
DAMIR VANDIĆ

Erasmus University Rotterdam (EUR)
Erasmus Research Institute of Management
Mandeville (T) Building

Burgemeester Oudlaan 50

3062 PA Rotterdam, The Netherlands

P.O. Box 1738

3000 DR Rotterdam, The Netherlands

T +31 10 408 1182

E info@erim.eur.nl

W www.erim.eur.nl

Over the last few years, we have experienced an increase in online shopping. Consequently, there is a
need for e� cient and e� ective product search engines. The rapid growth of e-commerce, however, has
also introduced some challenges. Studies show that users can get overwhelmed by the information and
o� erings presented online while searching for products.

In an attempt to lighten this information overload burden on consumers, there are several product
search engines that aggregate product descriptions and price information from the Web and allow the
user to easily query this information. Most of these search engines expect to receive the data from the
participating Web shops in a specifi c format, which means Web shops need to transform their data more
than once, as each product search engine requires a di� erent format. Because currently most product
information aggregation services rely on Web shops to send them their data, there is a big opportunity for
solutions that aim to tackle this problem using a more automated approach.

This dissertation addresses key aspects of implementing such a system, including hierarchical product
classifi cation, entity resolution, ontology population and schema mapping, and lastly, the optimization
of faceted user interfaces. The fi ndings of this work show us how one can design Web product search
engines that automatically aggregate product information while allowing users to perform e� ective and
e� cient queries.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onderzoekschool) in
the fi eld of management of the Erasmus University Rotterdam. The founding participants of ERIM are the
Rotterdam School of Management (RSM), and the Erasmus School of Economics (ESE). ERIM was founded
in 1999 and is o� cially accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW). The
research undertaken by ERIM is focused on the management of the fi rm in its environment, its intra- and
interfi rm relations, and its business processes in their interdependent connections.

The objective of ERIM is to carry out fi rst rate research in management, and to o� er an advanced doctoral
programme in Research in Management. Within ERIM, over three hundred senior researchers and PhD
candidates are active in the di� erent research programmes. From a variety of academic backgrounds and
expertises, the ERIM community is united in striving for excellence and working at the forefront of creating
new business knowledge.

ERIM PhD Series
Research in Management

405

Intelligent Information Systems
for Web Product SearchD
A

M
IR

 V
A

N
D

IC
 - In

te
llig

e
n

t In
fo

rm
a

tio
n

 S
y

ste
m

s fo
r W

e
b

 P
ro

d
u

ct S
e

a
rch

´

27262_dissertatie_cover_Damir_Vandic.indd Alle pagina's 10-01-17 09:59

Intelligent Information Systems
for Web Product Search

Intelligent Information Systems for
Web Product Search

Intelligente informatiesystemen voor het online zoeken naar producten

Thesis

to obtain the degree of Doctor from the
Erasmus University Rotterdam

by command of the
rector magnificus

Prof.dr. H.A.P. Pols

and in accordance with the decision of the Doctorate Board

The public defense will be held on

Friday 10 February 2017 at 13:30 hours

by

Damir Vandić
born in Sarajevo, Bosnia and Herzegovina

Preface

“[A] quotation is a handy thing to have about, saving one the
trouble of thinking for oneself, always a laborious business.”

Alan Alexander Milne (1882 – 1956)

During my Ph.D. trajectory I have had the support of many people, and for that,
I am forever grateful. First and foremost, I would like to thank my copromotor
and daily supervisor, dr. Flavius Frasincar. Flavius, I really enjoyed the numerous
lunches, meetings, and conferences we spent together. You went above and beyond
in your supervision of my Ph.D. trajectory and I am aware that I am very lucky in
this regard! Next, I would like to thank my promotor Prof.dr.ir. Uzay Kaymak. Your
help with my application for the NWO Mosaic grant has been indispensable. The
meetings and discussions with you were not only inspirational, but they have always
resulted in new ways for me to tackle the problem at hand. Furthermore, I would
like to express my gratitude towards the members of my doctoral committee. Thank
you so much for critically reviewing my dissertation.

Various organizations have played important roles in making my Ph.D. trajec-
tory possible. I am thankful for the funding and academic support provided by the
Econometric Institute, the Erasmus Research Institute for Management (ERIM), the
Dutch Research School for Information and Knowledge Systems (SIKS), and the
NWO Mosaic program. I would like to thank Anneke, Carien, Marjon, Marianne,
and Ursula from the Econometric Institute for their efforts at the secretariat and in
the office management. Thank you for being so patient and kind.

My colleagues at the university were not only a source of inspiration, but they also
made sure that working on my dissertation remained fun throughout the years. Fred-
erik and Alexander, my paranymphs, thank you for all the conversations, support,
and entertaining breaks from work. Thank you for all the fruitful collaborations, it
was a real pleasure working together. Many more other colleagues have made my

viii Preface

time at Erasmus University Rotterdam a pleasant experience. In particular, I would
like to thank Charlie, Kim, Nalan, Rui, Tommi, Viorel, Wim, and Yingqian for all
the good times we had at university.

Special thanks goes out to the (former) students of the Econometric Institute
Bachelor’s and Master’s programs. In particular I would like to call out Didier,
Gerhard, Hanno, Iris, Jim, Lennart, Marnix, Nikki, Raymond, Rick, Ronald, Sabri,
Sjoerd, Steven, and Wim. I really enjoyed supervising you and I am proud of the
papers that we have managed to publish together.

Last but not least, I am grateful for my family, in particular my mother, father,
and sister, for their everlasting support and words of wisdom. Without you, I would
not be the person I am today. Thank you, my friends, Jan-Willem, Lieke, Marien,
Hannah, Laurens, and Renske, for all the fun time we spent together. Britt, Zjenja,
Olga, and Tonio, it was nice to be able to share my Ph.D. experiences with you.
Lilia and Leonid, thank you for believing in me and for raising such a sweet and kind
daughter!

Dear Anna, thank you for supporting me throughout the years. Whether I was
working late or in the weekends, or being away because of traveling for conferences,
you always understood and you were always there for me. You remind me that there
are more important things to life than obtaining a Ph.D. degree.

Rotterdam, December 2016
Damir Vandić

Table of Contents

Preface vii

1 Introduction 1
1.1 Research Objectives . 2
1.2 Contributions . 8
1.3 Declaration of contribution . 10
1.4 Outline of the dissertation . 11

2 Towards Automatic Product Description Classification 13
2.1 Introduction . 14
2.2 Related Work . 16
2.3 The HPC Framework . 20

2.3.1 Data set processing . 20
2.3.2 Classification system . 22

2.4 Evaluation . 29
2.4.1 Data Collection . 29
2.4.2 Results . 30

2.5 Conclusions and Future Work . 41

3 Large-Scale Web Product Entity Resolution 43
3.1 Introduction . 44
3.2 Related Work . 45
3.3 Product Entity Resolution . 47

3.3.1 Blocking Schemes . 48
3.3.2 Blocking Schemes Aggregators 50
3.3.3 Blocking Schemes Identifiers 51
3.3.4 Similarity Computation . 51

xii Table of Contents

3.3.5 Clustering . 54
3.4 Evaluation . 54

3.4.1 Blocking Evaluation . 54
3.4.2 Entity Resolution Evaluation 62

3.5 Conclusion . 63

4 Ontology Population of Product Information 65
4.1 Introduction . 66
4.2 Related Work . 69

4.2.1 Ontology Population Approaches 69
4.2.2 Ontologies for E-commerce . 71

4.3 FLOPPIES Framework . 73
4.3.1 Framework Overview . 73
4.3.2 The OntoProduct Ontology . 75
4.3.3 Classification . 79
4.3.4 Property Matching . 81
4.3.5 Value Instantiation . 84

4.4 Evaluation . 88
4.4.1 Evaluation Design . 88
4.4.2 Performance Measures . 91
4.4.3 Results . 93

4.5 Conclusions . 100

5 An Automated Approach for Taxonomy Mapping in E-commerce 103
5.1 Introduction . 104
5.2 Related Work . 105
5.3 SCHEMA . 106

5.3.1 General Assumptions . 107
5.3.2 Source Category Disambiguation 108
5.3.3 Candidate Target Category Selection 111
5.3.4 Candidate Target Path Key Comparison 113

5.4 Evaluation . 115
5.4.1 Evaluation Design . 115
5.4.2 Results . 116

5.5 Conclusions & Future Work . 118

Table of Contents xiii

6 Dynamic Facet Ordering for Product Search Engines 121
6.1 Introduction . 122
6.2 Related Work . 124
6.3 Facet Optimization Algorithm . 125

6.3.1 Computing Property Scores . 128
6.3.2 Computing Facet Scores . 135

6.4 Evaluation . 136
6.4.1 Experimental Framework . 136
6.4.2 Results from the simulated experiments 141
6.4.3 Results using the experiment with real users 143

6.5 Conclusion . 145

7 Approximate Faceted Search and User Preference Ranking 147
7.1 Introduction . 148
7.2 Related Work . 149
7.3 Approximate Product Search . 151

7.3.1 Framework Overview . 153
7.3.2 Product IDF Vectors . 155
7.3.3 Weighted Query Vectors . 159
7.3.4 Query-Product Similarity Score 161

7.4 Evaluation . 166
7.4.1 Experimental setup . 166
7.4.2 Results from the simulated experiments 172
7.4.3 Results using an experiment with users 175

7.5 Conclusion . 177

8 Conclusions 179
8.1 Concluding Remarks . 179
8.2 Future work . 181

Bibliography 183

Summary in English 201

Nederlandse Samenvatting (Summary in Dutch) 203

About the Author 205

ERIM Ph.D. Series Overview 207

List of Figures

Chapter 1
1.1 Overview of the Web product information aggregation framework. . . 3

Chapter 2
2.1 Product categories from Amazon.com. 15
2.2 Three possible scenarios when a new product needs to be classified. . . 16
2.3 K level top-down approach for K = 2. 22
2.4 The structure of a classifier recipe. 23
2.5 Feature selection method similarity for the title property. 31
2.6 Feature selection method similarity for the features description property. 32
2.7 Feature selection method accuracy for the title property. 33
2.8 Feature selection method accuracy for the features description property. 34
2.9 Mutual Information kNN classifier for the title property. 35
2.10 Chi Square kNN classifier for the features description property. 36
2.11 SVM classifier on the title property. 37
2.12 SVM classifier on the features description property. 38

Chapter 3
3.1 High-level overview of the steps in the entity resolution framework. . . 47
3.2 Details of the employed blocking approach. 49
3.3 Scatter plots for the ‘low’ PC category blocking methods. 57
3.4 Scatter plots for the ‘medium’ PC category blocking methods. 58
3.5 Scatter plots for the ‘high’ PC category blocking methods. 59

Chapter 4
4.1 Overview of the input and output of the proposed framework. 67
4.2 Overview of the processes in the proposed framework. 74
4.3 Property matching using raw product data and ontology properties. . 75

xvi List of Figures

4.4 Example of an instantiated TV in the OntoProduct ontology. 77
4.5 Overview of the instantiation process as a flowchart. 84

Chapter 5
5.1 Framework overview for SCHEMA. 107
5.2 Mapping example going from Overstock to Amazon categories. 108
5.3 Source category example with associated candidate target categories. . 113

Chapter 6
6.1 Screenshot of the Amazon.com faceted search user interface. 123
6.2 The main flow of a search session. 129
6.3 The individual steps in the property score computation process. 130
6.4 The concepts and phases underlying the evaluation framework. 137
6.5 The Web application that implements the proposed approach. 140

Chapter 7
7.1 Overview of the framework. 153
7.2 Three example products and their facets. 156
7.3 A query and the corresponding facets. 160
7.4 Screenshot of our approach that implements our approach. 176

List of Tables

Chapter 2
2.1 K = 3 classification system with only Naïve Bayes. 39
2.2 K = 3 classification system with Naïve Bayes and SVM. 39
2.3 K = 3 classification system with Naïve Bayes only, 1000 features. . . . 40
2.4 An excerpt of the golden standard category mappings. 41
2.5 Results of the category mapping algorithm. 41

Chapter 3
3.1 Results for the blocking methods in the ‘low’ PC category. 56
3.2 Results for the blocking methods in the ‘medium’ PC category. 60
3.3 Results for the blocking methods in the ‘high’ PC category. 60
3.4 The top-3 best performing methods w.r.t. the F1-measure. 63

Chapter 4
4.1 Property Matching results using golden standard classification. 94
4.2 Classification results using golden standard classification. 95
4.3 Evaluation results for Value instantiation. 96
4.4 Classification results on the test data set. 98
4.5 Property Matching results on the test data set. 99
4.6 Value instantiation results on the test data set. 100

Chapter 5
5.1 Comparison of the best average results for each algorithm 116
5.2 Best results for SCHEMA . 117
5.3 Best results for Park & Kim algorithm 117
5.4 Best results for PROMPT . 117

xviii List of Tables

Chapter 6
6.1 Summary of notations. 128
6.2 Example data from the Tweakers.net Pricewatch. 131
6.3 Computed scores for the example data. 132
6.4 Results for the Least Scanning Drill-Down Model. 142
6.5 Results for the Best Facet Drill-Down Model. 142
6.6 Results for the Combined Drill-Down Model. 143
6.7 Event counts in the user experiments. 144

Chapter 7
7.1 Summary of used notations. 155
7.2 Additional notations used in the evaluation procedure. 166
7.3 Results obtained from the simulation experiments. 174
7.4 Event counts for the user experiment. 177

List of Algorithms

Chapter 2
2.1 The category matching algorithm. 26
2.2 The HPC system construction process. 28

Chapter 3
3.1 MSM Similarity. 52
3.2 MSM Key Similarity. 53

Chapter 4
4.1 Classification of a Raw Product. 80
4.2 Computing the Highest Information Gain. 81
4.3 Property Match Score. 82

Chapter 5
5.1 Finding Source Category’s Extended Split Term Set. 109
5.2 Context-Based Target Word Disambiguation. 110
5.3 Semantic Match. 112

Chapter 1

Introduction

Over the last few years, online shopping has become very popular among consumers.
According to a recent projection from Forrester Research, e-commerce spending in
the United States will hit approximately $480 billion in 2019, with an expected com-
pound annual growth rate of 10% over the next five years (Mulpuru et al., 2015).
Predictions for the future also show us that e-commerce will continue to grow and
play an important role in society. One of the reasons behind this growth is the
increase in product specificity and consumer preference variation. Another reason
is that the product search space on the Web has grown, as even traditional stores
without a Web shop are increasingly starting to offer their services online. Because
of this increase in online shopping, there is a growing need for efficient and effective
product search engines. However, the rapid growth of e-commerce introduces some
challenges. For example, due to the wide variety of products and many different on-
line stores where these products can be bought, a large fraction of online shoppers get
confused or are overwhelmed by the information they get presented while searching
for products (Horrigan, 2008).

In an attempt to lighten this information overload burden on consumers, there
are several product search engines that aggregate product descriptions and price
information from the Web and allow the user to easily query this information. Google
Shopping, Tweakers PriceWatch, and Kieskeurig.nl, where the latter two are Dutch
initiatives, are three examples of product search engines of this type. However, all of
these search engines expect to receive the data from the participating Web shops in
a customized format. The downside of this is that the Web shops have to transform

2 Introduction

their data more than once into a custom format, as each product search engine
requires a different format.

Because currently most product information aggregation services rely on Web
shops to send them their data, there is a big opportunity for solutions that aim
to tackle this problem using a more automated approach. There are a couple of
advantages to this. First, it is highly unlikely that a product search engine will
cover most of the Web shops on the Web if they require the Web shops to send their
data. Second, Web shop owners more easily enjoy a greater visibility on the Web
because there is no need anymore to provide custom data feeds for every product
search engine they want to be listed in. They can spend more time focusing on their
business and improving the usability of their Web shop, which is inherently beneficial
for consumers. Third, consumers are able to search for a wider range of products
and, with proper automation, are also more likely to search across country borders,
whereas in the current situation most product search engines operate within a single
country.

The four major search engines, i.e., Bing, Google, Yahoo!, and Yandex, recognize
this potential for e-commerce and also other domains. In recent years, they have
started parsing structured data from Web pages in order to more accurately extract
the conveyed information represented on those pages. For this purpose, the four
search engines have developed a semantic vocabulary called schema.org (Google,
Microsoft, Yahoo and Yandex, 2017). Schema.org is a very broad vocabulary with
which the search engines aim to have a high-level shared vocabulary that focuses on
popular Web concepts.

Because there are many benefits of having product search engines that are able
to automatically crawl and process the available product information and offerings
on the Web, this dissertation addresses key aspects of designing and implementing
such a system. In the next few sections, we will discuss in detail the components
that encompass such a system, the contributions of this dissertation, and the outline
of the thesis chapters.

1.1 Research Objectives

The underlying problem statement of this dissertation can be summarized as:

How to design Web product search engines that automatically aggregate product
information and allow users to perform effective and efficient queries?

Faceted Search

Approximate
Search

Product
Information
Database

Structured
Product

Information
(Linked Data)

Semi-Structured
Product

Information
(HTML)

Product
Taxonmy

Product
Search
Engine

Ontology
Population

Product
Taxonmy

Product
Taxonmy

Entity
Resolution

Product
Classification

Information
Extraction

Web

Aggregation
Framework

Entity
Resolution

usesuses

Taxonomy
Mapping

Product
Classification

ch2

ch3
ch5

ch6

ch7

ch4

4 Introduction

descriptions from both type of sources are optionally classified into a product taxon-
omy, a feature that is common among many Web shops nowadays. The key aspect of
the platform is to transform these input product descriptions into product descrip-
tions that can be uniformly queried, regardless of the source, and that each product
description is classified into a given product taxonomy.

The type of product description (semi-structured or structured) determines the
necessary processing pipeline that provides the required end result. Product informa-
tion that is semi-structured requires to parse the data and exctract the information,
which occurs in the Information Extraction phase. Then, in the Product Classifi-
cation phase, the product description needs to be classified into the main product
taxonomy. Before finally being stored in the product database, the Entity Resolu-
tion phase identifies the product descriptions that are duplicates, i.e, the ones that
describe the very same product. For structured product information, the processing
pipeline is similar except for the fact that the first process, i.e., Information Extrac-
tion is not necessary as we are dealing in this case with a representation from which
information is more or less readily available. However, even though the next two
processes are the same as with the semi-structured product descriptions, i.e., Prod-
uct Classification and Entity Resolution, the employed algorithms differ because in
the case of semi-structured data, even after the Information Extraction phase, the
information quality is lower than the one when dealing with structured data.

When the data from the Web is stored in the product database using the internally
managed product taxonomy, it can be queried by users. In this case, two processes
play a key role: (1) the interaction of the user with the search system and (2) the
ability of the search engine to answer the queries of users. For this purpose, faceted
and fuzzy search are approaches that work well with e-commerce systems due to the
nature of the data (i.e., many product features and consumer needs that are not
always perfectly known upfront). This dissertation focuses on two related topics,
i.e., Facet Ordering for addressing the user interaction with the search system, and
Approximate Search for addressing the ability of the search engine to answer queries.

Additionally, in order to be able to more easily map product descriptions in
the internal product taxonomy, we investigate approaches for Taxonomy Mapping.
This vastly increases the performance of the product classification processes as the
algorithms can take more evidence into account when classifying the product de-
scriptions. Last, in order to promote the usage of annotated data on the Web, we
discuss approaches for Ontology Population, where the goal is to transform parsed
semi-structured data into instances of a given ontology.

1.1 Research Objectives 5

From the main problem statement and the presented framework, there are several
research questions that follow. We discuss below which ones are addressed in this
dissertation.

Question 1: How can we classify products into an existing taxonomy using
only their textual descriptions?
The first issue that needs to be solved in a system that automatically crawls product
information on the Web is to classify incoming product descriptions using an existing
product taxonomy. We make the assumption here that one is able to parse HTML
pages and extract semi-structured data from tables (i.e., page titles and key/value
string pairs). This assumption is well supported by the amount of research done in
this area (Crescenzi et al., 2001; Gatterbauer and Bohunsky, 2006; Gupta et al., 2003;
Krüpl et al., 2005; Pinto et al., 2003; Tengli et al., 2004). For this reason, we do not
focus on the Information Extraction phase depicted in Figure 1.1. In order to answer
this research question, we propose a multi-level hierarchical classification algorithm
that makes use of the structure of the taxonomy to derive the most optimal product
description classifications.

Question 2: What is a suitable approach for performing large-scale entity
resolution in product descriptions?
Many of the crawled Web pages will have different descriptions of the products they
are referring to, resulting in duplicate data. Entity resolution, i.e., the task of finding
descriptions that refer to the same entity, or sometimes referred to as ‘duplicate de-
tection’, is therefore an important task in such a system. This task can be performed
on the fly, i.e., as the product descriptions are crawled, or in batches, i.e., where
entity resolution is applied on a set of new product descriptions using a set of pre-
viously processed product descriptions. In this dissertation we devise an algorithm
that is suited to perform this task on a large scale and in a distributed environment.

Question 3: How can we effectively populate ontologies from semi-
structured product data using lexico-syntactic mappings?
Most of the information found on Web pages are understandable by humans, but
unfortunately not by machines. A possible solution to this problem can be the real-
ization of the Semantic Web and its associated Linked Data initiatives (Hepp, 2015;
Hitzler and Janowicz, 2013; Shadbolt et al., 2006; Vijayalakshmi et al., 2011). If
online product information was not only shared using unannotated HTML, but also
using a representation that machines are capable of parsing and reasoning about,

6 Introduction

e.g., the RDF data model (Bizer et al., 2009), then this would open up a wide range
of novel applications due to the fact that data sharing between different sources
would become much easier. Allowing machines to understand concepts like persons,
companies, products, etc., facilitates automatic aggregation of information over re-
sources. For instance, consider a Web page that only describes the battery life of
a mobile phone and that another Web page describes just the color. If a computer
understands that ‘battery life’ and ‘color’ are properties of a mobile phone, and it
can identify that the two Web pages are about the same resource (a specific mobile
phone), then it can aggregate this information in order to describe this one product
using both of its properties. Because of the opportunities that Linked Data for e-
commerce brings us, and the fact that we would like a system like the one we envision
in this dissertation to be as open as possible, we consider this research question to
be relevant. To answer this research question, we devise an algorithm that is able to
semi-automatically convert product descriptions into instances of an ontology.

Question 4: How to design an approach that automatically maps one
product taxonomy into another, using only the category names?
When crawled product descriptions contain a product category, one would want to
understand what this category entails and how it maps to the existing categories
in the system. In this way, the system maximizes the use of information provided
by the product description. In other words, there is a need for a way to map the
product taxonomy of the external Web shop to the internal product taxonomy of
the product search engine. Such a mapping can be useful for various data processing
steps. For example, when a product description is found, the mapping can be used
to determine the most appropriate internal product category, utilizing possibly both
the information from the mapped taxonomies, as well as the information from the
product description itself. For this purpose, we propose an algorithm that can gen-
erate mappings between two taxonomies, based solely on the names and hierarchy of
categories.

Question 5: How can we reduce the consumer search effort by ranking
the displayed facets on a per-query basis?
Nowadays, many Web shops make use of a so-called faceted navigation or faceted
search user interface (Hearst, 2006; Tunkelang, 2009). One of the reasons why faceted
search is popular among Web shops is that users find it intuitive (Hearst et al., 2002;
Kules et al., 2009). The term ‘facet’ has a rather ambiguous interpretation, as there
are different types of facets. In this work, we refer to facets as the combination of

1.1 Research Objectives 7

a property and its value, such as WiFi:true or Lowest price (e):64.00. Fur-
thermore, facets are usually grouped by their property in user interfaces, in order
to prevent them from being scattered around, and, thereby, confusing the user. In
other words, the facet properties, such as Color, are shown first, and each property
presents the actual values (e.g., Red, Green, and Blue).

One of the difficulties with faceted search, especially in e-commerce, is that a
large number of facets are available. In general-domain faceted browsing systems,
it is not uncommon to simply display all facets. Displaying all facets may be a
solution when a small number of facets is involved, but it can overwhelm the user
for larger sets of facets (Sinha and Karger, 2005b). Some Web sites that use faceted
search have a manual, ‘expert-based’ selection procedure for facets (Kieskeurig.nl,
2017; Tweakers.net, 2016). However, the task of manually selecting and ordering
facets, and keeping this information up-to-date, requires a significant amount of
effort. Furthermore, faceted search allows for interactive query refinement, in which
the importance of specific facets and properties may change during the search session.
Therefore, it is likely that a predefined list of facets might not be optimal in terms
of the number of clicks needed to find the desired product. In order to deal with
this problem, we propose an approach for dynamic facet ordering in the e-commerce
domain.

Question 6: How can we improve fuzzy product search by allowing users
to specify facet preference rankings?
There are many Web shops with very large product catalogs. This makes it hard for
users to find their desired product in an efficient manner. It has been shown that
many users encounter this difficulty while shopping online (Horrigan, 2008), which
can negatively impact the turnover for Web shop owners. This emphasizes the need
for better search interfaces for browsing through product catalogs on the Web.

Throughout the years various interaction paradigms have been proposed to deal
with the above problem. As mentioned previously, faceted search is one of the most
popular paradigms for browsing structured data in information systems (Hearst,
2006), especially product catalogs in e-commerce stores. Despite the advantages of
faceted search, there are also some serious drawbacks. Traditionally, faceted search
imposes a rather strict Boolean model on whether a document matches the query
terms: either it matches the query or it does not. While this model allows for a quick
drill-down into the catalog, it also means that a user might miss some potentially
desired products if they do not completely match the query. This results in a user
having to change the query afterwards to include more documents, which increases

8 Introduction

search time and makes exploratory search more error-prone. To answer this research
question, we design a novel algorithm that is specifically geared towards approximate
faceted search within a product catalog of a Web shop. The main focus is on im-
proving the retrieval of relevant products, taking into account the importance of the
specified user requirements.

1.2 Contributions

The contributions of this dissertation are as following. First, we evaluate a hierar-
chical classification algorithm specifically in the e-commerce domain, for which very
little related work exists. Although Ding et al. (2002) focus on the same issue, their
work leaves room for improvement because it compares only three methods (VSM,
k-Nearest Neighbor, and Naïve Bayes), and more importantly, the results for the hi-
erarchical classification are not promising, with an obtained highest accuracy of 38%.
Furthermore, this dissertation contributes to this topic by providing a detailed dis-
cussion on the best feature selection methods for product descriptions in the context
of classification. Apart from this dissertation, to the best of our knowledge, there
have not been any studies that revealed which parts of a product description can be
best used for hierarchical classification of products.

Second, different from existing approaches (Baxter et al., 2003; De Vries et al.,
2009; Gravano et al., 2001; Hernández and Stolfo, 1998), we propose a scalable entity
resolution algorithm for semi-structured product descriptions, where the proposed
approach has linear time complexity in terms of the number of input descriptions.
Another important contribution is that our evaluation is quite extensive, e.g., we have
used 3 large data sets. Furthermore, different from previously proposed approaches,
where the focus was on the two-source entity resolution problem, we also address the
multi-source entity resolution problem, i.e., handling descriptions of multiple Web
shops at the same time.

Third, we propose an algorithm that is able to populate ontologies describing
product domains by using tabular product information as input, something that has
received very little attention in the literature. Furthermore, most of the proposed
approaches, which focus on other domains than e-commerce, rely on natural lan-
guage processing, using the syntactical context of a text to derive facts, while our
approach uses only the given tabular data. Additionally, unlike other approaches,
such as Holzinger et al. (2006), our approach employs a GoodRelations-based on-
tology (Hepp, 2008) for annotating instances. This makes our approach compatible

1.2 Contributions 9

with major search engines because schema.org (Google, Microsoft, Yahoo and Yan-
dex, 2017) supports annotations represented using this ontology and search engines
are able to parse information represented using this vocabulary.

Fourth, in order to accommodate and improve the product classification step, a
novel taxonomy mapping algorithm is proposed that is able to map highly heteroge-
neous product taxonomies coming from multiple sources. By utilizing the structure
of the taxonomies, combined with similarity methods that capture both syntacti-
cal and semantic similarity, the proposed algorithm is able to outperform previously
proposed methods (Noy and Musen, 2003; Park and Kim, 2007) both in terms of
precision and recall.

Fifth, we propose a novel facet ordering algorithm for the e-commerce domain,
whereas previous approaches have mostly been focused on other domains (Kim et al.,
2014b; Koren et al., 2008b; Liberman and Lempel, 2014). Previously proposed so-
lutions have also often assumed that there is a ranking of the results, based on a
preceding keyword-based query or external data, which is often not the case for e-
commerce. Furthermore, our approach ranks properties and facets, unlike existing
algorithms (Kim et al., 2014b; Koren et al., 2008b; Liberman and Lempel, 2014;
Vandic et al., 2013a), which filter (or select) properties and facets. Last, none of
the proposed approaches from the literature focuses on the performance (time-wise)
of the proposed algorithms, which is a very important aspect that the proposed
solutions must consider in order to be useful in practice.

Last, complementing the facet ordering algorithm, an approximate (fuzzy) search
engine is proposed that can take into account the ranked facet preferences of users.
Even though there are previously proposed approaches that are specifically geared
towards e-commerce, they have various shortcomings. Many of these approaches,
such as Li et al. (2011), rely on well-estimated user statistics, which are not readily
available in practice as most Web shops do not have the infrastructure or skills to
collect this information. Other methods, such as Burke (2002) and Pu and Chen
(2005), deviate too much from what users expect from a classical Web shop, which is
often the commonly encountered faceted navigation. Furthermore, they fail to show
that the newly proposed approaches always yield an improvement in user satisfaction
and/or search engine performance. The approach proposed in this dissertation lies
closer to what users use on a daily basis and is likely to be more successful when
deployed in practice.

10 Introduction

1.3 Declaration of contribution

In this section, the contributions of authors to the publications related to this dis-
sertation are discussed.

Chapter 2

The author of this dissertation has independently performed the majority of the work
in this chapter, accompanied with the feedback from the promoter and co-promoter.

Chapter 3

The author of this dissertation has independently performed the majority of the work
in this chapter, accompanied with the feedback from the promoter and co-promoter.

Chapter 4

To this chapter, the author of this dissertation contributed significantly by (1) actively
being involved in the development and evaluation of the algorithm, (2) collecting and
preparing the data set, and (3) writing major parts of the published journal article.

Chapter 5

The author of this dissertation contributed significantly to the publication of this
chapter by (1) investigating related approaches for automated taxonomy (i.e., doing a
literature study), (2) actively being involved in the setup of the evaluation framework
and processing of the results from the evaluation, (3) by assisting the other co-authors
in the design and implementation of the proposed algorithms, and (4) summarizing
the results over multiple experiments into a conference paper and a journal article.

Chapter 6

To this chapter, the author of this dissertation contributed significantly by (1) actively
being involved in the development and evaluation of the proposed algorithms, (2)
helping collect the data set, (3) implementing the proposed algorithms in a Web
application and performed a user study using this implementation, and (4) writing
the majority of the journal article.

1.4 Outline of the dissertation 11

Chapter 7

The author of this dissertation contributed significantly to this chapter by (1) actively
being involved in the development and evaluation of the proposed algorithms, (2)
helping collect the data set, (3) implementing the proposed algorithms in a Web
application and performed a user study using this implementation, and (4) writing
the majority of the journal article.

1.4 Outline of the dissertation

Figure 1.1, discussed in Section 1.1, shows an overview of the research topics discussed
so far and the chapters in which they are addressed. In Chapter 2, we answer the
first research question by proposing the Hierarchical Product Classification (HPC)
framework, which is able to classify products using a hierarchical product category
taxonomy. The second research question is addressed in Chapter 3, where a scal-
able framework for multi-source entity resolution is proposed. Chapter 4 addresses
the third research question by proposing FLOPPIES, a framework capable of semi-
automatic ontology population of tabular product information from Web stores. In
Chapter 5, we address the fourth research question by proposing SCHEMA, an al-
gorithm for automated mapping between heterogeneous product taxonomies in the
e-commerce domain. The fifth research question is addressed in Chapter 6, where
a framework for dynamic facet ordering in e-commerce is presented. Chapter 7 ad-
dresses the sixth and last research question, by proposing a novel framework specifi-
cally geared towards approximate faceted search within the product catalog of a Web
shop. Last, in Chapter 8, we summarize the findings of this dissertation and provide
directions for future work.

Chapter 2

Towards Automatic Product
Description Classification∗

In this chapter we propose the Hierarchical Product Classification (HPC)
framework for the purpose of classifying products using a hierarchical product

taxonomy. The framework uses a classification system with multiple classifica-
tion nodes, each residing on a different level of the taxonomy. The innovative
part of the framework stems from the definition of classification recipes that
can be used to construct high-quality classifier nodes, using the product descrip-
tions in the most optimal way. These classifier recipes are specifically tailored
for the e-commerce domain. The use of these classifier recipes enables flexible
classifiers that adjust to the taxonomy depth-specific characteristics of product
taxonomies. Furthermore, in order to gain insight into which components are
required to perform high quality product classification, we evaluate several feature
selection methods and classification techniques in the context of our framework.
Based on 3000 product descriptions obtained from Amazon.com, HPC achieves
an overall accuracy of 76.80% for product classification. Using 110 categories
from CircuitCity.com and Amazon.com, we obtain a precision of 93.61% for
mapping the categories to the taxonomy of shopping.com.

∗This chapter is based on the article “D. Vandic, F. Frasincar, and U. Kaymak. Multi-Level Hier-
archical Product Classification in E-commerce. IEEE Transactions on Cybernetics, 2017, under
review.”

14 Towards Automatic Product Description Classification

2.1 Introduction

The World Wide Web (WWW) has drastically changed the availability and exchange
of information. Nowadays, consumers and businesses more often make use of e-
commerce (Mulpuru et al., 2015). Most studies from literature focus on approaches
that personalize the experience (Lee et al., 2012) and enhance the purchase deci-
sions (Wang et al., 2013; Yang, 2010) of users visitingWeb shops. Product taxonomies
are related to these research fields and have been widely used for the organization
of many kinds of information on the Web. Product taxonomies help customers find
relevant products and allow businesses to organize the offered product assortments.
Figure 2.1 shows an example of the product taxonomy of Amazon.com, where the
consumer has a good overview of the products that are offered.

Usually, there is no uniform description of the same products among different
vendors on the Web, which forces business-to-business e-commerce to address the
issues that arise with heterogeneous information (Ng et al., 2000), such as synonyms
and homonyms. Similarly, the automatic classification of products is becoming more
important as this enables companies to lower costs by spending less time on this
task. Without automatic classification, one has to manually classify products and
the cost of this process will keep increasing as the heterogeneous information on the
Web keeps growing.

In this chapter, we investigate text classification techniques for the purpose of
providing effective hierarchical product classification. We loosely define product clas-
sification as the task of ‘assigning a product to an existing or new category, given a
product description’. Hierarchical classification can be considered as a classification
that takes the hierarchical structure of the taxonomy into account. In this work,
the classification is determined to be static, i.e., we assume that the classification of
products will not change over time.

Product descriptions on the Web usually contain information like the title, brand,
features description, and (optionally) reviews of the product. If the product descrip-
tion is extracted from an existing system, it can also contain the category it was
assigned in that system. On the Web, product descriptions are often not struc-
tured and not classified, i.e., the product category is missing or does not belong to a
standard taxonomy (Fensel et al., 2001). There are various taxonomies that can be
used for the purpose of product classification, including the United Nations Standard
Products and Services Code (UNSPSC) standard (UNSPSC.org, 2014).

The main focus of this chapter is on the classification of products into an existing
product taxonomy. The product taxonomy refers to a predefined hierarchy of product

2.1 Introduction 15

categories. The goal of this research is to evaluate text classification techniques for
the purpose of effective product classification, and to provide a framework that deals
with various issues encountered in practice that impede this process. For this system,
we can identify three main requirements, (1) the classification of products to both
internal and leaf nodes in the category hierarchy, thereby supporting classification to
multiple nodes (multiple classification), (2) dealing with product descriptions that
may contain a category, and (3) providing a decision algorithm to identify the cases
where no matching category exists.

The proposed Hierarchical Product Classification (HPC) framework requires a
given category hierarchy, without existing product description associations. Given
the above requirements, we can identify three scenarios that can occur when a new
product has to be classified, as shown in Figure 2.2. A product description can
contain a category that does not necessarily have to be present in the existing category
taxonomy. If the product description contains a category, the system must be able to
determine whether or not the product should be classified to an existing category in
the hierarchy (scenario 2), or that it should be classified using the given category by
adding it to the hierarchy (scenario 3), i.e., when there is no match. The classification
algorithm should use, if available, the new given category in this decision, as it can
provide valuable information concerning the classification of the product. If the

Figure 2.1: Product categories from Amazon.com.

16 Towards Automatic Product Description Classification

Product classify to one of
the existing
categories

contains category?

no

decide if category
needs to be added

yes

no

yes

1 2 3
classify to one of the
existing categories,
create mapping of

categories

add new category to
the hierarchy tree

Figure 2.2: Three possible scenarios when a new product needs to be classified.

product description does not contain a category, the task is to classify the product
to one of the existing categories (scenario 1). The main focus of this chapter is on
scenarios 1 and 2. However, the proposed category mapping algorithm for scenario
2 can be used with a decision function to determine whether the product description
‘fits’ one of the categories present in the system or whether the computed mapping
is false, i.e., whether it is necessary to perform the steps for scenario 3.

The contributions of this chapter are threefold. First, we evaluate several clas-
sification techniques on large, real- world product description data sets, which has
not been done before. Second, we propose a high precision algorithm that makes use
of syntactic and semantic similarities in order to map a given product category to
an existing taxonomy of product categories. Third, and last, this work gives a clear
overview of which feature selection methods in product descriptions provide the most
accurate classifications.

This chapter starts with a survey of the current literature on related classification
techniques, feature selection methods, and evaluation techniques. We discuss these
topics in Section 2.2. In Section 2.3 we present the details of the proposed framework.
We provide an overview of the evaluation results in Section 2.4, where we assess
the framework with real-world data from Amazon.com. Finally, in Section 2.5, we
summarize our findings and give directions for future research.

2.2 Related Work

According to Yang and Liu (1999), automated text classification (TC) is a learning
task, defined as assigning predefined category labels to new documents based on the
likelihood suggested by a training set of labeled documents. Classification techniques

2.2 Related Work 17

can be categorized by two aspects. First, the difference between flat and hierarchical
classifiers is that flat classifiers assign documents to categories at one level, i.e., there
is no category hierarchy, as opposed to hierarchical classifiers, where the hierarchy
of categories must be taken into account by the classifier. Second, a classifier can
be an independent binary classifier or m-ary (m > 2) classifier. Given a document,
an independent binary classifier makes a yes/no decision for each category, while an
m-ary classifier typically consists of multiple classifiers (e.g., one for each category)
and computes a ranked list of candidate categories for each document.

In the literature, we can find two main approaches for hierarchical text classifi-
cation, i.e., the big-bang approach and the top-down level-based approach (Sun and
Lim, 2001). These two approaches are not tied to a specific classification technique
because they only prescribe how one or more text classifiers should be used. In the
big-bang approach, only a single classifier is used in the classification process. Given
a document, the classifier assigns it to one or more categories in the category taxon-
omy. In the top-down level-based approach, one or more classifiers are constructed
at each level of the category taxonomy and each classifier works as a flat classifier at
its level. A document will first be classified by the classifier at the root level. It will
then be further classified into one or more lower categories by their corresponding
classifiers. This process continues until it reaches a final category that could be a
leaf category or an internal category. Different types of classification techniques have
been developed that can be used with both approaches. These include rule-based
techniques (Sasaki and Kita, 1998; Shih and Chen, 1996; Wang et al., 1999), prob-
abilistic approaches (Chakrabarti et al., 1997; Koller and Sahami, 1997; McCallum
et al., 1998; Toutanova et al., 2001), fuzzy (Lin and Wang, 2002; Wang and Chiang,
2007), support vector machine approaches (Dumais and Chen, 2000; Oza et al., 2009;
Sun and Lim, 2001; Yu et al., 2003), neural networks (Lin and Chen, 1996; Ruiz and
Srinivasan, 2002; Weigend et al., 1999), and cluster-based techniques (Li et al., 2007;
Steinbach et al., 2000).

A major issue for all text classification techniques is the high dimensionality
of the feature space. Several feature selection methods exist that can be used in
combination with a threshold to achieve a desired degree of term elimination. Term
frequency thresholding (TF) is the simplest technique for vocabulary reduction. The
frequency of each term is computed and a minimum threshold for this frequency is
used to remove terms. Information gain (IG) is another feature selection method
that is used frequently in the field of machine learning (Mitchell, 1996). IG measures
the number of bits of information obtained for category prediction by knowing the

18 Towards Automatic Product Description Classification

presence or absence of a term in a document. Mutual information (MI) is a criterion
commonly used in statistical language modeling of words associations (Church and
Hanks, 1990). This criterion has by convention value zero when there is no document
that contains the considered word pair. To use this criterion for feature selection, one
can compute the average or maximum mutual information value for a term. Another
popular statistical criterion is the χ2 statistic (CHI). The χ2 statistic measures the
lack of independence between two words and can be compared to the χ2 distribution
with one degree of freedom. Like the MI, the CHI statistic has a value of zero when
the two words are independent. This statistic can be used for feature selection in the
same manner as MI (computing an average or maximum). The difference between
CHI and MI is that CHI is a normalized value, and hence CHI values are comparable.

The authors of (Yang and Pedersen, 1997) have performed an empirical study,
comparing different feature selection methods, including the TF, IG, and CHI meth-
ods. The authors used two m-ary classifiers, a k-Nearest Neighbor classifier (kNN)
(Yang, 1994), and a regression based method named Linear Least Squares Fit map-
ping (LLSF) (Yang and Chute, 1994). They consider recall and precision as perfor-
mance measures. The authors conclude that IG and CHI provide the most effective
aggressive term removal (up to 90% of the original feature space) without losing
classification accuracy.

As previously discussed, there are roughly two approaches to classification, i.e.,
the top-down and big-bang approaches. Because top-down approaches use multiple
classifiers, they address the issue of separating the noisy terms from the useful ones.
This task is usually highly dependent on the location in the category hierarchy. For
example, ‘mobile phone’ may be a good feature for a top level classification (e.g.,
Electronics), but becomes useless when drilled down to Electronics/Mobile Phones.

In (Chakrabarti et al., 1997), a typical top-down approach is proposed, where
a Bernoulli model is assumed for the document generation. A method based on
Fisher’s discriminant indices is used for feature selection, which takes place at each
category node. The authors compared their approach with a weighted one-level cosine
classifier. Their approach showed better results with respect to the micro-averaged
recall (Yang, 1999), i.e., 0.66 versus the 0.48 result of the cosine classifier.

Ding et al. (2002) propose a system that classifies products using existing clas-
sification standards, such as UNSPSC (UNSPSC.org, 2014). The authors consider
three methods and the main focus of the system is the business-to- business envi-
ronment. For non-hierarchical classification the best result comes from the Naïve
Bayes Classifier, i.e., 78%, outperforming the Vector Space Model (VSM) (Salton

2.2 Related Work 19

et al., 1975) and the kNN algorithm. We hypothesize that this performance can be
increased by employing a top-down classification system where feature selection is
performed on each node level, separately. For hierarchical classification the highest
accuracy obtained is 38%.

D’Alessio et al. (2000) propose an approach where documents are classified only
to leaf nodes of the category hierarchy. Classification is done by taking the weighted
sum of feature occurrences that should be larger than the category threshold. The
innovative contribution of this approach is the possibility of restructuring an initial
hierarchy or building a new one from scratch, topics that are outside the scope of
our approach.

