di↵erentiating with respect to ⌧ ,

using Reynold’s transport theorem (as in [57]), and integrating under the integral sign gives

0 =
@

@⌧

Z

D(⌧)

d↵R(y, t|↵, ⌧)R(↵, ⌧ |x, s),

0 =

I

@D(⌧)

d�R(y, t|�, ⌧)
n

n

�

· �̇(⌧)
o

R(�, ⌧ |x, s)

�1

2

Z

D(⌧)

d↵ R(y, t|↵, ⌧)
n �r2

↵

��!r2

↵

o

R(↵, ⌧ |x, s),

0 =

I

@D(⌧)

d�R(y, t|�, ⌧)
n

n

�

· �̇(⌧)
o

R(�, ⌧ |x, s)
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I

@D(⌧)

d� R(y, t|�, ⌧)
n �
@

�

�
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@

�

o

R(�, ⌧ |x, s),

(5.7)

where �̇(⌧) is the velocity-vector of the boundary element �(⌧) and n

�

is the outward

normal. Reynold’s transport theorem requires the boundary to move with integrable speed,

which we assume. The last equality follows from Green’s theorem, which holds as long as

D(⌧) is piecewise smooth for each ⌧ . Using the backward BC, and given that this should

hold for each domain D(·), it follows that the forward BC must hold at each boundary

location �. Now that we have established the BCs, we can write down the first- and last-

reflection decompositions as in the static case, turn the crank once more, and obtain finally:

FRR(y, t|x, s) = B(y, t|x, s) +
Z

t

s

d⌧

I

@D(⌧)

d� R(y, t|�, ⌧)
⇢
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�

B(�, ⌧ |x, s),

LRR(y, t|x, s) = B(y, t|x, s) +
Z
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I

@D(⌧)

d� B(y, t|�, ⌧)
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 �
@

�

�

R(�, ⌧ |x, s).

(5.8)

We may use these decompositions to obtain two series solutions, as in the static case. Or,

we may rewrite them to obtain the following more ‘symmetric’ pair:

FR R(y, t|x, s) = B(y, t|x, s)� �
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Z
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I
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d� R(y, t|�, ⌧)n
�

· �̇(⌧)B(�, ⌧ |x, s)

LR R(y, t|x, s) = B(y, t|x, s)� �
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2

Z
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s
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Z

D(⌧)

d↵ r2

↵



B(y, t|↵, ⌧)R(↵, ⌧ |x, s)
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Z

t

s

d⌧

I

@D(⌧)

d� B(y, t|�, ⌧)n
�

· �̇(⌧)R(�, ⌧ |x, s).

(5.9)
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and thus we may associate the potential

V (x, ⌧) =
�

2

2
r2

x

x2D(⌧)

+ �̇(x) · n
x

n

x

·r
x

I

✏

(x)

where �̇(x) and n

x

are the vector fields defined by the velocity and normal vectors of the

nearest boundary point, respectively.

6 Conclusion

This paper has considered the heat equation with boundary conditions (section 2), and

the Schrödinger equation with (a possibly singular) potential V (section 3). The first- and

last-passage decompositions of section 2 are very similar to the first- and last-interaction

decompositions of section 3. Section 4 showed that sections 2 and 3 are not merely similar,

but equivalent, if we postulate a particular singular potential V (Theorem 1).

Section 2 developed the first- and last-passage (and reflection) decompositions, show-

ing the equivalence of the path decomposition expansion (for path integrals), the multiple

reflection expansion (found in potential theory) and the series solution of the parametrix

method (found in probability theory). In particular, 1) single and double boundary layers

need not be based on an ansatz, but follow from the first- and last-interaction decompo-

sitions of a Brownian motion, 2) either the absorbed or the reflected propagator may be

found with either method, and 3) boundary layers may be useful for irregular as well as

regular domains, by virtue of Green’s theorem.

Section 3, in an analogous manner to section 2, developed the first- and last-interaction

decompositions for smooth and singular potentials in Rd. It showed how a series solution

for a singular potential can be obtained, allowing e.g. point interactions and surface inter-

actions.

Section 4, finally, postulated a potential that has the (scaled) Laplacian of the indica-

tor as its limit (when  is zero). The Laplacian of the indicator has — to the author’s best

knowledge — not formally been defined before. It can be defined in the theory of distribu-

tions by two partial integrations under the integral sign, or by a limiting procedure involving

a bump function. The potential shows, for the first time, that the Dirichlet and Neumann

problems are very closely related: the potential generating the absorbed/reflected density

di↵ers only by a sign. This also explains why the perturbation series for both problems

have di↵erent signs for odd-numbered terms, as has been noted in the literature.

In terms of the intuition for this potential, we have noted that positive potentials

destroy particles while negative potentials create particles. From a limiting procedure, as

illustrated in figure 2, we can derive intuitively from which side the boundary is reflecting

and absorbing.

We di↵er from the literature on point interactions in that we consider the higher-

dimensional analogues of the the Dirac �- and �0-functions to be �n ·r
x x2D and r2

x

x2D,

respectively. Both quantities are supported by a surface instead of by a point. This

generalisation is useful because surface-interactions can lead to boundary conditions in

d � 1, while point interactions cannot.

– 40 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
2

For moving boundaries many of the same methods are appropriate, as we have shown

in section 5.

In conclusion, this paper has introduced the Laplacian of the indicator as the crucial

tool to write the heat kernel with boundary conditions as a path integral. If one were

aiming to communicate this heat kernel in the least possible number of bits, then the

solution provided in this paper would be a good candidate.
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A Three lemmas

Lemma 1. Pushing di↵erential operators through integrals. For a test-function f

and a regular boundary coordinate �, we have

⇢
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1

A = �1
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Lemma 2. Pushing limits through integrals. For a test-function f and a regular

boundary coordinate �, we have
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Lemma 3. Changing directions of arrows. By the fundamental theorem of calculus,

the STCs and the fact that a Dirac �-function on a regular part of the boundary picks up
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half a contribution, we have that

Z

t

s

d⌧

✓

@

@⌧

◆

Z

D

d↵ B(y, t|↵, ⌧)B(↵, t|x, s) =

8

>

<

>

:

0 if x 2 D, y 2 D;
1

2

B(y, t|x, s) if x 2 @Dr

, y 2 D;

�1

2

B(y, t|x, s) if x 2 D, y 2 @Dr

.

By the PDEs and Green’s theorem, this in turn implies that

Z

t

s

d⌧

I

@D

d� B(y, t|�, ⌧)
n �
@

�

�
�!
@

�

o

B(�, ⌧ |x, s) =

8

>

<

>

:

0 if x 2 D, y 2 D;

B(y, t|x, s) if x 2 @Dr

, y 2 D;

�B(y, t|x, s) if x 2 D, y 2 @Dr

.
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