Wang et al. (1999) identify several issues with the top-down level-based ap-
proaches. Among other aspects, the closeness of classification is not addressed by
these approaches, e.g., classifying a mobile phone, which belongs to the category
‘Mobile Communications’ as ‘Electronics’ is a smaller error compared to classifying
it as ‘Clothes’. For this reason, there are a number of approaches proposed in the
literature that are designed using the Big-Bang approach. Weigend et al. (1999)
propose a two-level classification, where their approach is characterized by a proba-
bilistic framework. Ruiz and Srinivasan (2002) present the design and evaluation of
an approach based on the Hierarchical Mixture of Experts model. As our solution,
this approach also uses a divide- and-conquer strategy to define smaller categoriza-
tion problems based on a predefined hierarchical structure. With respect to accuracy,
the approach of Ruiz and Srinivasan (2002) shows better results compared to Yang
(1996) and Lewis et al. (1996), where a nearest neighbor classifier and a linear
classifier are used, respectively.

Sun et al. (2014) propose Chimera, an approach for classifying product descrip-
tions that combines learning, rules (created by employees), and crowdsourcing. The
authors argue that using rules (in conjunction with learning) is valuable and that
research should focus more on helping analysts create and manage these more effec-
tively. Although this approach provides interesting results, it is difficult to compare it
with our approach. First, the system relies on significant human effort. For example,
the system uses a manually curated list of 20,000 brands in the classification step.
Another example is the use of rules and crowdsourcing in the system. This makes it
very difficult to compare this approach with ours, which is fully automatic. Second,
the focus of the classification task seems to differ from ours. Whereas we propose
a system for hierarchical product classification, i.e., using a deep multi-level taxon-
omy, the Chimera system focuses more on a large scale, flat, taxonomy, consisting

20 Towards Automatic Product Description Classification

of only two levels. The different scope makes a direct comparison with our solution
unsuitable.

We can draw several conclusions from the literature overview. First, besides
Ding et al. (2002), none of the related work that aims to solve the same task as
our approach focuses on specifically classifying product descriptions. The work in
Ding et al. (2002) has some significant limitations, as it compares only three methods
(VSM, k-Nearest Neighbor, and Naïve Bayes), and more importantly, the results for
hierarchical classification are not promising as the highest accuracy that is obtained
is 38%. Second, there is no literature on feature selection for product descriptions.
It is not clear which parts of a product description can be used for hierarchical
classification of products. The paper aims to fill these gaps by thoroughly evaluating
the effects of using the different parts of a product description in combination with
well-known feature selection methods.

2.3 The HPC Framework

In this section we present the Hierarchical Product Classification (HPC) framework
for classifying product descriptions using a hierarchical product category taxonomy.
In the next sections the different components of the HPC framework are discussed in
detail. The preparation of the data set is discussed in Section 2.3.1. In Section 2.3.2,
we discuss the HPC classification system.

2.3.1 Data set processing

The preparation of the data set is part of the HPC framework, as product descriptions
are usually very heterogeneous, especially with respect to the level of detail. For
this reason, the HPC framework assumes that a product description has at least the
following required parts: (1) product title (text), (2) brand of the product (nominal),
(3) price of the product (number), and (4) description of the features of the product
(text). To avoid the ambiguity of the term product description, we will introduce
the term features description for description of the features of a product and product
description will refer to the collection of all four parts (title, brand, price, and features
description).

More formally, we define the vocabulary of unique words of all alphabetic
parts (i.e., title and features description) of a product description as the vector

2.3 The HPC Framework 21

w = (w1, w2, . . . , wn). A product description di is then represented as

(
xi

title,xi
desc, p

i, bi
)
∈ Rn × Rn × R× B (2.1)

where xi
title and xi

desc represent the title and features description of product de-
scription i, respectively. These vectors contain the counts for each word from the
vocabulary. The term pi represents the price and bi ∈ B represents the brand, where
R is the set of real numbers and B is the set of all known product brands. This defini-
tion is necessary as the HPC framework addresses each part of a product description
differently. Furthermore, the set C = {c1, c2, . . . , cn} represents all known product
categories, with a total of n categories. The hierarchy is then represented as

H = {(ca, cb) |ca, cb ∈ C ∧ ca ≤ cb} (2.2)

where ≤ denotes the subsumption relationship. A set of product descriptions is
denoted by D = {d1, d2, . . . , dm}, where di ∈ D represents a product description i,
i.e., di =

(
xi

title,xi
desc, p

i, bi
)
. Also, we let the vector y denote the category mappings

of the product descriptions. Consequently, y containsm values. We assume here that
a product belongs only to one category (the most specific one).

In the data preparation process, there are the two main steps that are performed
on the content of the product descriptions. First, all stop words are removed from the
title and features description. The HPC framework does not define a stop word list,
this has to be specified by the user. This enables the user of the system to perform
fine adjustments to decide which words are considered stop words and which are
not. The removal of stop words eliminates the noise stop words introduce. The
accuracy of a classification algorithm often increases after the removal of stop words.
Even though in our evaluations we have used a standardized stop word list, a more
automated approach could be employed, such as the one proposed in (Wilbur and
Sirotkin, 1992).

After the stop words are removed, the remaining words of the product title and
features description are stemmed. Many word stemming algorithms exist and the
HPC framework does not restrict the usage of any particular stemming algorithm.
The default stemming algorithm is the Porter stemming algorithm (Porter, 1997).
After the stemming process has completed, we have a set of product descriptions
that are prepared for the classification system processes.

22 Towards Automatic Product Description Classification

2.3.2 Classification system

The classification system, the core of the HPC framework, is used to classify product
descriptions and it consists of a hierarchy of classifiers nodes (a hierarchy similar to
the product taxonomy nodes, but without the product taxonomy leaves). A classifier
node is a collection of classifiers that are trained on different parts of the product
description. The classification system is based on the top-down approach. The reason
for choosing the top-down approach is that it can select different features depending
on the classifier location in the taxonomy. As mentioned earlier, features ‘mobile’ and
‘phone’ may be appropriate for a decision between Electronics, Home & Garden, and
Sports, but become less useful when the classifier has to decide between the children
of the category Electronics/Mobile Phones.

We propose the so-called K-level top-down approach, where K > 1. The param-
eter K is the highest level of the product taxonomy where classifier nodes will be
placed. If K = 2, then the classification takes place on the first and second level of
the taxonomy (i.e., levels 0 and 1). Figure 2.3 shows an example of a classification
system with K = 2. We can see that the first classifier node decides between the
categories ‘Electronics’ and ‘Sports’ (level 0). If ‘Electronics’ is chosen by the first
classifier node, then the second classifier node has to classify to either ‘Home’, ‘Com-
munication’, ‘Knives’, ‘Mobile Phones’, or ‘Monitors’. In this case, this is the last

Electronics
Sports

CommunicationHome Jackets Shoes

Knives

Level = 0

Level = 1

Mobile

Phones
Monitors

Classified by first

classifer

Leafs classified by

second classifier if first

indicated ‘Electronics’

Classifier system for K = 2

Leafs classified by

third classifier if first

indicated ‘Sports’

Figure 2.3: K level top-down approach for K = 2.

2.3 The HPC Framework 23

classifier and therefore it classifies to the leaves of the sub-taxonomy. If ‘Sports’ was
chosen, then another classifier (also on level 1) had to decide between ‘Jackets’ and
‘Shoes’. In this case the leaves are also the children of the node ‘Sports’.

In the HPC framework, classifier nodes are constructed by using classifier recipes.
A classifier recipe contains the necessary information to construct a classifier node.
It defines which classification techniques and feature selection methods are used for
what parts of the product description. It is important to note that each level in the
category hierarchy can have its own classifier recipe. Consequently, classifier nodes
can differ from level to level in the category hierarchy. Figure 2.4 shows the structure
of a classifier recipe. A classifier recipe consists of four components. The first two
components each define a feature selector and a text classifier, which are used for the
title and the features description. The third component is a classification algorithm
that operates on the brand and price. The fourth component is a specialized algo-
rithm that is used in the case that a category is present in the product description.
In this chapter, we propose and evaluate such an algorithm. For the brand and price,
one can choose any classifier that takes as input one numerical and one categorical
variable.

Classifier Recipe

Feature

Selector

Text

Classifier

Price/Brand

classifier

- Brand

- Price

desc
desc

title
title

HPC

Algorithm

Optional:

- Category

Legend

Figure 2.4: The structure of a classifier recipe.

Constructing classifier nodes

For each node, a classifier recipe is used. The classifier node encompasses four classi-
fiers that use different parts of the product description (i.e., (1) title, (2) description,
(3) brand and price, and (4), [optional] category). In order to construct a classifier

24 Towards Automatic Product Description Classification

node, one needs to have a classifier recipe, a training set

D ⊂ Rn × Rn × R× B, (2.3)

and a target vector y where the values are taken from the set of categories C. A
product description di, as discussed in Section 2.3.1, is represented as

(
xi

title,xi
desc, p

i, bi
)
∈ D, (2.4)

For both the title and the features description, a classifier recipe defines the
feature selector and text classifier (first classifier and second classifier, respectively).
A feature selector selects relevant features, given a feature matrix X (where each
column represents one feature) and a target vector y. The text classifier must be a
function that takes as input a product description vector x ∈ Rn and outputs one
of the categories, predefined by the set C (see Section 2.3.1). In order to construct
the classifiers for the title and description in the classifier recipe, the feature selector
is first applied to the training sets xtitle and xdesc. Next, the classifier is trained on
the training set through cross validation, to obtain reliable results and to prevent
the classifier to overfit the data. The ‘best’ classifier is chosen, i.e., the one with the
highest precision.

The third part of the classifier recipe defines the usage of the brand and the price
of the product description for the purpose of classification. This classifier is trained
using cross validation on the price and brand training data, and the ‘best’ classifier is
chosen, i.e., the one with the highest precision. A classifier recipe defines a threshold
β. If the precision of the best classifier, when considering only instances of the brand
provided in a product description, is below β, then this classifier is not used because
it is unreliable. This condition is determined at runtime. The recipe also defines a
threshold parameter δ, this threshold represents the minimum number of instances
in the training data set in order to use this classifier. The δ threshold ensures that
this classifier is used only when there is enough data to make a reliable decision for
the brand/price combination.

Product categories can have different names across systems but also different
hierarchies can be used. For instance, ‘Nintendo DS Games’ can be a child of ‘Games’,
where on another system it is a child of a more specific category ‘Console Games’. The
fourth and last part of a classifier recipe defines the classifier of the given category
in a product description. It requires an algorithm that takes a string input (the
given category) and outputs a list of possible matches, along with the corresponding

2.3 The HPC Framework 25

scores (similar to an m-ary classifier). The score should be between 0 and 1 and
the category with the highest score is the one which matches the best. The HPC
framework defines a custom algorithm for this purpose. When there is no category
given in the product description, this classifier is not used.

In order to meet the above requirements, we propose the Category Mapping
algorithm, which is also employed in (Vandic et al., 2012b). The goal of the Category
Mapping algorithm is to identify to which existing product category the given product
category should be mapped. There are two difficulties with this process. First, one
has to deal with syntactic variations and with semantic variations. The syntactic
variations are for example singular/plural forms, abbreviations, and typographical
mistakes. The semantic variations are synonyms and homonyms. In order to deal
with these issues we developed an algorithm which is able to determine the correct
category for a product with high precision. Before we give the details of the algorithm,
we need to explain existing text similarity measures and other similarity functions
that are used in the algorithm.

The Levenshtein distance (Levenshtein, 1966) is a metric for measuring the
amount of difference between two strings (i.e., the so-called edit distance). The Lev-
enshtein distance between two strings is given by the minimum number of operations
needed to transform one string into the other, where an operation is an insertion,
deletion, or substitution of a single character. We denote it by alvij , which is the
absolute Levenshtein distance between strings i and j. The HPC framework uses
the normalized Levenshtein distance, which is a function of the absolute Levenshtein
distance. We use the notation lvij , which is the normalized Levenshtein distance
between strings i and j. The normalized Levenshtein distance is defined as

lv (i, j) = alv(i,j)
max(length(i),length(j)) (2.5)

The normalized Levenshtein distance addresses the issue of short string lengths. If
you have two strings, of both length 24, then an absolute Levenshtein distance of
3 is not large. However, with two strings of length 6 this distance is quite large as
it is 50% of the tag length. According to the absolute Levenshtein distance these
two distances are the same. But the normalized Levenshtein distances are in this
case 0.125 and 0.5. This indicates that, according to the normalized Levenshtein
distance, the two pairs of strings do not have the same distance, i.e., the first pair is
more similar.

26 Towards Automatic Product Description Classification

The function calcCosineSim (A,B) is used to compute the cosine similarity be-
tween two sets of words A and B, and it is defined as follows:

calcCosineSim (A,B) = |A ∩B|√
|A|
√
|B|

(2.6)

With avgLvSim (A,B), the average Levenshtein similarity between two sets of words
can be computed. Using the normalized Levenshtein distance function lv (i, j) for
words i and j, we can give the definition of the function avgLvSim (A,B), where A
and B are sets of words, as following:

avgLvSim (A,B) =
∑
a∈A

∑
b∈B

(1− lv (a, b)) length (a) + length (b)∑
a∈A

∑
b∈B

length (a) + length (b) (2.7)

Algorithm 2.1 shows the steps taken to find a matching product category, given a
new category name. It requires to have an existing set of categories C. The algorithm
also requires to have the set Y of synonyms/syntactic variations of the provided cat-
egory name. For this purpose, we use WordNet (Miller, 1995) to gather the category
synonyms. The process starts by combining the category name, which needs to be
mapped to an existing category, with all syntactic variations and synonyms of that
category name, obtained from WordNet, in one set Z (line 1). After that, the empty

Algorithm 2.1: The category matching algorithm.

Input : The new category c to be matched to an existing category (text).
Output : The best matching category with the corresponding computed

similarity.
Data : The set C (set of categories).

The set Y (synonyms of the new category c).
1 Z = Y ∪ {c};
2 S = {};
3 // for each category pair from Z and C, compute their similarity
4 foreach z in Z do
5 foreach c’ in C do
6 A = cleanAndSplit (z);
7 B = cleanAndSplit (c′);
8 S = S ∪ {(c′, getCatSim (A,B))};
9 end

10 end
11 return {(r,m) ∈ S|∀ (y, n) ∈ S : n ≤ m}

2.3 The HPC Framework 27

set S is created (line 2). In lines 3 through 8, the set S is filled. For each combina-
tion between a category from the set Z and a category from the set C, the category
names are cleaned. The cleaning of category names is necessary in order to remove
any ‘noise’. For example, some users write in words ‘Camera and Photography’ and
others might write the abbreviated form ‘Camera & Photography’. We solve this
issue by replacing occurrences of both ‘and’ and ‘&’ by a space character. After the
category names are cleaned, the similarity between them is computed and added to
the set S. The similarity is stored as a pair together with the category from the set C
(the set of existing categories). The function that is used to calculate the similarity
between two cleaned category names is given by:

getCatSim (A,B) = λ · calcCosineSim (A,B) + (1− λ) · avgLvSim (A,B) (2.8)

where A and B are sets of words. The function calcCosineSim (A,B) is defined by
Equation 2.6 and avgLvSim (A,B) is defined by Equation 2.7. The sets A and B

are obtained by splitting a category name on the space character. This is achieved
by using the function cleanAndSplit (·), which also ‘cleans’ the category names, i.e.,
it replaces the word ‘and’, the word ‘or’, the character ‘&’, as well as parentheses,
comma’s, and other special characters, with a space character. When all combina-
tions are processed and the set S is filled, a category needs to be chosen. The category
with the highest score in the set S is selected as the matching product category. If
multiple categories exist with the highest score, then the average cosine similarity be-
tween the feature vectors of each category and the product description is computed,
and the category with the highest cosine similarity is chosen. If the highest score is
below γ, then this classifier is not used in the process of classification.

Constructing the classification system

In the previous section, we discussed the different parts of a classifier recipe and how
we construct one classifier node, given a set of labeled product descriptions. In order
to construct a complete HPC classification system, at least one recipe is needed. As
we will see in Section 2.4, it is advisable to use different classifier recipes on each
level. In this section we discuss the design and implementation of the complete HPC
classification system.

Algorithm 2.2 shows the basic steps to construct an HPC classification system.
The algorithm starts by creating a classifier for level −1, this level is one level above
the level where the top-level categories reside (level 0). The first root level classifier

28 Towards Automatic Product Description Classification

Algorithm 2.2: The HPC system construction process.
1 CF = {cf−1} // set of classifier nodes with top-level classifier
2 Q = empty queue ;
3 foreach c in Ctop do
4 enqueue (Q, (c, 0));
5 end
6 i = 0;
7 while notEmpty (Q) do
8 (c, L) = dequeue (Q);
9 if L = K − 2 then

10 cfi = classifier at node c trained on leaf categories under c, using
recipe for level L;

11 else
12 cfi = classifier at node c trained on children categories of c, using

recipe for level L;
13 foreach ch in children(c) do
14 enqueue (Q, (ch, L+ 1));
15 end
16 end
17 CF = CF ∪ {cfi};
18 i = i+ 1;
19 end

always exists, independent of the value of K. The root level classifier is added to
the set of classifier nodes. This task is performed in lines 1 through 3. From line 4,
the algorithm starts a breadth-first traversal through the category hierarchy, creating
classifier nodes where necessary and stopping when it hits a leaf category node or
the current level has exceeded K − 2. The breadth-first traversal function performs
a check for each category, starting with the top-level categories. If the level of the
category node is equal to K − 2, then a classifier is created which is trained on the
leaf category nodes of that category. If this is not the case, then an intermediary
classifier node is created and trained on the children of the current category node, its
children are also added to the queue to be visited. One should note that whenever a
classifier node is created, the corresponding classifier recipe for that level (which the
category node resides on) is used.

Classification Algorithm

The classification process starts at the root level classifier node, which classifies the
product description to one of the top-level categories. Next, the algorithm continues

2.4 Evaluation 29

the classification until the classification results in a category leaf node or the max-
imum classification depth has been reach (represented by the K parameter). The
algorithm chooses the next classifier node based on the previous classification.

In each classifier node, the classification is performed by following a simple voting
system. The algorithm classifies a single product description into one of the existing
categories from the set C, as defined in Section 2.3.1. The algorithm starts by asking
each component to cast a vote on the target category, i.e., each component performs
classification, outputting one product category. The next step is to check if there is
a category in the set S which has the highest amount of votes. If there exist such
a category, then that is the category which is returned as the best match. In the
case that no such category exists, the classifier node flags the product description as
unclassifiable. In this case, Scenario 3 would be useful to consider, i.e., there is a need
for modifying the existing category hierarchy by adding one or more new categories
to the hierarchy. However, this scenario is out of the scope of this paper.

The example shown in Figure 2.3 highlights these steps for K = 2. Because K =
2, there can be only 2 classification steps. The first classifier node decides between the
categories ‘Electronics’ and ‘Sports’ (level 0) and the second classifier node, regardless
of the outcome of the first classifier, will classify the product description to one of
the leaves. These leaves are ‘Knives’, ‘Mobile Phones’, or ‘Monitors’ in case the first
classifier chose ‘Home’ or ‘Communication’, and ‘Jackets’ or ‘Shoes’ in case the first
classifier chose for ‘Sports’.

2.4 Evaluation

In this section, we evaluate the proposed framework and its components. The goal
is to find what the best approach is for classifying product descriptions. First, in
Section 2.4.1, we give an overview of the data collection process for the evaluation of
the HPC framework. We also briefly discuss how we implemented the HPC framework
for the purpose of this evaluation. Then, in Section 2.4.2, we give an extensive
evaluation of the HPC framework, which includes a discussion of the results for the
considered feature selection methods and the classifications algorithms.

2.4.1 Data Collection

For the evaluation of the feature selection methods and classification algorithms, we
collected a large data set of product descriptions. The product descriptions are ob-
tained from Amazon.com, using the AmazonWeb Services (AWS) API (Amazon.com,

30 Towards Automatic Product Description Classification

2017a). This process was implemented in Java. The product category taxonomy that
is used in the evaluation is constructed from existing Amazon.com categories. Be-
cause Amazon.com contains many product categories (around 120,000), we have cho-
sen to use only a subset from all these categories. For the evaluation of the category
mapping algorithm, we used data sets from CircuitCity.com and Amazon.com.

There are in total 319 product categories in the constructed product taxonomy,
which is a simplified but representative view of the original taxonomy. The cate-
gories are located in a hierarchical taxonomy that consists of 4 levels. On the first
level, there are 4 categories: ‘Electronics’, ‘Office Products’, ‘Musical Instruments’,
and ‘Clothing’. In order to have enough data for the training and testing of the
classification models, the data set of product descriptions is collected in such a way
that the minimum number of products per category is 200. The total number of
collected product descriptions is 419,832, with 18,206 unique brands. Unfortunately,
only 235,105 products are annotated with a brand. The same holds for the price;
only 201,519 product descriptions contain a price. In order to speed-up the retrieval
of the product descriptions, a multi-threaded crawler was developed in order to fetch
and process the product descriptions.

2.4.2 Results

In this section, we discuss the evaluation of the different aspects of the HPC frame-
work. We first evaluate the HPC framework for scenario 1, i.e., when no category is
present in the product description and the product description needs to be classified
to one of the existing categories. Then, we focus on the performance of the feature
selection and classification algorithm components, as well as the overall performance
of the HPC framework. Next, we evaluate the proposed algorithm for scenario 2, i.e.,
when a category is present in the product description. This consists of an evaluation
of the proposed category mapping algorithm.

Although we do not show graphs for every pair of a feature selection algorithm and
a classification algorithm (due to the high number of combinations), we stress that
we evaluated all possible combinations for both the title property and the features
description property. In the text we sometimes refer to these results by numbers
instead of graphs.

2.4 Evaluation 31

Feature Selection Approaches

The four feature selection methods that are evaluated are Term Frequency (tf), Mu-
tual Information (mi), Information Gain (ig) and Chi Square (chi). The reason for
choosing these feature selection methods is that Information Gain and Chi Square
have shown good results in the literature (Yang and Pedersen, 1997). Furthermore, in
a general text categorization context, the Term Frequency method performs surpris-
ingly well as well, while the Mutual Information was found to perform badly (Yang
and Pedersen, 1997). We want to investigate if these findings also hold when the
employed data set consists of product descriptions.

Figures 2.5 and 2.6 show us a comparison of all pairs of the four feature selection
methods for the title property and features description property, respectively. Given
a feature selection size, each comparison is based on the number of same features
that have been selected by the corresponding two feature selection approaches. On
the x-axis of the figures, the feature selection sizes are shown. On the y-axis the ratio
between the number of same features and the total selected features is shown. For
performance reasons, the comparison is performed on a subset of the data set with
3000 product descriptions. The reason why the x-axis range in Figure 2.5 is lower
than the x-axis range in Figure 2.6 is because the title property contains less features
to choose from than the features description property.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Total number of selected features

sa
m

e
fe

at
ur

es
 s

ele
ct

ed
 (

%
)

tf/mi
tf/ig

tf/chi
mi/ig

mi/chi
ig/chi

tf/mi/ig/chi

Figure 2.5: Comparing feature selection methods similarity for the title property.

32 Towards Automatic Product Description Classification

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

tf/mi
tf/ig

tf/chi
mi/ig

mi/chi
ig/chi

tf/mi/ig/chi

sa
m

e
fe

at
ur

es
 s

ele
ct

ed
 (

%
)

Total number of selected features

Figure 2.6: Comparing feature selection methods similarity for the features descrip-
tion property.

There are several interesting findings that follow from these two figures. First, we
observe that the Information Gain and the Chi Square method have a high overlap
in selected features for both the title and features description property. This is in
line with findings of other studies, where Information Gain and Chi Square have
been found to be highly correlated in terms of accuracy (Singh et al., 2010; Yang
and Pedersen, 1997). For the title property, at a feature selection size of 50, more
than 45 features are the same (ratio > 0.90). Second, the results suggest that the
Term Frequency method selects features similar to those from Information Gain and
Chi Square only for larger total number of selected features. This indicates that
the findings of (Yang and Pedersen, 1997) (i.e., a strong correlation between Term
Frequency, Information Gain, and Chi Square) partially applies also to product de-
scriptions. Third, we observe that the Mutual Information shows low ratios for all
methods. Only when the feature selection size is 100 or larger, the Mutual Infor-
mation and Term Frequency method start showing a resemblance in their feature
selection process. Last, the results of the comparisons for the features description
property, shown in Figure 2.6, indicate that the ratio pair ordering is the same as the
ratio pair ordering of the product title. We do notice that most of the ratios are lower
than the ones for the product title, which suggests that the product descriptions are
more heterogeneous than product titles and that this causes more variation between
the methods.

2.4 Evaluation 33

Besides analyzing the relatedness of the different feature selection methods, we
also analyzed the performance of each feature selection method. For this we use
the accuracy metric from information retrieval, which is in our context equal to the
precision because we always classify a product description and we consider this to
be a positive. Figures 2.7 and 2.8 give us an overview of the accuracy of the feature
selection methods for several feature selection sizes. The goal is here to compare
feature selection methods, which means that we need to fix the classifier for now.
Later on, we will discuss the different combinations of feature selection methods
and classification algorithms and their performance. We chose to use the Naïve
Bayes classifier in this case because it is fast, and more importantly, it requires no
parameters to be set. This is useful because the performance of the Naïve Bayes
is then affected only by the used feature selection method. The results for these
experiments are obtained by performing a five-fold cross-validation procedure on a
data set of 5,000 products and the four main root categories.

From the results we obtain three interesting findings. First, the Information Gain
and Chi Square methods are relatively similar and have the highest accuracy. For
the title property, as shown in Figure 2.7, we observe slightly higher accuracy values
for the Chi Square method, but we have found these differences not to be significant
at a 95% confidence level, using a paired t-test. On the other hand, for the features
description property, shown in Figure 2.8, the difference between the Information
Gain and Chi Square is significant at a 95% confidence level. We can conclude that
the Information Gain shows significantly better results for the features description
property. The reason for this is most likely that the heterogeneity in the features

0 200 400 600 800 1000
Number of features selected

Ac
cu

ra
cy

 (
%

)

20

30

40

50

60

70

80

90

100

tf mi ig chi

Figure 2.7: Comparing feature selection methods on accuracy for the title property.

34 Towards Automatic Product Description Classification

Number of features selected
0 200 400 600 800 1000

Ac
cu

ra
cy

 (
%

)

20

30

40

50

60

70

80

90

100

tf mi ig chi

Figure 2.8: Comparing feature selection methods on accuracy for the features de-
scription property.

description values makes it difficult for the Chi Square feature selection method to
measure the degree of independence between the selected features and the categories.
At the same time, with its higher performance, the Information Gain method seems
to be able to more easily measure the reduction in entropy when knowing the feature.

Second, we observe that the Term Frequency method performs better than the
Mutual Information method. The weakness of the mutual information criterion,
i.e., that the values are strongly influenced by the marginal probabilities of terms,
is validated by these results. Yang and Pedersen (1997) reported similar findings
on a Reuters news data set. The authors found that the Information Gain and
Chi Square methods give the best accuracy, but that the Term Frequency method,
although performing worse, is highly correlated with the two. The authors suggest
to use the Term Frequency method because the trade-off between effectiveness and
computational cost, compared to the Information Gain and Chi Square method, is
in favor of the Term Frequency method. Our results support this claim, both for the
title property as for the features description property.

Third, when considering the general influence of the number of features selected
(x-axis), we observe that for the title property, the performance increases more grad-
ually than for the features description property. For example, for the title property,
the accuracy does not change anymore at approximately 600 features, while for the
features description property, the accuracy barely changes after 400 selected features.
This indicates that the title property is more sensitive to the number of selected fea-
tures than the features description property.

2.4 Evaluation 35

Classification Algorithms

In the previous section, we focused on the feature selection algorithms. In this section
we focus on the evaluation of the different classifier components. We only present
the results for the k-Nearest Neighbor classifier and the Support Vector Machines
classifier. We already presented the results for the Naïve Bayes algorithm in the
previous section.

K-Nearest Neighbor classifier. The initial impression of the k-Nearest Neigh-
bor (kNN) classifier is that it does not perform very well. We find that the kNN
classification technique is not able to deal appropriately with the product description
data. This is different from what other authors have found, where kNN was able to
deliver acceptable performance for the purpose of general text categorization (Han
et al., 2001).

In order to obtain valid accuracy values, we again performed a five-fold cross vali-
dation procedure on the top level categories, with 3000 training product descriptions.
Figures 2.9 and 2.10 show the accuracy results for two different configurations with
the kNN classifier. The figures show the accuracy for different values of k, i.e., the
number of selected neighbors, and for two features selection methods. Overall, the
variance of the results is low, i.e., there is not much difference between the feature
selection methods, except for the Mutual Information method, which performs far
worse than the others. This is illustrated by Figure 2.9, where we can see that the
Mutual Information reaches a level of 0.55 accuracy when 200 features are selected.
In contrast, we found that other feature selection methods only need 50 features to

3 5 7 10
0.3

0.4

0.5

0.6

0.7

K parameter

Ac
cu

ra
cy

50 # 100 # 200 # 400 # 600# 50 # 100 # 200 # 400 # 600

Figure 2.9: Summary of the accuracy on the title property for the kNN classifier,
using the Mutual Information features selection method.

36 Towards Automatic Product Description Classification

3 5 7 10
0.3

0.4

0.5

0.6

0.7

K parameter

Ac
cu

ra
cy

50 # 100 # 200 # 400 # 600

Figure 2.10: Summary of the accuracy on the features description property for the
kNN classifier, using the Chi Square features selection method.

obtain such an accuracy (or higher). The same holds for the features description
property, i.e., only the performance is even worse, with an accuracy of 0.45 at 400
selected features.

The results also show us that sometimes less is more, e.g., Figure 2.10 shows us
that the accuracy is higher when 200 features are selected than when 400 features
are selected. The only exception is the Mutual Information, which shows an ap-
proximately linear relationship (which eventually diminishes) between the number of
selected features and the accuracy.

Furthermore, we observe that when k increases, the kNN classifier gets more
sensitive for modeling noise. Figure 2.10 shows us that at k = 7, the accuracy for
selected feature counts 400 and 600 is higher than at k = 10. It seems as if the kNN
picks up noise from the extra selected features because of the higher k value.

Support Vector Machines. For the evaluation of the Support Vector ma-
chines we performed the same cross validation procedure (five-fold, with 3000 train-
ing samples). We have chosen for the SVM one-against-one approach. With the
one-against-one approach, one needs to train more SVMs than with the one-against-
all approach. Our experiments showed that the one-against-one approach performs
better with respect to accuracy. That is why we provide a thorough evaluation of the
one-against-one approach (with many parameter combinations). Further, we fixed
the choice of the kernel. We choose the Radial Basis function (RBF) kernel (Bishop,
2007) because the RBF kernel was found to give the best performance on text cat-
egorization (Joachims, 1998). Following from our experimental setup, we have to

2.4 Evaluation 37

40

50

60

Ac
cu

ra
cy

 (
%

)

30

Number of features selected
0 100 200 300 400 500

tf mi ig chi

600

Figure 2.11: Accuracy on the title property for the SVM classifier (with γ = 1,
box constraint = 100).

optimize only two parameters: the box constraint in the dual form notation of the
SVM definition, and the γ parameter, which determines the width of the RBF kernel.

The general results of the SVM classifier are better than the kNN method, as
we found the highest accuracy to be 78.07%. We observe that the SVM classifier is
very sensitive to the two parameters. Typical behavior is shown in Figure 2.11. We
notice that a value γ = 1 is not suitable as the accuracy does not exceed 60% and
the accuracy drops as the number of selected features increases. Joachims (1998)
reports an optimal γ of 0.6. Our results show that the optimal value of γ for our
data set is much larger, somewhere around 50. The higher value of γ indicates that
the classification model required for our task is relatively complex, i.e., the influence
of single features can be quite large. The reason for this is that the employed data
set is to a relatively high degree semi-structured when compared to traditional text
classification data sets (such as news articles or blog posts).

The most optimal configuration of the SVM classifier, for the features description
property, is for γ = 50 and box constraint = 100. The accuracy results for this
configuration are shown in Figure 2.12. We observe that the overall accuracy is
higher for the features description property, most likely because of the extra terms
it contains compared to the title property, which helps the classifier to obtain an
accurate classification.

A surprising result is that the best accuracy of the Naïve Bayes classifier is higher
than the best accuracy of the SVM classifier. As shown in Figures 2.7 and 2.8, for
both the title and features description property, the Naïve Bayes classifiers obtain

38 Towards Automatic Product Description Classification

20

30

40

50

60

70

80

90

Number of features selected
0 100 200 300 400 500

tf mi ig chi

600

Ac
cu

ra
cy

 (
%

)

Figure 2.12: Accuracy on the features description property for the SVM classifier
(with γ = 50, box constraint = 100).

an accuracy well above 80%, while the accuracy of the best SVM does not exceed
80%. Studies from the past have shown that the Naïve Bayes classifier can achieve
comparable performance as the SVM classifier (Huang et al., 2003) and our findings
provide further evidence for this claim.

Evaluating the HPC Framework

In this section, we evaluate the HPC framework as a whole. Table 2.1 shows us the
accuracy of a K = 3 HPC classification system. The results are obtained through
cross validation and 3000 training product descriptions. In this case, both for the title
and features description, a Naïve Bayes classifier is used with an Information Gain
feature selector set to select 400 features. The Price/Brand classifier is implemented
using Quadratic Discriminant Analysis (QDA) (McLachlan, 2004). This method aims
to classify the category given the brand and the price. The price is first transformed
by applying the natural logarithm. This classifier is trained only on categories that
contain the brand.

Table 2.1 show the accuracy for each considered level of the category hierarchy.
The first level is the level where the root product categories reside. For example,
we can see that the Naïve Bayes classifier on the title has achieved an accuracy of
74.55% on the first level. The ‘Total’ column indicates the total accuracy for a level.
This is the accuracy of the system, the other column are referred as the accuracy of
the individual classifiers.

2.4 Evaluation 39

Level Total Title Features desc. Price/Brand
0 82.87% 74.55% 85.48% 13.21%
1 64.76% 69.37% 60.31% 13.24%
2 79.94% 82.65% 83.86% 34.58%

Table 2.1: Accuracy for K = 3 classification system, with Naïve Bayes for title and
features description, and Information Gain with select count equal to 400.

One might expect that the prices across product categories for a certain brand
follow a particular distribution, and are thereby useful as an input for a classifier,
however, this assumption fails for the Amazon.com data set. As we can see in Ta-
ble 2.1, the precision on level 0 is 13.21%. The Price/Brand property has also been
evaluated with other classifiers, such as logistic regression and neural networks, al-
though the results remained the same. From these results, we can conclude that the
price and brand are not usable in this context.

We can further observe that at level 0, the feature description is the best property
to choose, as the accuracy of the classifier on this property is 85.48%. For the second
level, the title is the best property to be chosen as it has the highest accuracy on
that level. One possible explanation for this is that at the second level, the model
words from the title boost the classifier more than they do on the first level, where
the classification is more coarse-grained. Finally, on the last level, the classifier on
the feature description performs the best.

Table 2.2 shows us an example where the accuracy, on level 0, of the system is
higher than the individual classifiers. In this case, the best classifiers is trained on
the title property, giving a 74.55% accuracy. Levels 1 and 2 show different behavior
than in Table 2.1, as on level 1 the features description property scores better and
on the third level the title property.

Level Total Title Features desc. Price/Brand
0 75.04% 74.55% 72.92% 13.21%
1 64.35% 62.14% 66.00% 15.36%
2 81.42% 83.45% 77.63% 37.23%

Table 2.2: Accuracy for K = 3 classification system, with Naïve Bayes for title,
SVM (γ = 50, box constraint=100) for features description, and Information Gain
with select count equal to 400.

40 Towards Automatic Product Description Classification

Last, Table 2.3 shows us a system where only Naïve Bayes classifiers are used on
the title and features description and 1000 features are selected by the Information
Gain method. This combination gives the best results, with a 83.52% accuracy on
level 0. For levels 1 and 2, similar results are obtained as for the classifier in Table 2.1,
i.e., the title scores better on level 1 and the features description scores better again
on level 2, with an average accuracy of 76.80%.

Level Total Title Features desc. Price/Brand
0 83.52% 74.55% 86.13% 13.21%
1 64.45% 69.37% 60.80% 13.21%
2 82.42% 82.97% 84.11% 34.58%

Table 2.3: Accuracy for K = 3 classification system, with Naïve Bayes for title and
features description, and Information Gain with select count equal to 1000.

The Category Mapping Algorithm

For the evaluation of the Category Mapping algorithm, we collected 110 unique
categories from CircuitCity.com and Amazon.com. After collecting these categories
we manually mapped the collected categories to the Shopping.com categories. We do
not provide only one mapping per category, but a list of possible correct mappings
for all 110 categories. The first category on the list is the best choice, the second was
the second best, etc. Table 2.4 shows some examples of these manual annotations.
This manual mapping is used to benchmark our algorithm.

The goal of the algorithm is to map categories as much as possible to categories
specified in the first chosen category, but there is always some subjectivity involved.
For instance, for the mapping of ‘Blu-Ray & DVD Players’ one could assign ‘DVD
players’ as first choice while one could also assign ‘Blu-Ray Players’ as a first choice.

The algorithm for category mapping has only the threshold parameter γ (not
to be confused with the SVM γ parameter). In order to obtain the optimal value,
we experimented with values between 0 and 1 with a step size of 0.05. Using this
procedure, we determined that γ = 0.80 gives the best results. Table 2.5 shows the
results for the algorithm with γ = 0.80 on the 110 categories. We observe that only
6.37% of the 110 categories are not correctly mapped to one of the corresponding
manually chosen Shopping.com categories. This yields that 93.63% of the categories
are correctly mapped to one of the corresponding five manually assigned categories.

2.5 Conclusions and Future Work 41

77.27% of the 110 categories, which is 82.53% of total percentage correctly classified
categories (93.63%), are mapped to the first manually chosen category.

Original category #1 choice #2 choice #3 choice #4 choice
Blu-Ray & Blu-ray Players DVD Players DVD Drives Car DVD Players
DVD Players

Networking & Networking Networking Hub Other Network
Internet and Switches Devices

Power Supplies System Power
Supplies

Webcams Web Cameras Digital Cameras

Memory/Ram Random Access Computer Memory Memory Cards
Memory (RAM)

Table 2.4: An excerpt of the golden standard category mappings.

Manual mapping Percentage assigned to
1st choice 77.27%
2nd choice 6.36%
3rd choice 8.18%
4th choice 0.91%
5th choice 0.91%

1th, 2nd, 3rd, 4th, or 5th choice 93.63%
Misclassification 6.37%

Table 2.5: Results of the category mapping algorithm using γ = 0.80.

2.5 Conclusions and Future Work

This chapter proposes the Hierarchical Product Classification framework for the pur-
pose of product classification using a product category taxonomy. The framework
defines a classification system with K levels that is used to classify a product de-
scription to one of the leaves. The innovative part of the framework stems from
several aspects. First, the framework uses classification recipes to construct classifier
nodes. The classification recipes allow for flexible classifiers, i.e., different classifiers
and different feature selection can be used on each of the levels of the product cat-
egory taxonomy. Furthermore, in order to provide a more complete picture of the

42 Towards Automatic Product Description Classification

components needed to perform high quality product classification, we have evaluated
several feature selection methods and classification techniques.

From the obtained results we can draw several conclusions. First, we have found
the k-Nearest Neighbor algorithm to be unsuitable as an independent classifier. Be-
sides the computational cost, the accuracy is too low to be useful in practice. Fur-
thermore, we have shown that with our product data set, the Naïve Bayes classifier
can perform better than Support Vector Machines, obtaining an average accuracy
of 76.80% for product classification. When considering the properties of a product
description, we have found that the features description provides better predictors
for the top levels but that the title provides better predictors for the lower levels,
except for the last level, where the features description gives again better results.

In the case that a product description contains a category, we make use of our
proposed Category Mapping algorithm, which is a novel algorithm that makes use of
semantic and syntactic matching. The algorithm achieves a precision of 93.63% on
a manually mapped test set. It makes use of the average Levenshtein similarity in
order to deal with syntactic variations of product categories and the cosine similarity
for semantic similarity. WordNet is used to obtain a set of synonyms for each word
in the product category, increasing the search space, and thus, the recall.

In future work we want to further investigate the interaction effects between the
classification algorithms and the feature selection methods. One approach would be
to research different combination strategies at different levels of the product cate-
gory taxonomy. Another approach would be to use ensemble techniques to combine
classifiers, i.e., a classifier on the title, a classifier on the features description, and a
classifier on both the title and description. A third option is to use ensemble tech-
niques to combine and evaluate the category mapping algorithm with the previously
presented text classifiers.

Chapter 3

Large-Scale Web Product
Entity Resolution∗

Consumers are increasingly using the Web to find product information and
make online purchases. This is reflected by the ongoing growth of world-

wide e-commerce sales. Entity resolution is an important task that supports
many services that have arisen because of this growth, such as Web shop aggre-
gators. In this chapter, we propose a scalable framework for multi-source entity
resolution. Our blocking approach employs model words to produce blocks that
make our solution are highly effective and efficient. An in-depth evaluation, per-
formed using millions of experiments and three large datasets, shows that our
model words-based approach outperforms other approaches in most cases. Fur-
thermore, we also evaluate our approach with an imperfect similarity function,
from which we conclude that model words-based blocking schemes provide the
best blocks with respect to the F1-measure.

∗This chapter is based on the article “D. Vandic, F. Frasincar, and U. Kaymak. Scalable Entity Res-
olution for Web Product Descriptions. IEEE Transactions on Knowledge and Data Engineering,
2017, under review.”

44 Large-Scale Web Product Entity Resolution

3.1 Introduction

Over the last few years we have experienced a tremendous growth of online shopping.
According to a recent report from Forrester Research, e-commerce spending in the
United States will hit approximately $414 billion in 2018 (Mulpuru et al., 2015),
which is 11% of the estimated total retail sales in the same year. To keep up with
this growth, various online aggregation services have arisen that allow the user to
search for products across multiple Web shops. One of the main tasks of such a
service is entity resolution. Entity resolution can be described as the process of
matching entity descriptions, between two or more data sources that describe the
very same real-world entities. Performing this task on the Web is harder than in
traditional, relational databases. For example, on the Web, we have to deal with
highly heterogeneous data and loosely defined schema’s. Furthermore, with Web
data there are usually many more data sources than with relational databases, e.g.,
an online aggregation application needs to aggregate information from many different
shops.

Previously, we have studied various approaches for product entity resolution on
the Web (van Bezu et al., 2015). The focus of the current work is to investigate how
the scalability of such entity resolution approaches can be improved using blocking
schemes. Blocking schemes are used to reduce the number of pair-wise similarities
that need to be computed, by assigning each product to one or more ‘blocks’ (i.e.,
clusters) and only computing the pair-wise similarity for pairs of products that have
at least one block in common (Papadakis et al., 2013). In this chapter, we investigate
which blocking schemes work best with product description data on the Web and
which part of a product description is the most valuable for the blocking process
(i.e., the title or the description). Furthermore, we perform an in-depth analysis of
the trade-off between blocking schemes that result in computing a very few pair-
wise similarities (more efficient approaches) versus ones with very high recall (more
effective approaches).

The novelty of this study stems from several aspects. First, we propose a scalable
framework for entity resolution operating on multiple sources at the same time (i.e.,
multiple Web shops). Second, we propose to usemodel words, previously employed for
similarity matching (van Bezu et al., 2015), to create effective and efficient blocking
schemes. Third, our findings give insight in which blocking schemes work well with
product description data on the Web. Last, using millions of experiments, we perform
an in-depth evaluation of our blocking approach, under the assumption of a perfect
matching function, but, different from related blocking scheme studies (Baxter et al.,

3.2 Related Work 45

2003), also using a non-perfect, but well-performing, matching function (van Bezu
et al., 2015).

The structure of this chapter is as follows. First, we discuss the related work
in Section 3.2. In Section 3.3, we describe a scalable framework for multiple-source
entity resolution. Next, in Section 3.4, we evaluate the performance of our blocking
approaches and benchmark against a state-of-the-art solution that does not apply
blocking. Last, in Section 3.5, we conclude and identify possible further research.

3.2 Related Work

Entity resolution is a well-studied research topic (Benjelloun et al., 2009; Dong et al.,
2005; Koudas et al., 2006). Elmagarmid et al. (2007) and Christen (2012) give an
overview of this field and highlight the related scalability issues. In the literature,
we can find several proposed solutions to scale entity resolution approaches, blocking
schemes are the most commonly employed approaches (Christen, 2012). Based on
their focus, blocking schemes can be categorized into two broad categories (Papadakis
et al., 2013), i.e., methods focusing on block building and methods focusing on block
transformations.

Block building methods focus on producing blocks such that the number of de-
tected duplicates is high and the number of required comparison is low. A straightfor-
ward way of blocking in situations where a schema is available, is to simply group the
entities based on the values of selected key(s) (Christen, 2012). For example, persons
stored in a database might be grouped based on postal code, greatly reducing the
number of comparisons. With Web data, there is usually no predefined schema, so it
is not possible to preselect particular ‘keys’ of entity descriptions. Instead, what is
often done, is to extract all values, usually accompanied with a particular filter (e.g.,
a stop words filter) to reduce the number of comparisons (Christen, 2012; Papadakis
et al., 2013, 2015).

In the literature, we can find various approaches that build on the basic approach
of representing every entity by one or more keys and creating groups based on their
equality, where pair-wise comparisons are only made within these groups (Papadakis
et al., 2015). Suffix array approaches (De Vries et al., 2009) employ suffixes of the
extracted values (of fixed lengths), where entities that share a suffix of a value are
placed in the corresponding block. Bigrams and q-gram blocking (Baxter et al.,
2003; Gravano et al., 2001) work in a similar way, only instead of using suffixes,
these methods create clusters of entities that share at least one bi- or q-gram of a

46 Large-Scale Web Product Entity Resolution

value. The Sorted Neighborhood approach (Hernández and Stolfo, 1998) sorts all
extracted values and uses a sliding window of configurable size to create clusters
iteratively (at each time moving the window one position down the sorted list).
Canopy clustering (McCallum et al., 2000) involves the use of a cheap approximate
distance measure to divide the data in overlapping subsets.

Usually the above presented methods perform better when combined with a block
transformation step. Block transformation methods aim to improve the effective-
ness and/or efficiency by analyzing the produced blocks and transforming them into
new ones. One approach that falls into this category is the iterative blocking ap-
proach (Kim and Lee, 2010; Whang et al., 2009). Other approaches focus on scaling
existing block building techniques, such as Kolb et al. (2012), where a map reduce al-
gorithm is presented for executing the sorted neighborhood approach using multiple
passes.

Some approaches focus on scaling existing block building techniques, such as Kolb
et al. (2012). The authors of this work propose a map-reduce algorithm for executing
the sorted neighborhood approach using multiple passes. In this work, we do not
aim to parallelize existing approaches in order to be able to handle larger datasets.
Instead, we are interested in blocking schemes that are highly scalable by design.
This means that the blocking operation must have linear time complexity in terms
of the number of input descriptions. In particular, we focus on methods that output
blocks based on solely a single input description, i.e., we do not focus on methods
that require the knowledge of the whole dataset. The reason for this is that this
makes the approach easily parallelizable, as the block generation can be distributed
across nodes in a cluster and the pairs (and corresponding blocks) can be efficiently
collected (either offline or directly using a hash-based reduce phase). In order to keep
the evaluation fair, we therefore disregard methods such as the Sorted Neighborhood
approach (Hernández and Stolfo, 1998) and Canopy clustering (McCallum et al.,
2000). Furthermore, a common drawback of all the previously discussed methods
is that they do not focus on product descriptions. For our proposed approach, we
experiment with a token extraction technique (i.e., model words) that proved to work
well for similarity computations between product descriptions (van Bezu et al., 2015).
Last, different from the discussed solutions, which focus on the two-source entity
resolution problem, we address in this chapter is the multi-source entity resolution
problem (i.e., handle descriptions of multiple Web shops at the same time).

Blocking
Schemes

Similarity
Computation

Clustering
Process

…

 …

 …

 …

… …

Web Shop 1
products

p1

p2

…

Web Shop 2
products

p1

p2

…

…

48 Large-Scale Web Product Entity Resolution

this is that, even with moderately sized datasets, the number of pair-wise similarities
that need to be computed increases quadratically.

3.3.1 Blocking Schemes

We define a blocking scheme as a function that provides a many-to-many mapping
between a product description and a block. A block is an entity with a unique ID
and is usually represented by (a part of) a value from the entity description.

The set of possible blocks is determined by the employed blocking scheme. In our
approach, a blocking scheme consists of the following three components:

• the source selector ;

• the text tokenizer ;

• and an optional block transformer.

Figure 3.2 shows the details of our blocking framework. First, the source selector
component determines from which part of the product description blocks are ex-
tracted. Second, the tokenizer component takes as input, from the source selector
component, one or more strings, and outputs the union of the extracted blocks from
each of these strings. Third, and last, the optional block transformer component
transforms the produced blocks B into a new set of block B′, with the goal of opti-
mizing the efficiency of the previously produced blocks.

As mentioned previously, we assume that the product descriptions consist of a
title and a set of key/value pairs. In this study, we therefore consider a title source
and a key/value pairs source, where the latter will be referred to as the description
source for brevity. The description source selector refers solely to the values of the
key/value pairs; in our study we ignore the keys of the product descriptions. The
reason for this is that these are usually not very discriminative, i.e., descriptions
across Web shops have many keys in common. On the other extreme, the ones that
are not that common, occur rather infrequent and are therefore not very useful.

For the text tokenizers we first consider the word tokenizer. This tokenizer first
cleans the input string(s) by removing all punctuation characters (e.g., apostrophe,
brackets, colons, comma’s, etc.) and the dollar sign character, which might prevent
some words from being tokenized properly. In the literature, this kind of tokenizer
is very common in unstructured datasets, where the schema is unknown and the
used values are highly heterogeneous (Papadakis et al., 2013). For example, the
title “Philips 4000 Series, 29" - Best Buy” would result in the following extracted

3.3 Product Entity Resolution 49

Source
Selector

Text
Tokenizer

Block
TransformerProducts

Value11
Value12
Value1p

…

description
source

Value21
Value22
Value2p

…

description
source

T1

T2

T3

T4

…

(T1,T2)

(T3,T4)

…

Key11
Key12
Key1p

…

Value11
Value12
Value1p

…

Title1 TitleVal1

Product 1

Key21
Key22
Key2p

…

Value21
Value22
Value2p

…

Title2 TitleVal2

Product 2

… …

(T1,T3)

Figure 3.2: A more in-depth look into the details of our blocking approach. Shaded
squares represent product descriptions. T1, T2, . . . , Tn represent tokens extracted
from a source.

blocks: philips, 4000, series, 29", buy. Besides the regular word tokenizer we also
consider the q-gram (in particular, trigram) tokenizer (Baxter et al., 2003; Gravano
et al., 2001) and suffix array tokenizers (De Vries et al., 2009). These tokenizers use
a scheme that performs the tokenizing technique on words extracted from the input
string.

The titles of product descriptions can contain a lot of information for products
with many technical specifications. For example, for TV’s, the titles often contain
terms like 1080p and 100hz. We refer to such terms as model words and they are
defined as words that have at least one digit character and at least one character
that is not a digit. The following are examples of extracted model words:

• Philips 4000 Series 29" Class LED 720p 60Hz HDTV 29PFL4508F7

yields model words 720p, 60hz, 29pfl4508f7, 29"

• Panasonic - 42" Class/Plasma/720p/600Hz/HDTV

yields model words 720p, 42", 600hz

50 Large-Scale Web Product Entity Resolution

It has been shown that these model words can be effectively used to obtain high
accuracy entity resolution (van Bezu et al., 2015). We therefore propose the model
words tokenizer that extracts these model words from the input string(s). For the
previous example, i.e., “Philips 4000 Series, 29" - Best Buy”, this would mean that
we extract the block 29".

Last, for our approach, we consider the use of a combinations block transformer.
This transformer takes as input the blocks from a tokenizer and outputs all the k
combinations (sets of k elements) of these blocks. Again, with the previous example
and a particular tokenizer, a k = 2 combinations block transformer would yield all
pairs of the blocks that the tokenizer outputted. With k = 3, it would yield all
triplets of the blocks that the tokenizer outputted. This transformation will result
in a reduction of the total number of similarity-pairs that need to be computed, i.e,
the longer the combination, the fewer products will match the combination.

The above discussed components, i.e., the source selector, the text tokenizer, and
the optional block transformer components, form together a blocking scheme. Once
these three component have been chosen, the blocks are generated per given product
description. The corresponding product is then mapped to each of the generated
blocks.

3.3.2 Blocking Schemes Aggregators

Similar to the transformers for the blocks, on the level of blocking schemes, we
consider aggregations of blocking schemes that might improve the effectiveness and/or
efficiency. For this purpose, we consider two type of aggregations: (1) the union of
the output blocks, focusing on improving effectiveness, and (2) the conjunction of the
output blocks, moving the focus on improving the efficiency of the outputted blocks.

The union aggregator blocking scheme takes two blocking schemes and outputs
mappings that are outputted by either of the two blocking schemes. For example, if
blocking scheme x maps entity p1 to block b1 and blocking scheme y maps entity p1
to block b2, then this blocking scheme would map p1 to both b1 and b2.

The conjunction aggregator blocking scheme takes two blocking schemes, say s1
and s2, and combines their outputs in the following way. First, the mappings are
computed using s1. Then, for each of the blocks in the mapping, the entities mapped
to the block are fetched. The blocking scheme s2 is called on these entities, yielding
a new set of mappings. The final outputted mappings are a combination of the block
from s1 and the blocks from s2.

3.3 Product Entity Resolution 51

Finally, we also consider the all pairs blocking scheme, which is actually a scheme
that does not perform blocking at all, it considers all pairs. The other approaches are
evaluated w.r.t. the percentage of pairs computed compared to the all pairs method.

3.3.3 Blocking Schemes Identifiers

Throughout this paper we adhere to a blocking scheme naming convention that rep-
resents a combination of the previously discussed components. A blocking scheme is
represented in the form of $source.$tokenizer, where the $transformer is optional
(words that start with a dollar sign represent a variable).

For $source, we use t for the title source and d for the description source. We use
wo for the word tokenizer, 3q for the qgram (trigram) tokenizer, sx for the suffix array
tokenizer, and mw for the model words tokenizer. For example, t.mw would represent a
blocking scheme that extracts model words from the title and d.wo a blocking scheme
that extracts words form the description source. Additionally, when a combinations
block transformer is applied, we append k to the name of the tokenizer. For example,
d.mw3 represents the blocking scheme that extracts model words from the description
source and forms triples of these to output blocks.

The union and conjunction block transformers are represented as a_$operator_b,
where a and b are blocking schemes and $operator can be either + (for union trans-
formations) or x (for conjunction transformations). For example, t.mw3_x_d.mw2

represents the conjunctive combination of two blocking schemes that extract model
words triples from the title and model word pairs from the description. This means
that this model will output only blocks that are both outputted by the blocking
schemes.

3.3.4 Similarity Computation

In previous work, we have focused on computing similarities between product descrip-
tions (van Bezu et al., 2015). The approach we employ in this chapter for computing
the similarities is the state-of-the-art MSM approach from our previous study. MSM
is able to compute similarities for products that are represented in a semi-structured
data model, e.g., tabular Web product information.

Algorithm 3.1 shows a high-level overview of how the product similarity is com-
puted. In Algorithm 3.2 we see the function KeySim(a, b), which is used to compute
the similarity between product descriptions a and b based solely on the product
attributes. This function is used by Algorithm 3.1 to compute the final product

52 Large-Scale Web Product Entity Resolution

Algorithm 3.1: MSM Similarity.
Required functions:
• KeySim(a, b) computes the similarity between two product descriptions a

and b based solely on the product attributes (described in Algorithm 3.2);
• titleSim(ta, tb) gives the similarity between title ta and tb;
• mw(W) extracts the model words for a given set of words W ;
• mwSim(mwa,mwb) the similarity between model words mwa and mwb.

1 // Computes similarity between product descriptions a and b
2 def ProdSim(a, b):
3 (m, I, J, keySim∗) := KeySim(a, b)
4 // m is the number of key matching keys between a and b
5 // I is the set of keys from a that do not match
6 // J is the set of keys from b that do not match
7 // keySim∗ is similarity between the keys of a and b

8 // extract model words from set of keys that do not match
9 Imw := mw(I)

10 Jmw := mw(J)
11 // compute the model words and title similarity
12 mwSim := mwSim(Imw, Jmw)
13 titleSim := titleSim(a.title, b.title)
14 if titleSim = 0 then
15 // µ is the weight for the title similarity
16 θ1 := m/min(|a.keys|, |b.keys|) θ2 := 1− θ1
17 else

18 θ1 := (1− µ) ·
m

min(|a.keys|, |b.keys|) θ2 := 1− µ− θ1

19 end
20 // final similarity
21 sim∗ := θ1 · keySim∗ + θ2 ·mwSim+ µ ∗ titleSim
22 return sim∗

description similarity. The similarity function of MSM takes as input two product
descriptions and outputs a similarity between 0 and 1. The main idea of the approach
is to first compute a similarity based on the keys of two product descriptions (i.e.,
attributes). Then, with the remaining, unmatched keys, we compute a similarity
based on the proposed model words. Model words are defined as words that contain
at least one alphanumeric character. Last, we compute a title similarity and combine
the three similarities into one final weighted average similarity. For the titleSim()
function we employ a cosine-based similarity. The keySim() and keysMatch() func-

3.3 Product Entity Resolution 53

Algorithm 3.2: MSM Key Similarity.
Required functions:
• clean(w) removes punctuation characters at end of word w;
• keysMatch(ka, kb) determines whether two keys represent the same

attribute;
• keySim(ka, kb) gives the similarity between keys ka and kb;
• valSim(ka, kb) gives the similarity between the values of keys ka and kb;
• titleSim(ta, tb) gives the similarity between title ta and tb;
• mw(W) extracts the model words for a given set of words W ;
• mwSim(mwa,mwb) the similarity between model words mwa and mwb.

1 // Computes the similarity between two product descriptions
2 def KeySim(a, b):
3 m := 0 // number of matches
4 w := 0 // weight of matches
5 I := a.keys and J := b.keys // keys without a match
6 sim := 0
7 foreach ki,a in a.keys do
8 ki,a := clean(ki,a)
9 foreach kj,b in b.keys do

10 kj,b := clean(kj,b)
11 if keysMatch(ki,a, kj,b) then
12 I := I \ ki,a

13 J := J \ kj,b

14 keySim := keySim(ki,a, kj,b)
15 valueSim := valSim(ki,a, kj,b)
16 sim := sim+ keySim ∗ valueSim
17 m := m+ 1
18 w := w + keySim

19 end
20 end
21 end
22 keySim∗ := 0
23 if w > 0 then

24 keySim∗ :=
sim

w
25 end
26 return (m, I, J, keySim∗)

tions are based on the q-gram similarity measure. For more details we refer the
reader to van Bezu et al. (2015).

54 Large-Scale Web Product Entity Resolution

3.3.5 Clustering

After the similarities between the relevant entity pairs have been computed, we apply
a clustering step to discover the duplicate entities. The reason for this is that we
have multiple sources and the similarity function is not transitive. In other words, if
one has A sim B, B sim C, then this does not imply A sim C. Using a clustering
approach, these transitive similarities can be taken into account.

As part of our framework, the clustering method takes as input the product
description similarities and outputs clusters of products in which its members are
considered to be duplicates. Because our approach supports multiple sources and
we assume that within each source there are no duplicates, the algorithm should not
cluster products that are originating from the same Web shop.

The MSM similarity (van Bezu et al., 2015) is used in an approach where an
adaptation of hierarchical clustering is employed. The main idea of this clustering
approach is to use single linkage in all cases except for those where a infinite distance
is encountered, in which case complete linkage is applied instead. These infinite
distances are assigned to product description pairs originating from the same Web
shop. Therefore, it is unlikely that the modified linkage criterion in this approach
will assign such descriptions into the same cluster.

3.4 Evaluation

For the evaluation of our framework, we have used the following three datasets∗:

• 4shops - consists of 1,624 descriptions of televisions, obtained from Ama-
zon.com, Newegg.com, BestBuy.com, and TheNerds.net;

• abt-buy - consists of 2,175 descriptions of various electronics products;

• amz-ggl - consists of 4,591 descriptions of various software products.

First, in Section 3.4.1, we evaluate the effectiveness and efficiency of the proposed
blocking approach. Then, in Section 3.4.2, we analyze how the performance of the
proposed entity resolution algorithm is affected by the considered blocking schemes.

3.4.1 Blocking Evaluation

We evaluate our blocking approach using three measures that are commonly used
in literature (Christen, 2012; Papadakis et al., 2013, 2015). These measures are
∗available from https://goo.gl/cexJfJ and https://goo.gl/hm0bhD

3.4 Evaluation 55

computed based on the pairs that need to be considered as a result of a blocking
scheme. First, we consider a measure of efficiency, which is referred in literature as
pairs quality (PQ). It is defined as

PQ = found duplicates
executed comparisons

This can be considered as the precision measure from information retrieval. Second,
we consider a measure of effectiveness, also known as the pairs completeness (PC).
Essentially, it is the recall measure from information retrieval and it is defined as

PC = found duplicates
total number of duplicates

Last, we consider the reduction rate (RR), defined as

RR = 1− executed comparisons with blocking
executed comparisons without blocking

This is the reduction in the percentage of pairs that need to be considered after
applying a blocking scheme, compared to the total number of pairs (without applying
a blocking scheme). The total number of pairs excludes pairs of product descriptions
that are from the same Web shop, as we assume that we are dealing with ‘Clean-Clean
ER‘ and that in most contexts, the source of the product description is known.

Considered configurations

These are the configurations that we consider:

1. t.{wo,mw}{2..4} and t.{wo,mw} (6 combinations)

2. t.{3q,sx} (2 combinations)

3. d.{wo,mw}{2..4} and d.{wo,mw}{2..4} (6 combinations)

4. d.{3q,sx} (2 combinations)

5. a_+_b where a and b are unique pairs from (1), (2), (3), and (4) (120 combi-
nations)

6. a_x_b where a and b are unique pairs from (1) and (3), respectively (66 com-
binations)

56 Large-Scale Web Product Entity Resolution

The total number of considered configurations is therefore 202 (16+120+66). For
each of these methods, and the three considered datasets, we computed the previously
discussed measures on 40 bootstraps, where each bootstrap is a stratified random
sample of the original data. Next, we only kept methods that had an average PC
higher than 0.50 and an average RR measure greater than 0.50 (measured across
datasets). For these methods we then compute the average PC and average RR for
each dataset. Then, for each dataset, we split the methods into three equally-sized
groups (‘low’, ‘medium’, and ‘high’), which is based on the average PC where ‘high’
represents the group having the highest PC measure. Finally, for each group in each
dataset, we select only the top 3 methods w.r.t. the RR.

Figures 3.3, 3.4, and 3.5 show the trade-off between the PC and RR measures
for each group and each dataset. Each dot in a graph represents the obtained per-
formance for a particular bootstrap. Furthermore, Tables 3.1, 3.2, and 3.3 show for
each top method in each dataset the mean and standard deviation for PC, RR, PQ,
block count, and blocking duration. For the PC measure, we have used paired t-tests
with Bonferroni corrected p-values to determine if differences are statistically signifi-
cant. For sake of brevity, in our discussions, we will only highlight the non-significant
differences (because most of the differences are significant).

What we first notice is that the suffix array tokenizers and trigram tokeniz-
ers do not appear in the results as top-performing methods. This might suggest
that traditional tokenizing techniques are not efficient enough for Web data, such as
the product descriptions in the three considered datasets. Furthermore, from Fig-

Scheme dataset PC RR PQ Block Blocking
count duration (ms)

t.mw3_x_d.mw 4-shops 0.74/0.04 0.98/0.00 0.07/0.01 49,331.45/2,122.70 55.00/18.50
t.mw3_x_d.wo 4-shops 0.77/0.04 0.98/0.00 0.05/0.00 134,687.58/5,640.74 144.90/12.94

t.mw3 4-shops 0.78/0.04 0.98/0.00 0.04/0.00 2,539.20/98.60 2.28/3.77
t.mw_x_d.wo abt-buy 0.52/0.02 1.00/0.00 0.39/0.04 16,998.68/504.64 20.75/4.58
t.wo4_x_d.wo abt-buy 0.65/0.02 1.00/0.00 0.47/0.03 1,039,981.45/62,697.68 1,441.33/217.08

t.wo4 abt-buy 0.71/0.02 1.00/0.00 0.44/0.03 60,376.30/7,362.27 54.43/22.35
t.wo3_x_d.mw3 amz-ggl 0.54/0.02 1.00/0.00 0.41/0.05 90,529.18/11,833.81 209.98/68.36
t.wo3_x_d.mw4 amz-ggl 0.59/0.02 1.00/0.00 0.41/0.05 133,298.35/38,686.92 262.43/103.16
t.wo3_x_d.wo amz-ggl 0.63/0.02 1.00/0.00 0.42/0.04 1,151,049.95/103,369.37 1,453.68/173.81

Table 3.1: Blocking evaluation results for the considered blocking methods in ‘low
category’ (w.r.t to the PC measure). For each measure, we aggregated the scores
achieved over the 40 bootstraps. Each cell shows (1) the mean and (2) the standard
deviation.

60 Large-Scale Web Product Entity Resolution

Scheme dataset PC RR PQ Block Blocking
count duration (ms)

t.mw2_x_d.mw 4-shops 0.84/0.03 0.89/0.00 0.01/0.00 45,208.00/1,527.39 55.78/18.08
t.mw3_+_d.mw2 4-shops 0.80/0.04 0.95/0.00 0.02/0.00 5,268.55/171.25 11.60/19.34
t.wo4_x_d.mw 4-shops 0.84/0.03 0.86/0.01 0.01/0.00 2,674,844.73/154,913.98 4,064.73/607.06
t.wo3_x_d.wo abt-buy 0.81/0.01 0.99/0.00 0.27/0.02 611,670.70/25,527.48 816.03/83.14
t.wo2_x_d.wo abt-buy 0.89/0.01 0.98/0.00 0.13/0.01 248,044.33/7,655.92 325.93/27.40

t.wo3 abt-buy 0.88/0.01 0.99/0.00 0.24/0.02 31,452.78/1,760.35 27.43/10.56
t.wo2_x_d.mw4 amz-ggl 0.74/0.02 0.99/0.00 0.24/0.02 95,143.25/36,259.98 188.58/88.68

t.wo3 amz-ggl 0.75/0.02 0.99/0.00 0.36/0.04 29,719.25/2,441.90 27.58/10.95
t.wo2_x_d.wo amz-ggl 0.78/0.02 0.99/0.00 0.20/0.02 537,230.35/32,067.84 688.13/165.69

Table 3.2: Blocking evaluation results for the considered blocking methods in
‘medium category’ (w.r.t to the PC measure). For each measure, we averaged
the scores achieved over the 40 bootstraps. Each cell shows (1) the mean and (2) the
standard deviation.

Scheme dataset PC RR PQ Block Blocking
count duration (ms)

t.mw2 4-shops 0.93/0.02 0.83/0.01 0.01/0.00 1,902.48/60.47 2.20/3.50
t.wo4 4-shops 0.93/0.02 0.82/0.01 0.01/0.00 157,152.50/10,788.26 156.70/97.48

t.wo4_+_d.mw2 4-shops 0.95/0.01 0.81/0.01 0.01/0.00 159,881.88/10,788.41 255.70/111.22
t.wo abt-buy 0.99/0.00 0.88/0.01 0.02/0.00 1,573.63 /40.29 5.93/11.33
t.wo2 abt-buy 0.97/0.01 0.97/0.00 0.10/0.01 11,140.50/385.18 10.70/6.74

t.wo2_+_d.mw abt-buy 0.98/0.01 0.95/0.01 0.05/0.00 12,006.83/400.41 23.83/12.56
t.wo amz-ggl 0.99/0.00 0.92/0.00 0.03/0.00 1,305.78/40.24 4.75/11.16
t.wo2 amz-ggl 0.93/0.01 0.99/0.00 0.20/0.02 9,706.18/450.01 10.28/8.47

t.wo2_+_d.mw amz-ggl 0.96/0.01 0.70/0.01 0.01/0.00 10,121.03/455.96 71.35/55.31

Table 3.3: Blocking evaluation results for the considered blocking methods in ‘high
category’ (w.r.t to the PC measure). For each measure, we averaged the scores
achieved over the 40 bootstraps. Each cell shows (1) the mean and (2) the standard
deviation.

ures 3.3, 3.4, and 3.5, we can see that for the ‘low’ group, the methods are all in
the upper range w.r.t. the reduction rate (RR), with the lowest average being 0.98
for the ‘4-shops’ dataset. The average PC in this group varies between 0.52 and
0.78 across datasets. All differences w.r.t. the PC measure are found to be statisti-
cally significant (across datasets), except the difference between t.mw3_x_d.wo and
t.mw3, and t.wo3_x_d.mw3 and t.mw_x_d.wo. Taking into account, besides the PC
and RR measures, the number of blocks and the duration, we would argue that, for
this group, t.mw3 provides the optimal balance between speed and recall.

3.4 Evaluation 61

For the ‘medium’ group we can see that there is more variation w.r.t. the reduc-
tion rate (RR), ranging from an average of 0.86 to 0.99. For the PC measure, the
variation is similar compared to the ‘low’ group but the range is smaller, with aver-
ages going from 0.74 to 0.89. For this group, the difference between the PC measure
is for the following methods not statistically significant (across datasets):

• t.wo4_x_d.mw and t.mw2_x_d.mw

• t.wo2_x_d.wo and t.mw2_x_d.mw

• t.wo2_x_d.wo and t.wo4_x_d.mw

• t.wo3 and t.mw2_x_d.mw

• t.wo3 and t.mw3_._d.mw2

• t.wo3 and t.wo2_x_d.wo

• t.wo3_x_d.wo and t.mw3_._d.mw2

• t.wo3_x_d.wo and t.mw3_._d.mw2

• t.wo3_x_d.wo and t.mw3_._d.mw2

We can also notice that t.wo4_x_d.mw generates a large number of blocks. This
is caused by the fact that the word tokenizer produces many tokens and that the
high number of combinations lead to an exponential growth in the number of pro-
duced blocks. Looking at the average durations for the ‘4-shops’ dataset, we can
see that two schemes stand out because of their low duration: t.mw2_+_d.mw and
t.mw3_+_d.mw2. For this group, we notice that the model words tokenizer is part of
the best performing schemes for the ‘4-shops’ dataset. For the amz-ggl dataset, the
cleaning word tokenizers seems to achieve better efficiency. This is as expected, be-
cause the model words work best with technical descriptions, which are most common
among consumer electronics.

In the ‘high’ group, most methods are able to achieve a relatively high reduction
rate, except for the ‘4-shops’ dataset. The reason for this is that there are multiple
Web shops and thus, there is more variation in the descriptions. As the results for the
other two groups demonstrated, the ‘4-shops’ dataset seems to be the most difficult
for the methods to achieve a high reduction rate. With respect to the PQ measure,
all methods are found to statistically differ, except for t.wo4 and t.mw2, and t.wo2

and t.wo4_._d.mw2. Given these results, for the ‘4-shops’ dataset there is not a

62 Large-Scale Web Product Entity Resolution

clear winner. For the other two datasets, the scheme t.wo seems to give the best
performance w.r.t. PC and RR.

The results from these experiments demonstrate the scalability of our approach.
For example, in Table 3.3, which shows the results for the ‘high’ group, we can see
that the method t.wo2_+_d.mw takes on average 71.35 ms for amz-ggl and 23.83
ms for abt-buy for a bootstrap sample (an increase of factor 2.99). Given the fact
that the amz-ggl data set has 4,591 descriptions and the abt-buy data set has 2,175
descriptions (a factor 2.11 difference in size), we can see that the increase in blocking
duration is very close to linear.

3.4.2 Entity Resolution Evaluation

In order to validate the found results in the previous section, we perform another
evaluation, i.e., one that assesses the performance of the entity resolution algorithm
when a blocking scheme is applied. For this part, we used only the ‘4-shops’ dataset
as this dataset has the required characteristics for the MSM algorithm (unstructured
key/value data). The other two datasets have only a single description field, making a
comparison with these datasets not possible. Different than the blocking evaluation,
the entity resolution evaluation is implemented on top of a cluster computing frame-
work, i.e., the Apache Spark framework (Meng et al., 2016; Zaharia et al., 2010).
Because we had access to a large cluster, we were able to run 100 bootstraps of the
MSM algorithm with each of the blocking schemes. For MSM we tried 375 different
parameter configurations. Previously, in Section 3.4.1, we have explained which are
the scheme configurations that we consider. Using the considered configurations, we
arrive at a total number of experiments of 7,575,000 (100 bootstraps × 375 MSM
instances × 202 blocking scheme configurations). We used a cluster of 640 cores and
an additional caching layer for computing the MSM similarities.

Table 3.4 shows the results of the top-3 methods and the all-pairs method w.r.t.
the F1-measure using the MSM matching function. We found that only the methods
t.mw3_x_d.wo and t.mw3 are statistically different w.r.t the F1. With respect to the
average duration per bootstrap sample, we can report that all measured mean dif-
ferences are statistically significant, except for the difference between t.mw3_x_d.wo

and ap, i.e., the top-2 methods exhibit the same performance. However, consider-
ing the relatively small difference between the top-3 methods (i.e., t.mw3_x_d.wo,
t.mw3_x_d.mw, and t.mw3), we expect all top-3 methods to provide reasonably good
performance.

3.5 Conclusion 63

Scheme F1-measure Precision Recall Mean sample duration (ms)
t.mw3_x_d.wo 0.5382 0.5411 0.5380 447.15
t.mw3_x_d.mw 0.5376 0.5511 0.5272 221.68
t.mw3 0.5368 0.5389 0.5376 49.52
ap 0.5248 0.4723 0.5922 406.8

Table 3.4: The top-3 best performing methods (w.r.t. the F1-measure) and the
all-pairs method for the entity resolution evaluation, showing the average of each of
the measures, taken over the 100 considered bootstraps. The scheme ap stands for
the scheme that does not apply any blocking but instead just considers all pairs.

It is interesting to see that the all pairs scheme does not give the best performance
and that the best performing methods do not come from the group that scores the
highest on PC. At first, this seems counterintuitive, however, there is a reasonable
explanation for this. It seems that the blocking schemes are able to factor a significant
amount of pairs that would lead to false positives. This is also reflected by the
increased precision. Apparently, the decrease in recall (due to the computation of less
pairs) is less than the increase in precision, and thus resulting in a higher F1-measure.
This is a very interesting observation since most studies on blocking schemes are
performed with the assumption of the availability of a perfect matching function. The
found results in these experiments suggest that with imperfect matching functions,
such as MSM, the best performing methods are not necessary the ones with the
highest PC measure.

Further experiments are needed to generalize the findings regarding the contri-
bution of the considered tokenizers. However, the results from our experiments do
suggest interesting research directions. For example, the top-3 methods all utilize
the model words tokenizer. This might suggest that for product descriptions con-
taining technical specifications, such as the ‘4-shops’ dataset, model word tokenizers
are more suitable than word tokenizers.

3.5 Conclusion

In this chapter, we have proposed a scalable approach for multi-source entity reso-
lution using various blocking schemes. Our approach consists of three main compo-
nents: (1) a blocking scheme, (2) a product similarity function, and (3) a clustering
procedure. Various blocking schemes, which operate on the title, the description, or
both, are evaluated with a perfect similarity function, as well as an imperfect, but

64 Large-Scale Web Product Entity Resolution

well-performing one (van Bezu et al., 2015). The framework has been evaluated us-
ing an extensive set of experiments and three large datasets used commonly in entity
resolution studies.

The most important finding with regards to the blocking evaluation is that exper-
imental setups that evaluate blocking schemes with only a perfect matching function
are most likely not sufficient, i.e., one should also consider imperfect matching func-
tions. Furthermore, the results suggest that for our similarity function and clustering
procedure, which together achieve an F1-measure of 0.525 when using all pairs, block-
ing methods that compute very few pairs achieve a higher performance that ones that
have a high PC. In particular, we find that the blocking scheme that extract model
word triples from the title (i.e., t.mw3) gives the best trade-off between effectiveness
and efficiency on our test dataset, achieving an F1-measure of 0.537. The higher
F1-measure, compared to the F1-measure of 0.525 for all pairs, suggests that the
employed similarity function is sensitive to the number of pairs it needs to consider.

Chapter 4

Ontology Population of
Product Information from
Tabular Data∗

With the vast amount of information available on the Web, there is an ur-
gent need to structure Web data in order to make it available to both users

and machines. E-commerce is one of the areas in which growing data conges-
tion on the Web impedes data accessibility. This chapter proposes FLOPPIES,
a framework capable of semi-automatic ontology population of tabular product
information from Web stores. By formalizing product information in an ontol-
ogy, better product comparison or parametric search applications can be built,
using the semantics of product attributes and their corresponding values. The
framework employs both lexical and pattern matching for classifying products,
mapping properties, and instantiating values. It is shown that the performance
on instantiating TVs and MP3 players from Best Buy and Newegg.com looks
promising, achieving an F1 of approximately 77%.

∗This chapter is based on the article “L. Nederstigt, S. Aanen, D. Vandic, and F. Frasincar. FLOP-
PIES: A Framework for Large-Scale Ontology Population of Product Information from Tabular
Data in E-commerce Stores. Decision Support Systems, 2014, 59: 296-311”

66 Ontology Population of Product Information

4.1 Introduction

A few decades ago, it was hard to imagine the enormous impact the Web would
have on our daily lives these days. However, with the vast amount of information
available, still doubling in size roughly every five years (Zhang et al., 2008), there is a
serious need to structure all the Web data in order to keep it findable. With this aim
in mind, the Semantic Web (Berners-Lee et al., 2001) was conceived in 2001. In the
past years, some developments based on the ideas of the Semantic Web have been
adopted for large-scale use. One of these is the introduction of a semantic vocabulary
called schema.org (Google, Microsoft, Yahoo and Yandex, 2017), proposed by the
four major search engines Bing, Google, Yahoo!, and Yandex. Schema.org is a very
broad vocabulary with which the search engines aim to have a high-level shared
vocabulary that focuses on popular Web concepts. This means that it is by no
means an effort to have an ontology of ‘everything’ or an ontology that is very
specialized in one domain. Furthermore, Google introduced recently the Knowledge
Graph (Google Knowledge Graph, 2017), which is a project that augments search
results with appropriate semantic metadata. Despite these recent movements, which
are often attributed to the concept of ‘Linked Data’ (Bizer et al., 2009), the initially
envisioned Semantic Web is still at its infancy.

One of the areas in which growing data congestion on the Web has serious con-
sequences, is the field of e-commerce (Vijayalakshmi et al., 2011). Today’s search
engines are still primarily keyword-based, fail to work with syntactical differences,
and are language-dependent. Web-wide parametric product search is unavailable,
making it difficult for users to find the optimal purchase for their needs. According
to existing research (Horrigan, 2008), a large fraction of online shoppers get con-
fused or are overwhelmed by the information they get presented while searching for
products. The result can be that prices become the determining factor for purchases
on the Web. This situation is not optimal for both buyers and sellers: the buyers
could be better off with a more expensive product if that would fit better to their
needs, whereas the sellers might want to be competitive on other characteristics than
pricing alone (Li et al., 2011).

This research focuses on the extraction of product information from tabular data
sources on the Web, such as product information pages. Many major e-commerce
shops use, in one way or another, a tabular format for the product specifications.
This especially holds for complex (technical) products. For example, Amazon, Best-
Buy.com, Walmart, and Shopping.com, which are 4 well-known e-commerce sites, all
represent product information in a tabular format.

FLOPPIES

PRODUCT INSTANCES

ONTOLOGY STRUCTURERAW PRODUCT DATA
(tabular Web data)

Swoogle

iPhone 5 Product Information

Battery
Stand-By

225 hours

Warranty 1 year

8 megapixels

1136x640 px (326 ppi)

58.6 x 123.8 x 7.6 mm

iPhone 5 White

Camera
Resolution

Display
Resolution

W x H x D

Title

68 Ontology Population of Product Information

means that schema.org can now be used to describe more granular product informa-
tion (Google, Microsoft, Yahoo and Yandex, 2017). Although GoodRelations defines
concepts that can be used to describe product classes, i.e., their hierarchy and the
associated product properties, the actual product classes, such as ‘Phone’ or ‘Tele-
vision’, are not defined. This is one of the reasons why we propose the OntoProduct
ontology and a system that can semi-automatically extract instances from unstruc-
tured product information.

When product information is formalized in an ontology, better product com-
parison or recommendation applications can be built, employing more intelligent
parametric search by exploiting the semantics of product attributes and their cor-
responding values. Furthermore, there will be no need for existing Web stores to
provide their data in a specific format (which is currently the case), as search engines
will be able to effectively ‘pull the information’ from the Web stores themselves by
consuming the annotated product information on the Web pages. Information could
be more easily aggregated in order to have a very extensive source of product infor-
mation. A prototype that utilizes Semantic Web technology to aggregate product
information from multiple sources, as a means to improve product comparison, has
been implemented in (Vandic et al., 2012b).

The formalization of product information has several advantages in practice for
both business and consumers. For example, solving the information heterogeneity
problem in e-commerce can lead to serious improvements in the business information
exchange (Ng et al., 2000). Furthermore, the consumers’ product retrieval capabilities
will increase because of the more intelligent product search engines. For example,
search engines will be able to better rank products because they can reason about
how values of a product attribute relate to one another. This is best illustrated
with an example. Consider the facts that ‘HSPDA’ is faster than ‘3G’ and that
‘3G’ is faster than ‘GPRS’. From these facts, a semantic search engine can deduce
that ‘HSPDA’ is faster than ‘GPRS’ if the property ‘faster than’ is declared to be
transitive. This reasoning can help in cases where fuzzy search is needed, i.e., when a
user is searching for a phone with ‘HSPDA’ but none actually exist with the current
selection of properties and the next best phone has to be displayed. FLOPPIES
supports these developments by providing a semi-automatic method to store actual
facts about a product (i.e., the values of its attributes) in a product ontology. As a
result, one has access to a knowledge base that is understandable for both humans
and machines.

4.2 Related Work 69

This chapter is organized as following. First, related research approaches are
discussed in Section 4.2. Then, Section 4.3 explains the proposed framework in
detail. Section 4.4 evaluates the performance of FLOPPIES in a component-wise
analysis and compares it with a baseline approach. Last, conclusions and future
work directions are given in Section 4.5.

4.2 Related Work

In this section, we discuss some similar research approaches for ontology population
that are applicable in the e-commerce field. Furthermore, some existing product on-
tologies are reviewed, as such an ontology is required for instantiation in our problem
context. The scope of this research is the ontology population itself, and not HTML
table extraction. Therefore, approaches focusing on this topic are not discussed in
this chapter.

4.2.1 Ontology Population Approaches

Due to the wealth of information that is now available, both on the Web and within
organizations, it would be impractical to manually instantiate all that information in
an ontology. Therefore, several semi-automatic ontology population approaches have
been conceived in recent years, which are also applicable to the e-commerce domain.

Holzinger et al. (Holzinger et al., 2006) propose a fully autonomous process, which
only needs some initial seed knowledge about a specific product domain. Using this
knowledge, it performs a knowledge extraction process on Web pages, which retrieves
tabular data that is relevant to the product domain from the Web page. However,
instead of populating an ontology with the extracted information using an external
framework that contains custom logic, they propose a more integrated approach in
which parts of the required logic are replaced by OWL reasoning in the ontology.
Once the tabular data has been extracted from the Web page, content spotters are
employed, which detect specific values through regular expressions and are able to
annotate this information with OWL statements. Afterwards, additional facts can be
derived from the annotated tabular data using the domain-specific ontology that was
given as the seed knowledge for the process. The authors argue that this provides
a more modular and transparent system in which logical tables and domain models
can be easily substituted.

A different approach, using the semantic lexicon WordNet (Fellbaum, 1998), is
proposed by Patel et al. (Patel et al., 2003). OntoGenie is a semi-automatic tool

70 Ontology Population of Product Information

that takes domain ontologies and unstructured data, often in the form of natural
language, as input. It first maps the concepts in a domain ontology to a WordNet
equivalent. Then it captures the terms occurring in Web pages and tries to map each
word to a WordNet concept. Finally, the relationships between the domain ontology
concepts and the words on the Web pages can be determined by examining their
mappings to WordNet. It employs the principle of locality to compute the distance
between concepts, using information discovered from other pages, for increasing the
recall.

Ontosophie (Celjuska and Vargas-Vera, 2004) is a strictly semi-automatic system
for ontology population, requiring user input for each information extraction cycle.
It consists of a natural language processor, which uses shallow syntactical parsing
for annotating terms in sentences. The next process is deriving a set of extraction
rules from the annotated documents. A conceptual dictionary induction system is
employed for this phase, which uses a training corpus to derive a dictionary of concept
nodes. The extraction rules are generated using the different combinations of concept
nodes occurring in the sentences of the training corpus. However, as not every
extraction rule might be correct or specific enough, Ontosophie also computes a
rule confidence factor for each extraction rule, using K-fold cross-validation. During
this process, it merges rules giving identical results and assigns each rule a confidence
factor. After reviewing all the generated extraction rules, the extraction rules with
a sufficient rule confidence factor are used to populate an ontology. The authors
argue that it is important for the user to maintain control of the process, while
only presenting suggestions that the process considers to be correct. Therefore,
Ontosophie comes up with instantiation suggestions and ultimately lets the user
decide on whether it should instantiate the information or not. Furthermore, it
employs configurable thresholds for setting the desired minimum confidence factor
for making the suggestions.

OntoSyphon (McDowell and Cafarella, 2008) is an unsupervised ontology popu-
lation system, which takes any ontology as input and uses it to specify Web searches.
Using both the ontology and the additional information obtained from the Web, it
is able to automatically identify entities and their relations. The advantage of this
approach is that the entire Web can be used as a corpus for instantiating entities in
the ontology.

Our approach differs from these approaches on several aspects. First, with the
exception of (Holzinger et al., 2006), the aforementioned methods are not specifically
targeted at populating an ontology with (tabular) product information gathered from

4.2 Related Work 71

the Web. Second, the other methods generally rely on natural language processing,
using the syntactical context of a text to derive facts, while our approach focuses on
tabular data. Last, even though the framework we propose shows some resemblance
with the approach in (Holzinger et al., 2006), as both use regular expressions and
lexical representations for entity annotation, there is on important difference. Unlike
other approaches, including the approach in (Holzinger et al., 2006), our approach
employs a GoodRelations-based ontology for annotating instances, making it com-
patible with major search engines (GoodRelations is already supported by some of
the major search engines). The approaches that are discussed in this section do not
share this advantage.

Even though most other methods are not directly applicable to the discussed
problem, we can, nevertheless, re-use some of their elements. For instance, the
classification of products can be achieved by mapping the category hierarchy of a
Web store, if it is available, to product classes in the ontology. It could use a similar
approach as (Patel et al., 2003), to create the mappings by employing WordNet.

In addition, the proposed value instantiation process, as used by the framework,
employs a set of different value extraction rules capable of converting key-value pairs
to the proper format for instantiating the ontology. Unfortunately, as there is no
freely available implementation of a relevant ontology population framework, and not
enough information to precisely recreate an existing framework, we cannot compare
the performance of our proposed framework to that of the aforementioned frame-
works.

4.2.2 Ontologies for E-commerce

Ontologies have been successfully applied in various domains, ranging from mechani-
cal engineering (Guo et al., 2011, 2012, 2013) to biology (Ciaramita et al., 2005; Gene
Ontology Consortium and others, 2000; Holmans et al., 2009). Also, various ontolo-
gies and categorization standards have been proposed for usage in the e-commerce
domain. These can help businesses in a variety of ways, for example by improving
communication possibilities between companies, and by automating various processes
such as stock management.

A commonly used classification system for products is the United Nations Stan-
dard Products and Services Code (UNSPSC) (UNSPSC, 2012). Though UNSPSC is
not freely available, it is applied broadly as it covers a very wide range of products.
The UNSPSC dataset has also been converted into an OWL (W3C OWL Work-
ing Group, 2012) ontology for research use, though it is questionable whether the

72 Ontology Population of Product Information

purely hierarchical data structure of UNSPSC benefits from such a conversion (Hepp,
2010b). Similar to UNSPSC, eCl@ss (eCl@ss e.V., 2017) provides a wide base of
product classes and descriptions. It is also a commercial standard, competing with
UNSPSC, though more successful in Germany and containing properties per product
class as well. For eCl@ss, an OWL conversion project is also maintained for research
purposes (Hepp, 2006, 2010a). A third categorization standard worth mentioning
is the Open Directory Project (ODP) (DMOZ, 2017), which is a project aiming to
categorize the Web. Its shopping division consists of roughly 44,000 categories, but
the classes have no further information attached to them.

In the e-commerce domain, another project, RosettaNet (Damodaran, 2004), is
a non-profit standard for sharing business to business information. It is based on
XML (Bray et al., 1997), and is mostly used in the supply chain area. These and
other general e-commerce categorization standards are evaluated and discussed in a
survey by Hepp et al. (Hepp et al., 2006).

Moving on to projects more related to Semantic Web, GoodRelations (Hepp, 2008)
is a high-potential ontology describing products and service offerings for e-commerce.
It has been adopted by various large Web stores in the form of RDFa (Adida et al.,
2012) annotations. Furthermore, by mapping it to the schema.org vocabulary, the
project is increasingly gaining attention from major search engines, which offer sup-
port for a growing set of annotations from GoodRelations. However, GoodRelations
only specifies the way in which products and services need to be described, and does
not contain product-specific properties or product classes.

In an attempt to augment GoodRelations with product classes and properties for
consumer electronics, the Consumer Electronics Ontology (CEO) (CEO, 2017) has
been developed. Although this ontology includes a subclass-of relationship between
the product entities, product attribute information is not available.

There are some other approaches that are related to the product ontology that
we propose. One of them is the productontology.org project (Martin Hepp, 2017b).
This project publishes an ontology that extends the GoodRelations ontology with
approximately 300,000 product and service definitions, based on the automatic ex-
traction of these from Wikipedia. It contains some basic properties that are mapped
to GoodRelations. However, these properties are very general and apply to many
products. There are not many properties that are product specific, such as ‘maxi-
mum load’ for washing machines and ‘cpu speed’ for laptops. Furthermore, existing
ontologies miss the metadata needed for appropriate extraction of properties and
their values from text.

4.3 FLOPPIES Framework 73

There are also other efforts that do not directly rely on Wikipedia for the schema
creation (Martin Hepp, 2013, 2017a). Although the ontologies that are proposed in
these projects contain more detailed schemas, they fail to address the issue of formal
semantics with respect to the unit of measurements. Our proposed OntoProduct
ontology does address this aspect by integrating an existing ontology-driven on units
of measurement.

4.3 FLOPPIES Framework

In this section, we provide a detailed explanation of the FLOPPIES framework.
First, the general processes for the framework are discussed in an overview. Then
we elaborate on the ontology that is used for instantiation. Last, each step of the
framework is explained in more detail.

4.3.1 Framework Overview

The goal of the FLOPPIES framework is to structure consumer product information
from Web sites in order to improve product search or recommendation systems. To
achieve this goal, several steps are required: extraction of key-value pairs from (tab-
ular) Web data; instantiation of the product data into an ontology; product entity
resolution to detect and aggregate duplicate products from different Web sources
and; an application that uses the instantiated ontology data for product search or
recommendation. A lot of research effort has already been invested in extraction
of (tabular) Web site data (Chang et al., 2006), and in (product) duplicate detec-
tion (Elmagarmid et al., 2007; Kopcke and Rahm, 2010). Therefore, these steps are
left outside the scope of this research.

The FLOPPIES framework starts with the assumption that product information
in the form of key-value pairs is present. Collecting this data is often trivial, as many
Web stores already offer product information in tabular form, ordered as key-value
pairs. FLOPPIES uses this raw product data, as we refer to it, for instantiating the
individual products and their features into a predefined product ontology. This do-
main ontology has to be able to describe individual products with specific properties
for each type of product. For instance, a TV shares some properties with digital
audio players (i.e., ‘screen size’), but it also has properties that digital audio play-
ers do not possess (i.e., ‘remote control’). Although significant effort has been put
into establishing ontologies on the Web, a domain-specific ontology for products with

74 Ontology Population of Product Information

the required amount of specificity does not yet exist. Therefore, we introduce the
OntoProduct ontology, which will be explained in more detail in the next subsection.

Figure 4.2 provides an overview of the FLOPPIES framework. It starts with the
raw product data, the key-value pairs describing a product, as input. The final output
of the framework is an OntoProduct ontology file, instantiated with the product and
its features.

Between input and output, we identify three main processes, as shown in the
diagram. First, it is necessary to obtain the type of product that is being instantiated:
the Classification process. The classes are predefined in the ontology and determine
the possible properties of the product. Most Web stores nowadays have some kind of
product class or category data of each product available. Therefore, the Classification
process in the FLOPPIES framework is seen as optional, in case the class data is not
available.

The second framework process is called Property Matching. This step is used to
create a link between the key-value pair keys from the raw product data, and the
properties from the ontology. This is dependent on the product class, as the class
determines the possible ontology properties that can be linked. Figure 4.3 indicates
more clearly what Property Matching is about.

Note that, as the figure indicates with the mapping of ‘Maximum Resolution’, one
raw product key can be mapped to multiple ontology properties. This is required
as some raw product key-value pairs combine multiple characteristics of a product,
which are separately stored in the ontology.

Property Matching Value InstantiationClassification

OUTPUT

PROCESS

INPUT Raw product

Map<raw product, class>

Set<classes>

Set<properties>

Similarity Threshold

Raw product

Map<raw product, class>

Map<raw product keys,

properties>

Set<properties>

Raw product

Set<classes>

Set<properties>

Infogain Threshold

Similarity Threshold

Map<raw product keys,

properties>

Instantiated ontologyMap<raw product, class>

Figure 4.2: Overview of the processes in the proposed framework. Dashed lines
indicate a usage relationship. Classification is only used when no class data is avail-
able.

4.3 FLOPPIES Framework 75

RAW PRODUCT DATA

Product Height
(without stand)

27-7/8"

Other
Connectors

PC Audio Input (Mini
Jack) x1, DVI x1

V-Chip Yes

2

1920 x 1080

LG 42" 1080p 60Hz
LCD HDTV 42LK450

No

HDMI Inputs

Maximum
Resolution

Title

ENERGY STAR
Qualified

#hasNumberOfHDMI
Inputs

#hasConnectivity

#hasHeight

#hasDisplayResolution
Vertical

#hasDisplayResolution
Horizontal

#name

#isEnergyStar
Qualified

property

ONTOLOGY

valuekey

null

Figure 4.3: Example of property matching between (real-world) raw product data
and ontology properties from OntoProduct.

The third and last process in the FLOPPIES framework is that of Value Instan-
tiation. This part uses the class obtained from Classification, or directly from input
data if the class is available, together with the result of Property Matching to in-
stantiate the values in the ontology. Value Instantiation is very much about content
spotting, parsing, and creating property assertions in the ontology. After the Value
Instantiation, the raw product information from the Web has been structured and se-
mantically annotated using an ontology. From that point on, applications can use the
data to improve for example product search or facilitate product recommendation.

4.3.2 The OntoProduct Ontology

As Section 4.2.2 discussed, there have been various attempts to create product on-
tologies. However, unfortunately none of them are freely available and are both broad
and specific enough to describe products in the domain this research uses: consumer
electronics. Therefore, we introduce a new OWL (W3C OWL Working Group, 2012)
product ontology for consumer electronics, which builds on the foundations of exist-
ing work: OntoProduct. It was conceived by four domain experts, who used training
data originating from existing Web stores to create the ontology structure.

76 Ontology Population of Product Information

Dependencies of OntoProduct

OntoProduct is fully compatible with GoodRelations, known as ‘The Web Vocabu-
lary for E-commerce’ (Hepp, 2008). However, GoodRelations is a high level ontology,
which misses the specificity that is required to describe product features in detail.
Another project led by GoodRelations’ creator Martin Hepp, the Consumer Electron-
ics Ontology (CEO) (CEO, 2017), attempts to extend GoodRelations with specific
properties and product classes for better description possibilities of products. Al-
though CEO provides a fruitful extension to GoodRelations, it only defines product
properties and some product classes, but not the links between these. OntoProduct,
nevertheless, uses CEO as a base, and extends it with new properties, product classes,
and relations between these. In total, OntoProduct contains 24 product classes and
270 distinct product properties from the consumer electronics domain, which allows
for the instantiation of product information with sufficient detail.

In e-commerce, many product features are quantitative and use a unit of measure-
ment. For example, the weight of a product can be given in pound or in kilogram, re-
sulting in a very different meaning. To cope with this problem, OntoProduct requires
a unit of measurement to be linked to quantitative values. Although GoodRelations
does not include a standard list of units of measurement, nor a way to define for
example the used notations, we were able to extend it with another ontology that
does enable to do this: the Units of Measurement Ontology (MUO) (Berrueta and
Polo, 2009). MUO provides the ontology structure for working with units of mea-
surement, but does not yet contain the instances. For the instances, OntoProduct
uses the Unified Code for Units of Measure code system (UCUM) (Schadow and Mc-
Donald, 2010). The authors of MUO have made the dataset available to use UCUM
in conjunction with the MUO ontology.

OntoProduct Structure

Figure 4.4 gives an example of an instantiation in the OntoProduct ontology. Any
instantiated product individual, such as op:LG-47LV in this example, is member of a
product class, in this case ceo:TV. This product class determines which properties are
valid for the type of product that is being instantiated. In general, we identify three
important property types: quantitative object properties (i.e. ceo:hasWidth), qual-
itative object properties (i.e. ceo:hasDataFormat), and data properties (i.e. ceo:-

hasTouchscreen). OntoProduct contains 57 qualitative object properties (with 783
qualitative individuals), 151 quantitative object properties, and 62 data properties.
The domain of these properties entails one or more product classes, to define which

4.3 FLOPPIES Framework 77

owl:Thing

gr:ProductOr
Service

ceo:TV
ceo:Digital-
AudioPlayer

muo:UnitOf
Measurement

muo:meter

op:LG-47LV
op:UnitOf
Length

gr:Qualitative
Value

gr:Quantitat-
iveValue

ceo:Data-
Format

op:Quantitat-
iveValueFloat

Length

op:LG-47LV
hasWidth

op:hasUnitOf
Measurement

ceo:hasWidth
ceo:has-

Touchscreen

gr:hasValue

false

1.09

ceo:has-
DataFormat

ceo:FLAC

Class

Individual

Literal

Object property

Datatype property

Subclass-of

Individual-of

Property assertion

op OntoProduct
ceo ConsumerElectronics ontology
gr GoodRelations
muo Units of measurement ontology

Figure 4.4: Example of an instantiated TV in the OntoProduct ontology.

characteristics a product can have. The range of the properties depends on the type:
object properties have a range of respectively quantitative and qualitative values,
whilst data properties point to data types. In the case of qualitative values, the
range also determines the possible units of measurement that can be attached to
some property value.

OntoProduct Metadata

As Section 4.3.1 mentioned before, FLOPPIES is a semi-automatic framework for
product ontology instantiation. The reason we do not present it as being automatic,
is because the algorithms largely depend on ontology annotations for linking product
properties to raw product keys, and for parsing values from the raw product data. In
practice, this means that for new data sources (i.e., a new Web store), the ontology
needs to be annotated with appropriate metadata. For example, one Web store
might specify the property of diagonal display size as ‘Display size’ while another
uses ‘LCD screen size’. Moreover, the lexical representations in the ontology can be
used to enable processing for data with differing denominations or even from different

78 Ontology Population of Product Information

languages. In OntoProduct Metadata, which is an extension to OntoProduct used
purely for the purpose of assisting the ontology instantiation with human input,
the lexical representations can be applied to all properties and qualitative value
individuals.

Next to lexical representations, OntoProduct Metadata can be used to annotate
quantitative object properties and data properties with regular expressions (Friedl,
2006). Regular expressions provide a pattern to which the raw product values should
match for a certain property. This is used for Property Matching to filter out possible
faulty mappings. In addition, regular expressions are used in the Value Instantiation
process to parse numeric data from the raw product values, by means of grouping.
Grouping is commonly used in regular expressions to select certain parts of a match-
ing region in the input value. For instance, consider the key-value pair [‘Refresh

Rate’,‘60Hz’], which can be mapped to the ontology property op:hasScreen-

RefreshRate. A screen refresh rate needs to have a unit of measurement for the
frequency, commonly measured in Hertz (Hz), therefore we annotate the property
with the following regular expression: (\d+)\s?(?:Hz|Hertz). A regular expression
searches the raw product value for a region which corresponds to the specified pat-
tern, in this case a numerical value followed by either ‘Hz’ or ‘Hertz’. If the search
succeeds, it stores the numerical value in a separate group, which can be retrieved by
the Value Instantiation process to instantiate the numerical value with the property
gr:hasValue.

As another example of the flexibility offered by regular expressions, take key-
value pair [‘Dimensions’,‘55.3" x 33.2" x 1.3"’]. Since there is no property
to specify ‘dimensions’ in the ontology, it is required to break up the raw product
value into multiple instantiations. Using lexical representations, the user could an-
notate ontology property ceo:hasWidth with ‘Dimensions’ for improved property
matching. Adding a regular expression would enable the Value Instantiator to detect
a match with value ‘55.3" x 33.2" x 1.3"’, and select the first number, 55.3, from
it through grouping. Similarly, the height and depth can be annotated for improved
matching and parsing.

Annotation of properties is one of the key reasons why FLOPPIES is successful
in instantiation, as we shall see. The user can help the computer by specifying
recognition patterns in the form of regular expressions, and lexical representations,
after which the computer can automatically instantiate most of the products with
their various characteristics. For practical use, one could consider building a (Web)
application to make the annotation easier for the end-user, for example by pre-

4.3 FLOPPIES Framework 79

collecting lexical representations from raw product data which the user can select
for addition to the OntoProduct Metadata database. For this research however, the
ontology editor Protégé (Gennari et al., 2003) was used to create the annotations.

4.3.3 Classification

As mentioned in the previously given overview, the first core framework process of
Classification is optional. Class data is often already available in Web data sources,
for example through means of a category hierarchy. When a category hierarchy is
available, a category mapping algorithm, such as SCHEMA(Aanen et al., 2012), can
be used to obtain mappings between the category hierarchy and the product classes
in the ontology. However, this subsection explains the process we propose to use
when class data is not available. It uses the Property Matching process (explained in
the next subsection), to measure the best fit between a raw product and the ontology
product classes.

Figure 4.2 shows that the input of the Classification process consists of the raw
product to classify, the sets of total classes and properties in the ontology, and two
threshold parameters. The output of the algorithm is an association (type-of) be-
tween the raw product and an ontology class, such as ‘TV’ or ‘Camcorder’. Algo-
rithm 4.1 explains how the proper class is determined.

Classification computes the highest information gain per key-value pair to create
a fit score per product class (by taking into account all key-value pairs): the average
information gain. The information gain measures the specificity of a property for
a certain product class. The information gain used here differs from the “classical”
information gain measure used for instance-based classifications with decision trees.

Algorithm 4.2 explains how the highest information gain between one key-value
pair and a product class is computed. As visible from the pseudo-code, the algorithm
searches for the best-fitting property to a key-value pair. For this property, it returns
the information gain, which is thus the highest information gain. It is the added value
of the fact that the raw product has a certain property, in relation to finding the
correct product class. A matching property that is used for many product classes,
such as ‘width’, adds little value, whereas a specific one, such as ‘TV tuner’, yields a
higher information gain. For every product class, the highest information gains per
key-value pair of the raw product are aggregated, and their average is computed in
order to obtain the average information gain. Based on this measure, the best class
is chosen, as Algorithm 4.1 illustrates.

80 Ontology Population of Product Information

Algorithm 4.1: Classification of a Raw Product.
Input : A set of product classes C from the ontology and a set of key-value

pairs K from the raw product description.
Output : The best matching clas for the given product description.
Data : Average Information Gain Threshold t.
Required functions:
• maxIG(k, c), returns the highest normalized information gain between a

key-value pair k ∈ K and a product class c ∈ C
1 ic ← 0 // Keep track of average information gain ic for each c ∈ C
2 foreach k in K do
3 /* Add the highest information gain for this key-value pair

and each product class, divided by the total number of
key-value pairs for normalization, to the total information
gain of each product class. */

4 foreach c in C do
5 ic = ic + maxIG(k, c)/|K|;
6 end
7 end
8 // Determine the best matching product class and return it if its

score exceeds the threshold
9 c∗ ← null;

10 score∗ ← 0;
11 foreach c in C do
12 if ic ≥ t and ic > score∗ then
13 c∗ ← c;
14 score∗ ← ic;
15 end
16 end
17 return c∗

The information gain is dependent on the Property Match Score, as Algorithm 4.2
depicted. This is actually the score that is computed by the Property Matching
process, and explains the dependency of Classification on the Property Matching
process. Algorithm 4.3 explains how the score is computed. The details will however
be explained in the subsection on Property Matching.

The Classification process is dependent on two parameters, as stated in the re-
quirements of the algorithms and Figure 4.2. The first, the Average Information
Gain Threshold, is used to strike a desirable balance between the recall and precision
of the algorithm. When no threshold is used, products with a very low average infor-

4.3 FLOPPIES Framework 81

Algorithm 4.2: Computing the Highest Information Gain.
Input : A key-value pair k from the raw product description and product

class c ∈ C from the ontology, which is to be matched with k.
Output : The maximum information gain.
Data : Similarity Threshold s;

Set of product classes C from the ontology;
Set of properties Pc from the ontology, for which c is in the domain

of each p ∈ Pc.
Required functions:
• propMatchScore(k, p), which computes the similarity score between k and
p ∈ Pc

• propDomainSize(p), which returns the number of classes in C that are
entailed by the domain of property p ∈ Pc

1 ig∗ ← 0;
2 foreach p in Pc do
3 score← propMatchScore(k, p);
4 if score ≥ s then
5 ig ← 1− propDomainSize(p)/|C|;
6 if ig > ig∗ then
7 ig∗ ← ig;
8 end
9 end

10 end
11 return ig∗

mation gain will still be classified, but with a high probability of failure. When the
Average Information Gain Threshold is set, high-risk classifications will be skipped,
that is, the classifier will return null. This moment could be used in an application
to ask for user input, to prevent the product ontology from getting polluted. The
higher the Average Information Gain Threshold, the higher the precision and the
lower the recall of the Classification process. The second parameter is the Similarity
Threshold, which is actually a parameter from the Property Match process. It will
therefore be explained in the next subsection.

4.3.4 Property Matching

As depicted in Figure 4.2, Property Matching is dependent on the result of Clas-
sification (a product class linked to the raw product), the raw product, the sets of
ontology properties and classes, and the Similarity Threshold. The goal of Property

82 Ontology Population of Product Information

Algorithm 4.3: Property Match Score.
Input : A key-value pair k from the raw product description and product

class c ∈ C from the ontology for which to compute the Property
Match Score using k.

Output : The maximum information gain.
Data : Similarity Threshold s;

Set of product classes C from the ontology;
Set of properties Pc from the ontology for class c;
Set of lexical representations Lp for each p ∈ Pc;
Set of regular expressions Rp for each p ∈ Pc.

Required functions:
• levenshtein(k, Lp), which computes the maximum normalized

Levenshtein similarity score between k and Lp

• regexMatch(k,Rp), which matches value from k with regular expressions
in Rp

1 Slxc ← levenshtein(k, Lp);
2 if Rp 6= ∅ then
3 if regexMatch(k,Rp) = true then
4 Srgx ← 1;
5 else
6 Srgx ← 0;
7 end
8 S∗ ← (Slxc + Srgx)/2;
9 else

10 S∗ ← Slxc;
11 end
12 return S∗

Matching is to map each raw product key to an ontology property, as preparation
for the Value Instantiation. To achieve this goal, the Property Match Score between
each key-value pair from the raw product and each ontology property is computed
using Algorithm 4.3.

The Property Match Score consists of two components: a lexical comparison
between the raw product key and the ontology property, and a regular expression
match. The regular expression match is optional, and depends on whether the ontol-
ogy property is annotated with a regular expression in the OntoProduct Metadata
or not. As explained in Section 4.3.2, the regular expressions work as a filter for
finding the right ontology properties to match, based on the raw product values. For
instance, key-value pair [‘Product Height (without stand)’,‘27-7/8"’] from

4.3 FLOPPIES Framework 83

Figure 4.3 would not be mapped to property ‘hasHeight’ if the regular expression of
this property would not match to values with fractions such as 27-7/8.

The second component of the Property Match Score, the lexical comparison, uses
the normalized Levenshtein similarity score to compare the raw product key to each
lexical representation of the ontology property, which are part of the OntoProduct
Metadata file. The Levenshtein distance (Levenshtein, 1966) is a widely used edit
distance measure for measuring the amount of difference between sequences of charac-
ters. Property Match Score uses the normalized Levenshtein similarity, which inverts
the distance to transform it to a similarity, and then normalizes it by dividing with
the maximum sequence length to become an index with range [0, 1], where 1 would
indicate that the sequences are equal. Of all lexical representations attached to the
ontology property, the maximum similarity between a lexical representation and the
raw product key is used.

For each key-value pair from the raw product, the ontology property with the
highest Property Match Score is chosen under one condition: it must have a score
that exceeds the Similarity Threshold (see Algorithm 4.2). This is a parameter of
the framework that indicates how strict the Property Matching process should work
regarding its mappings. When the threshold is very low, many raw product keys will
be mapped, but with the chance of having a higher error rate. When the threshold is
very high, less raw product keys will be associated with a property, but with higher
accuracy. In the Evaluation section, we optimize the Similarity Threshold so that
the algorithm works well under most conditions.

One special situation that can occur is when multiple properties match to a key-
value pair with the same Property Match Score. In this case, the raw product key is
mapped to all properties that have the same score, that is, if the Similarity Threshold
has been exceeded. This characteristic enables for example the display resolution
properties from Figure 4.3 to be linked correctly with the key-value pair for resolution.
In this case, both properties share the same lexical representation of ‘Maximum
Resolution’, with which it has been annotated manually in OntoProduct Metadata.
For this reason, the lexical score is equal. Moreover, the regular expressions of the
display resolution properties both match to the value of the key-value pair, which
results in both properties ending up with the same Property Match Score. Grouping
in the regular expression enables the Value Instantiation process to extract the proper
numeric data (for horizontal and vertical) from the complete raw product value.

84 Ontology Population of Product Information

4.3.5 Value Instantiation

Once the class of the raw product has been determined, and its key-value pairs have
been mapped to ontology properties, the framework is ready for Value Instantiation.
This step uses the output of the first two core process, in order to respectively
create a product individual within the proper class, and to associate each value using
the correct property. Value Instantiation consists of a collection of parsers, content
spotters, and instantiation tools. Figure 4.5 shows a flowchart that highlights this
process. For Value Instantiation, a clear distinction is made between qualitative and
quantitative object properties, and data properties. These are therefore separately
explained in the following subsections. The procedure from the flowchart is followed
for every key-value pair from the raw product.

Get property
from property
match process

Found matching
property?

Instantiate
key/value pair

Instantiation
failed

Instantiation
finished

Check property
type

Extract qualitative
individual names from

value

Extraction
succeeded?

Extract any
qualitative individual

names from key

Make property
assertion with found

individuals

Parse value number
using regex and
instantiate using

property

Find unit of
measurement in

value

Regex attached
to data property

Parse + instantiate
value according to

data property domain

Individuals can be
attached to some

property?

no

qualitative object propertyyes

no

yes

quantitative object property

data property

yes
no

no

yes

Figure 4.5: Overview of the instantiation process as a flowchart.

4.3 FLOPPIES Framework 85

Instantiation of Qualitative Object Properties When the Property Matching
process has linked a key-value pair to a qualitative object property, all qualitative
values from the ontology that are in the range of the property are gathered. The goal
is to find one or multiple of these qualitative values in the raw product value. Often,
Web stores combine multiple qualitative values in one key-value pair, as is the case
with ‘Other Connectors’ in Figure 4.3, for example. First, the lexical representations
of all qualitative individuals are sorted on length, longest first. Then, the algorithm
tries to find a matching lexical representation in the raw product value. If the search
succeeds, the corresponding qualitative individual is attached to the product indi-
vidual by means of the property found in the Property Matching process, and the
matching part is removed from the raw product value string. This continues until no
matches can be found anymore. The reason to order the procedure on lexical repre-
sentation length, is that shorter labels might be contained in longer ones, leading to
errors in parsing. This would for example be the case while parsing the raw prod-
uct value SDHC, MemoryStick, CompactFlash; if the ontology contains qualitative
value individuals for both SDHC and SD, the SD could match first without sorting,
causing a faulty instantiation.

Extracting Qualitative Individuals Product Keys The ‘normal’ way in which
qualitative values are instantiated, is through the control path just described. Prop-
erty Matching links the key-value pair to a qualitative object property, after which
qualitative individuals are extracted from the raw product value. Two special sit-
uations arise however, in which qualitative values are parsed differently, as Fig 4.5
denotes: When a qualitative property is found, but the Value Instantiation process
is incapable of extracting qualitative values, or, when the result of the Property
Matching process for the key-value pair is null. In these cases, the Value Instan-
tiation process does not examine the raw product value for qualitative individuals,
but the raw product key. Although this might seem counterintuitive, it is actually
an important aspect of the Value Instantiation process. For example, a common
situation in which it is needed to examine the raw product key instead of the value,
is for qualitative properties such as ‘Features’. Many features, such as ‘Sleep Timer’,
are often not structured as [‘Feature’,‘Sleep Timer’] in the key-value pairs, but
more likely as [‘Sleep Timer’,‘Yes’]. In the last case, Property Matching will
be unsuccessful, as Sleep Timer is a qualitative individual (from the features class),
and not a property in the ontology. In this situation, the raw product key will be
examined for matches with any qualitative individuals from the ontology, in a sim-

86 Ontology Population of Product Information

ilar fashion as with ‘normal’ qualitative value instantiations, in which the Property
Matching result is used. When a qualitative individual is found in the raw product
key, the ontology is checked for properties that both have a range that includes the
found individual, and a domain that entails the product class of the current product
individual is entailed. Such a property is needed to be able to link the qualitative
individual to the product individual in case that the property was not previously
discovered with the Property Matching process.

Finding a qualitative individual in the raw product key does not provide sufficient
information on itself to be able to assert ontology knowledge axioms. Whether the
assertion can be made, also depends on the raw product value. Using what we call the
Boolean Value Converter, the raw product value is checked on terms such as ‘false’,
‘no’, ‘none’, ‘0’, ‘-’, ‘optional’, ‘null’, ‘N/A’, ‘not available’, and ‘not applicable’, and
aborts the instantiation when such a term is encountered. If the raw product value
passes this test, the ontology is instantiated with property assertions, each containing
one found qualitative individual.

The extraction of qualitative individuals from the raw product key enables the
Value Instantiation process to handle key-value pairs like [‘Sleep Timer’,‘Yes’].
As mentioned before, and as Figure 4.5 makes clear, this procedure is also followed
when ‘normal’ qualitative value instantiation is unsuccessful, that is, when there is
a result from Property Matching, but no qualitative individuals can be found in the
raw product value. This problem arises for example with ‘AM/FM Tuner’,‘Yes’,
which does have a match with ontology property ‘hasRadioTuner’ based on one of
its lexical representations, but does not contain qualitative individuals in the raw
product value. In this case, looking at the raw product key solves the problem and
successfully instantiates hasRadioTuner to AM and hasRadioTuner to FM.

Instantiation of Quantitative Object Properties Parsing and instantiating
quantitative values is very different from working with qualitative values. All quan-
titative values are parsed using regular expressions. By means of grouping, these
enable to select the numeric data from the raw product value, disregarding addi-
tional content such as the unit of measurement. Note that some key-value pairs
need multiple instantiations. Hence, multiple groups may exist in the regular expres-
sion, or the complete expression can match multiple times in one raw product value.
The regular expressions come from the Ontoproduct Metadata, which is manually
defined. When Property Matching has linked the key-value pair to a quantitative
property, and no regular expression is attached to the property through the Onto-

4.3 FLOPPIES Framework 87

Product Metadata, then a default regular expression for parsing values is used. The
default regular expression is a generic value extractor and is capable of extracting
numerical values.

Extracting the Unit of Measurement Usually, a quantitative value contains
a unit of measurement. This unit of measurement is parsed in a similar fashion as
parsing qualitative raw product values. As discussed in Section 4.3.2, the quantitative
properties refer to a fixed set of possible units of measurement. For every parsed
numeric value from the raw product value, an associated unit of measurement is
searched, and if possible, the new quantitative value individual is linked to this unit
individual by means of the ‘hasUnitOfMeasurement’ property. Figure 4.4 gives an
indication of how a value individual is linked with the product individual and unit of
measurement. When no unit of measurement is found, it is simply not instantiated.

Instantiation of Data Properties The third and last type of instantiation is
when the Property Matching process returned a data property. Data properties
are less commonly used than object properties in OntoProduct. Mostly, they are
used for Boolean assertions (i.e., ‘hasTouchscreen’), numeric data without unit of
measurement (i.e., ‘region code’), and strings (i.e., ‘product name’). The values can
be parsed in two ways: using a regular expression that is attached to the property,
or, using a specific parsing method based on the datatype range of the data property.
When a key-value pair linked to a data property needs to be instantiated, and the
property, say ‘hasTouchscreen’, appears to have a data range of xsd:boolean, a
boolean parser is used. This parser aims to find terms in the raw product value,
using exact lexical matching, that could indicate whether the data value should be
true or false. Similar parsers are used for integers, floats, and strings (or literals).

Finalizing the Value Instantiation Using all extraction rules described above,
Value Instantiation is capable of converting a raw product key-value pair into on-
tology assertions. For each key-value pair of the raw product, the process, as made
visible in Figure 4.5, is repeated. Though there are various points at which parsers
could fail, preventing actual instantiation, it is easy to keep track of all failures and
handle these separately. An application could for example hand the problematic
key-value pairs over to the user, which could then instantiate them manually.

88 Ontology Population of Product Information

4.4 Evaluation

This section presents an overview and discussion of the performance of the FLOP-
PIES framework on our data, by means of a component-wise analysis of the various
steps in the framework. First, we elaborate on how the experiment has been con-
ducted, and which performance measures have been used throughout the evaluation.
Afterwards we present the results, and discuss the performance of the framework by
comparing it with the performance of a baseline approach.

4.4.1 Evaluation Design

This section discusses how the evaluation experiment has been set up. It provides a
detailed overview of the used data and the methods employed to train the FLOPPIES
framework.

The raw product data was obtained from two different Web sources, in order
to increase the heterogeneity in the data set. Both sources are Web stores: Best
Buy (BestBuy.com, 2017) and Newegg.com (Newegg.com Inc., 2017), which are large
and well-known retailers in consumer electronics. As the research is focused on popu-
lating an ontology with product data, the Web crawler was intentionally kept simple.
It crawls through eight predefined categories and obtains product data from them,
using fixed extraction rules that are specific to each Web store. Seven of these cate-
gories are represented by a product class in the ontology, which means the products
can be instantiated, whereas one category is not. By including a category that does
not exist as a product class in the ontology, we can check whether the framework
correctly refuses to instantiate the products from this category. For each product,
the title and a tabular list, containing property information about the product as
key-value pairs, were extracted from the Web store and stored along with product
data from other products belonging to the same category. The end result consists of
sets of products, each set describing a category from a specific Web store.

As mentioned earlier in Section 4.3.2, a part of the obtained product data is
used to augment the ontology by enriching it with metadata. The metadata consists
of lexical representations and regular expressions, which are manually annotated to
ontology entities. The raw product keys are used to add lexical representations to
properties, whereas the raw product values are used to construct regular expressions,
which are also annotated to properties. The resulting metadata can be used by
the FLOPPIES framework to match tabular data, originating from the Web, with
properties in the ontology, and for instantiation of the values. For a proper evaluation

4.4 Evaluation 89

of the FLOPPIES framework it is important to assess its performance on data that
was not used to enhance the ontology. Therefore, each data set obtained by the
crawler is split into a training and a test set, using a 60% – 40% split which randomly
distributes the products in the file across both sets. This ensures that we have data
available, for each category and from each Web store, that can be used for either
training or testing. After splitting the raw product data, we obtain a training set
consisting of 1046 products in total, whereas the test set contains 672 products.

Each step in the framework depicted in Figure 4.2 is evaluated separately. In order
to compute the performance measures we have to be able to compare the output of
each step in the framework with a reference, known as the golden standard. The
golden standard for the Classification process can be generated automatically in our
case, as the products from each product class are stored in separate training or test
data sets, and the name of each set corresponds to the correct product class in the
ontology.

Unfortunately, creating the golden standard for the Property Matching process
is far more complicated and therefore it cannot be generated automatically. Due
to the sheer amount of different properties, either originating from the tabular data
or the ontology, it is not feasible to provide a complete golden standard manually.
Therefore, for evaluation of the Property Matching process, the software prompts
the user for input whenever it comes across a mapping from the Property Matching
process that it has not encountered before. The user can then select whether the
mapping is correct or not and the user input is stored in a knowledge base, which
can be consulted the next time the evaluation is performed.

For evaluating the Value Instantiation process we manually instantiated products
in the ontology beforehand, thus creating a golden standard. As manually instanti-
ating products is a very time-consuming process, we decided to instantiate a subset
of the data, namely TVs and MP3 players, consisting of 48 complete products from
both Web stores. Because the golden standard is only available for the manually in-
stantiated products and not for all the products, we only evaluate the performance of
this step for these products. We have chosen for TVs and MP3 players because TVs
are generally described with much detail in both Web stores, whereas the tabular
data obtained from MP3 players is often pretty scarce and lacking in detail on the
Web store page. In order to analyze how the two considered Web shops compare in
terms of the product descriptions they use, we computed the overlap in product at-
tributes and values. For the TVs category, there are on average 7.2% matching keys.
We computed this average over all the pairs of product descriptions that describe the

90 Ontology Population of Product Information

same product. For one product pair we compute the match value by dividing the
number of matching keys by the maximum number of matches (i.e., min(|Ka|, |Kb|),
where Ka and Kb represent the product attributes of description a and b, respec-
tively). For MP3-players, the percentage of matching keys is much lower, i.e., 0.6%.
Furthermore, we also computed, for the keys that matched, the overlap in the cor-
responding values. We found that for TVs 57.4% of these values match, while for
MP3-players this is 12.8%.

For component evaluation of Property Matching, perfect class data was used
as input, enabling a more accurate analysis of this component. This is done as the
Property Matching process uses the product class as a filter, i.e., it only tries to match
tabular data with properties from the ontology that are valid for the specific product
class. By ensuring that the supplied input for the Property Matching process is
completely accurate, we can evaluate the performance of this particular component in
a more objective manner. Evaluation of the Value Instantiation is dependent on both
Classification and Property Matching. As no golden standard for Property Matching
is available, the Value Instantiation is evaluated with performance dependency of this
step. Since the Classification process is seen as optional, the Value Instantiation will
be evaluated both with perfect class input and with the result from the Classification
process.

The FLOPPIES framework uses two different parameters, the Average Informa-
tion Gain Threshold and the Similarity Threshold, for which the optimal values need
to be computed. However, due to the interoperability between the Classification
and the Property Matching processes, optimizing both parameters might seem like
a convoluted process. Fortunately, because there is a golden standard for the Classi-
fication process, perfect class input for the Property Matching process can be used.
This allows for the computation of the optimal value for the Similarity Threshold, as
other variables are eliminated and thus the differences in performance are now solely
caused by varying the Similarity Threshold value. Afterwards the optimal value
for the Average Information Gain Threshold can be computed, given the optimal
Similarity Threshold.

It is preferable to compare the results obtained by the FLOPPIES framework with
another approach. However, as there is no freely available implementation of other
relevant ontology population frameworks, and not enough information to precisely
recreate a framework, we decided to create baseline approaches as well.

The baseline Classification process computes the lexical similarity, using the
longest common substring as measure, between the raw product title and each prod-

4.4 Evaluation 91

uct class label name in the ontology for the classification. The baseline Property
Matching process tries to find the highest normalized Levenshtein similarity score
between a key-value pair from the raw product data and the lexical representations
of a property from the ontology. The used baselines are straightforward and based on
purely lexical approaches. We have chosen these as we want to investigate if the addi-
tion of semantics in the ontology population processes can provide benefits compared
to lexical-based approaches. This type of baselines have been used also in the past
for comparing lexical and semantic approaches (e.g., TF-IDF versus CF-IDF (Baziz
et al., 2005)).

We have opted not to evaluate the performance of the FLOPPIES framework
against a different process for the Value Instantiation process, because it is more
like a collection of different value extraction rules rather than a single unified algo-
rithm. Together they form the logic to parse and instantiate a wide array of values,
but removing some rules for creating a simpler process would obviously only yield
lower results and therefore would not really contribute to a useful evaluation of the
framework.

We have implemented the software and the experiments in Java. For the storage
and retrieval of RDF data, we have used the Jena library (McBride, 2002). Fur-
thermore, we have used the Google Guava (Google, 2017) library for caching and
improved type primitives support.

4.4.2 Performance Measures

This section describes the performance measures that were used to evaluate the
FLOPPIES framework and explains the used definitions for each step in the frame-
work. For the evaluation of the framework we use a binary classification scheme,
which is commonly used for evaluating the performance of classification and map-
ping algorithms. We employ the standard measures that can be computed with such
a scheme, e.g., precision, recall, and the F1 we have (Baeza-Yates and Ribeiro-Neto,
2011). However, in this case we need to use a slightly adapted form, as it is not a
pure binary problem.

For the Classification process, a true positive (TP) indicates that the framework
has mapped a raw product to the correct product class. Unlike regular binary classi-
fication, where a false positive (FP) would mean that the framework mapped some-
thing which it should not have mapped at all, here it could also mean that it should
have mapped the raw product, but it mapped to a wrong product class instead. A
true negative is a raw product that has been correctly mapped to null, whereas

92 Ontology Population of Product Information

a false negative (FN) indicates a raw product that should have been mapped to a
product class, but the framework mapped it to null.

The evaluation of the Property Matching process basically follows the same defi-
nitions as the Classification process, but it maps key-value pairs to properties, rather
than mapping raw products to a product class. Note that a single key-value pair can
be mapped to multiple properties, which could result in a slightly different amount
of mappings per algorithm run, depending on the used parameter values.

Rather than individually evaluating all RDF triples created by the Value Instan-
tiation process, we adopt a graph-based evaluation approach. The reason for this is
trivial: consider a key-value pair like [‘Product Width’, ‘1.09m’] from the raw
product data. This key-value pair should be instantiated with multiple RDF triples,
as depicted by Figure 4.4, because we need to instantiate the value, the unit of
measurement and the property assertion separately. Leaving out one of the triples
would mean that the other triples loose most of their meaning, as a value is rather
meaningless without a unit of measurement and vice versa. Therefore, we combine
the triples of a quantitative value and evaluate them as a whole. In other words, for
each triple where the instantiated product individual is the subject, we evaluate its
subgraph as a whole.

As we manually instantiated 48 products for the golden standard, the instantiated
products by the FLOPPIES framework can be compared to the products in the golden
standard. Within this context a true positive means that a property was correctly
instantiated, as it also occurs in the golden standard. A false positive indicates
that the property should not have been instantiated at all, or that the associated
value, unit of measurement, or individual, is wrong or missing. Whenever the golden
standard contains a property that the instantiated product by the framework does
not have, it is counted as a false negative. Note that there are no true negatives in
the evaluation of the Value instantiation process, as the instantiated ontology is only
being compared to the golden standard ontology, and non-existing assertions cannot
be counted. One could propose to count the number of key-value pairs from the
raw product data, for which no instantiation has been made while manually creating
the golden standard ontology. However, since there is no direct relation between the
number of key-value pairs and the number of instantiated facts, it is impossible to
count the number of true negatives using this way. This is because one key-value pair
can contain any number of facts that require to be separately stored in the ontology.

4.4 Evaluation 93

Using the aforementioned definitions, the following performance measures can be
computed:

recall = TP
P = TP

TP + FN

accuracy = TP + TN
P + N

specificity = TN
N = TN

FP + TN

precision = TP
TP + FP

F1 = 2 · precision · recallprecision + recall

F0.5 = 1.25 · precision · recall
0.5 · precision + recall

The F1 is the harmonic mean of precision and recall, which means that both
precision and recall are equally important. However, for the evaluation of the optional
Classification process, the F0.5 is also computed, for which the precision is twice as
important as the recall. This score might be more preferable to use as performance
measure, as instantiating raw products with the wrong product class would pollute
the ontology and does not contribute to solving the search problems on the Web. It is
envisioned that the Classification process uses a conservative approach and prompts
the user for input when it cannot determine the correct product class with enough
certainty. The F0.5 is more useful for this usage scenario, but we also include the F1

for the Classification process in the results for completeness.

4.4.3 Results

This section presents the obtained results for each step of FLOPPIES, along with an
in-depth discussion of these results.

Training set results

First of all, the two parameters that are used by the FLOPPIES framework need to
be optimized. Therefore, we run the algorithm with different parameter values on
the training set. Due to the interoperability between the Classification process and
the Property Matching process, we first optimize the Similarity Threshold parameter
in the Property Matching process, using the golden standard from the classification
step as input. In order to find the optimal value, we raised the threshold from 0 to

94 Ontology Population of Product Information

1 in steps of 0.05. Table 4.1 shows the results of the Property Matching process on
the training set, both for the FLOPPIES framework and the baseline algorithm.

At first, the framework obtains a better F1 by increasing the Similarity Threshold,
until the score stabilizes, between 92% and 95%, from a Similarity Threshold of 0.70
onwards. As expected, the precision increases and the recall decreases when the
Similarity Threshold is increased, due to the stricter lexical matching. At the optimal
Similarity Threshold level (0.80), the number of false positives has declined to 395
out a total of 28038 mappings, whereas the number of false positives at a Similarity
Threshold of 0.60 was quite a bit higher: 1462 out of 28146 mappings. Note that
the small discrepancy between the total number of mappings is caused by the fact
that a single key-value pair can be mapped to multiple properties if their similarity
scores are both the same. Although the number of false positives continues to drop
when increasing the Similarity Threshold beyond 0.80, the sharp increase in false
negatives prevents it from obtaining a higher F1. A total of 987 false negatives has
been measured at the optimal value of 0.80, which gradually increases to 2109 when
a Similarity Threshold of 1.00 is used.

Also worthy to note is the enhanced precision of the FLOPPIES framework com-
pared to that of the baseline algorithm, scoring 97.28% at the optimal Similarity
Threshold against 49.07% respectively. This is due to the fact that the baseline algo-
rithm uses an optimistic approach, which enables it to actually score better on true
positives than the FLOPPIES framework: 16971 against 14136. However, it comes
at the expense of a large number of false positives, which considerably lowers the
precision and therefore also the F1 measure.

Process Similarity Threshold Precision Recall Accuracy Specificity F1

Baseline - 49.07% 100.00% 49.07% 0.00% 65.84%
FLOPPIES 0.60 71.21% 97.91% 78.01% 55.78% 82.45%
FLOPPIES 0.65 82.54% 95.67% 86.71% 76.14% 88.62%
FLOPPIES 0.70 90.90% 94.93% 92.03% 88.54% 92.87%
FLOPPIES 0.75 92.90% 94.40% 93.14% 91.69% 93.64%
FLOPPIES 0.80 97.28% 93.47% 95.07% 96.94% 95.34%
FLOPPIES 0.85 99.05% 90.78% 94.60% 99.00% 94.73%
FLOPPIES 0.90 99.87% 90.66% 94.96% 99.86% 95.04%
FLOPPIES 0.95 99.89% 88.10% 93.62% 99.89% 93.62%
FLOPPIES 1.00 99.90% 85.86% 92.43% 99.90% 92.35%

Table 4.1: Training set results for the Property Matching process using golden
standard classification.

4.4 Evaluation 95

Using the optimal Similarity Threshold of 0.80, obtained from the first step,
the Average Information Gain Threshold of the Classification process can now be
optimized. By keeping the Similarity Threshold constant and varying the Average
Information Gain Threshold, raising it from 0 to 1 in steps of 0.05, the results in
Table 4.2 are obtained. As is evident from the results, the Average Information Gain
Threshold functions as a parameter for finding the optimal trade-off between precision
and recall. Generally speaking, the precision will increase when the threshold is
increased as well, at the expense of a decline in recall. In other words, increasing the
threshold means that the algorithm cannot classify as many products as before, but
the ones it did classify are more likely to be correct. This is due to the fact that a
higher threshold means that the properties of a product need to convey more specific
information about the product, in order for the algorithm to map them to a product
class from the ontology. Therefore, a product with a high Average Information Gain
can be more reliably classified than a product with a lower Average Information Gain.

In contrast to the Similarity Threshold in the Property Matching process, the
optimal value for the Average Information Gain Threshold is relatively low. The
Similarity Threshold is a threshold operating on a lexical matching score, whereas
the Average Information Gain Threshold operates on an average, namely the Average
Information Gain for all key-value pairs from a raw product. This explains the
difference in the optimal value, especially considering that nearly every product also
has very generic key-value pairs, like the weight of a product, that help bring down
the Average Information Gain. Also interesting to note is the difference between the
F1 and F0.5s. Because the F0.5 emphasizes the precision, the highest F0.5 of 70.18%
is obtained with an Average Information Gain Threshold of 0.20, whereas the highest
F1 is achieved using an Average Information Gain Threshold of 0.15. As argued in

Process Average IG Precision Recall Accuracy Specificity F1 F0.5
Threshold

Baseline - 29.83% 100.00% 29.83% 0.00% 45.95% 34.70%
FLOPPIES 0.00 49.33% 100.00% 49.33% 0.00% 66.07% 54.89%
FLOPPIES 0.05 49.33% 99.81% 49.33% 0.00% 66.07% 54.93%
FLOPPIES 0.10 54.93% 83.53% 50.67% 5.24% 66.27% 58.97%
FLOPPIES 0.15 68.91% 69.20% 57.07% 29.81% 69.06% 68.97%
FLOPPIES 0.20 72.17% 63.19% 56.31% 39.13% 67.38% 70.18%
FLOPPIES 0.25 70.00% 48.37% 46.94% 43.01% 57.21% 64.25%
FLOPPIES 0.30 58.05% 28.68% 32.50% 43.01% 38.39% 48.18%

Table 4.2: Training set results for Classification using optimal Similarity Threshold
of 0.80.

96 Ontology Population of Product Information

Section 4.4.1, achieving a high precision is paramount for the Classification process,
as it is better to ask the user for input rather than instantiating products with the
wrong product class. Therefore, we consider an Average Information Gain Threshold
of 0.20 as optimal for the training set, because it achieves the most precision and the
highest F0.5.

In addition, the results show that it can be quite difficult to classify products
based on their properties alone. While this may seem a trivial task to humans, the
differences in product properties between multiple product classes is often smaller
than you would imagine. For instance, consider a camcorder and a digital photo
camera: both are small, have a lens, connect to a computer through USB, use memory
cards to store information, and so on. They share many characteristics, but there is
essentially only one defining characteristic that separates them: a camcorder is meant
for shooting video, whereas a digital photo camera is meant for shooting pictures.
And even in this example the line between the two is blurry, as many digital photo
cameras nowadays are perfectly capable of shooting videos as well. This high degree
of function integration between products can be found in numerous products within
the domain of consumer electronics, which makes the classification of products, based
purely on product properties, a non-trivial task. Fortunately, practically every Web
store contains a product category hierarchy, which can be used for the classification
of products. That is why the Classification process in the FLOPPIES framework is
optional and is only meant as a backup whenever insufficient information is available.

To complete the evaluation on the training data, the Value Instantiation process
is executed using the output from the previous steps in the framework. Table 4.3
shows the results of this process when using either the golden standard classification
or the output from the Classification process. As the training set contains 27 out
of the 48 products that were manually instantiated in the golden standard ontology,
the performance on those 27 products is evaluated. At first glance the results seem
counterintuitive, as the Classification process of the FLOPPIES framework actually
has a slightly better F1 than the Golden standard, scoring 83.79% and 83.64% re-

Classification Precision Recall Accuracy F1 Instantiation rate

Golden standard 82.11% 85.23% 71.89% 83.64% 100.00%
FLOPPIES Classification 81.67% 86.05% 72.11% 83.79% 96.30%

Table 4.3: Training set results for Value instantiation using optimal Average Infor-
mation Gain Threshold (0.20) and Similarity Threshold (0.80).

4.4 Evaluation 97

spectively. However, this is caused by the method used to evaluate this part of the
framework, which is explained in more detail in Section 4.4.2. Because the evaluation
is performed on the instantiated products in the ontology, the products that were
not instantiated are not evaluated. As the Classification process could not determine
the product class of one MP3 player, due to the lack of specific product information,
the Value Instantiation process only instantiated 26 of the 27 products, resulting in
a product instantiation rate of 96.30%. Using the golden standard means that the
product does get instantiated, but the Property Matching and Value Instantiation
process have relatively more difficulty with this particular MP3 player, which results
in the slightly lower F1.

From these results we can conclude that the FLOPPIES framework as a whole
performs rather well when instantiating TVs and MP3 players. However, it still fails
to instantiate some properties or it is unable to instantiate them correctly. Error
analysis on the instantiated products reveals that occasionally the framework is not
capable of extracting and instantiating all individuals from a list of qualitative val-
ues. For example, consider the key-value pair [‘System Requirements’,‘Windows:

2000 or later; Mac: OS X 10.4 or later’], which can be instantiated with the
property ceo:hasCompatibleOperatingSystem. Any person, who manually instan-
tiates this key-value pair, would also instantiate property assertions for the versions of
Windows and Mac OS X that were released after Windows 2000 and Mac OS X 10.4
respectively. However, for our Value Instantiation process it is difficult to determine
for which individuals it should instantiate property assertions, as it is trying to match
the value with the lexical representations of individuals from the ontology. Therefore,
it is able to instantiate property assertions for the individuals ‘ceo:Windows2000’

and ‘ceo:MacOSXTiger’, as their lexical representations are also present in the value
of the key-value pair, but later versions are not recognized. Fortunately, because the
Value Instantiation process is using a set of value extraction rules, we could easily
add a new rule to replace ‘or later’ in the value with the lexical representations of
the referred individuals. By adding a new property assertion between the individuals
in the ontology, which states that a certain individual is the successor of the other
individual, the Value Instantiation process could learn to instantiate property asser-
tions for all compatible operating systems. We consider creating new value extraction
rules and augmenting the ontology with more details about the relationship between
individuals as useful future work for improving the framework.

98 Ontology Population of Product Information

Test set results After optimizing both parameters of the FLOPPIES framework
on the training set, the performance of the framework on the test data can be eval-
uated. Table 4.4 shows that the performance of the FLOPPIES framework on the
classification of products from the test data is equal to the performance on the train-
ing data. The F1 dropped slightly, from 67.38% to 66.24%, while the F0.5 measure
dropped from 70.18% to 69.18%. Relatively more products are marked as a false
positive though: 124 out of 672 (18.45%) against 182 out of 1046 products (17.40%).

Although the Classification process is optional within the framework, more work
on lowering the amount of false positives would be beneficial, as these errors could
cause more problems later on in the Property Matching and Value Instantiation pro-
cesses. One way to achieve this could be to also take the value of the key-value
pairs into consideration for the information gain score. For example, many consumer
electronics have an LCD display, which means that the property currently does not
yield much information gain for our framework. However, the value could help differ-
entiate between product classes and increase the information gain for this property.
For instance, both a TV and an MP3 player have an LCD display, but if the display
size of a raw product is 40", it is most likely that the product is a TV. By comparing
this numerical value with TVs and MP3 players that are already instantiated in the
ontology, a higher information gain for this property can be achieved, thus making it
easier to determine the correct product class. Therefore, we consider differentiating
between values for the purpose of product classification as a useful future addition
to the framework.

The Property Matching process also scores roughly the same on the test and
training data, as can be seen in Table 4.5. The precision and recall have decreased
a little bit, which is caused by the fact that the key-value pairs from the test data
were not used to ‘train’ the ontology by adding lexical representations and regular
expressions. Although the test data contains some new raw product keys, the Prop-
erty Matching was still able to match many key-value pairs with properties, because
the Similarity Threshold allows it to also map raw product keys with slight lexical

Process Precision Recall Accuracy Specificity F1 F0.5

Baseline 29.64% 100.00% 29.46% 0.00% 45.52% 34.30%
FLOPPIES 71.30% 61.84% 53.27% 28.74% 66.24% 69.18%

Table 4.4: Test set results for Classification using optimal Average Information
Gain Threshold (0.20) and Similarity Threshold (0.80).

4.4 Evaluation 99

Process Precision Recall Accuracy Specificity F1

Baseline 48.30% 100.00% 48.30% 0.00% 65.14%
FLOPPIES 96.95% 93.27% 94.80% 96.58% 95.07%

Table 4.5: Test set results for Property Matching using golden standard classifica-
tion and optimal Similarity Threshold of 0.80.

variations. In practice, this means that a semi-automatic approach would only re-
quire training the algorithm with a few products from each product class in order
to achieve satisfactory performance on Property Matching for all the products in a
Web store.

By analyzing the results, we conclude that the regular expressions in conjunction
with the lexical representations are often capable of correctly mapping key-value pairs
to properties in the ontology. For example, the key ‘Product Dimensions’ is correctly
mapped to ceo:hasWidth, ceo:hasHeight, and ceo:hasDepth, which demonstrates
the usefulness of regular expressions for the Property Matching process.

While the Property Matching process performs quite satisfactory on most key-
value pairs, it sometimes gets confused between properties representing a quantitative
measure without a unit of measurement. Consider raw product keys ‘DVI Inputs’ and
‘HDMI Inputs’, of which only ‘HDMI Inputs’ can be mapped with ontoproduct:has-

NumberOfHDMIInputs in the ontology. Unfortunately, the Property Match process
also creates a mapping from ‘DVI Inputs’ to ontoproduct:hasNumberOfHDMIInputs,
as their lexical similarity is fairly high and they both describe a count of inputs. This
could be avoided by raising the Similarity Threshold, which in turn would mean that
the framework is less capable of automatically mapping slightly varying raw product
keys. However, as shown in Section 4.4.3, stricter lexical matching degrades the
overall performance of the framework.

When running the FLOPPIES framework in its entirety, the results on the test
data in Table 4.6 are obtained. Unlike the previous steps in the framework, the
performance of the Value Instantiation process on the test data is considerably lower
than the performance on the training data: the F1 dropped from around 83% to
approximately 77%. This is because the test data contains a few keys and values
from key-value pairs that have a considerably different lexical representation than
those used for annotating the ontology. While the Similarity Threshold allows for
some lexical variation to occur, a key-value pair with a considerably different lexical
representation still would not exceed the threshold, and thus it cannot be mapped to
a property in the ontology. This means does not find as many mappings for the test

100 Ontology Population of Product Information

Classification Precision Recall Accuracy F1 Instantiation rate
Golden standard 77.12% 76.09% 62.07% 76.60% 100.00%
FLOPPIES Classification 76.99% 77.41% 62.87% 77.20% 90.48%

Table 4.6: Test set results for Value instantiation using optimal Average Information
Gain Threshold (0.20) and Similarity Threshold (0.80).

set as for the training set. The effect can also be observed in the product instantiation
rate when using the Classification process of the FLOPPIES framework to perform
the classification, which drops from 96.30% to 90.48%. Two MP3 players from the
total set of 21 products in the test set could not be classified by the Classification
process. Regardless of the decline in performance though, the FLOPPIES framework
still performs quite well, based on the obtained results, on instantiating TVs and MP3
players in the ontology.

4.5 Conclusions

This chapter proposes FLOPPIES, a framework capable of semi-automatic ontology
population of product information fromWeb stores. It employs a predefined ontology,
compatible with the GoodRelations ontology for e-commerce, in order to formalize
the raw product information contained in tabular format on product pages in Web
stores. With product information formalized in an ontology, better product com-
parison or recommendation applications could be built, using full parametric search.
Furthermore, it could facilitate the aggregation and exchange of product information
between multiple Web sites without relying on Web stores to provide their data in a
specific format, as is the case with current comparison platforms.

The framework consists of an optional Classification process, which can identify
the product class of a raw product by analyzing its key-value pairs and computing
an Average Information Gain between each product class in the ontology and the
key-value pairs from the raw product. It uses the second step in the framework, the
Property Matching process, to compute this score. The Property Matching process
computes a Similarity Score between a key-value pair and properties in the ontology,
using both lexical matching and pattern matching with regular expressions. After the
key-value pairs have been mapped to properties in the ontology, the Value Instantia-
tion process instantiates the product information. A set of different value extraction
rules is employed in order to instantiate the correct values and units of measurement.

4.5 Conclusions 101

The performance of the framework is compared to the performance of a baseline
approach, which merely uses lexical matching for the Classification and Property
Matching processes. Product information from 1718 products, spread across eight
different consumer electronic product categories from Best Buy and Newegg.com, was
gathered and split into a training and test set. The training set was used to annotate
the ontology with lexical representations and regular expressions, which are used to
improve the performance of the matching and parsing processes. Afterwards, it is
used in the component-wise analysis to compute the optimal parameter values for
the Similarity Threshold and Average Information Gain Threshold, which are used
in the framework as a cut-off for the Property Matching and Classification process
respectively. Last, using the optimal parameter values, the performance of the all
the steps in the framework on the test data is evaluated.

It is shown that the FLOPPIES framework performs considerably better than the
baseline approach for the Classification process, achieving an F0.5 of 69.18% against
34.30%, due to the better precision. The Property Matching process also scores
better than the baseline approach with an F1 of 95.07% against 65.14%, due to the
use of both lexical matching and pattern matching. The evaluation of the Value
Instantiation process was performed using a graph-based approach, comparing it to
a manually instantiated ontology with 48 products. Although running the framework
with the optional Classification process resulted in a classification of only 45 out of
48 products, it did manage to achieve a similar F1 as when using perfect classification
input, scoring roughly 83% and 77% for the training and test set, respectively.

For future research, there are several ideas that can further improve product
ontology population. First, FLOPPIES currently only uses the tabular data from
product pages. However, often also textual descriptions are available, next to the
semi-structured key-value pairs. Through text mining, one could try to use the
descriptions to extract additional knowledge. Another unexplored possibility for the
framework, is to use already instantiated ontology data for the instantiation of new
data. For example, using data mining techniques such as clustering, the algorithm
could learn when to match certain properties.

The Classification process uses most of the time the raw product keys, via the
Property Match Score. The raw product values however can sometimes also pro-
vide a good indication of the proper class. Take for example the key-value pair
[‘Capacity’,‘10-cup’]; the key is not very informative, however the value is a
better indicator that we are might be dealing here with a coffee machine.

102 Ontology Population of Product Information

The Value Instantiation process could be enhanced by adding new value extraction
rules and by creating new property assertions between individuals in the ontology that
further specify the relationship between them. By formally defining in the ontology
that ‘Windows XP’ is the successor to ‘Windows 2000’, the framework could also
instantiate a property assertion for ‘Windows XP’ when it encounters a raw product
value such as ‘Windows 2000 or later’.

In the current framework, the regular expressions provide a reliable way for pars-
ing values and filtering properties. However, regular expressions are labor-intensive
to build, and the user needs quite some technical background in order to be able to
make these. In the past years, there has been some successful research on automated
generation of patterns like these. One could consider using such a technique for this
framework, although it might affect the accuracy of the overall framework.

Chapter 5

An Automated Approach for
Taxonomy Mapping in
E-commerce∗

This chapter proposes SCHEMA, an algorithm for automated mapping
between heterogeneous product taxonomies in the e-commerce domain.

SCHEMA utilises word sense disambiguation techniques, based on the ideas from
the algorithm proposed by Lesk, in combination with the semantic lexicon Word-
Net. For finding candidate map categories and determining the path-similarity
we propose a node matching function that is based on the Levenshtein distance.
The final mapping quality score is calculated using the Damerau-Levenshtein
distance and a node-dissimilarity penalty. The performance of SCHEMA was
tested on three real-life datasets and compared with PROMPT and the algorithm
proposed by Park & Kim. It is shown that SCHEMA improves considerably on
both recall and F1-score, while maintaining similar precision.

∗This chapter is based on the article “L. Nederstigt, D. Vandic, and F. Frasincar. A Lexical
Approach for Taxonomy Mapping. Journal of Web Engineering, 2016, 1&2: 84-109” and the
conference publication “S. Aanen, L. Nederstigt, D. Vandic, and F. Frasincar. SCHEMA – An
Algorithm for Automated Product Taxonomy Mapping in E-commerce. 9th Extended Semantic
Web Conference (ESWC 2012), 2012, pp. 300-314.”

104 An Automated Approach for Taxonomy Mapping in E-commerce

5.1 Introduction

In recent years the Web has increased dramatically in both size and range, playing
an increasingly important role in our society and world economy. For instance, the
estimated revenue for e-commerce in the USA grew from $7.4 billion in 2000 to $34.7
billion in 2007 (Horrigan, 2008). Furthermore, a study by Zhang et al. (Zhang et al.,
2008) indicates that the amount of information on the Web currently doubles in size
roughly every five years. This exponential growth also means that it is becoming
increasingly difficult for a user to find the desired information.

To address this problem, the Semantic Web was conceived to make the Web more
useful and understandable for both humans and computers, in conjunction with
usage of ontologies, such as the GoodRelations (Hepp, 2008) ontology for products.
Unfortunately, as it stands today, the vast majority of the data on the Web has
not been semantically annotated, resulting in search failures, as search engines do
not understand the information contained in Web pages. Traditional keyword-based
search cannot properly filter out irrelevant Web content, leaving it up to the user to
pick out relevant information from the search results.

Search failures manifest themselves in e-commerce as well (Vijayalakshmi et al.,
2011). In addition, more than half of the surveyed users in the aforementioned study
on online shopping in the USA (Horrigan, 2008), have encountered various frustra-
tions when shopping online. Due to the absence of Web-wide faceted product search,
it is difficult to find the product which satisfies the user’s needs best. Users switch be-
tween Web-wide keyword-based search results and price comparison tools to find the
‘best’ product. As this is a time-consuming process, prices are often the determining
factor for a purchase. This is an unwanted situation for both buyer and seller: the
buyer might like a more expensive product, because it suits his needs better, whereas
the seller would like to be able to differentiate his offering on other characteristics
than pricing alone. The solution would be to realize a uniform presentation of Web
product information, which requires the data to be annotated and structured. A
method for the aggregation of data from Web stores is to use the existing hierar-
chical product category structure: the product taxonomy. By matching the product
taxonomies from different Web stores, it becomes easier to compare their products.
This should contribute towards solving the search problems encountered by users
when shopping online.

In this chapter, we introduce the Semantic Category Hierarchy for E-commerce
Mapping Algorithm (SCHEMA), to be used for mapping between heterogeneous
product taxonomies from multiple sources. It employs word sense disambiguation

5.2 Related Work 105

techniques, using WordNet (Miller, 1995), to find synonyms of the correct sense for
the category name. Furthermore, it uses lexical similarity measures, such as the
Levenshtein distance (Levenshtein, 1966), together with structural information, to
determine the best candidate category to map to. In order to evaluate SCHEMA, its
performance is compared on recall and precision with PROMPT (Noy and Musen,
2003) and the algorithm proposed by Park & Kim (Park and Kim, 2007).

The structure of this chapter is as follows. In Section 5.2 related work is reviewed.
Section 5.3 presents SCHEMA, our framework for taxonomy mapping. Section 5.4
discusses the evaluation results of SCHEMA, compared to existing approaches. Last,
in Section 5.5, we give our conclusions and suggest future work.

5.2 Related Work

The field of taxonomy or schema mapping has generated quite some interest in recent
years. It is closely related to the field of ontology mapping, with one important dif-
ference: whereas for matching of taxonomies (hierarchical structures), and schemas
(graph structures), techniques are used that try to guess the meaning implicitly en-
coded in the data representation, ontology mapping algorithms try to exploit knowl-
edge that is explicitly encoded in the ontologies (Shvaiko and Euzenat, 2005). In
other words, due to the explicit formal specification of concepts and relations in an
ontology, the computer does not need to guess the meaning. In order to interpret the
meaning of concepts in an ontology or schema, algorithms often exploit the knowledge
contained in generalized upper ontologies, such as SUMO (Niles and Pease, 2001) or
WordNet (Miller, 1995). In this way the semantic interoperability between different
ontologies is enhanced, facilitating correct matching between them. The semantic lex-
icon WordNet plays a specifically important role in many mapping algorithms, help-
ing to overcome the ambiguity occurring in natural language, often in combination
with word sense disambiguation approaches, such as the approach of Lesk (Banerjee
and Pedersen, 2002; Lesk, 1986). In addition to the usage of upper ontologies for
producing the mappings between ontologies and schemas, lexical similarity measures
are also often used. Using lexical similarity measures helps algorithms to deal with
slight lexical variations in words. The Levenshtein distance (Levenshtein, 1966) is
known as the edit distance, and has been augmented to allow for transposition of
characters in the Damerau-Levenshtein distance (Damerau, 1964), both utilized in
our algorithm.

106 An Automated Approach for Taxonomy Mapping in E-commerce

In their algorithm for product taxonomy mapping, Park & Kim (Park and Kim,
2007) propose to use a disambiguation technique in combination with WordNet to
obtain synonyms for a category name, in order to find candidate paths for match-
ing. The candidate paths are assessed using co-occurrence and order consistency,
which evaluate the overlap and the order of the categories between the source and
candidate path, respectively. While specifically targeted at e-commerce, some phe-
nomenons that occur frequently in product taxonomies are neglected, such as com-
posite categories, in which multiple concepts are combined. Various other (database)
schema matching approaches exist. SimilarityFlooding (Melnik et al., 2002) uses the
similarity between adjacent elements of schema entities to score possible mappings,
but does not take the frequently occurring terminological variations, applicable to
e-commerce, into account. COMA++ (Aumueller et al., 2005) provides a collec-
tion of simple matching algorithms and combinations of these. Some approaches use
class attribute data for matching, such as S-Match (Giunchiglia et al., 2005) and
CUPID (Madhavan et al., 2001). A good overview of existing approaches has been
made in recent surveys for schema matching (Do et al., 2002; Rahm and Bernstein,
2001; Shvaiko and Euzenat, 2005).

PROMPT (Noy and Musen, 2003) is a general-purpose ontology mapping tool,
which uses predefined (automatic or manual) mappings, called anchors, as guidelines
for the mapping of similar nodes. However, due to its emphasis on mapping ontologies
in general, it fails in matching many categories when employed for product taxonomy
mapping. H-Match (Castano et al., 2003) uses WordNet for determining the correct
contextual and linguistic interpretation of concepts, combined with semantic ontology
data. Yu et al. (Yu et al., 2009) propose to use an upper ontology, in order to create
a semantic bridge between various e-commerce standards. QOM (Ehrig and Staab,
2004) uses only simple similarity measures, aiming to reduce time complexity, without
significant loss of accuracy. Ehrig & Sure (Ehrig and Sure, 2004) propose a rule-based
approach, combined with neural networks. Other approaches are discussed in recent
surveys for ontology mapping (Kalfoglou and Schorlemmer, 2003).

5.3 SCHEMA

This section discusses the SCHEMA framework, together with all the assumptions
for our product taxonomy matching algorithm. Figure 5.1 illustrates the high-level
overview of the framework. This sequence of steps is executed for every category in
the source taxonomy. First, the name of the source category is disambiguated, to

5.3 SCHEMA 107

Source Category
Disambiguation

Candidate Target
Category Selection

Candidate Target Path
Key Comparison

Extended Split
Term Set

Candidate Target
Category Set Mapping Complete

Figure 5.1: Framework overview for SCHEMA.

acquire a set of synonyms of the correct sense. This set is used to find candidate
categories from the target taxonomy, and is needed to account for the varying de-
nominations throughout taxonomies. After the Candidate Target Category Selection,
every candidate category path is compared with the path of the source category, by
means of the Candidate Target Path Key Comparison. The best-fitting candidate tar-
get category is selected as the winner. The objective of SCHEMA is to map source
categories to a selected target category, if and only if, all products in the source
category fit in the selected target category. This reflects our definition of a successful
and meaningful category mapping. First, the general assumptions — the basis for
the development of SCHEMA — are explained. Next, each step of the framework,
as shown in Figure 5.1, will be discussed in more detail.

5.3.1 General Assumptions

In product taxonomies, a frequently seen phenomenon is that of composite categories.
These are nodes, that combine multiple — usually related — classes into one, like
category ‘Movies, Music & Games’ from Amazon. Each of the three parts could
have been a separate class as well, as different product concepts are represented. An
assumption in the development of SCHEMA was that composite categories need to
be treated adequately, as the target taxonomy might not use the same conjunction
of classes. To handle the phenomenon, SCHEMA splits categories on ampersands,
commas, and the string ‘and’. The resulting set of classes, making up the composite
category, is called the Split Term Set.

Product taxonomies are tree-structured data schemes, and thus have a root node.
However, in product taxonomies, root categories (e.g. ‘Products’ or ‘Shopping’) are
meaningless, as they do not provide information about the products falling under.
The assumption used for SCHEMA is that, as root nodes are meaningless, they
should get automatically mapped in taxonomy matching. Furthermore, roots should

108 An Automated Approach for Taxonomy Mapping in E-commerce

be disregarded in all computations, such as in path comparisons. Figure 5.2 shows
that the root categories (the left-hand side categories) are matched by SCHEMA,
despite being lexically dissimilar.

Between different product taxonomies, it is apparent that varying degrees of spe-
cialization exist with respect to the product classification. This could mean that there
possibly is no direct match for a very specific source category in the target taxonomy.
In such a case, it makes sense to match the source category to a more general target
category, as from a hierarchical definition, products from a specific category should
also fit into a more general class. Figure 5.2 shows that category ‘Books’ (Overstock)
is mapped to ‘Books’ (Amazon), as one would expect. Unfortunately, there is no
direct match for ‘Humor Books’ (Overstock) in Amazon. However, humor books are
also a kind of books, so SCHEMA will map this category to the more general ‘Books’
category from Amazon. The more general category is found by following the defined
mapping for the parent of the current source category. Note that root mappings
are precluded. SCHEMA’s last assumption is, that as usage of capitals in category
names does not affect the meaning, all lexical matching is performed case-insensitive.

Online Shopping

Products

Books & Media Books Humor Books

Books

Figure 5.2: Mapping example going from Overstock (top) to Amazon (bottom)
categories. Normal lines indicate a parent-child relationship; dashed lines indicate
SCHEMA’s mapping.

5.3.2 Source Category Disambiguation

The first step in creating a mapping for a category from the source taxonomy, is
to disambiguate the meaning of its name. As different taxonomies use varying de-
nominations to identify the same classes, it is required that synonyms of the source
category label are taken into account for finding candidate target categories. How-
ever, using all synonyms could result in inclusion of synonyms of a faulty sense, which
could for example cause a ‘laptop’ to be matched with a book to write notes (i.e., a
notebook). To account for this threat, SCHEMA uses a disambiguation procedure in
combination with WordNet (Miller, 1995), to find only synonyms of the correct sense

5.3 SCHEMA 109

for the current source category. This procedure is based on context information in
the taxonomy, of which can be expected that it gives some insight into the meaning
of the source category name. Concerning the general assumption on composite cat-
egories in Section 5.3.1, SCHEMA disambiguates every part of the source category
(Split Term Set) separately. The result after disambiguation is called the Extended
Split Term Set. Note that the target taxonomy does not play a role in the source
category disambiguation.

Algorithm 5.1 explains the procedure that is used to create the Extended Split
Term Set for the current source category. First, Algorithm 5.1 splits the (compos-
ited) source category into separate classes: the Split Term Set, using the function
splitComposite (·). The same split is performed for all children, and for the parent
of the source category, which will act as ‘context’ for the disambiguation process.

Algorithm 5.1: Finding Source Category’s Extended Split Term Set.

Input : The source category to disambiguate (wsrc), the parent of wsrc

(wparent), and the children of wsrc (Wchildren).
Output : The extended split term set of the source category wsrc.
Required functions:
• splitComposite(w), which splits composite category name w into a set of

individual classes: a split term set W .
• disambiguate(wtarget,Wcontext), disambiguates a word using a set of

context words, resulting in a set of correct synonyms (described by
Algorithm 5.2).

1 // First, all used categories get split on composite classes
2 W ∗ ← splitComposite(wsrc);
3 Wparent ← splitComposite(wparent);
4 Wchild ← ∅;
5 foreach wcurrentChild in Wchildren do
6 Wchild ←Wchild ∪ splitComposite(wcurrentChild);
7 end
8 Wcontext ←Wchild ∪Wparent;
9 Ω← ∅ // the extended split term set

10 // For every split part of wsrc, find the extended term set
11 foreach wsrcSplit in W ∗ do
12 ∆← disambiguate(wsrcSplit,Wcontext) // extended term set
13 ∆← ∆ ∪ {wsrcSplit} // always include the original split term
14 Ω← Ω ∪ {∆};
15 end
16 return Ω

110 An Automated Approach for Taxonomy Mapping in E-commerce

Algorithm 5.2: Context-Based Target Word Disambiguation.

Input : The target word to disambiguate (wtarget) and the set of context
words (Wcontext).

Output : The synset with the highest similarity to the target word.
Required functions:
• getSynsets(w), gives all synonym sets (representing one sense in

WordNet), of which word w is a member;
• getRelated(S), gives synonym sets directly related to synset S in

WordNet, based on hypernymy, hyponymy, meronymy and holonymy.
Result includes synset S as well;

• longestCommonSubstring(wa, wb), which computes the length of the
longest common sequence of consecutive characters between two strings,
corrected for length of the longest string, resulting in an index in the
range [0, 1];

• getGloss(S), returns the gloss associated to a synset S in WordNet.
1 Z ← getSynsets(wtarget) // Z holds all possible senses
2 score∗ ← 0;
3 synset∗ ← ∅;
4 // Evaluate every possible sense (synset) S ∈ Z of target word

wtarget
5 foreach S in Z do
6 senseScore← 0;
7 R← getRelated(S);
8 // For every pair of context words & (related) glosses
9 foreach (Srelated, wcontext) in R×Wcontext do

10 gloss← getGloss(Srelated);
11 senseScore← senseScore+ longestCommonSubstring(gloss, wcontext);
12 end
13 if senseScore > score∗ then
14 score∗ ← senseScore;
15 synset∗ ← S // Update best known synset so far
16 end
17 end
18 return synset∗

Next, the disambiguation procedure itself, which will be discussed shortly, is called
for every split part of the source category. The result, the Extended Split Term Set,
contains a set of synonyms of the correct sense for each individual split term. The
Extended Split Term Set is used in SCHEMA to find candidate target categories,
and to evaluate co-occurrence of nodes for path-comparison.

5.3 SCHEMA 111

As explained before, disambiguation of the source category name is based on
a set of words from its context. The idea to use this context is based on a well-
known algorithm for word sense disambiguation from Lesk (Lesk, 1986). However,
traditional dictionary glosses, used by Lesk, may not provide sufficient vocabulary
for successful matching. Therefore Banerjee & Pedersen (Banerjee and Pedersen,
2002) propose to use the rich semantic relations of WordNet, considering also related
glosses of both target and context words to reduce this effect. Unfortunately, this
introduces another problem: the computation time increases exponentially with the
number of context words. To prevent computation time from exploding, Kilgarriff
& Rosenzweig (Kilgarriff and Rosenzweig, 2000) propose to use Lesk’s traditional
algorithm with heuristics to simplify the search. Instead of using a dictionary gloss for
every context word, they propose to use only the context words. This method reduces
time complexity, but has similar vocabulary-related restrictions as the original Lesk
algorithm. SCHEMA uses the best of these procedures, utilizing the rich semantic
relations of WordNet for the target word, while comparing only to the plain terms
from the context, as described in Algorithm 5.2. For every possible sense of the
target word, the overlap between its related glosses and the plain context words is
assessed. The length of the longest common substring is used as similarity measure,
and the sense with the highest accumulated score is picked as winner.

5.3.3 Candidate Target Category Selection

The result of the Source Category Disambiguation, the Extended Split Term Set,
is used to find matching categories in the target taxonomy. This set of candidate
categories is basically a pre-selection for the decision to which target category the
current category can be mapped to. The selection relies on SCHEMA’s definition of
a category node match, Semantic Match, described by Algorithm 5.3, which is used
consistently throughout SCHEMA. It is used to classify a source category and a tar-
get category as equivalent or dissimilar, utilising the enriched information provided
by the Extended Split Term Set for the source category, in combination with lexical
matching to evaluate similarity between the category names. For the composite cat-
egories, SCHEMA assumes that with respect to the split terms, the source category
is a subset of the target category. This ensures that all products in a mapped source
category fit in the target category.

For every split part of the source category, Semantic Match checks whether there
is a matching part in the target category. A match can mean either that the source
split part is contained as separate component in a target part, or that they share

112 An Automated Approach for Taxonomy Mapping in E-commerce

Algorithm 5.3: Semantic Match.
Input : The target taxonomy category name: wtarget and the extended split

term set E, with sets of synonyms S of the correct sense for every
split term of the source category

Data : The Node Match Threshold tnode, defines the minimum degree of
lexical similarity in order to classify two class names as equal.

Required functions:
• splitComposite(w), splits composite category name w into a set of

individual classes: a split term set W ;
• levenshtein(wa, wb), computes the edit distance between two strings;
• casc(wa, wb), indicates whether string wa contains string wb as separate

part (middle of another word is not sufficient)
1 Wtarget ← splitComposite(wtarget);
2 matches← true // initial assumption: source split term set is

subset of target

3 foreach SsrcSplit in E do
4 matchFound← false;
5 foreach (wsrcSplitSyn, wtargetSplit) in SsrcSplit ×Wtarget do
6 edit_dist← levenshtein(wsrcSplitSyn, wtargetSplit);
7 // Normalise distance based on length and convert to

similarity measure
8 similarity ← 1− edit_dist/max(wsrcSplitSyn, wtargetSplit);
9 if casc(wtargetSplit, wsrcSplitSyn) then // contains as separate

component
10

11 matchFound← true;
12 end
13 else if similarity ≥ tnode then
14 matchFound← true;
15 end
16 end
17 if matchFound = false then
18 matches← false
19 end
20 end
21 return matches

a lexical similarity based on the normalised Levenshtein index (Levenshtein, 1966),
exceeding a chosen threshold. When all split parts of the source category have a
match in the target category, the match is considered semantically correct.

5.3 SCHEMA 113

Figure 5.3 shows some candidates that have been found for category ‘Tubs’ from
Overstock. The Source Category Disambiguation procedure discussed in Section 5.3.2
results in the following Extended Split Term Set: {{Tubs, bathtub, bathing tub,

bath, tub}}. Synonym ‘bath’ is sufficient for candidate category ‘Kitchen & Bath
Fixtures’ (at the top of Figure 5.3), to be selected. As ‘bath’ is included in split target
part ‘Bath Fixtures’ (as separate word), it matches, according to Algorithm 5.3, mak-
ing target category ‘Kitchen & Bath Fixtures’ a superset of source category ‘Tubs’.
Hence it is classified as a semantic match, and thus selected as proper candidate
target category.

Online
Shopping

Home &
Garden

A

Home
Improvement

B

Tubs

C

Products

Products

Candidate Paths

Source path

Products

Products

Home, Garden
& Tools

A

Kitchen & Bath
Fixtures

C

Home, Garden
& Tools

A

Tools & Home
Improvement

B

Kitchen & Bath
Fixtures

C

Toys, Kids &
Baby

D

Baby

E

Bathing

F

Bathing Tubs

C

Home, Garden
& Tools

A

Tools & Home
Improvement

B

Hardware

D

Bath Hardware

C

Figure 5.3: Source category path for ‘Tubs’ in Overstock, with associated candidate
target categories from Amazon

5.3.4 Candidate Target Path Key Comparison

SCHEMA’s last step is to select the best alternative from the set of found candidate
target categories, using a method that scores the similarity of the source category
path against a candidate target path. This Candidate Target Path Key Comparison is
used for every element from the set of candidate target paths. The candidate with the
highest score is selected as winner. The idea of the Candidate Path Key Comparison
is simple in nature, though powerful in the sense that it assesses similarity based on
both structural and lexical relatedness.

For both source and candidate target path, a key is generated for every node
(category) in the path. This is done in such a way, that every unique node gets

114 An Automated Approach for Taxonomy Mapping in E-commerce

a unique key. Similarly, when two nodes — independent from the path they come
from — are seen as identical, they are labeled with the same key. An important
question is: when are two nodes seen as identical? A straightforward way would be
to base this purely on lexical similarity of the category names. However, SCHEMA
uses a richer source of information for nodes from the source path: the Extended
Split Term Set. Two nodes from the source path are seen as identical if and only if
their Extended Split Term Sets are the same. A node from the source path and a
node from the candidate target path are seen as identical when Algorithm 5.3, the
Semantic Match procedure, decides so. The result is a key list for both the source
path and the current candidate target path.

Figure 5.3 shows the key list for the source and candidate targets paths for cate-
gory ‘Tubs’. The candidate path at the bottom, is a good example of how Semantic
Match classifies nodes as being similar. Candidate node ‘Tools & Home Improve-
ment’ is assigned the same key (‘B’) as source node ‘Home Improvement’, as the first
one is a superset of the last one, thus all products under the second should fit into the
first. Considering candidate ‘Bath Hardware’ itself, one of the synonyms of source
category ‘Tubs’ (‘bath’), is included in the name of the candidate category. Hence,
‘Bath Hardware’ gets the same key (‘C’) as ‘Tubs’.

For the key lists found for source and candidate path, the similarity is assessed
using the Damerau-Levenshtein distance (Damerau, 1964). This measure captures
the (dis)similarity and transposition of the nodes, hence both the number of co-
occurring nodes and the consistency of the node order are taken into account. As
the Damerau-Levenshtein distance is used in normalized form, a dissimilar node in
a long candidate path is weighted as less bad than the same dissimilar node in a
shorter path, which can unfortunately lead to biased results. Therefore, a penalty is
added for every unique key assigned solely to the candidate path, or more precise:
for every node for which no match exists in the source path. The formula used as
similarity measure for the key lists is as follows:

candidateScore = 1− damLev(Ksrc,Kcandidate) + p

max(Ksrc,Kcandidate) + p
(5.1)

where K is a key list, p the penalty (# dissimilar nodes in candidate path), damLev()
computes the Damerau-Levenshtein distance between two key lists, and max() com-
putes the maximum length of two key lists.

In Figure 5.3, the uppermost and lowermost candidate paths give an example
of the penalty’s usefulness. One is too short, the other too long. The shortest

5.4 Evaluation 115

(‘Kitchen & Bath Fixtures’) does not contain new nodes in comparison to the source
path. With just one edit operation (insertion of key ‘B’), it gets a candidate score
of 1 − 1+0

3+0 = 2
3 . The longest contains a new node: ‘Hardware’. This gives the long

path a penalty of 1, while the edit distance is also 1 (deletion of key ‘D’), resulting
in a score of 1− 1+1

4+1 = 3
5 . Without penalty it would score 3

4 , causing it to win from
the short path, which does not contain unrelated nodes. Clearly, we prefer the first
candidate path, because the second candidate path possibly changes the meaning of
node ‘C’ as it has as parent a new node ‘D’.

Once the candidate target category with the highest score has been found, it is
mapped if the score exceeds the Final Similarity Threshold (tfinal). This threshold
prevents the algorithm of performing incorrect mappings, and should not be confused
with the Node Match Threshold used in Algorithm 5.3. When a path does not pass
the Final Similarity Threshold, or when no candidate paths have been found, the
source category is mapped to the mapping of its parent (but excluding the root). The
complete framework procedure then repeats for the next source taxonomy category.

5.4 Evaluation

In order to assess SCHEMA’s performance, it is compared to similar algorithms. We
have chosen to compare it with PROMPT (Noy and Musen, 2003), being a general-
purpose algorithm that is well-known in the field of ontology mapping. Additionally,
the algorithm of Park & Kim (Park and Kim, 2007) is included in the comparison,
due to their focus on product taxonomy mapping in particular. First, we briefly
discuss how the evaluation has been set up. Then, we present the results for each
algorithm and discuss their relative performance.

5.4.1 Evaluation Design

Three product taxonomies from real-life datasets were used for the evaluation. The
first dataset contains more than 2,500 categories and is from Amazon (www.amazon.

com). The second dataset is from Overstock (https://www.overstock.com) and con-
tains more than 1,000 categories. Overstock is an online retailer with RDFa-tagged
product pages for the GoodRelations (Hepp, 2008) ontology. The last dataset con-
tains over 44,000 categories and is from the shopping division in the Open Directory
Project (ODP, www.dmoz.org). Using these three datasets, six different combinations
of source and target taxonomies can be made. In order to evaluate the algorithms’
performance on the mappings, it is required that each of the mappings is done man-

116 An Automated Approach for Taxonomy Mapping in E-commerce

ually as well. However, as the datasets are too large to manually map every category,
we have taken a random sample of five hundred category nodes from each dataset.
For every node it is assured that its ancestors are included in the sample as well.
The mappings are made from a sampled source taxonomy to a full target taxonomy.
Occasionally there are multiple nodes in the reference taxonomy to which a source
category node could be correctly mapped. To account for this fact, the manual
mapping may define multiple correct mappings for each source category node. The
manual mappings were collectively made by three independent individuals, in order
to prevent bias.

Each algorithm performed a mapping for every combination of datasets. SCHEMA
and the algorithm of Park & Kim carried out multiple mappings, with different pa-
rameter values for each combination. Both algorithms use a final score threshold,
referred to as tfinal, ranging from 0 to 1, with increments of 0.05. Furthermore,
SCHEMA uses a threshold for node matching, denoted by tnode, with range 0.50 to 1
and increments of 0.025. The completed mappings, generated by the algorithms, are
compared with the manual mappings, in order to obtain their performance measures.
Though ordinary classification and confusion matrix measures apply, the situation is
slightly different as there are n ‘positive’ classes (all target categories), and only one
negative (null mapping). We therefore define the ‘false positives’ as number of map-
pings to an incorrect path (either wrong or null), and the ‘false negative’ as incorrect
mappings to null. The ‘true’ classes are similar to those in binary classification.

5.4.2 Results

Table 5.1 presents a comparison of average precision, recall and F1-score for every
algorithm. Tables 5.2, 5.3, and 5.4 give a more detailed overview of the results
achieved by SCHEMA, the algorithm of Park & Kim, and PROMPT, respectively.

As shown in Table 5.1, SCHEMA performs better than PROMPT and the al-
gorithm of Park & Kim, on both average recall and F1-score. The recall has im-
proved considerably with 221% in comparison to the algorithm from Park & Kim,

Algorithm Precision Recall F1-score Senses found WSD accuracy
PROMPT 28.93% 16.69% 20.75% n/a n/a
Park & Kim 47.77% 25.19% 32.52% 5.70% 83.72%
SCHEMA 42.21% 80.73% 55.10% 82.03% 84.01%

Table 5.1: Comparison of the best average results for each algorithm

5.4 Evaluation 117

Mapping Precision Accuracy Specificity Recall F1-score tnode tfinal

A → ODP 27.27% 40.00% 34.12% 52.50% 35.90% 0.800 0.25
A → O.co 36.34% 49.40% 34.30% 82.69% 50.49% 0.850 0.15
ODP → A 57.49% 68.94% 51.70% 93.66% 71.24% 0.875 0.30
ODP → O.co 39.13% 50.70% 29.59% 95.03% 55.43% 0.850 0.25
O.co → A 53.72% 56.60% 29.13% 84.96% 65.83% 0.850 0.15
O.co → ODP 39.30% 45.80% 27.27% 75.52% 51.69% 0.925 0.30
Average 42.21% 51.91% 38.26% 80.73% 55.10%

Table 5.2: Best results for SCHEMA

Mapping Precision Accuracy Specificity Recall F1-score tfinal

A → ODP 35.77% 34.00% 57.89% 16.84% 22.90% 0.05
A → O.co 60.16% 47.20% 76.78% 25.61% 35.92% 0.00
ODP → A 37.06% 41.48% 51.94% 30.29% 33.33% 0.00
ODP → O.co 36.76% 35.87% 48.68% 25.09% 29.82% 0.10
O.co → A 61.14% 36.20% 52.11% 29.89% 40.15% 0.00
O.co → ODP 55.71% 36.60% 62.87% 23.42% 32.98% 0.50
Average 47.77% 38.56% 58.38% 25.19% 32.52%

Table 5.3: Best results for Park & Kim algorithm

Mapping Precision Accuracy Specificity Recall F1-score
A → ODP 13.55% 25.40% 44.17% 8.08% 10.12%
A → O.co 51.69% 45.40% 74.44% 22.02% 30.89%
ODP → A 20.20% 35.47% 46.44% 19.61% 19.90%
ODP → O.co 20.86% 29.86% 42.64% 16.18% 18.22%
O.co → A 50.00% 32.20% 45.96% 25.66% 33.92%
O.co → ODP 17.27% 25.80% 47.73% 8.57% 11.46%
Average 28.93% 32.36% 50.23% 16.69% 20.75%

Table 5.4: Best results for PROMPT

and 384% against PROMPT. This can be partly attributed to the ability of SCHEMA
to cope with lexical variations in category names, using the Levenshtein distance met-
ric, as well as the ability to properly deal with composite categories. Furthermore,
SCHEMA maps a category node to its parent’s mapping when no suitable candidate
path was found, improving the recall when the reference taxonomy only includes a
more general product concept. Achieving a high recall is important in e-commerce
applications, as the main objective is to automatically combine the products of het-

118 An Automated Approach for Taxonomy Mapping in E-commerce

erogeneous product taxonomies in one overview, in order to reduce search failures. A
low recall means that many categories would not be aligned, which would mean that
many products will be missing from search results. For this reason, it is generally
better to map to a more general category rather than not mapping at all. Worthy to
mention is the slight decrease in average precision for SCHEMA compared with the
algorithm of Park & Kim: 42.21% against 47.77%. This is due to the fact that there
is a trade-off between precision and recall: achieving a higher recall means that an
algorithm has to map more categories, resulting in possible imprecision when the sim-
ilarity between categories is low. Both SCHEMA and the algorithm of Park & Kim
use configurable final thresholds to filter out weaker matches, but it cannot fully pre-
vent mistakes from occurring. Despite the slightly worse performance on precision,
SCHEMA manages to find a more suitable trade-off between precision and recall for
product taxonomy mapping than PROMPT and the algorithm of Park & Kim. This
is illustrated by the good performance on recall and the higher F1-score of 55.10%.
PROMPT uses a conservative mapping approach, well-suited for general ontology
mapping, but unsuitable for e-commerce due to the small portion of mappings. The
algorithm of Park & Kim performs better in this regard, especially on precision,
but the recall is hampered by the fact that it neglects the existence of composite
categories. Furthermore, it uses a rather strict lexical matching procedure between
category names, in which a category name has to be a full substring of the other,
creating issues when slight lexical variations occur. In addition, the disambiguation
procedure from Park & Kim only manages to find a sense in WordNet in 5.70% of
the total categories on average. Unfortunately, the rather good accuracy of disam-
biguation (83.72%) is therefore based on a very small amount of cases, making the
number rather untrustworthy. The Lesk-based disambiguation algorithm employed
by SCHEMA performs well on both the percentage of senses found and the accuracy,
scoring 82.03% and 84.01%, respectively.

5.5 Conclusions & Future Work

This chapter proposes SCHEMA, an algorithm capable of performing automated
mapping between heterogeneous product taxonomies in e-commerce. The main ob-
jective for developing SCHEMA is facilitating the aggregation of product informa-
tion from different sources, thus reducing search failures when shopping online. To
achieve this objective, SCHEMA utilizes word sense disambiguation techniques on
category labels, based on the ideas from the algorithm proposed by Lesk (Lesk,

5.5 Conclusions & Future Work 119

1986), in combination with the WordNet semantic lexicon. Furthermore, it deals
with domain-specific characteristics, such as composite categories, and lexical varia-
tions in category labels. It employs a node matching function, based on inclusiveness
of the categories in conjunction with the Levenshtein distance for the class labels,
for finding candidate map categories and for assessing the path-similarity. The final
mapping quality score is calculated using the Damerau-Levenshtein distance, with
an added penalty for dissimilar nodes in the target path.

The performance of our algorithm was evaluated using three real-life datasets
and compared with PROMPT and the algorithm of Park & Kim. This evaluation
demonstrates that SCHEMA achieves a considerably higher average recall than the
other algorithms, with a relatively small loss of precision. The average F1-score
resulted in 55.10% for SCHEMA, against 20.75% for PROMPT, and 32.52% for the
approach of Park & Kim.

As future work, we would like to improve SCHEMA by making use of part-of-
speech tagging. As a noun is often more important for concept similarity than an
adjective, it makes sense to distinguish between them and treat them accordingly.
Another possibility is to combine the hierarchical category structure with product
information, as the data fields in product instances could yield extra information for
the taxonomy mapping. Additionally, this work could support the implementation of
a system that is capable of autonomously matching products and product taxonomies
from different sources.

Chapter 6

Dynamic Facet Ordering for
Product Search Engines∗

Faceted browsing is widely used in Web shops and product comparison sites.
In these cases, a fixed ordered list of facets is often employed. This ap-

proach suffers from two main issues. First, one needs to invest a significant
amount of time to devise an effective list. Second, with a fixed list of facets it
can happen that a facet becomes useless if all products that match the query are
associated to that particular facet. In this work, we present a framework for
dynamic facet ordering in e-commerce. Based on measures for specificity and
dispersion of facet values, the fully automated algorithm ranks those properties
and facets on top that lead to a quick drill-down for any possible target product.
In contrast to existing solutions, the framework addresses e-commerce specific
aspects, such as the possibility of multiple clicks, the grouping of facets by their
corresponding properties, and the abundance of numeric facets. In a large-scale
simulation and user study, our approach was, in general, favorably compared
to a facet list created by domain experts, a greedy approach as baseline, and a
state-of-the-art entropy-based solution.

∗This chapter is based on the article “D. Vandic, S. Aanen, F. Frasincar, and U. Kaymak. Dynamic
Facet Ordering for Faceted Product Search Engines. IEEE Transactions on Knowledge and Data
Engineering, 2017, to appear”

122 Dynamic Facet Ordering for Product Search Engines

6.1 Introduction

Nowadays, many Web shops make use of the so-called faceted navigation user inter-
face (Hearst, 2006), which is in literature often referred to as ‘faceted search’ (Tunke-
lang, 2009). One of the reasons why faceted search is popular among Web shops is
that users find it intuitive (Hearst et al., 2002; Kules et al., 2009). The term ‘facet’
has a rather ambiguous interpretation, as there are different types of facets. In this
work, we refer to facets as the combination of a property and its value, such as
WiFi:true or Lowest price (e):64.00. Furthermore, facets are usually grouped
by their property in user interfaces, in order to prevent them from being scattered
around, and, thereby, confusing the user. In other words, the facet properties, such
as Color, are shown first, and each property presents the actual values (e.g., Red,
Green, and Blue). Figure 6.1 shows an example of a faceted search user interface,
where the same concepts apply (e.g., the ‘Featured Brands’ property with its values
‘Samsung’, ‘Motorola’, ‘Nokia’, etc.).

Faceted search is primarily helpful in situations where the exact required result is
not known in advance. As opposed to product search using keyword-based queries,
facets enable the user to progressively narrow down the search results in a number of
steps by choosing from a list of query refinements, as opposed of having to provide
the complete query at once. However, one of the difficulties with faceted search,
especially in e-commerce, is that a large number of facets are available. In general-
domain faceted browsing systems, it is not uncommon to simply display all facets.
Displaying all facets may be a solution when a small number of facets is involved,
but it can overwhelm the user for larger sets of facets (Sinha and Karger, 2005b).

Currently, most commercial applications that use faceted search have a man-
ual, ‘expert-based’ selection procedure for facets (Amazon.com, 2017a; Kieskeurig.nl,
2017; Tweakers.net, 2016). However, selecting and ordering facets manually requires
a significant amount of manual effort. Furthermore, faceted search allows for inter-
active query refinement, in which the importance of specific facets and properties
may change during the search session. Therefore, it is likely that a predefined list
of facets might not be optimal in terms of the number of clicks needed to find the
desired product.

In order to deal with this problem, we propose an approach for dynamic facet
ordering in the e-commerce domain. The focus of our approach is to handle domains
with sufficient amount of complexity in terms of product attributes and values. Con-
sumer electronics (in this work ‘mobile phones’) is one good example of such a do-
main. As part of our solution, we devise an algorithm that ranks properties by their

124 Dynamic Facet Ordering for Product Search Engines

6.2 Related Work

We can find approaches in the literature that focus on personalized faceted
search (Herlocker et al., 1999; Koren et al., 2008b; Sacco and Tzitzikas, 2009a).
However, we do not discuss these, as, unlike our approach, they require some sort of
explicit user ratings. Therefore, we only consider related work that does not require
any explicit user input other than the query.

The faceted search system proposed in (Dash et al., 2008) focuses on both textual
and structured content. Given a keyword query, the proposed system aims to find the
interesting attributes, which is based on how surprising the aggregated value is, given
the expectation. The main contribution of this work is the navigational expectation,
which is, according to the authors, a novel interestingness measure achieved through
judicious application of p-values. This method is likely not to be suitable for the
domain of e-commerce, where also small data sets occur and statistically deriving
interesting attributes is not possible.

In (Liberman and Lempel, 2014), a framework for general-domain facet selection
is proposed, with the aim to maximize the rank promotion of desired documents.
There are many aspects in the proposed approach that make it not applicable in
an e-commerce environment. First, two main assumptions are made: (1) the search
process is initiated using a keyword-based query, and (2) the result is a ranked list
of documents. These are serious limitations, as many Web shop users start with a
facet selection instead of a keyword-based search, and product ranking is often not
supported. Therefore, the framework we propose does not use these two assumptions.
Second, the proposed solution does not consider multiple iterations of the search
process (i.e., multiple drill-downs). Third, the authors do not differentiate between
facet types. Consequently, numeric facets are treated in the same way as qualitative
facets (discussed in Section 6.3), thereby losing their ordinal nature. Fourth, the
authors assume that a user can only perform a drill-down using only conjunctive
semantics. In our study, we use the common disjunctive semantics for values and
conjunctive semantics for properties and take into account the possibility of drill-ups.
This means that result set sizes are expected to both increase and decrease during
the search session, either by deselecting a facet or choosing an additional facet in a
property (e.g., selecting ‘Samsung’ when ‘Apple’ is already selected). Fifth and last,
the authors do not distinguish in their approach between values (e.g., Samsung) and
properties (e.g., Brand), they only consider the combination of values and properties.

In (Vandic et al., 2013a) the approach of (Liberman and Lempel, 2014) was
extended and improved with a focus on product search. Using additional user as-

6.3 Facet Optimization Algorithm 125

sumptions and the same theoretic approach as (Liberman and Lempel, 2014), two
new methods for facet sorting were developed. Even though this approach improves
upon the original algorithm, it still suffers from the same issues discussed above.

A more recent approach provides another method for facet selection (Kim et al.,
2014b), or ‘dynamic categorization’ as the authors refer to it. The selection process
is based on ontological data from a Semantic Web environment. However, due to a
limited usage of rich ontological relationships, the algorithms can also be applied to
semi-structured data, as suggested earlier in this chapter. The study is an extension of
earlier work of the authors, which was based on the idea of selecting more descriptive
facets using an entropy-based measure (Zhu et al., 2013). Similar to (Liberman and
Lempel, 2014; Vandic et al., 2013a), this approach does not consider numeric facets
and the use of disjunctive semantics for values.

Summarizing, most of the related approaches that have been proposed, with the
exception of (Vandic et al., 2013a), do not explicitly focus on the e-commerce do-
main (Kim et al., 2014b; Koren et al., 2008b; Liberman and Lempel, 2014). Further-
more, these solutions often assume that there is a ranking of the results, based on
a preceding keyword-based query or external data, which is often not the case for
e-commerce. Also, our approach ranks properties and facets, unlike existing algo-
rithms (Kim et al., 2014b; Koren et al., 2008b; Liberman and Lempel, 2014; Vandic
et al., 2013a), which filter (or select) properties and facets. Lastly, none of the ap-
proaches from the literature that we discussed emphasize the performance aspect of
the proposed algorithms. However, in order to be useful in practice, for most Web
shops, it is important that the proposed solutions are responsive.

6.3 Facet Optimization Algorithm

Before discussing the details of our approach, we need to elaborate on the assump-
tions and the used terminology. From the perspective of user interface design, we
distinguish between two main facet types: qualitative facets (e.g., WiFi:true) and
numeric facets (e.g., Lowest price (e):64.00). We further distinguish between
two types of qualitative facets: nominal facets and Boolean facets. Nominal facets
are, for example, those for the property Display Type, and can have any nominal
value. Boolean facets are for instance Multitouch, and have only three options from
an interface perspective: true, false, or No preference.

Unlike previous studies, as discussed in Section 6.2, our approach treats numeric
facets differently than qualitative facets. When creating facets from source data

126 Dynamic Facet Ordering for Product Search Engines

(e.g., tabular data), every unique property-value combination is converted into a
facet. For numeric facets, the same process is applied. However, numeric values can
be widely dispersed, especially in large data sets. For facets, however, that would
lead to a list of possibly hundreds of different values. One way to deal with that
is to create predefined, fixed ranges of values and use these as facets. However,
it is never certain whether the predefined ranges will match the user’s preferences.
Furthermore, fixed ranges can become useless when a result set has only products
that fall into one predefined range. For our approach, we have chosen to let the user
define custom ranges of values to select. In a product search engine, such custom
ranges can be represented using a slider widget. From a technical point of view,
however, these custom ranges are considered as selecting a set of facets in one click,
i.e., each numeric value is still represented as a separate facet.

The approach we propose aims to order properties and facets in such a way that
any individual product could be found quickly and effectively. We put the leading
emphasis on property ordering, as we expect that it has the largest impact on the
user effort. A straightforward way to order properties would be by presenting those
properties on top that feature equal-sized facet counts for the facets of that property,
which is an effect that is for instance visible in the entropy-based approach of (Vandic
et al., 2013a). However, this would still require many clicks in total, possibly leading
to long search times. Our approach aims to rank more specific properties higher.
The reason behind is that we believe that users are to a limited extent, and possibly
unconsciously, aware that selecting more unique features of the target product will
result in a faster drill-down. Even in situations where this is not true, ranking more
specific properties higher will increase the chance that the user will use specific facets
for drill-down, resulting in a shorter search session duration. As an example consider
a user who is searching for a Nokia smartphone capable of playing his collection of
MP3 music, and both features are equally important. We expect the user to start by
selecting Brand:Nokia instead of Audio Formats:MP3. The user may be aware of
the fact that most smartphones are capable of playing MP3 audio, thus selecting that
facet will not lead to a quick drill-down. Filtering only Nokia phones will presumably
have a much larger impact on the result set than filtering phones that support MP3.
The effect of ranking the individual facets (i.e., Nokia vs. Samsung) is assumed to be
limited. We therefore expect that popularity is a more suited metric for this purpose.

When the user selects facets from a more specific property, the result set will
decrease in size quickly. Since the most specific facets only apply to few products,
it would be ineffective to present those on top, as the target product is unknown

6.3 Facet Optimization Algorithm 127

to the system. Given that we assume that ordering properties has more effect than
ordering facets, we therefore compute the impurity of properties as a whole, based on
the specificity of its facets. Combined with weighting for the number of products on
which it applies, this method will give us those properties and facets on top, that will
most likely lead to the quickest drill-down for most of the possible target products.
At the same time, the weighting that we introduce lowers the rank of properties with
many missing values in the data, as those cannot be employed for drill-down.

A query in a search session is defined as a collection of previously selected facets.
We have decided to apply disjunctive semantics to a selection of facets within a prop-
erty. For facets across different properties, we use a conjunctive semantics. For exam-
ple, selecting the facets Brand:Samsung, Brand:Apple, and Color:Black results in
(Brand:Samsung OR Brand:Apple) AND Color:Black. Several e-commerce stores
on the Web (e.g., Amazon.com and BestBuy.com) use the same principle, which,
from a user experience point-of-view, is very intuitive.

Our approach assumes that users can undertake two types of actions: drill-down
and roll-up. A drill-down is defined as an action of selecting one or more facets,
leading to a reduction of the result set size. A roll-up action increases the result set
size, which is likely to happen when the user notices that the selected facets are too
strict. A roll-up action can be achieved in three ways: (1) selecting a qualitative facet
from a property for which a selection already exists (e.g., adding Brand:Samsung to a
query containing Brand:Apple), (2) deselecting the only selected facet of a property,
and (3) broadening a numeric range. We will be using the notations described in
Table 6.1, which will be described in further details in the following sections.

Figure 6.2 summarize the complete search session flow assumed in our approach.
Throughout the search session, we assume that there exists a single target product
du that the user wants to find, and that the user will eventually be able to find
it. Although the user may not know the name of the product, (s)he will be able
to identify it by means of the characteristics of the product (Fdu

). The process
starts with a complete result set containing all products from the catalog D and an
empty user query q. Our approach then initiates two processes, i.e., (1) computing
the property scores and (2) computing the facet scores, discussed in Section 6.3.1
and 6.3.2, respectively. When the system completes, the user view is updated showing
the properties and facets in the computed order.

In the next step, the user evaluates the result set size. If the result set size is too
large to scan manually (|Dq| > n), the user will continue to drill-down. Otherwise,
the user will scan the result set and check if the target product is found. If the target

128 Dynamic Facet Ordering for Product Search Engines

D Set of products (product catalog)
P Set of properties
F Set of facets
Fp ⊆ F, (p ∈ P) Set of facets for property p
Fd ⊆ F, (d ∈ D) Set of facets for product d
q ⊆ F Query
Dq ⊆ D Result set returned for query q
Df , (∀d ∈ Df : f ∈ Fd) Set of products associated to facet f
rO

q (f), (f ∈ Fp) Rank of facet f for facet ordering scheme O in the
result set (dependent on query q)

rO
q (p), (p ∈ P) Rank of property p for facet ordering scheme O in

the result set (dependent on query q)
du ∈ D Target product for user u
X Variable indicating user effort
M Selected drill-down model in user simulation
n Maximum number of products in the result set the

user is willing to scan in the user simulation
t Iteration indicator (state) of search session

Table 6.1: Summary of notations.

product is found, the search session is completed and considered successful. The user
will perform a roll-up in the case that the desired product was not found, which will
increase the result set size and the same process repeats again. In Section 6.4 we
will further elaborate on the details of the employed simulation models for all these
steps.

6.3.1 Computing Property Scores

We now discuss the details of computing property scores, shown as one of the first
two processes in Figure 6.2. The outcome of the property scores is used to first sort
the properties, after which the facet scores, discussed in the next section, are used to
sort the values within each property. In Figure 6.3, we zoom into the main steps of
computing the property score. As shown by the diagram, the score for each property
is computed separately and can thus be done in parallel. Furthermore, the individual
steps depend on the facet type (qualitative or numeric).

Disjoint Facet Counts

We designed the proposed algorithm in such a way that more specific facets and
properties are ranked higher. To support the algorithm in identifying more specific
facets, we introduce the disjoint facet count. This metric is used to compute the

[full result set shown, empty query]

Compute
property scores

Compute
facet scores

Present ordered
properties and facets

[result set small enough,
user scans products]

[result size too large
user performs drill-down]

Update result
set using query

[user finds target product]

[product not found, user performs roll-up]

Compute disjoint
facet counts

Compute Gini
coefficient

Sort on property
score

[qualitative property] [numeric property]

Compute Gini
impurity

[for the current result set, compute score for each property]

Product count
weighting

6.3 Facet Optimization Algorithm 131

Property
Product Name Audio Formats Brand Diagonal Screen Lowest Price

Size (inch) (e)
Nokia 6230i mp3 N/A 1.5 80.33
LG KU990 Viewty aac, midi, mp3, LG 3 79.00

mpeg 4, wav, wma
Sony Ericsson C902 aac, mp3 Sony Ericsson 2 129.95
LG KF510 aac, mp3 LG 2.2 N/A
Apple iPhone 4 aac, aac+, aax, aax+, Apple 3.5 459.95

aiff, mp3, wav
LG Nexus 4 8GB flac, mp3 LG 4.7 382.90
Samsung Galaxy S4 aac, ac3, amr-nb, eaac+, Samsung N/A 494.99

flac, mp3, ogg, wav, wma

Table 6.2: Example data from Tweakers.net (2016).

purity (Breiman et al., 1984) to assess their ‘uniqueness’ or specificity in terms of
describing certain products. We could have used Shannon’s entropy (Shannon, 2001)
for the same goal. Various studies have investigated this choice. In (Raileanu and
Stoffel, 2004), the authors find that these two methods produce tree splits that are
not significantly different from each other. One of the few differences that tend to be
present, is that the Gini impurity tends to produce the most pure nodes (Breiman,
1996), which is why we chose to use it.

In the context of facet properties, we are looking for those properties with the
highest impurity. At that point, it becomes desirable to initiate a new ‘split’, i.e.,
a facet selection, in order to reduce the impurity. We define the Gini impurity for
facet selection as follows:

giniImpurity(p, q) = 1−
∑

f∈Fp

(
disjointCount(f, q)∑

g∈Fp
disjointCount(g, q)

)2

(6.3)

where p ∈ Pqualitative and q ⊂ F , with the fraction denominator being the total
number of products from the result set associated to a a single facet from property
p. It should be noted that since the relative frequency of products is represented by
the fraction in Equation (6.3), the measure is independent of the number of products
associated to values by means of property p.

Scoring Numeric Properties

In the previous section, we explained how the Gini impurity can be employed to score
qualitative properties. It would be possible to use the same methods for numeric

132 Dynamic Facet Ordering for Product Search Engines

Property & Facets Scores
Facet Disjoint Prod. Count Gini Gini Property

Property Facet Count Facet Count Weighting Coeff. Impurity Score

Audio
Formats

aac 5 0

1
7 N/A 0.00000 0.00000

aac+ 1 0
aax 1 0
aax+ 1 0
ac3 1 0
aiff 1 0

amr-nb 1 0
eaac+ 1 0
flac 2 0
midi 1 0
mp3 7 1
mpeg4 1 0
ogg 1 0
wav 3 0
wma 2 0

Brand

Apple 1 1
6
7 N/A 0.66667 0.57143LG 3 3

Samsung 1 1
Sony Erricson 1 1

Diagonal
Screen
Size (inch)

1.5 1 1

6
7 0.21006 N/A 0.18005

2.0 1 1
2.2 1 1
3.0 1 1
3.5 1 1
4.7 1 1

Lowest
Price (e)

79.00 1 1

6
7 0.35561 N/A 0.30481

80.33 1 1
129.95 1 1
382.90 1 1
459.95 1 1
494.99 1 1

Table 6.3: The computed scores for the considered properties in Table 6.2. This
example uses parameter values |D| = 7, |P | = 4, and q = ∅. The value ‘N/A’ stands
for ‘not applicable’ (e.g., Gini coefficient is only computed for numeric properties).
Looking at the final property scores (last column), we can conclude that Brand is more
important than Audio Formats and that the Lowest Price (e) is more important
than Diagonal Screen Size (inch).

6.3 Facet Optimization Algorithm 133

facets as well, similar to related work in which numeric facets are treated as being
qualitative (Kim et al., 2014b; Liberman and Lempel, 2014; Vandic et al., 2013a).
However, this would lead to a loss of information, as each value would be treated
as being a nominal. We could for instance imagine a result set of products in a
similar price range. Regardless of the fact that the prices are similar, there is a good
probability that most products will still have a unique value for price. In the data we
used for evaluation, over 90% of the products has a unique price. However, when we
disregard the fact that ‘unique’ prices may actually be quite similar, this would lead
to a very high Gini impurity score. With property Lowest Price (e) being used
in our example for drill-down, however, selecting a certain range of prices would still
include most of the products, as their prices are similar. The property is thus not
effective for drill-down.

Therefore, for numeric properties, we have chosen to use the knowledge about
the distribution of the numeric values for computing property scores. It is fairly
straightforward to imagine that it may be useful to drill-down using a numeric prop-
erty when the values for the result set are widely dispersed. When the facets are
nearly uniformly distributed over the complete range of values, a drill-down using a
user-defined range would lead to a large reduction of the result set. On the other
hand, when most of the values are similar, such as in the example of having a result
set with products of the same price range, drilling down using a numeric property
will hardly reduce the result set size and thus be ineffective to use. For assessing
the dispersion of numeric facets, we employ the Gini coefficient (Ceriani and Verme,
2012). The measure has proved to work effectively for examining the distribution of
values. We adapt the original Gini index for use in our context:

giniCoefficient(p, q) = 1
m

m+ 1− 2

m∑

i=1
(m+ 1− i)fi

m∑
i=1

fi

 (6.4)

= 2
∑m

i=1 ifi

m
∑m

i=1 fi
− m+ 1

m

given fi ∈ F ∗p for i = 1 to m

F ∗p = {fi | fi ∈ Fp ∩ Fd, d ∈ Dq, fi ≤ fi+1}

m = |F ∗p |

p ∈ Pquantitative

134 Dynamic Facet Ordering for Product Search Engines

where F ∗p represents the values for numeric property p for the products in the result
set, indexed in non-decreasing order (fi ≤ fi+1), with fi being the facet ranked at
index i. This measure gives us an indication of the dispersion of values. The more
dispersed, the more likely it is that a drill-down using this property will largely affect
the result set.

In Table 6.3 we give the Gini coefficients for the considered properties from the
example data (shown in Table 6.2). As an example, we will now compute the Gini
coefficient for Diagonal Screen Size (inch). We assume that the query is empty
and thus all 6 facets can be included in the computation. By ordering these facets in
an ascending way, we obtain F ∗p = {1.5, 2.0, 2.2, 3.0, 3.5, 4.7} and m = 6. The index
is then given by:

G = 2
∑m

i=1 ifi

m
∑m

i=1 fi
− m+ 1

m

= 2 · (1 · 1.5 + 2 · 2.0 + 3 · 2.2 + 4 · 3.0 + 5 · 3.5 + 6 · 4.7)
6 · (1.5 + 2.0 + 2.2 + 3.0 + 3.5 + 4.7) − 6 + 1

6

= 2 · (69.8)
6 · (16.9) −

7
6

= 0.21006

which is the index that is also mentioned in Table 6.3. From the table we can also
conclude that the Gini for Lowest Price (e) is higher, suggesting that the values
for that property are more dispersed than those of Diagonal Screen Size (inch).
Similar to the Gini impurity for qualitative facets, the Gini coefficient for properties
is independent of the number of products that have this property. Therefore the
measure needs to be weighted, which is what we will discuss in the next section.

Product Count Weighting

With the Gini impurity and the Gini coefficient, we now have metrics to score both
qualitative and numeric properties. As mentioned in the previous sections, this score
is independent from the number of products on which it is based. This could possibly
lead to problems, as properties that occur within few products will obtain a relatively
high score. To compensate for this, we introduce the product count weighting. The
product count weighting is used to transform the Gini indices, resulting in the fi-
nal property score. Additionally, it provides a way to cope with missing values, as
properties with many missing associations will be ranked lower. We define the final

6.3 Facet Optimization Algorithm 135

property score as:

propertyScore(p, q) = gini(p, q) ·
∑

f∈Fp

disjointCount(f, q)
|Dq|

(6.5)

where gini is either the Gini impurity or the Gini coefficient (depending on the
property type). The term with which gini is multiplied is the product count weighting
term. Table 6.3 shows the product count weighting for each property. If we take
for instance property Lowest Price (e), we can compute the property score using
Eq. 6.5 and the Gini from the table as follows:

score = 0.35561 · 1 + 1 + 1 + 1 + 1 + 1
7

= 0.35561 · 6
7

= 0.30481

As we can see, the second term, the product count weighting, is 6
7 , corresponding

to the value in Table 6.3 for Lowest Price (e). Multiplying it by the Gini score
obtained earlier this gives us the property score, by which we can rank properties
using rO

q (p), with O referring to our approach in this case.
One should note that, strictly speaking, the Gini impurity and the Gini coefficient

are not directly comparable to one another. For our use case, however, this does not
lead to problems, as both measure the specificity of a property, one for qualitative
and one for quantitative. Another approach to handling qualitative and quantitative
properties would be to try to find unified similarity measure. However, we believe
that it is difficult to compare qualitative and quantitative properties in the first
place and having two separate lists of facets (one for qualitative properties and one
for quantitative properties) would make the browsing of products more difficult for
the end user. The empirically obtained results suggest that this approach is working
adequately in practice.

6.3.2 Computing Facet Scores

We now discuss the details of computing facet scores, shown as one of the first two
processes in Figure 6.2. For numeric properties, value ordering is neglected, as these
are often represented with a slider widget in user interfaces. For qualitative properties
our approach employs the facet count from Equation (6.1), ranking facets descending

136 Dynamic Facet Ordering for Product Search Engines

on count, per property. As the target product is unknown to the system, this will
increase the chance that a facet matching the target product is placed on top.

In the evaluation, we compare our approach to the one proposed in (Kim et al.,
2014b). To have a fair comparison, we have implemented a version of their method
that includes the same facet sorting as our algorithm, as the authors themselves have
neglected this aspect. The difference in results can thus be completely accounted to
property sorting.

6.4 Evaluation

In this section, we discuss the evaluation of our proposed approach. The evaluation
is based on (1) simulated user sessions, where the simulation framework is derived
from previous literature, and (2) a study involving real users.

6.4.1 Experimental Framework

Figure 6.4 gives an overview of the concepts that underlie the evaluation framework.
In our experimental setup, one simulation process represents an individual search
session, which we will refer to as an experiment. Each experiment contains the
selection of one drill-down model, one ordering scheme, and one target product.
Furthermore, some of the drill-down models and ordering schemes contain stochastic
aspects. Therefore each experiment is repeated 50 times, in order to reduce the
variability of the results. For each experiment we record six different metrics. For
the target products, we have decided to use every product in our data set as a target
product du, in order to get the most reliable results from the data that we have
available.

Drill-Down Models

There are three drill-down models that we consider, based on the ones proposed
in (Koren et al., 2008b; Liberman and Lempel, 2014). These drill-down models rely
on five key assumptions, i.e., (1) rationality: the user will end the session once target
product is found, (2) practicality: the user will use no more than a fixed number of
clicks when looking for the target product, (3) feasibility: the user will perform a
roll-up when the target product disappears from the result set, (4) omnisciency: once
presented with the facets, the user knows which ones belong to the target product,
and (5) linearity: the user scans the properties from top to bottom. Because some

Drill-Down Model

Modeling user behavior
in the simulations:

Least Scanning

Best Facet

Combined

Ordering Scheme

Representing the system’s
approach for ranking facets:

Expert-Based

Greedy Count

Kim et al.

Our Approach

+

Target Product

The product to find for
each experiment:

Apple iPhone 4 16GB

LG Nexus 4 8GB

…

+

Repetitions
To reduce stochastic effects

each experiment is repeated:

50x

Performance Measures

User Effort:

Click Effort

Property Scan Effort

Value Scan Effort

Other measures:

Computation Time

Roll-Ups

% Successful Sessions

(794 products)

138 Dynamic Facet Ordering for Product Search Engines

Last, the Combined Drill-Down Model MC provides a more realistic simulation
of user behavior by allowing faulty selections (i.e., clicks that will exclude the target
product from the result set). This model assumes that the user u scans the list of
facets F starting from the top. When u encounters a facet f (s)he will consider
selecting f with probability αf when the target product du is associated with this
facet, and βf when it is not. For αf and βf we use:

αf = α

|Fp ∩ Fdu
|
, βf = β

|Fp \ Fdu
|

(6.6)

where f ∈ Fp and α+β = 1. Once u has a certain facet in consideration, the decision
whether to select it will be made stochastically using the Facet Importance Factor
γf , defined as follows:

γf =

1− rO
q (f)−1
|Fdu\q |−1 if f ∈ Fdu

(α case)

1 if f 6∈ Fdu
(β case)

(6.7)

where rO
q (f) is a function that returns the rank of f in a list of candidate facets Fdu

\q
(unselected facets associated with du), and the fraction denominator |Fdu

\ q | − 1 is
a normalization factor to bring the measure between 0 and 1. When a facet is not
selected during a scan, either due to the stochastic effect from αf or βf , or due to its
Facet Importance Factor γf , the user will resume scanning the following facet until
a selection has been made.

Ordering Schemes

For effectively evaluating the performance of our approach, we perform a comparison
with other ordering schemes. The Expert-Based scheme is the fixed-order scheme
from (Tweakers.net, 2016), which is created manually by a team of dedicated edi-
tors. Since manually defined schemes are used in nearly all current applications on
the Web, it provides a useful comparison with dynamic ordering methods such as the
one proposed in this study. The Kim et al. approach, proposed in (Kim et al., 2014b),
is a state-of-the-art method for sorting properties. Their proposed scheme fits the
e-commerce domain well and because it is an entropy-based approach, it is an inter-
esting candidate in the comparison. Although the original paper suggested source
data in the form of an ontology, the algorithms can be applied to semi-structured
data as well, as the authors also suggest. The last baseline we employ is the Greedy
Count scheme. Greedy Count appears regularly in related work as a simple baseline

6.4 Evaluation 139

for evaluation (Koren et al., 2008b; Liberman and Lempel, 2014). It orders properties
and facets descending on the number of matching products. In order to fit into our
environment, the Greedy Count uses the following definition for the property score:

greedyCountPropScore(p, q) =
maxf∈Fp count(f, q)

|Dq|
(6.8)

The properties are thus ordered based on the maximum of the facet counts of their
values. The facets themselves are naturally sorted on facet counts as well, as defined
in our approach and the one we implemented for the Kim et al. approach. This
means that all automatic approaches that we evaluate use the same facet ordering
technique, which makes the comparison more fair.

Performance Measures

The performance of the ordering schemes given the different drill-down models is
measured using various metrics. We consider three user effort metrics. First, the
click effort Xc measures how often a facet was (de)selected or a range was adapted.
Second, the property scan effort Xp measures how much effort is put in scanning
properties and is defined by:

Xp =
∑

t, |Dt
q|> n ∧ t≤ 100

rO
q (pM

t)
|P |

(6.9)

where n is the maximum number of products in the result set the user is willing
to scan, and pM

t refers to the property that is selected by the user given drill-down
model M at iteration t. Last, the value scan effort Xf measures how much effort is
put in scanning values and is defined by:

Xf =
∑

t, |Dt
q|> n ∧ t≤ 100

rO
q (f M

t)
|Fp |

(6.10)

where fM
t refers to the facet f ∈ Fp that is selected by the user given drill-down

model M at iteration t. As there is no list of facets for quantitative properties, the
scanning effort for selecting a range of numerical values is defined as Xf = 0.

Besides the user effort metrics, we record three other measures during the exper-
iments. First, the total computation time needed for one experiment to compute or
retrieve the order of facets. Second, the number of roll-up user actions that were
needed on average in each search session (applicable only to the Combined Drill-

6.4 Evaluation 141

6.4.2 Results from the simulated experiments

In this section we present and discuss the results obtained from our experiments.
We have performed t-tests to assess whether the observed differences for the click,
property scan effort, and value scan effort are significant. Based on these tests we
can conclude that all the found differences are significant, with the largest p-value
being 0.00026.

Tables 6.4, 6.5, and 6.6 show the results for Least Scanning, Best Facet, and
Combined Drill-Down models, respectively. We can make several important observa-
tions. First, in terms of the number of clicks, our approach seems to outperform the
other methods, except in the case of the Best Facet Drill-Down Model, where each
approach performs equally well. Furthermore, for the Combined Drill-Down Model,
our approach results in the lowest number of roll-ups and the highest percentage of
successful sessions.

Second, we observe that our approach, in most cases, performs best in terms of
property and facet scan effort, except for the Combined and Least Scanning Drill-
Down Model, respectively. However, although the found differences are statistically
significant, it can be argued that they are not relevant, as there were no large effect
sizes found. Furthermore, we assume that in practice the property and facet scanning
efforts are not the key factors that contribute to the true perceived user effort. We
assume that the number of clicks and the responsiveness of the approaches play a
much more important role here.

Third and last, in terms of computational time, our approach outperforms the
other automatic approaches, often needing orders of magnitude less time to return
the sorted facets for a query. For example, the total computation time for the Kim
et al. method, on average, is more than 1 second per click. Our approach needs
approximately 100 milliseconds per click, which fits the requirements of Web shops
and other e-commerce applications, where latencies in terms of seconds are found to
be highly undesired (Nah, 2004). The reason for why the method of Kim et al. is
slower stems from the fact that it relies on computing the the conditional entropy for
every property pair pi, pj (pi 6= pj), which in turn relies on computing the entropy
between the property pi and all property values b ∈ Vj , where Vj are all the values
for property j.

We have also found that ranking specific facets higher does sometimes have a
downside. This occurs when a facet is so specific that the user has difficulties to
identify it. For instance, the qualitative Screen Resolution property is ranked
relatively high initially. There are so many different screen resolutions available that

142 Dynamic Facet Ordering for Product Search Engines

Ordering Scheme
Expert-Based Greedy Count Kim et al. Our approach

user effort:
clicks (Xc) 4.0 28.2 19.7 2.3
clicks std dev 1.24 18.65 14.04 0.68
prop scan effort (Xp) 0.0538 0.1914 0.0630 0.0267
prop scan effort std dev 0.0273 0.0891 0.0351 0.0124
facet scan effort (Xf) 0.1462 0.2438 0.4550 0.2111
facet scan effort std dev 0.0908 0.0952 0.1516 0.1718
other measures:
computation time (ms) 4 23, 386 49, 818 187
computation time std dev 3.7 26, 832.4 45, 129.9 74.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

Table 6.4: Results for the Least Scanning Drill-Down Model, with n = 10, α = 0.9,
and maximum 100 iterations.

Ordering Scheme
Expert-Based Greedy Count Kim et al. Our approach

user effort:
clicks (Xc) 1.5 1.5 1.5 1.5
clicks std dev 0.52 0.52 0.52 0.52
prop scan effort (Xp) 0.3474 0.7232 0.5804 0.2399
prop scan effort std dev 0.2607 0.2091 0.1939 0.2257
facet scan effort (Xf) 0.4659 0.4796 0.4946 0.4547
facet scan effort std dev 0.2730 0.2736 0.2695 0.2764
other measures:
computation time (ms) 2 25 1, 507 160
computation time std dev 0.9 213.2 638.1 61.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

Table 6.5: Results for the Best Facet Drill-Down Model, with n = 10, α = 0.9, and
maximum 100 iterations.

the user might be overwhelmed by the decision to choose one. The users might also
be indifferent with respect to the different resolutions, which makes the property less
attractive. At the same time, the property Lowest Price (e), which is generally
considered a more useful property for filtering products, is ranked lower. This shows
that achieving faster drill-down does not only involve mathematical optimization but
also taking into account user experience and behavior.

6.4 Evaluation 143

Ordering Scheme
Expert-Based Greedy Count Kim et al. Our approach

user effort:
clicks (Xc) 30.7 62.9 59.8 18.8
clicks std dev 20.05 27.98 20.01 9.77
prop scan effort (Xp) 0.1220 0.1681 0.1524 0.2268
prop scan effort std dev 0.0232 0.0255 0.0297 0.0261
facet scan effort (Xf) 0.3904 0.4842 0.5443 0.3075
facet scan effort std dev 0.0599 0.1100 0.0325 0.0308
other measures:
computation time (ms) 16 118, 155 113, 336 2, 843
computation time std dev 12.6 72, 772.1 53, 871.0 2, 094.0
rollups mean 10.7 10.0 16.6 6.2
successful sessions (%) 90.96% 64.00% 79.53% 99.07%

Table 6.6: Results for the Combined Drill-Down Model, with n = 10, α = 0.9, and
maximum 100 iterations.

6.4.3 Results using the experiment with real users

Besides the extensive experiments performed using simulation, we also performed
an experiment with real users. The experiment consisted of 10 small tasks∗, where
each task would take the user approximately one minute to complete. The tasks
were generated by a script that randomly selects products and includes all properties
of the product in the task description. However, for the sake of brevity, properties
with multiple values (e.g., ‘Audio Formats’) were reduced to one (randomly selected)
value. For each task, the user was given a set of product features. The users were
instructed to find the product(s) that matched all the given properties. We evaluated
two systems, where each user performed the first half of the tasks with one system
and the second half of the tasks with the other system. The order of the systems was
alternated among users in order to compensate for the the learning effect that may
occur. One system was a faceted search interface using the algorithm proposed in this
dissertation† and the other system was a ‘standard’ faceted search interface‡. The
‘standard’ faceted search interface has no special features other than those commonly
encountered on the Web and employs a fixed facet list, which is obtained from the
Web shop from which the data set is originating (Tweakers.net, 2016).

∗all tasks are available at https://db.tt/5DRnsIhS
†available at http://facet-sorting.eur.dvic.io
‡available at http://std-prod-search.eur.dvic.io

144 Dynamic Facet Ordering for Product Search Engines

We had a total of 27 users who participated in the experiment, consisting of 17
males and 10 females. There were 19 users that were between 20 and 30 years old, 6
users that were between 31 and 40 years old, and 2 users that was between 40 and 50
years old. These users were mostly students and colleagues from our university and
other universities and there was no financial reimbursement for the participation in
the experiment.

Table 6.7 shows the behavior of the users who participated in the experiment,
for each of the systems. We can see that most users chose to filter based on the
qualitative facets (such as the brand), as indicated by the event ‘List facet select’.
We notice that users needed less numeric facet changes with our approach than with
the standard approach (event ‘Numeric facet change’). The results from our user
study also suggest that users do not reformulate the query often. Table 6.7 shows
that the filters were cleared only twice in the whole study (event ‘Clear all filters’).
We can also see that the users spend more time drilling down or rolling up (events
‘List facet select’ and ‘List facet deselect’). Using a paired t-test (measured per task),
we can conclude that the users significantly had less interaction (i.e., less events) with
our approach than with the standard approach (p = 0.001867). We also considered
the user effort in terms of how long it took the users to complete the tasks. On
average, the users spent 72.4 seconds per task with our approach and 79.9 seconds
with the standard approach. The standard deviation is 33.2 seconds for our approach
and 33.0 seconds for the standard approach. A paired t-test shows that the difference
is significant although the evidence is not very strong (p = 0.047170). This might be
due to the fact that there is a large difference among users and 27 users is too little
to factor out that effect.

Event type Standard approach Our approach
List facet select 364 376
Toggle collapsed 182 143
Numeric facet change 198 84
List facet deselect 18 2
Boolean facet change 5 2
Numeric facet remove 2 4
Boolean facet remove 4 0
Clear all filters 2 2
Change page number 2 3

Table 6.7: Event counts in the user experiments.

6.5 Conclusion 145

6.5 Conclusion

Nowadays most Web shops employ a form of faceted navigation in their user interface,
often referred as ‘faceted search’. This type of search has many advantages over
keyword-based search, as it enables the user to progressively narrow the search results
in a number of steps by choosing from a list of query refinements, instead of having
to provide the query at once. However, the current state of faceted search is suffering
from two major issues. First, most Web shops use a ‘expert-based’ selection procedure
for facets (Amazon.com, 2017a; Kieskeurig.nl, 2017; Tweakers.net, 2016), requiring
significant manual work as often many facets are involved. Second, a fixed facet
list does not optimally make use of the interactive nature of faceted search, i.e., the
importance of facets can change drastically depending on the query.

In this work, we proposed an approach that automatically orders facets such that
the user finds its desired product with the least amount of effort. The main idea of
our solution is to sort properties based on their facets and then, additionally, also
sort the facets themselves. We use different types of metrics to score qualitative and
numerical properties. For property ordering we want to rank properties descending
on their impurity, promoting more selective facets that will lead to a quick drill-down
of the results. Furthermore, we employ a weighting scheme based on the number of
matching products to adequately handle missing values and take into account the
property product coverage.

We evaluate our solution using an extensive set of simulation experiments, com-
paring it to three other approaches. While analyzing the user effort, especially in
terms of the number of clicks, we can conclude that our approach gives a better per-
formance than the benchmark methods and in some cases even beats the manually
curated ‘Expert-Based’ approach. In addition, the relatively low computational time
makes it suitable for use in real-world Web shops, making our findings also relevant
to industry. These results are also confirmed by a user-based evaluation study that
we additionally performed.

In future we would like to replicate our study on a different domain than cell
phones, thereby addressing one of the limitations of the current evaluation. Also
we would like to investigate the use of other metrics, such as facet and product
popularity, for determining the order and optimal set of facets.

Chapter 7

Approximate Search and
User Preference Ranking in
Faceted E-commerce Search∗

One of the problems that e-commerce users face is that the desired prod-
ucts are sometimes not available and Web shops fail to provide similar

products due to their exclusive reliance on Boolean faceted search. User prefer-
ences are also often not taken into account. In order to address these problems,
we present a novel framework specifically geared towards approximate faceted
search within the product catalog of a Web shop. It is based on adaptations to
the p-norm extended Boolean model, to account for the domain-specific charac-
teristics of faceted search in an e-commerce environment. These e-commerce
specific characteristics are, for example, the use of quantitative properties and
the presence of user preferences. Our approach explores the concept of facet
similarity functions in order to better match products to queries. In addition,
the user preferences are used to assign importance weights to the query terms.
Using a large-scale experimental setup, we conclude that the proposed algorithm
outperforms the considered benchmark algorithms.

∗This chapter is based on the article “D. Vandic, L. Nederstigt, F. Frasincar, and U. Kaymak.
Approximate Search and User Preference Ranking for Faceted Navigation. ACM Transactions on
the Web, 2017, under review.”

148 Approximate Faceted Search and User Preference Ranking

7.1 Introduction

E-commerce has nowadays become very popular among consumers. However, there
are many Web shops with very large product catalogs, which makes it difficult for
users to find their desired product. It has been shown that many users encounter this
difficulty while shopping online, which can negatively impact the turnover for Web
shop owners (Horrigan, 2008). This emphasizes the need for better search interfaces
for browsing through product catalogs on the Web.

Throughout the years various interaction paradigms have been proposed to deal
with the above problem. Faceted search is one of the most popular paradigms for
browsing structured data in information systems (Hearst, 2006), especially product
catalogs in e-commerce stores. This paradigm is useful for exploratory search, as
users can iteratively select facets that they find important to constantly refine their
query and enhance the result set (Kules et al., 2009). Furthermore, it has been shown
that faceted search is perceived as easy to understand and effective at guiding people
to relevant documents within catalogs (Fagan, 2013).

Despite the advantages of faceted search, there are also some serious drawbacks.
Traditionally, faceted search imposes a rather strict Boolean model on whether a
document matches the query terms: either it matches the query or it does not.
While this model allows for a quick drill-down into the catalog, it also means that a
user might miss some potentially desired products if they do not completely match
the query. This results in a user having to change the query afterwards to include
more documents, which increases search time and makes exploratory search more
error-prone.

Such strict faceted search is not desired in e-commerce, as users usually do not
have completely strict requirements. For example, a user searching for a smartphone
under e200 with ‘Android’ as Operating System and ‘Samsung’ as brand, might
also consider Android smartphones from other brands if they are much cheaper than
similar phones from Samsung. At the same time, having Android as the Operating
System could be a hard requirement for the user. Another problem with strict
faceted search is that there is no adequate ranking method. This is usually resolved
by letting the user sort the list on one metric, such as price or popularity, but it would
be more useful if the products could be sorted on how well they match the query.
For this purpose, the user should also be able to rank the specified requirements on
importance (e.g., a battery life requirement might be more important than a color
requirement).

7.2 Related Work 149

Most of the currently proposed approaches that aim to tackle this problem are not
specifically geared towards the domain of e-commerce. In particular, the existence of
quantitative facets, such as price, might pose a problem to these algorithms, as they
do not consider nearly identical numerical values as being similar to a certain degree.
Furthermore, past approaches for e-commerce also do not allow the user to explicitly
specify which requirements are important and which ones are not. To our knowledge,
a faceted search method that unifies the ranking of products and the ranking of user
requirements has not yet been proposed.

In this chapter, we propose a novel algorithm specifically geared towards ap-
proximate faceted search within a product catalog of a Web shop. The main focus
is on improving the retrieval of relevant products, taking into account the impor-
tance of the specified user requirements. We adapt the p-norm extended Boolean
model (Salton et al., 1983) to cope with the domain-specific characteristics of faceted
product search. The adaptations consist of a facet similarity function, both for quan-
titative and qualitative product properties. We also propose a term weighting method
that takes in account user preferences. The algorithm is implemented as part of a
Web application, with real-life data obtained from Tweakers.net Pricewatch (Tweak-
ers.net, 2016), which is a Dutch Web shop price aggregation service. An extensive
evaluation is performed by means of simulations and a battery of quality and perfor-
mance metrics.

7.2 Related Work

In the literature, we can find some proposed approaches that aim to improve ex-
ploratory search within a product catalog. Burke (2002) proposes a recommender
system based on case-based reasoning. This system matches a user’s need with a
product based on previously solved user needs that are similar to the current user’s
needs. The authors augment this approach by combining it with example critiquing,
which shows a product to the user and then allows the user express his/her dissat-
isfaction with a particular facet of that product. This information can then be used
to find another product that has a better value for this facet, possibly at the cost of
having a worse value for other facets, thereby facilitating trade-off-based navigation.

Similarly, in (Pu and Chen, 2005) an approach is proposed that uses example
critiquing techniques. They propose an interaction paradigm in which users first
declare their initial preferences, after which some matching example documents are
displayed. The user subsequently examines these examples and either accepts one

150 Approximate Faceted Search and User Preference Ranking

document or performs critiquing on one of the examples. This process consists of
improving some of the attribute values by allowing a compromise on one or more
other attribute values. Afterwards, the system applies a decision strategy called the
weighted additive sum rule, which multiplies each attribute value of a document with
the corresponding importance weight in the query, followed by adding up these values
to obtain an overall score. The documents with the highest scores are displayed to the
user, after which the user can either continue to perform exploratory search or accept
one of the presented documents. The authors show that users were able to improve
their decision accuracy by using the trade-off support provided by this system.

In (Li et al., 2011), the authors examine an approach that employs concepts from
the field of utility theory. They argue that buying a product is different from finding
relevant products, therefore it is possible to calculate the expected utility of products
and rank them based on the largest utility surplus. The utility surplus is defined as
the difference between two components, namely the utility of the product and the
utility of money. The utility of the product is defined as the sum of expected utilities
for each of its characteristics, whereas the utility of money is defined as an increasing
concave function. In order to obtain the expected utilities, they collect aggregated
data about market shares and demand, from which they derive an estimated utility.
They show that users tend to prefer their surplus-based ranking when searching for
hotels in comparison to other considered rankings.

Although faceted search is regarded as a useful means to explore a catalog,
care needs to be taken that the interface does not become too cluttered and ob-
scured, which could result in a diminished user performance due to information
overload (Sinha and Karger, 2005a). General concepts from the literature for im-
plementing faceted navigation are explained and reviewed in Sacco and Tzitzikas
(2009b). One of the ideas discussed for reducing the overload of information is to
either filter or order the facets according to their importance.

Displaying all facets may be a solution when a small number of facets is involved,
but it can overwhelm the user for larger sets of facets (Sinha and Karger, 2005b;
Zheng et al., 2013). Studies such as Dash et al. (2008); Herlocker et al. (1999);
Kim et al. (2014a); Koren et al. (2008a); Sacco and Tzitzikas (2009a); Vandic et al.
(2013b) focus primarily on optimizing the decision of which facets to show in the
user interface. These algorithms aim to reduce user effort by ordering the facets in
such a way that the most important ones are listed first.

The study in Kim et al. (2014a) is based on earlier work of the authors which
coined a basic idea for selecting more descriptive facets using an entropy-based mea-

7.3 Approximate Product Search 151

sure (Zhu et al., 2013). The approach focuses on Semantic Web and Linked Data
data sets, similar to the approaches in Arenas et al. (2014a,b); Cuenca Grau et al.
(2016); Stolz and Hepp (2015). The reduction in user effort is achieved by calculat-
ing gain ratios for each facet, which is based on conditional entropy. The conditional
entropy indicates how much the value for a facet can be predicted by the value for
another facet. By summing up all the gain ratios of the facets belonging to each
property, the total gain ratio per property is computed. Last, the properties are
ranked in decreasing order of total gain ratio and presented to the user. This process
is repeated after each interaction between the user and the search engine.

Even though the previously discussed approaches are specifically geared towards
e-commerce, they have various shortcomings. Approaches such as (Li et al., 2011),
which rely on well-estimated user statistics, are not usable in practice. The reason for
this is that some Web shops do not have the infrastructure to collect the user data or
that the product catalogs are relatively large and changing rapidly. Other methods,
such as (Burke, 2002; Pu and Chen, 2005), do not rely on previously collected user
statistics, but they suffer from other issues. One of the main arguments against these
example critiquing approaches is that they deviate too much from the currently used
interaction paradigms (i.e., regular faceted navigation). We argue that an approach
that lies closer to what users use on a daily basis will be more successful when
deployed in practice. Therefore, our focus is to have an approach that introduces
minimal changes to the classical faceted navigation interface present in current Web
shops, while supporting approximate search and explicit user preferences. The only
user interface adaption we make is that users can specify importance weights for the
selected facets, which can be achieved in many different, non-intrusive ways.

7.3 Approximate Product Search

Before diving into the details of the framework, we first discuss facets in more detail
and give an overview of all the framework components. Product information in Web
shops is usually stored in the form of tabular data, consisting of key-value pairs, where
the key denotes the property to which the value belongs. Each distinct combination
of a key and value occurring in the product catalog is considered to be a facet. For
example, a key-value pair, or facet, of a product might be [‘Color’, ‘Black’].
Later on, if there is no ambiguity, we use the term ‘value’ to refer to a facet, in order
to shorten the explanations. There are various property types, which need to be

152 Approximate Faceted Search and User Preference Ranking

treated differently, both in the front-end as well as in the back-end. There are two
main types of properties, namely qualitative and quantitative properties.

Qualitative properties are further discerned based on whether they allow one or
multiple values per product. Typically these two types are presented differently to
the user, either in the form of radio buttons, which only allow one selection, or a list
of check boxes that allows multiple selections. An example of the first type of qual-
itative property is a qualitative Boolean property, e.g., the key-value pair [‘WiFi’,

‘True’]. In contrast, a key-value pair like [‘Supported Audio Formats’, ‘MP3,

FLAC, AAC’] allows multiple values for a product. In this case, each element in the
list of values should be treated as a separate facet. There is an important exception
to how single-valued qualitative properties other than Boolean qualitative proper-
ties are treated. These are namely still treated as a multi-valued property in user
interfaces. One example of this would be the ‘Brand’ property. The reason for this
is that users may wish to include products from multiple brands in the query (e.g.,
in order to compare them). Therefore, we treat multiple selections of facets from a
property like ‘Brand’ as a generalized disjunctive query. This is consistent with the
interpretation that many major Web shops employ, such as Amazon.com and Best-
Buy.com. Quantitative properties have a single numerical value, where every distinct
numerical value is considered to be a facet. Different from boolean properties, a user
can select multiple values for a quantitative property by selecting a range of values.
For example, the user could search for a product with a price between e100 and
e200, which encompasses multiple facets.

Queries submitted to a faceted search engine consist of a selection of facets, from
which a Boolean expression is constructed. Traditionally the ‘Standard Boolean
Model’ is used to evaluate the expression, which means that a product is only in-
cluded in the result set if the Boolean expression evaluates to true for the product.
Our proposed algorithm replaces this strict model with an ‘Extended Boolean Model’
that computes a similarity score for each product, thus enabling approximate search.
The constructed query expression is usually made disjunctive for facets belonging to
the same property, and conjunctive for facets belonging to different properties. Large
Web shops, such as Amazon.com, employ this principle, as it is considered to be in-
tuitive to the users to form the query in this way. For example, choosing [‘WiFi’,

‘True’] and [‘Camera Flash Type’, ‘Single LED, Dual LED, Xenon’] would
search for all products that have WiFi and a Camera Flash Type of either ‘Single
LED’, ‘Dual LED’, or ‘Xenon’.

Compute query-
product property
similarity scores

Query-product
property similarity

scores

Apply user
preference function

Weighted
query vector

Compute overall
query-product

similarity scores

Query-product
similarity scores

User property
preference list

Convert query
to vector

Query vector

Query facets

Product vectors
Create inverse

document
frequency vector

Inverse document
frequency vectors

Apply facet
similarity
function

Convert
product facets

to vector

Raw term
frequency
vectors

Product facets

154 Approximate Faceted Search and User Preference Ranking

On the second row of Figure 7.1 we see the processes that encompass the query
flow, converting query facets to a weighted query vector. All of these processes are
dependent on the query and have to be computed each time a query is submitted to
the search engine. Every time a query is submitted to the search engine, the algorithm
first converts it to a vector, which has the same dimensions as the previously created
vectors for products. Similar to the raw term frequency vectors, a weight of zero at
index i indicates that the query does not contain the corresponding facet, whereas a
weight of one means that it does. A quantitative facet is contained in the query if
its associated numerical value is within the query range for the associated property.

In addition to the query facets, the user also submits a user property preference
list to the search engine. This preference list consists of all the involved properties in
the facet selections and is ranked descending on the importance (determined by the
user). The user preference function takes the query vector and the user preference
list as input to determine the weighted query vector. The weight query vector is
computed by multiplying each value in the query vector with a property importance
weight. The details of this procedure are discussed in Section 7.3.3.

After both the products and the query have been converted to a vector, it is
possible to compute the similarity between them. This is depicted on the third row
of Figure 7.1. The similarity score is calculated using the p-norm extended Boolean
model (Salton et al., 1983), and is a two-staged process. First, the similarity of
each property in the query is computed for every product using the p-norm extended
Boolean formula for disjunctive queries. Second, the overall similarity between the
query and each product is computed. This step uses the similarity scores for each
property from the previous step and weights them again according to their associated
weights in the weighted query vector. Afterwards, these weights are plugged into the
p-norm extended Boolean formula for conjunctive queries, which results in an overall
similarity score. These steps are described in detail in Section 7.3.4. The end result
of the process is a similarity score between zero and one for each product, which
indicates how closely a product matches the query. Last, the products are sorted on
their similarity scores in descending order and are presented to the user.

We move on now with the discussion of each of the processes depicted in Fig-
ure 7.1 in more detail. Table 7.1 provides an overview of the notations that are used
throughout the rest of this chapter.

7.3 Approximate Product Search 155

D Product catalog
P Properties
Pqualitative ⊆ P Qualitative properties
Pquantitative ⊆ P Quantitative properties
Fp ⊆ F, p ∈ P Facets for property p
fp ∈ Fp Facet for property p
Fd ⊆ F, d ∈ D Facets for product d
fd ∈ Fd Facet for product d
Fp,d = Fp ∩ Fd Property p facets for product d
fp,d ∈ Fp,d Property p facets for product d
Df , ∀d ∈ Df : f ∈ Fd Products d associated with facet f
q ⊆ F Query
Dq ⊆ D Result set returned for query q

Table 7.1: Summary of used notations.

7.3.2 Product IDF Vectors

We start with the detailed explanation of the process of converting Product Facets
to Product Vectors and Inverse document frequency vectors, i.e., the first row of
Figure 7.1. The first step in converting product data to vectors consists of extracting
the facets from the available tabular product data. Figure 7.2 depicts an example
of the facet extraction process with three products. Each distinct key-value pair is
converted to a facet and is assigned a vector index. The vector index of every facet
corresponds to an element within the vector. Using the extracted facets for every
product, we construct raw term frequency vectors. These vectors are straightforward
binary vectors indicating if a facet is present or not. For example, for product 1 in
Figure 7.2 the raw term frequency vector would be (1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0).

After the raw term frequency vectors have been created, the facet similarity func-
tion is applied to each weight in the vector. This conversion is needed as binary
weights are too strict for the purpose of approximate product search. Ideally we want
the search engine to rank and not filter the products using the submitted query. For
example, consider a user who is searching for a product with a price between e100
and e200. Now suppose that a product exists with a price of e99.95. As the price of
the product does not fall within the specified range, the product does not match the
query and thus gets a low similarity score or is even not included in the results at
all. Intuitively this could be considered as an incorrect decision, as the price nearly
matches the lower bound of the range, thus the product might be interesting to the
user as well. Besides being too strict, using binary weights also gives another prob-
lem: any quantitative value that lie within the specified range is considered equally

156 Approximate Faceted Search and User Preference Ranking

TABULAR PRODUCT DATA FACETS VECTOR

Colour Silver

WiFi Version

Price (€)

WiFi B

200

Bluetooth False
Colour

Silver

White

Black

w1

w2

w3

Colour Black

WiFi Version

Price (€)

WiFi B, WiFi G,
WiFi N

400

Bluetooth True

WiFi
Version

WiFi B

WiFi G

WiFi N

w9

w10

w11

Colour White

WiFi Version

Price (€)

WiFi B, WiFi G

300

Bluetooth True

Price (€)

200

300

400

w4

w5

w6

Bluetooth
True

False

w7

w8

Figure 7.2: Three example products and their facets.

dissimilar from the query. This means that, for a query where the target price is
e100, a product with a price of e500 would achieve the same similarity score as
the product with a price of e99.95 (all other aspects being equal), which is clearly
undesirable, as the latter product should be considered as being more similar to the
query.

The same problems also arise when searching for products with a qualitative
property. If a product does not contain the same qualitative facets as the query, it
gets excluded. Furthermore, qualitative facets that are not included in the query are
treated as equally dissimilar from those in the query. This does not always make
sense, as some facets are conceptually quite similar, whereas others are not. For
example, consider some of the audio file formats that exist, such as ‘MP3’, ‘Ogg
Vorbis’, and ‘WAV’. Whereas ‘WAV’ is an uncompressed and lossless format, both
‘MP3’ and ‘Ogg Vorbis’ are examples of a compressed and lossy format. Thus it
can be argued that the latter two audio formats are more similar to each other than
‘WAV’ and either one of these formats.

The facet similarity function aims to address the issues outlined above by con-
verting the weights in the raw term frequency vector to a weight in the range of zero
to one, which can be interpreted as the degree of similarity between a product and
each facet. The result of applying the function on the raw term frequency vector is

7.3 Approximate Product Search 157

called the product vector. Depending on whether a facet belongs to a quantitative
or quantitative property, a different approach is used to compute its weight in the
product vector. This similarity function is defined as:

facetSim(fp, d) =

0 if Fp,d = ∅

1− minfp,d∈Fp,d

|fp − fp,d|
max(Fp)− min(Fp) if p ∈ Pquantitative

max
fp,d∈Fp,d

|Dfp ∩Dfp,d
|

|Dfp,d
|

if p ∈ Pqualitative

(7.1)

Evidently, if a product does not have any of facets associated with the property p, the
similarity score remains zero, as it is not possible to compute the degree of similarity
in that case. For the first example product from Figure 7.2 we obtain the following
product vector: (1, 0, 0, 1, 1

2 , 0, 0, 1, 1,
2
3 ,

1
3).

The score for quantitative properties is based on the distance between the numer-
ical value of the facet fp and the numerical value of the product. Note that, although
Fp,d is defined as a set, there is often only one element in the set for quantitative
properties, as a product usually does not have multiple numerical values for the same
property. The distance between the numerical values is normalized by dividing it by
the range of the values for the property, thus obtaining a relative dissimilarity.

The facet similarity score for qualitative properties computes a similarity score
between the facet fp and each facet of property p that is also associated with prod-
uct d, i.e., each facet fp,d in Fp,d. The similarity score is based on the fraction of
products with facet fp,d that are also associated with facet fp. After computing all
the similarity scores, the highest score is selected and is used as the weight for facet
fp in the product vector. The rationale behind this score is that facets that occur
frequently together within product data are likely to be conceptually similar.

For instance, consider the different versions of the WiFi standard, such as ‘WiFi
B’, ‘WiFi G’, and ‘WiFi N’. Each consecutive version of the standard enhances the
previous version and is backwards compatible, thus products adhering to a particular
version also adhere to the previous versions. Suppose that the user is searching for
a product with ‘WiFi N’. Then products which do not have ‘WiFi N’, but do have
‘WiFi G’, are a better alternative than products that only have ‘WiFi B’, as the
versions are conceptually more similar. For example, suppose that there are 20, 10,
and 5 products associated with ‘WiFi B’, ‘WiFi G’, and ‘WiFi N’, respectively, and
each product with ‘WiFi N’ also has ‘WiFi B’ and ‘WiFi G’. Then the similarity

158 Approximate Faceted Search and User Preference Ranking

score for the facet ‘WiFi N’ would be 5
20 (= 1

4) for products with only ‘WiFi B’, and
5
10 (=

1
2) for products with ‘WiFi G’.

After the product vectors have been created, the inverse document frequency vec-
tors are computed (Salton and Buckley, 1988). Inverse document frequency vectors
are useful for faceted search, as it provides the means to weight facets in the query,
based on how often they occur within the product catalog. Products that have the
more uncommon facets in the query will therefore receive a higher score than prod-
ucts which do not have those facets. For example, if a user searches for a product
that has Bluetooth and is dust resistant, it is more likely that products with dust
resistance are more important to the user than products that only have Bluetooth,
as this facet occurs less frequently in the catalog.

Even though the idea of using the inverse document frequency can be useful in
our context, we propose some adaptations to make it fit better. We define the inverse
document frequency of item i (a facet) as following:

idf(i) =
log
(
N/

N∑
n=1

wn,i

)
logN (7.2)

where wn,i corresponds to the value for item i for product n and N is the number of
products in the catalog.

First, the p-norm extended Boolean model that is used by the framework requires
weights to be in the range of zero to one. However, this is currently not the case, as
weights can be any positive number. Therefore, the weights are normalized through
dividing by logN .

In addition, the term n in the original idf formula is exchanged for a slightly
different term. Rather than being equal to the number of products that are associated
with a facet, the new term is defined as the sum of facet similarities of all products.
In other words, it is a summation of the facet weights in all product vectors. This is
done in order to prevent a bias towards facets associated with few products, i.e., the
size of the set Df is quite small, while many products do have a high facet similarity
score for such a facet. In this way, we obtain inverse document frequency weights
for these facets that better reflect how often they occur within the catalog, as facet
similarities are now taken into account. The inverse document frequency vector for

7.3 Approximate Product Search 159

the first example product vector from Figure 7.2 is:(
log 3/1
log 3 ,

log 3/1
log 3 ,

log 3/1
log 3 ,

log 3/1 1
2

log 3 ,
log 3/2
log 3 ,

log 3/1 1
2

log 3 ,

log 3/2
log 3 ,

log 3/1
log 3 ,

log 3/3
log 3 ,

log 3/2 2
3

log 3 ,
log 3/1 5

6
log 3

)
(7.3)

As it becomes clear from the previous example, a facet weight is equal to zero
when all the products in the catalog have a score of one for the facet in their product
vector, whereas a facet weight is equal to one when only a single product has a non-
zero score for the facet in the product vector. This is logical, because including a
facet in the query that every product has does not provide any extra information to
the search engine. Conversely, when only one product is associated with a facet, it
provides the maximum amount of information gain to the search engine.

7.3.3 Weighted Query Vectors

The process of converting a query to a vector is very similar to the process used
to convert a product to a vector. Similar to product data, we extract facets from
a submitted query. There is a small difference in how quantitative key-value pairs
are handled though. Rather than having a single numerical value, queries have a
numerical range as value for a quantitative property. Figure 7.3 illustrates how this
process works with an example. The dark-gray facets are not included in the query,
whereas the light-gray facets are included. For example, the price range [200, 325] is
mapped to the facets ‘200’ and ‘300’, but not to ‘400’, as that value is out of range.
The obtained query vector consists of binary weights, where a weight of zero means
that the corresponding facet is not included in the query, and a weight of one means
that it is included. For example, the query vector for the query in Figure 7.3 is
defined as (0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1).

With the (binary) query vectors, every facet is regarded as being equally impor-
tant to the user. However, it can be argued that this is often not the case, as the
user has both hard and soft requirements for a desired product. For example, a user
searching for a smartphone under e200 with ‘Android’ as Operating System and
‘Samsung’ as brand, might also consider Android smartphones from other brands if
they are much cheaper than similar phones from Samsung. Therefore, the weights in
the query vector should be adjusted according to the user preferences, in such a way
that it becomes possible to make a distinction between hard and soft requirements.

160 Approximate Faceted Search and User Preference Ranking

Colour Black

WiFi Version

Price (€)

WiFi B, WiFi N

[200,325]

Bluetooth True

Colour

Silver

White

Black

Price (€)

200

300

400

WiFi
Version

WiFi B

WiFi G

WiFi N

Bluetooth
True

False

w1

w2

w3

w4

w5

w6

w9

w10

w11

w7

w8

QUERY FACETS VECTOR

Figure 7.3: A query and the corresponding facets.

Assigning correct weights to the facets can partially be accomplished by using
the inverse document frequency vector, as previously discussed. However, as these
weights are solely based on the product data available in the catalog, the result is
a vector that is the same for every user. It is therefore unsuitable for taking the
user preferences into account, as not every user who submits a query has the same
requirements. That is why instead we propose to extend the query by including a
ranked list of properties, the user property preference list, which ranks the properties
in descending order of importance to the user.

Every property p that occurs within the query, i.e., there is at least one facet
fp in query q, is included in the list. The reason for aggregating the preferences on
a property level rather than on an individual facet level is twofold. First, queries
submitted to a faceted search engine are typically quite large in size and therefore
rather complex. Having to manage a list of preferences should not be too obtrusive
for the user during the querying process. This is why the list should ideally contain
only a few elements, even when the query contains many facets. Aggregating on a
property level ensures that the preference list stays concise and manageable while the
user gradually refines his query. Second, the query itself is also structured in a similar
way, as it is disjunctive for facets belonging to the same property, and conjunctive
between properties. This suggests that facets belonging to the same property are of
equal relative importance to the user, whereas facets belonging to different properties

7.3 Approximate Product Search 161

are not. This usually reflects the user intentions better than a fully conjunctive or
disjunctive query. We therefore structure the user preferences in the same way.

The equation for converting a facet weight from the query vector to a weight that
takes user preferences into account is given by:

weight(wi, p) = 1
rank(p) · wi (7.4)

where wi is the facet weight in the query vector, p is the property to which the facet
belongs, and rank(p) is a function that returns the rank of property p in the user
property preference list. The old weight wi in the query vector is multiplied with
the simplest form of Zipf’s law, which was first proposed in (Zipf, 1935), in order
to obtain a new weight that takes the user preferences into account. Suppose that
the user preference list of the user, who submitted the example query in Figure 7.3,
is equal to [‘Color’, ‘Bluetooth’, ‘Price’, ‘WiFi Version’], then applying
the user preference function to the query vector yields the weighted query vector(
0, 0, 1, 1

3 ,
1
3 , 0,

1
2 , 0,

1
4 , 0,

1
4
)
.

7.3.4 Query-Product Similarity Score

Now that both the products and the query are converted to vectors, we compute a
similarity score between each product and the query. The similarity score is calcu-
lated using the p-norm extended Boolean model. The framework first computes the
similarity scores for each property, followed by the overall similarity score.

The standard Boolean model is the usual method for querying faceted product
data. Each submitted query is converted to a Boolean expression and only products
that completely match the expression are returned. As is evident from the example
product data in Figure 7.2, none of the products match the query. However, there
are some products that nearly match the query, but have the wrong color or their
price is too high. Ideally, these trade-off possibilities should be presented to the user
without the user having to make his query less specific first.

In addition, the strictness of the model also does not allow for user preferences
to be taken into account. The user might have both soft and hard requirements for
desired facets, but the standard Boolean model only returns product that completely
match the query. It is therefore not possible to indicate that a particular term in the
query is more important than another, as they are inherently all equally important.

Another deficiency of the standard Boolean model is the implicit lack of ranking
within the result set. As each product in the result set matches the query, it is not

162 Approximate Faceted Search and User Preference Ranking

possible to distinguish between them. This means that a product, which has both
‘WiFi B’ and ‘WiFi N’, is not ranked higher than a product with only ‘WiFi B’ or
‘WiFi N’ for the example query in Figure 7.3, while, using generalized disjunction,
it could be argued that it would preferable to do so.

It is clear that the standard Boolean model is not suitable for approximate product
search, which means that an alternative model has to be used. One of the alternatives
is the vector space model (Salton et al., 1975). Although this model does allow term
weighting, the query is interpreted as a fully disjunctive query. This is obviously
not ideal for faceted product search, as usually queries consist of conjunctive and
disjunctive terms.

Therefore, the p-norm extended Boolean model (Salton et al., 1983) is used by
the framework, which offers both the advantages of the vector space model and
allows for conjunctive queries. It essentially softens the strict AND and OR Boolean
logic operators of the standard Boolean model by calculating a distance between the
desired values, i.e., the values in the query, and the values within a product vector.
This distance is based on the p-norm distance, a generalization of the Euclidean
and Manhattan distance measures, which includes a parameter p to vary the degree
of strictness of the operator. In our approach, we use a value of two for the p
parameter, which is a well-known and frequently used norm called the Euclidean
norm. The results in (Salton et al., 1983) indicate that a value between two and five
is optimal, whereas larger values decrease the performance improvements over the
standard Boolean model. For disjunctive queries, the similarity for an n-dimensional
vector using the p-norm extended Boolean model is given by:

sim(q,d) = p

√
qp

1 · d
p
1 + qp

2 · d
p
2 + · · ·+ qp

n · dp
n

qp
1 + qp

2 + · · ·+ qp
n

(7.5)

where p is the p-norm parameter and q is the query vector and d is the document
vector. The similarity for a conjunctive query and an n-dimensional vector is given
by:

sim(q, d) = 1 −
p

√
qp

1 · (1 − d1)p + qp
2 · (1 − d2)p + · · · + qp

n · (1 − dn)p

qp
1 + qp

2 + · · · + qp
n

(7.6)

where p is the p-norm parameter and q is the query vector and d is the document
vector.

The first step in calculating the query-product similarity scores is calculating the
similarity score per property. As it is assumed that queries between facets from the
same property are disjunctive, Equation (7.5) is used for this step. Because the score

7.3 Approximate Product Search 163

is calculated for each property p, a sub-vector d is created from the product vector
including only facets associated with property p. The same process is applied to
the weighted query vector and the inverse document frequency vector, resulting in
sub-vectors q and idf , respectively. Last, the similarity score between d and q is
computed, resulting in a score between zero and one.

Note that the weights for each facet in the query vector q are all equal, as they
belong to the same property and the preference weighting is performed on a property-
level. However, it can be argued that the facets should be weighted, as some facets
are more unique than others, thus a product having that facet should be regarded
as being more similar to the query. The reason for this distinction is that the user
included an uncommon facet in the query, which could indicate that it is an important
facet to him. For example, suppose that a query contains the facets ‘WiFi G’ and
‘WiFi N’ associated with the property ‘WiFi Version’. As the versions are backwards
compatible, there are relatively many products with ‘WiFi G’ compared to products
with ‘WiFi N’. In this situation it is more likely that the user would prefer products
which have ‘WiFi N’ rather than products with only ‘WiFi G’. Therefore, the query
vector weights are multiplied by the inverse document frequency weights, in order to
assign different weights to the facets in the query. The equation is therefore given
by:

propSim(qi,di) = p

√
(idf i

1 · qi
1)p · di

1
p + · · ·+ (idf i

n · qi
n)p · di

n
p

(idf i
1 · qi

1)p + · · ·+ (idf i
n · qi

n)p
(7.7)

where p is the p-norm parameter and qi
j , idf i

j , and di
j are the query, the inverse

document frequency, and the product vector values for property i and vector index
j (the vector corresponding only to property i), respectively.

Note that the query weights in the denominator are also multiplied by the inverse
document frequency. This is done in order to keep the score normalized to a maximum
value of one. Otherwise, even when the document would have all the facets in the
query, i.e., d consists only of values of one, the resulting score might not be equal
to one, which is counter-intuitive. In this case, the numerator can only be equal to
the denominator, thus resulting in a score of one, if the inverse document frequency
vector also consists only of values of one, which would mean that all the facets may
only occur once in the product catalog. We therefore normalize the score by also
multiplying the query vector weights in the denominator with the inverse document
frequency weights. Consider the example weighted query vector(

0, 0, 1, 1
3 ,

1
3 , 0,

1
2 , 0,

1
4 , 0,

1
4

)
,

164 Approximate Faceted Search and User Preference Ranking

and the first example product vector(
1, 0, 0, 1, 1

2 , 0, 0, 1, 1,
2
3 ,

1
3

)
,

and the inverse document frequency vector in Equation (7.3). After decomposing each
vector into the sub-vectors for each property, as previously discussed, the property
similarity scores are computed as follows:

propSim(qp,dp) ≈ 0.90 (7.8)

propSim(qw,dw) ≈ 0.33 (7.9)

propSim(qc,dc) = propSim(qb,db) = 0 (7.10)

where c, p, b, and w are the properties ‘Color’, ‘Price (e)’, ‘Bluetooth’, and ‘WiFi
Version’, respectively.

Looking at the property similarity scores, we can observe that the product has
nothing in common with the query regarding the properties ‘Color’ and ‘Bluetooth’.
This is due to the fact that the product only has non-zero scores in its product
vector for facets that are not included in the query. In other words, it has a wrong
value for ‘Color’, namely ‘Silver’ instead of ‘Black’, and it does not have Bluetooth.
Furthermore, because there are no other products associated with ‘Silver’ or ‘False’
that are also associated with ‘Black’ or ‘True’, the weights of the product for ‘Black’
and ‘True’ remain zero in the product vector, as there is no facet similarity. In
contrast, the product achieves a high score for the property ‘Price (e)’, as its value
(200) is within the range of the query ([200,325]).

While the product does have one out of two of the facets associated with the
property ‘WiFi Version’ in the query, it only gets a score of 0.33. This is due to the
fact that it only has a score of one in its product vector for the most common ‘WiFi
Version’, namely ‘WiFi B’. As all products have a score of one for that facet, its
weight in the inverse document frequency vector is zero, as it conveys no information
regarding the product that the user wants to buy. However, because some of the
products that have ‘WiFi B’ also have ‘WiFi N’ associated with them, the product
has a weight of 1/3 associated with ‘WiFi N’ in its product vector. Therefore, the
property similarity score of this product is not equal to zero, but equal to 1/3.

After the property similarity scores have been computed, the overall similarity
score can be computed. As the query is assumed to be conjunctive between prop-

7.3 Approximate Product Search 165

erties, the framework uses Equation (7.6) for this step. Furthermore, it uses the
property similarity scores for each property as the weights for the product.

Because the facets are now aggregated on a property level, it is also necessary
to aggregate the weights in the vectors. First, the property similarity scores are
combined to form the aggregated product vector. Using the decomposed property
similarities for the first product vector in Figure 7.2, we determine this vector to be
(0, 0.8993, 0, 0.33). Then, the similarities for each property have to be weighted, such
that products with a high similarity score for important properties are promoted
in the search results. As previously discussed, a list of properties in the query,
ranked in decreasing order of importance, is obtained from the user. Using this list,
Equation (7.4) is applied to each weight in the query vector in order to transform it
to the weighted query vector. Subsequently, the highest weight per property in the
weighted query vector is collected and together they form the weighted aggregated
query vector. For the example weighted query vector, this vector is

(
1, 1

3 ,
1
2 ,

1
4
)
. After

the aggregated query and product vectors have been obtained, the overall similarity
between them can be computed as follows:

overallSim(q, d) =
p

√
qp

1 · dp
1 + qp

2 · dp
2 + · · · + qp

n · dp
n

qp
1 + qp

2 + · · · + qp
n

(7.11)

where p is the p-norm parameter and q is the query vector and d is the document
vector. For the first example product vector (0, 0.8993, 0, 0.33) and the weighted
example query vector

(
1, 1

3 ,
1
2 ,

1
4
)
the overall similarity score is computed as following:

overallSim(q,d) =

√√√√12 · 02 + 1
3

2 · 0.89932 + 02 · 1
2

2 + 1
4

2 · 0.332

12 + 1
3

2 + 1
2

2 + 1
4

2 ≈ 0.0522 (7.12)

As we can see, a high similarity score of one property is offset by low scores for the
more important properties, thus the product receives a low overall similarity score of
0.05.

The final scores for the the three products from Figure 7.2 is 0.05, 0.15, and
0.79, respectively. Note that, as none of the products has achieved a perfect overall
similarity score, no products would have been returned if the standard Boolean model
was used. This would result in the user having to adjust his query in order to
find trade-off possibilities, whereas this is not needed in the proposed framework.
Clearly the third product matches the query better than the other products, due
to having perfect similarity scores for three of the four properties in the query. It
therefore matches most of the user’s requirements, apart from the price, which is
too high. However, the user has indicated previously that the price is a relatively

166 Approximate Faceted Search and User Preference Ranking

soft requirement for him. The user preference function has taken this into account
by assigning a weight of 1/3 to the price property, which helps boost the overall
similarity score of the third product. This assists the user in finding the best trade-
off possibilities, given his preferences, if there is no product that completely matches
his query.

7.4 Evaluation

In this section we first discuss the experimental setup and then the obtained results.
Before we start with the discussion of our experimental setup, we need to extend our
notations to accommodate our explanations, shown in Table 7.2.

pt Selected property for user action t
Ft Selected facet for user action t
Ua ⊆ P , User property preference list (actual)
Ug ⊆ P , User property preference list (generated)
rp(f) Rank of displayed facet f from property p
rp(p) Rank of displayed property p
ru(p, U) Rank of property p in user property pref. list U
rq(f) Rank of facet f in candidate facet list
rq(d) Rank of product d in result set Dq for query q
du ∈ D Target product for user u
Xu User effort for preference reordering
Xp User effort for property scanning
Xf User effort for facet scanning
T Number of user actions per simulation
t, t ≤ T Current number of clicks
N Number of top results scanned
α Prob. picking correct property p
β Prob. picking incorrect property p
αf Prob. picking correct facet f
βf Prob. picking incorrect facet f
γf Facet importance factor for facet f
ρ Quantitative facet range uncertainty

Table 7.2: Additional notations used in the evaluation procedure.

7.4.1 Experimental setup

For our experiments we use the interaction model proposed in (Pu and Faltings,
2004), where the user is presented a list of facets and iteratively updates the query by

7.4 Evaluation 167

selecting one or more facets. In our setup, a search session is defined as an interactive
process of updating the query, until the user has no desire to further refine the query.
More specifically, first, the user decides whether the query should be updated any
further, which is based on the number of user actions executed so far, and the total
number of user actions that he is willing to perform. If the user wants to update the
query, the user considers the generated property preference list first, a ranked list of
properties in the query in descending order of importance. The user compares the
generated user preference list with the actual property preference list, which reflects
his or her preferences regarding the properties associated with the target product.
If the user spots an inconsistency within the ranking of the properties in actual and
generated user preference list, the generated list is updated by dragging the first
incorrectly ranked property to the desired position. Afterwards, the preference list is
submitted to the search engine, which subsequently updates the result set by taking
the new user preferences into account.

If the user cannot perform preference reordering, either because the ranking be-
tween the actual and generated user preference list is already consistent, or the
employed algorithm does not take user preferences into account, the query is up-
dated by selecting an additional facet instead. It is assumed that the user scans the
list of displayed facets in a linear order, from the top to the bottom. The ordering
of the list is based on the expert-based ordering employed by (Tweakers.net, 2016),
and does not change during the search session. Every time a facet is examined, the
user first tries to identify it as a facet belonging to the target product. Rather than
being able to identify each facet of the target product with full accuracy, the user
has only a chance of α to correctly identify it. Conversely, the user has a chance of
β to falsely identify a facet as belonging to the target product. For our evaluation,
we use α = 0.9 and β = 0.1.

In order to prevent a bias towards examining facets from properties which have
many facets, we distribute the α and β chances over all the facets per property.
Otherwise, a facet from a property with many facets, such as ‘Color’, would be
included more often in the query than a facet from a Boolean qualitative property,
such as ‘Bluetooth’. Therefore, the chance to consider selecting a facet is αf or βf ,
depending on whether the facet is associated with the product.

After identifying a facet as belonging to the target product, either correctly or
incorrectly, the user will consider whether he wants to actually select the facet for
inclusion in the query. After the user has made a selection, the updated query and
generated preference list are submitted to the search engine and the number of user

168 Approximate Faceted Search and User Preference Ranking

actions is incremented. The search engine subsequently computes new similarity
scores between all the products and the query, and returns a new ranked result set.
This process continues until the user is no longer willing to perform more user actions,
at which point the simulated search session is concluded.

We vary the total number of clicks per search session using 5, 10, 20, and 30 clicks.
Furthermore, the target product, which the user is looking for, is also varied. The
combination of algorithm, target product, and number of clicks are used as inputs
to the evaluation framework. Each combination of inputs for simulating a search
session is defined as one experiment. Note that each experiment is executed fifty
times, in order to reduce the stochasticity, which is inherent in the drill-down model
that simulates a user.

For evaluating the performance of the algorithms, a real-life dataset was obtained
from (Tweakers.net, 2016), which is a commercial Web site with a large community
consisting of more than half a million Dutch and Belgian technology enthusiasts.
We have chosen to focus the research on faceted search within a product catalog
consisting entirely of mobile phones. The reason for this is that products in this
category differ greatly in functionality and appearance, introducing heterogeneity in
the data. The data of 794 different mobile phones was obtained from Tweakers.net
using a combination of tools and scripts.

In addition to our proposed algorithm, the performance of several other algorithms
is measured and compared to each other. The first algorithm, which is used as a
baseline, employs a simple similarity function for each product, based on the number
of facets in the query that the product matches. The p-norm extended Boolean
model (Salton et al., 1983) forms the basis of our proposed algorithm. It therefore
makes sense to compare the results of the proposed algorithm with those of the
regular p-norm extended Boolean model. A variation of the proposed algorithm that
does not take user preferences into account is the third algorithm against which we
compare the performance of our approach.

Last, for our experiments we needed to model the user behavior when interacting
with the faceted search engine. For this purpose, based our assumptions on the ones
previously outlined in (Koren et al., 2008b; Liberman and Lempel, 2014): rationality,
omnisciency, linearity, and practicality. For more details on these assumptions we
refer the reader to (Koren et al., 2008b; Liberman and Lempel, 2014). In our approach
we relax the omnisciency and linearity assumptions by introducing some stochasticity
to the model when selecting facets to include in the query, which is implemented
differently for qualitative and quantitative facets.

7.4 Evaluation 169

User Property Preference Reordering

Under the practicality assumption, a user continues refining his query until he has
invested a certain amount of effort into formulating the query. The effort is measured
in the number of user actions t, which can also be defined as clicks, that a user has
performed. The total amount of effort that a user is willing to put into formulating
the query is a constant denoted by T , which is a fixed number for each experiment.
The user will continue refining the query q while t < T , or until it is not possible to
drill-down any further.

When user preferences are involved, the user can perform a drill-down in two
ways: either he reorders the user property preference list Ug, or he selects additional
facets to include in the query. Note that the user is not allowed to deselect facets,
as it is interesting to measure how well the fuzzy search algorithms can cope with
search errors. It is therefore required to model the user’s preferences regarding the
properties of the target product du, so that the evaluation procedure knows when
to reorder the properties in Ug. As the Rationality and omnisciency assumptions
dictate that the user is able to identify properties and facets associated with du, the
actual user property preference list Ua consists of all the properties associated with
du, thus ∀p ∈ Ua : Fp∩Fdu 6= ∅. The ordering is based on the degree of uniqueness of
the facets associated with each property and the target product. In our experiments,
we multiply the inverse document frequency weights with the product vector weights
and take the average for each property in order to obtain a ranking of importance.
By ranking the property importance scores in descending order, we obtain the actual
user property preference list Ua. This is a fixed list of preferences that is defined in
advance for each distinct target product du.

During each search session, another list of property preferences is generated, de-
noted by Ug. This list is updated when the user selects additional facets to include
in the query q, and only consists of properties which are associated with at least one
facet in the specified query q.

Qualitative Facet Drill-Down

Whenever the user cannot perform a reordering of the property preferences, either
because the ordering is correct or the algorithm does not take user preferences into
account, the user examines the displayed facets. The order in which the facets are
displayed is first defined by the order of the properties in P . All the facets associated
with a property p, denoted by the list Fp, are grouped and displayed beneath each
other. Within the list of facets associated with a property, denoted by Fp, the indi-

170 Approximate Faceted Search and User Preference Ranking

vidual facets f are ranked in descending order, according to the number of products
that are associated with each facet. In other words, the list is ranked according to
the size of Df for each facet f .

The omnisciency assumption states that the user is able to correctly identify all
the facets that belong to the target product du, i.e., the user is able to identify the
members of the set Fdu

. In our setup, rather than being able to identify each member
of Fdu

with full accuracy, the user has only a chance of α to correctly identify it now.
In addition, he has a chance of β to falsely identify a facet as being a member of
Fdu

, with α+ β = 1. We fix the values for these parameters to 0.9 and 0.1 for α and
β, respectively. In order to prevent a bias towards examining facets from properties
which have many facets, we distribute the α and β chances over all the facets per
property. Otherwise, a facet from a property with many facets, such as ‘Color’, would
be included more often in the query than a facet from a Boolean qualitative property,
such as ‘Bluetooth’. We therefore define the following for each property p in the list
of properties P :

αf = α

|Fp ∩ Fdu |
, where f ∈ Fp (7.13)

βf = β

|Fp \ Fdu
|
, where f ∈ Fp (7.14)

α+ β = 1

where α is the probability of selecting a correct facet (f ∈ Fdu
) and β is the proba-

bility of selecting an incorrect facet (f /∈ Fdu
).

After a user has identified a facet as being a member of Fdu , either correctly or
incorrectly, he will consider whether he wants to actually select the facet for inclusion
in the query. Depending on whether the facet f is a member of Fdu or not, this chance
is different and is given by:

γf =

1− rI
q (f)−1
|Fdu\q |−1 if f ∈ Fdu

(α case)

1 if f 6∈ Fdu
(β case)

(7.15)

where rq(f) is a function that returns the rank of the facet f in the list of candidate
facets. If the user deems the facet to be important enough, he selects it. The query
then gets updated and submitted to the search engine, after which the updated result
set is displayed. If he decides not to select the facet, the user will continue examining
the lists of facets until he finds a facet to select.

7.4 Evaluation 171

Quantitative Facet Drill-Down

Drilling down into quantitative facets is mostly similar to the qualitative facets pro-
cedure, with a few exceptions. The difference lies in how the facets are treated, which
stems from the difference in presentation to the user. Rather than being presented
with a list of facets to choose from, quantitative facets are displayed as a range slider.
When the user has decided to select the quantitative facet, he still needs to deter-
mine the range to select. The range selection is performed by first selecting a mean,
denoted by µi

f , where i indicates how often the facet has been previously selected.
The function for determining the mean µi

f is given by:

µi
f =

fdu
α

µi−1
f if i > 0

x ∼ U([mind∈D(fd), max
d∈D

(fd)]) β

x ∼ U([mind∈D(fd), max
d∈D

(fd)]) if fdu = null

(7.16)

In the first case, the facet has not been selected before, and the target product has
a value fdu

associated with this facet. Therefore, that value is selected as the mean
for the range. If the facet has been previously selected, i.e., i > 0, the existing mean
is reused, which is denoted by µi−1

f . Last, it is also possible to make a mistake and
select an incorrect mean. This is either the case for β, where the target product has
a value for this facet, but the user did not correctly identify it, or the target product
does not have a value for this facet. In both these cases the mean is given by x ∼ U ,
which denotes a randomly selected value from the range of values in the catalog,
following a random distribution. Note that even when a wrong mean is selected,
there still exists the possibility that the facet value of the product, is still within the
selected range.

After determining the mean, the standard deviation (σq
f) of the products in the

result set having a value for this property is calculated, which is subsequently used
to define the lower and upper boundaries of the range. Therefore, the range selection
function is given by:

[fmin, fmax] =
[
µi

f − σ
q
f , µ

i
f + σq

f

]
(7.17)

where i denotes how often the facet has been selected previously. This makes it
possible to select a quantitative facet multiple times, each time narrowing the range.

172 Approximate Faceted Search and User Preference Ranking

Selecting a quantitative facet multiple times could potentially make the range con-
verge to a single value, which is undesired, as it is assumed that the user does not
know the exact value. Therefore, the possibility to select the facet again and further
narrow down the range is only given when the following condition holds:

fmax − fmin ≥ ρ · σf (7.18)

where σf is the standard deviation of the facet values of all the products in the
product catalog D, and ρ is a factor that models the uncertainty regarding the exact
value of the target product. When the span of the range, denoted by fmax− fmin, is
less than the standard deviation multiplied by ρ, the user does not narrow the range
any further. Empirical analysis revealed that realistic ranges are obtained within our
simulation model when ρ = 2, although the effect of setting a different value has not
been studied extensively.

7.4.2 Results from the simulated experiments

Various performance measures are collected during the experiments. In order to
assess the performance of the algorithms, it is useful to gather some measures related
to the position of the target product. First, we define the ‘last position’ of the product
as the outcome of the rq(du) function after T user actions. This function returns the
rank of the target product du in the result set Dq. Second, we define the ‘average
position’ as the average outcome of the rq(du) function computed after each user
action. Third, we use the ‘first iteration in top-N ’ metric to measure how quickly an
algorithm manages to promote the target product to the first topN results. Similarly,
the ‘any iteration in top-N percentage’ metric measures the percentage of sessions
in which the target product was promoted at least once to the top N results. Last,
the ‘success percentage’ indicates in how many search sessions the target product
was in the top-N results after T user actions. In addition to collecting performance
measures related to the position of the target product in the result set, we also collect
measures regarding the user effort that is required to formulate the query. The user
effort involved can be split up into various components, related to the various tasks a
user performs while formulating the query. The first task we define is the reordering
of the user property preference list. The other two tasks are related to scanning the
list of displayed properties P (property scan effort) and the list of displayed facets
F (value scan effort). Last, the computation time of the algorithm required for
computing the ranking of the products in the result set is also measured. The time is

7.4 Evaluation 173

measured in milliseconds and consists only of the time to compute the ranking. The
time needed to simulate the user’s behavior is therefore not included in this measure.

As previously outlined, all combinations of an algorithm, a target product, and
a total number of clicks were executed, with each experiment being conducted fifty
times. This means that a total of 635,200 search sessions were simulated (4 algorithms
× 794 products× 4 total clicks× 50 repetitions). Because each search session consists
of 16.25 (= 5+10+20+30

4) user actions on average, it results in a total of 10,322,000
simulated user actions. Due to these vast numbers, the experiments were run in
parallel on a cluster of server nodes (Amazon.com, 2017b), in order to speed up the
evaluation.

Table 7.3 shows an overview of the obtained performance measures for the four
algorithms and for T = {5, 10, 20}. We do not discuss the case of T = 30 for the sake
brevity, however, we can report that the relative results are the same as for T = 20.
Only the absolute differences between the algorithms became larger.

At first sight, from Table 7.3 we can see that for T = 5, the algorithms perform
fairly similar. This is because the queries are relatively homogeneous when only
five clicks are used, making the effect of the ranking algorithms less clearly visible.
However, we do make some interesting observations. First, we notice that the re-
sults for the ‘simple rank’ algorithm are relatively good. It outperforms all other
algorithms for the last position metric (p < 0.00001). With respect to the success
percentage metric, it outperforms our approach with user preference ranking but
performs worse than our approach without user preference ranking (all differences
are significant with p < 0.00001). After analyzing the reason for this behavior we
discovered that the main disadvantage of the ‘simple rank’ algorithm, i.e., not distin-
guishing between conjunctive and disjunctive aspect in a query, is not visible when
limiting the number of clicks to 5. The reason for this is that the facets are scanned
linearly and the first five facets belong to properties for which almost all products
only have one value. These facets are ‘Price’, ‘Brand’, ‘Operating System (OS)’, ‘OS
version’, and ‘Color’. As a result, in almost all simulated sessions, a conjunctive query
was performed, therefore not allowing algorithms that support disjunctive queries to
distinguish themselves.

Second, we notice that the p-norm approach has a low success percentage, with
a significant difference w.r.t. our approach without user preference ranking (p <
0.00001). The reason for this is that the p-norm algorithm is not able to cope
with the quantitative properties properly. However, we do observe that the p-norm
achieves a higher average for the success percentage than our approach that includes

174 Approximate Faceted Search and User Preference Ranking

Simple P-norm Our Algorithm Our Algorithm
Rank without Preferences with Preferences

For T = 5:

Last Position Mean 84.25 95.05 103.66 102.14
Avg. Position Mean 152.94 159.58 141.77 145.95
Any Iteration Top-N Percentage 44.74% 44.53% 55.47% 44.03%
First Iteration Top-N Mean 3.34 3.29 3.01 2.89
Success Percentage 40.23% 37.01% 44.86% 36.56%
Preference Reorder Count Mean − − − 1.1
Property Scan Effort Mean 0.0986 0.0988 0.0987 0.0706
Value Scan Effort Mean 0.2652 0.2635 0.2625 0.1844
Computation Time Mean (ms) 1380 2232 1207 1199

For T = 10:

Last Position Mean 75.11 93.01 122.84 79.25
Avg. Position Mean 113.10 124.44 126.75 114.05
Any Iteration Top-N Percentage 68.78% 68.99% 71.96% 66.87%
First Iteration Top-N Mean 4.76 4.71 3.97 4.47
Success Percentage 57.73% 53.30% 51.85% 53.78%
Preference Reorder Count Mean − − − 2.8
Property Scan Effort Mean 0.1287 0.1288 0.1286 0.0822
Value Scan Effort Mean 0.3521 0.3526 0.3522 0.2219
Computation Time Mean (ms) 2645 4692 2496 2442

For T = 20:

Last Position Mean 97.68 124.35 169.00 79.15
Avg. Position Mean 100.24 118.06 137.75 96.32
Any Iteration Top-N Percentage 76.58% 76.19% 76.69% 78.51%
First Iteration Top-N Mean 5.74 5.62 4.54 5.97
Success Percentage 55.77% 48.52% 44.36% 59.95%
Preference Reorder Count Mean − − − 5.8
Property Scan Effort Mean 0.1647 0.1648 0.1648 0.1045
Value Scan Effort Mean 0.4407 0.4413 0.4404 0.2836
Computation Time Mean (ms) 5259 10100 5315 5088

Table 7.3: Experimental results for T = {5, 10, 20}, N = 20, and α = 0.9.

user preference ranking. The reason for this difference (even though not significant
with p = 0.39608) might be explained due to the fact that the user in our approach
spends 1.1 out of 5 clicks on average on facet re-ordering. This results in less clicks
used for the actual query refinement.

However, our approach with user preference ranking does have the best perfor-
mance on property and value scan effort (with p < 0.00001). The reason for this
is similar to why the success percentage is relatively low: some user effort is moved
from scanning facets to re-ordering facets. We argue that this effort can be more
useful for search engines than selecting new facets because it adds more information

7.4 Evaluation 175

as to how to rank the products, without making the actual query more complex (i.e.,
introducing new facets). We also see that our approach (both with and without user
preference ranking) outperforms the other algorithms on the ‘first iteration top-N ’
metric (with p < 0.00001). We can conclude from this that our approach significantly
improves the ability to promote the target product while the user is searching.

When we look at the results for T = 10, we notice that the performance of all
algorithm improves (e.g., the success percentage increases for all approaches). This
is as expected because the queries are more refined when 10 clicks are used instead of
5. We further observe that the ‘simple rank’ algorithm again outperforms the other
approaches on the last position metric (p < 0.001) and that our algorithms are again
the best w.r.t. the first iteration top-N metric. Another observation that we make
is that property and value scan efforts have increased for all approaches. This is due
to the fact that the more clicks there are, the more scanning occurs because already
selected facets are skipped in subsequent iterations, as facets cannot be selected
twice. However, our approach with user preference ranking still outperforms the
others (with p < 0.00001). The reason for this is that also the number of clicks spent
on property scanning is increased (i.e., 2.8 out of 10).

For T = 20 we make an interesting observation: compared to T = 10, all ap-
proaches except our algorithm with user preference ranking perform worse for the
last position metric. The reason for this is the increased probability of including
incorrect facets in the query, which obviously negatively impact the last position
metric. We conclude from this that property re-ordering by the user can combat
this issue by placing properties lower on the preference list for which the user is un-
sure if the target product has them. Furthermore, we see that for the first iteration
top-N metric again our approach without the user preference ranking is the best
and that similar to previous findings, the scanning effort for properties and values
has increased. However, our approach, without the user preference ranking, does
not perform so well for the last position metric. After performing error analysis, we
found out that this is caused by the fact that our similarity for qualitative values,
which relies on co-occurrence values, does not always help. What we do observe is
that our approach that includes user preference ranking seems to resolve this issue,
as it scores the best for the last position metric with an average last position of 79.15.

7.4.3 Results using an experiment with users

Besides the extensive experiments performed using simulation, we also performed
an experiment with real users. We had a total of 27 users who participated in the

7.5 Conclusion 177

using only the ‘standard’ system. The scores for our system were simply computing
by selecting the facets in the order of how they were presented in the task, and
answering with the 10 products that were returned by the system. Using this scoring
system, our approach achieved an average score of 13.945 while the standard system
achieved an average score of 9.170, which we found to be statistically significant using
a paired two-sample t-test (with p = 0.04149). Table 7.4 shows the behavior of an
average user who participated in the experiment. We can see that most users chose
to filter based on numeric facets (such as the price). This also shows us that the
users selected on average at least 18 facets to come up with their answers. Using our
system this is does not need to be more than 7, i.e., the number of presented product
features.

Event type Total Average per
occurrence user occurrence

Numeric facet change 2142 107.10
Toggle collapsed 389 19.45
List facet select 372 18.60
List facet deselect 135 6.75
Boolean facet change 129 6.45
Numeric facet remove 56 2.8
Boolean facet remove 23 1.15

Table 7.4: Event counts for the user experiment.

7.5 Conclusion

In this chapter, we propose a novel framework specifically geared towards approxi-
mate faceted search within a product catalog of a Web shop. It explores the concept
of facet similarity functions for both quantitative and qualitative facets, in order to
express the degree of similarity between various facets. We propose adaptations to
the classical p-norm extended Boolean model to account for the domain-specific char-
acteristics of faceted search in an e-commerce environment. Our approach allows the
user to specify a property preference list and takes this into account when weighting
the query terms. In order to assess the performance of the proposed algorithm, it
is compared with a simple baseline algorithm, based on the fraction of facets in the
product data that match those in the query, as well as the p-norm extended Boolean

178 Approximate Faceted Search and User Preference Ranking

model. It is shown that in many cases the proposed algorithm compares favorably
to the other algorithms w.r.t. many different metrics (especially for large number
of clicks). Our approach also scores best with regards to the percentage of search
sessions in which the target product has appeared in the top-N results at least once.
Also, it is better able to exploit the quantitative facets in order to promote the tar-
get product in the result set. Besides the experiments we performed using evaluation
we have also performed an experiment with real users. From this experiment we
can conclude that our approach finds more relevant products using less effort. In
future work we would like to explore the usage of ontologies that contain information
about similarities between qualitative entities for the purpose of computing a simi-
larity. Another enhancement to the framework could be the inclusion of the negation
operator for defining queries.

Chapter 8

Conclusions

In this dissertation, we have addressed techniques for intelligent Web Product Infor-
mation Systems and devised algorithms to make product search easier for consumers.
In order to answer the problem statement of this dissertation – i.e., how to design
Web product search engines that automatically aggregate product information and
users are able to perform effective and efficient queries – we have discussed topics
such as product classification, entity resolution, ontology population, and faceted
product search. In the next section, we summarize the most important findings and
provide additional directions for future research.

8.1 Concluding Remarks

First, we have proposed a hierarchical product classification framework, which is a
multi-level classification system used to classify a product description to one of the
category leaves of a product taxonomy. From the obtained results we can draw several
conclusions. First, we have found the k-Nearest Neighbor algorithm to be unsuitable
as an independent classifier. Besides the computational cost, the accuracy is too low
to be useful in practical applications. Furthermore, the results from the evaluation
suggest that with our product data set, the Naïve Bayes classifier performs better
than Support Vector Machines, obtaining an average accuracy of 76.80% for product
classification. When considering the properties of a product description, we found
that the features description provides better predictors for the top levels, but that
the title provides better predictors for the lower levels, except for the last level, where
the features description gives again better results.

180 Conclusions

We have also proposed a scalable approach for multi-source entity resolution using
various blocking schemes. Our approach consists of three main components: (1) a
blocking scheme, (2) a product similarity function, and (3) a clustering procedure.
Various blocking schemes, which operate on the title, the description, or both, are
evaluated with both a perfect similarity function, as well as an imperfect, but well-
performing one (van Bezu et al., 2015). The most important finding with regards to
the blocking evaluation is that experimental setups that evaluate blocking schemes
with only a perfect matching function are most likely not sufficient, i.e., one should
also consider imperfect matching functions. Furthermore, the results suggest that
for our similarity function and clustering procedure, which together achieve an F1-
measure of 0.525 when using all pairs, blocking methods that compute very few
pairs achieve a higher performance that ones that have a high pair completeness. In
particular, we find that the blocking scheme that extract model word triples from
the title gives the best trade-off between effectiveness and efficiency on our test data
set, achieving an F1-measure of 0.537.

Once product descriptions have been classified and duplicates have been removed,
we can instantiate product descriptions into an ontology. For this purpose, we have
proposed a framework capable of semi-automatic ontology population of product
information from Web shops. The performance of the framework is compared to
the performance of a baseline approach, which merely uses lexical matching for the
Classification and Property Matching processes. Evaluation results show us that our
framework performs considerably better than the baseline approach for the Property
Matching process, with an F1-measure of 95.07%, due to the use of both lexical
matching and pattern matching. The evaluation of the Value Instantiation process
was performed using a graph-based approach, comparing it to a manually instantiated
ontology. The results from this evaluation indicate that our proposed algorithm is
also promising in this regard.

As part of the ontology management process, we have proposed SCHEMA, an
algorithm capable of performing automated mapping between heterogeneous prod-
uct taxonomies in e-commerce. The performance of our algorithm was tested on
three real-life datasets and compared with the performance of two other proposed
approaches from literature. The evaluation demonstrates that SCHEMA achieves a
considerably higher average recall than the other algorithms, with a relatively small
loss of precision.

In order to improve the usability of searching for products, we proposed an ap-
proach that automatically orders facets such that the user finds its desired product

8.2 Future work 181

with the least amount of effort. We evaluate our solution using an extensive set of
simulation experiments, comparing it to three other approaches. While analyzing
the user effort, especially in terms of the number of clicks, we can conclude that
our approach gives a better performance than the benchmark methods and in some
cases even beats the manually curated ‘Expert-Based’ approach. These results have
been also validated using a study involving real users. In addition, the relatively
low computational time makes it suitable for use in real-world scenarios, making our
findings also relevant to industry.

In addition, we proposed a novel framework specifically geared towards approxi-
mate faceted search within a product catalog of a Web shop. In order to assess the
performance of the proposed algorithm, it was compared with a baseline approach
that used the fraction of facets in the product data that match those in the query,
as well as the p-norm extended Boolean model. The results from the experiments
show that, in many cases, the proposed algorithm compares favorably to the other
algorithms with respect to various important metrics. Our approach also scores best
with regards to the percentage of search sessions in which the target product has
appeared at least once in the top-N results. Furthermore, our algorithm is better
able to exploit the information from the quantitative facets in order to promote the
target product in the result set. A user-based study confirms the results obtained
from the experimental simulation studies.

8.2 Future work

For the hierarchical product classification framework, we want to further investigate
the interaction effects between the classification algorithms and the feature selection
methods. One approach would be to research different combination strategies at
different levels of the product category taxonomy. Another approach would be to use
ensemble techniques to combine classifiers, i.e., a classifier on the title, a classifier on
the features description, and a classifier on both the title and description. A third
option would be to use ensemble techniques to combine and evaluate the category
mapping algorithm with the previously presented text classifiers.

In the ontology population approach, we are interested in improving the Value In-
stantiation process by adding new value extraction rules and by creating new property
assertions between individuals in the ontology that further specify the relationship
between them. For example, by formally defining in the ontology that ‘Windows XP’
is the successor to ‘Windows 2000’, the framework could also instantiate a property

182 Conclusions

assertion for ‘Windows XP’ when it encounters a raw product value such as ‘Windows
2000 or later’.

With respect to our proposed taxonomy mapping approach, we would like to
investigate the use of part-of-speech tagging. As a noun is often more important for
concept similarity than an adjective, it makes sense to distinguish between them and
treat them accordingly. Another possibility is to combine the hierarchical category
structure with product information because the data in product descriptions could
hold valuable information for the taxonomy mapping. Additionally, this work could
support the implementation of a system that is capable of autonomously matching
products and product taxonomies from different sources.

In regards to the proposed facet ordering algorithm, we would like to investigate
in more depth how much effort it takes for users to get used to a system that changes
the order of the facets each time the query changes. The results of such a study
might indicate that a hybrid system, where some part of the facets remain static for
the sake simplicity, works better for some users.

For the proposed product search approach, we would like to explore the possibil-
ity of incorporating ontologies that contain information about relationships between
qualitative entities in the computation of the final similarity between a query and
a set of products. Another enhancement to the framework could be the inclusion
of the negation operator for defining faceted-based queries, which is currently not
implemented.

Bibliography

S. Aanen, L. Nederstigt, D. Vandic, and F. Frasincar. SCHEMA - An Algorithm for
Automated Product Taxonomy Mapping in E-commerce. In 9th Extended Semantic
Web Conference (ESWC 2012), volume 7295, pages 300–314. Springer, 2012.

B. Adida, M. Birbec, S. McCarron, and I. Herman. RDFa Core 1.1 W3C Recom-
mendation 07 June 2012. Technical report, W3C, 2012. http://bit.ly/18BvYJL.

Amazon.com. Largest Online Retailer in the United States. http://www.amazon.

com, 2017a.

Amazon.com. Amazon Web Services. http://aws.amazon.com, 2017b.

M. Arenas, B. Cuenca Grau, E. Evgeny, S. Marciuska, and D. Zheleznyakov. Towards
Semantic Faceted Search. In Proceedings of the 23rd International Conference on
World Wide Web (WWW 2014), pages 219–220. ACM, 2014a.

M. Arenas, B. Cuenca Grau, E. Kharlamov, S. Marciuska, D. Zheleznyakov, and
E. Jimenez-Ruiz. SemFacet: Semantic Faceted Search over Yago. In Proceedings
of the 23rd International Conference on World Wide Web (WWW 2014), pages
123–126. ACM, 2014b.

D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and Ontology Match-
ing with COMA++. In ACM SIGMOD International Conference on Management
of Data 2005 (SIGMOD 2005), pages 906–908. ACM, 2005.

R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts
and Technology behind Search. Addison-Wesley Professional, 2011.

S. Banerjee and T. Pedersen. An Adapted Lesk Algorithm for Word Sense Dis-
ambiguation using WordNet. In 3rd International Conference on Computational
Linguistics and Intelligent Text Processing (CICLing 2002), pages 136–145, 2002.

184 Bibliography

R. Baxter, P. Christen, and T. Churches. A Comparison of Fast Blocking Methods
for Record Linkage. In Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, volume 3, pages 25–27.
ACM, 2003.

M. Baziz, M. Boughanem, and N. Aussenac-Gilles. Conceptual indexing based on
document content representation. In Context: nature, impact, and role, pages
171–186. Springer, 2005.

O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom.
Swoosh: A Generic Approach to Entity Resolution. The International Journal on
Very Large Data Bases, 18(1):255–276, 2009.

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. The Scientific
American, 284(5):34–43, 2001.

D. Berrueta and L. Polo. MUO — An Ontology to Represent Units of Measurement
in RDF, 2009. http://goo.gl/fDsuk.

BestBuy.com. Retailer and Online Retailer of Consumer Electronics. http://www.

bestbuy.com, 2017.

C. M. Bishop. Pattern Recognition And Machine Learning. Springer-Verlag, 2007.

C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML). World Wide Web Journal, 2(4):27–66, 1997.

L. Breiman. Technical Note: Some Properties of Splitting Criteria. Machine Learn-
ing, 24(1):41–47, 1996.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees. CRC press, 1984.

R. Burke. Interactive Critiquing for Catalog Navigation in E-commerce. Artificial
Intelligence Review, 18(3-4):245–267, 2002.

S. Castano, A. Ferrara, and S. Montanelli. H-MATCH: An Algorithm for Dynami-
cally Matching Ontologies in Peer-Based Systems. In 1st VLDB Int. Workshop on
Semantic Web and Databases (SWDB 2003), pages 231–250, 2003.

Bibliography 185

D. Celjuska and M. Vargas-Vera. Ontosophie: A Semi-automatic System for Ontology
Population from Text. Technical report, KMi Institute, 2004. http://bit.ly/

13EegA4.

CEO. Consumer Electronics Ontology — An Ontology for Consumer Electronics
Products and Services. http://bit.ly/12Ir4bG, 2017.

L. Ceriani and P. Verme. The Origins of the Gini Index: Extracts from Variabilità
e Mutabilità (1912) by Corrado Gini. The Journal of Economic Inequality, 10(3):
421–443, 2012.

S. Chakrabarti, B. Dom, R. Agrawal, and P. Raghavan. Using Taxonomy, Discrim-
inants, and Signatures for Navigating in Text Databases. In Proceedings of the
23rd International Conference on Very Large Data Bases, pages 446–455. Morgan
Kaufmann Publishers Inc., 1997.

C. Chang, M. Kayed, R. Girgis, and K. Shaalan. A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge and Data Engineering, 18
(10):1411–1428, 2006.

P. Christen. A Survey of Indexing Techniques for Scalable Record Linkage and
Deduplication. IEEE Transactions on Knowledge and Data Engineering, 24(9):
1537–1555, 2012.

K. W. Church and P. Hanks. Word Association Norms, Mutual Information, and
Lexicography. Computational Linguistics, 16(1):22–29, 1990.

M. Ciaramita, A. Gangemi, E. Ratsch, J. Saric, and I. Rojas. Unsupervised Learning
of Semantic Relations Between Concepts of a Molecular Biology Ontology. In
19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pages
659–664. Morgan Kaufmann Publishers Inc., 2005.

V. Crescenzi, G. Mecca, P. Merialdo, et al. Roadrunner: Towards automatic data
extraction from large web sites. In VLDB, volume 1, pages 109–118, 2001.

B. Cuenca Grau, E. Kharlamov, and D. Zheleznyakov. Faceted Search over RDF-
based Knowledge Graphs. Journal of Web Semantics, 37, 2016.

S. D’Alessio, K. Murray, R. Schiaffino, and A. Kershenbaum. The Effect of Using
Hierarchical Classifiers in Text Categorization. In Proceedings of 6th International
Conference Recherche d’Information Assistee par Ordinateur, pages 302–313, 2000.

186 Bibliography

F. J. Damerau. A Technique for Computer Detection and Correction of Spelling
Errors. Communications of the ACM, 7(3):171–176, 1964.

S. Damodaran. B2B Integration over the Internet with XML: RosettaNet Successes
and Challenges. In 13th International World Wide Web Conference (WWW 2004),
pages 188–195. ACM, 2004.

D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman. Dynamic Faceted
Search for Discovery-Driven Analysis. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 3–12. ACM, ACM, 2008.

T. De Vries, H. Ke, S. Chawla, and P. Christen. Robust Record Linkage Blocking
Using Suffix Arrays. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, pages 305–314. ACM, 2009.

Y. Ding, M. Korotkiy, B. Omelayenko, V. Kartseva, V. Zykov, M. Klein, E. Schul-
ten, and D. Fensel. GoldenBullet: Automated Classification of Product Data in
E-commerce. In Proceedings of the 5th International Conference on Business In-
formation Systems, 2002.

DMOZ. Open Directory Project. http://www.dmoz.org/, 2017.

H.-H. Do, S. Melnik, and E. Rahm. Comparison of Schema Matching Evaluations. In
Web, Web-Services, and Database Systems (NODe 2002), volume 2593 of LNCS,
pages 221–237. Springer, 2002.

X. Dong, A. Halevy, and J. Madhavan. Reference Reconciliation in Complex Informa-
tion Spaces. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pages 85–96. ACM, 2005.

S. Dumais and H. Chen. Hierarchical classification of Web content. In Proceed-
ings of the 23rd Annual International Conference on Research and Development in
Information Retrieval, pages 256–263. ACM, 2000.

eCl@ss e.V. eCl@ss — Classification and Product Description, 2017. http://bit.

ly/11bB2zw.

M. Ehrig and S. Staab. QOM - Quick Ontology Mapping. In International Semantic
Web Conference 2004 (ISWC 2004), pages 683–697, 2004.

M. Ehrig and Y. Sure. Ontology Mapping — An Integrated Approach. In 1st Eu-
ropean Semantic Web Symposium. The Semantic Web: Research and Applications
(ESWS 2004), volume 3053 of LNCS, pages 76–91. Springer, 2004.

Bibliography 187

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record Detection:
A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1):1–16,
2007.

J. C. Fagan. Usability Studies of Faceted Browsing: A Literature Review. Informa-
tion Technology and Libraries, 29(2):58–66, 2013.

C. Fellbaum. WordNet: An Electronic Lexical Database. The MIT press, 1998.

D. Fensel, Y. Ding, B. Omelayenko, E. Schulten, G. Botquin, M. Brown, and A. Flett.
Product Data Integration in B2B E-Commerce. IEEE Intelligent Systems, 16(4):
54–59, 2001.

J. Friedl. Mastering Regular Expressions. O’Reilly Media, Inc., 2006.

W. Gatterbauer and P. Bohunsky. Table extraction using spatial reasoning on the
CSS2 visual box model. In Proceedings of the National Conference on Artificial
Intelligence, volume 21, page 1313. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2006.

Gene Ontology Consortium and others. Gene Ontology: Tool for the Unification of
Biology. Nature genetics, 25(1):25–29, 2000.

J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriks-
son, N. F. Noy, and S. W. Tu. The Evolution of Protégé: An Environment
for Knowledge-Based Systems Development. International Journal of Human-
Computer Studies, 58(1):89–123, 2003.

F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-Match: An Algorithm And An Im-
plementation of Semantic Matching. In Dagstuhl Seminar Proceedings of Semantic
Interoperability and Integration 2005, 2005.

Google. Guava - Google Core Libraries, 2017. http://bit.ly/11Y4ww0.

Google Knowledge Graph. Inside Search. http://www.google.com/insidesearch/

features/search/knowledge.html, 2017.

Google, Microsoft, Yahoo and Yandex. schema.org, 2017. http://schema.org.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, D. Sri-
vastava, et al. Approximate String Joins in a Database (Almost) for Free. In
Proceedings of the 27th International Conference on Very Large Data Bases, vol-
ume 1, pages 491–500, 2001.

188 Bibliography

Y. Guo, J. Hu, and Y. Peng. Research on CBR System Based on Data Mining.
Applied Soft Computing, 11(8):5006–5014, 2011.

Y. Guo, J. Hu, and Y. Peng. A CBR System for Injection Mould Design Based on
Ontology: A Case Study. Computer-Aided Design, 44(6):496–508, 2012.

Y. Guo, Y. Peng, and J. Hu. Research on High Creative Application of Case-based
Reasoning System on Engineering Design. Computers in Industry, 64(1):90–113,
2013.

S. Gupta, G. Kaiser, D. Neistadt, and P. Grimm. Dom-based content extraction of
HTML documents. In Proceedings of the 12th International Conference on World
Wide Web, pages 207–214. ACM, 2003.

E.-H. Han, G. Karypis, and V. Kumar. Text Categorization Using Weight Adjusted k-
Nearest Neighbor Classification. In Proceedings of the 5th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 53–65. Springer-Verlag, 2001.

M. Hearst. Design Recommendations for Hierarchical Faceted Search Interfaces. In
29th Annual International Conference on Research & Development on Information
Retrieval (ACM SIGIR 2006), pages 1–5. ACM, 2006.

M. Hearst, A. Elliott, J. English, R. Sinha, K. Swearingen, and K.-P. Yee. Finding
the Flow in Web Site Search. Communications of the ACM, 45(9):42–49, 2002.

M. Hepp. Products and Services Ontologies: a Methodology for Deriving OWL
Ontologies from Industrial Categorization Standards. International Journal on
Semantic Web and Information Systems, 2(1):72–99, 2006.

M. Hepp. GoodRelations: An Ontology for Describing Products and Services Offers
on the Web. In 16th International Conference on Knowledge Engineering (EKAW
2008), volume 5268 of LNCS, pages 329–346. Springer, 2008.

M. Hepp. eClassOWL, 2010a. http://www.heppnetz.de/projects/eclassowl.

M. Hepp. unspscOWL, 2010b. http://www.heppnetz.de/projects/unspscowl.

M. Hepp. The Web of Data for E-Commerce: Schema.org and GoodRelations for
Researchers and Practitioners. In International Conference on Web Engineering
(ICWE 2015), pages 723–727. Springer, 2015.

Bibliography 189

M. Hepp, J. Leukel, and V. Schmitz. A Quantitative Analysis of Product Categoriza-
tion Standards: Content, Coverage, and Maintenance of eCl@ss, UNSPSC, eOTD,
and the RosettaNet Technical Dictionary. Knowledge and Information Systems, 13
(1):77–114, Dec. 2006.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An Algorithmic Framework
for Performing Collaborative Filtering. In 22nd Annual International Conference
on Research and Development in Information Retrieval (ACM SIGIR 1999), pages
230–237. ACM, 1999.

M. A. Hernández and S. J. Stolfo. Real-World Data is Dirty: Data Cleansing and
The Merge/Purge Problem. Data Mining and Knowledge Discovery, 2(1):9–37,
1998.

P. Hitzler and K. Janowicz. Linked Data, Big Data, and the 4th Paradigm. Semantic
Web, 4(3):233–235, 2013.

P. Holmans, E. K. Green, J. S. Pahwa, M. A. Ferreira, S. M. Purcell, P. Sklar,
et al. Gene Ontology Analysis of GWA Study Data Sets Provides Insights Into the
Biology of Bipolar Disorder. American journal of human genetics, 85(1):13–24,
2009.

W. Holzinger, B. Krüpl, and M. Herzog. Using Ontologies for Extracting Product
Features from Web Pages. In 5th International Semantic Web Conference (ISWC
2006), pages 286–299. Springer, 2006.

J. B. Horrigan. Online Shopping. Pew Internet & American Life Project Report, 36,
2008.

J. Huang, J. Lu, and C. X. Ling. Comparing Naive Bayes, Decision Trees, and
SVM with AUC and Accuracy. In Data Mining, 2003. ICDM 2003. Third IEEE
International Conference on, pages 553–556. IEEE, 2003.

T. Joachims. Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In Proceedings of the European Conference on Machine
Learning, pages 137–142. Springer-Verlag, 1998.

K. S. Jones. A Statistical Interpretation of Term Specificity and its Application in
Retrieval. Journal of Documentation, 28(1):11–21, 1972.

Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: The State of the Art. The
Knowledge Engineering Review, 18(1):1–31, 2003.

190 Bibliography

Kieskeurig.nl. Major Dutch price comparison engine with detailed product descrip-
tions. http://www.kieskeurig.nl, 2017.

A. Kilgarriff and J. Rosenzweig. Framework and Results for English SENSE-
VAL. Computers and the Humanities, 34(1–2):15–48, 2000. doi: 10.1023/A:
1002693207386.

H.-J. Kim, Y. Zhu, W. Kim, and T. Sun. Dynamic Faceted Navigation in Decision
Making using Semantic Web Technology. Decision Support Systems, 61(1):59–68,
2014a.

H.-J. Kim, Y. Zhu, W. Kim, and T. Sun. Dynamic Faceted Navigation in Decision
Making using Semantic Web Technology. Decision Support Systems, 61:59–68,
2014b.

H.-s. Kim and D. Lee. HARRA: Fast Iterative Hashed Record Linkage for Large-
scale Data Collections. In Proceedings of the 13th International Conference on
Extending Database Technology, pages 525–536. ACM, 2010.

L. Kolb, A. Thor, and E. Rahm. Multi-pass Sorted Neighborhood Blocking With
Mapreduce. Computer Science-Research and Development, 27(1):45–63, 2012.

D. Koller and M. Sahami. Hierarchically Classifying Documents Using Very Few
Words. In Proceedings of the 14th International Conference on Machine Learning,
pages 170–178. Morgan Kaufmann Publishers Inc., 1997. ISBN 1-55860-486-3.

H. Kopcke and E. Rahm. Frameworks for Entity Matching: A Comparison. Data &
Knowledge Engineering, 69(2):197–210, 2010.

J. Koren, Y. Zhang, and X. Liu. Personalized Interactive Faceted Search. In Pro-
ceedings of the 17th International Conference on World Wide Web, pages 477–486.
ACM, ACM New York, NY, USA, 2008a.

J. Koren, Y. Zhang, and X. Liu. Personalized Interactive Faceted Search. In 17th In-
ternational Conference on World Wide Web (WWW 2008), pages 477–486. ACM,
2008b.

N. Koudas, S. Sarawagi, and D. Srivastava. Record Linkage: Similarity Measures and
Algorithms. In Proceedings Of The 2006 ACM SIGMOD International Conference
on Management of Data, pages 802–803. ACM, 2006.

Bibliography 191

B. Krüpl, M. Herzog, and W. Gatterbauer. Using visual cues for extraction of tabular
data from arbitrary HTML documents. In Special Interest Tracks and Posters of
the 14th International Conference on World Wide Web, pages 1000–1001. ACM,
2005.

B. Kules, R. Capra, M. Banta, and T. Sierra. What Do Exploratory Searchers Look
at in a Faceted Search Interface? In 9th ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL 2009), pages 313–322. ACM, 2009.

Y.-H. Lee, P. J.-H. Hu, T.-H. Cheng, and Y.-F. Hsieh. A Cost-sensitive Technique for
Positive-Example Learning Supporting Content-Based Product Recommendations
in B-to-C E-commerce. Decision Support Systems, 53(1):245–256, 2012.

M. Lesk. Automatic Sense Disambiguation using Machine Readable Dictionaries:
How to Tell a Pine Cone from an Ice Cream Cone. In 5th Annual International
Conference on Systems Documentation (SIGDOC 1986), pages 24–26. ACM, 1986.

V. I. Levenshtein. Binary Codes Capable of Correction Deletions, Insertions, and
Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

D. D. Lewis, R. E. Schapire, J. P. Callan, and R. Papka. Training Algorithms for
Linear Text Classifiers. In Proceedings of the 19th Annual International Conference
on Research and Development in Information Retrieval, pages 298–306. ACM,
1996.

B. Li, A. Ghose, and P. G. Ipeirotis. Towards a Theory Model for Product Search. In
20th International Conference on World Wide Web (WWW 2011), pages 327–336.
ACM Press, 2011.

T. Li, S. Zhu, and M. Ogihara. Hierarchical Document Classification Using Auto-
matically Generated Hierarchy. Journal of Intelligent Information Systems, 29(2):
211–230, 2007.

S. Liberman and R. Lempel. Approximately Optimal Facet Value Selection. Science
of Computer Programming, 94:18–31, 2014.

C.-F. Lin and S.-D. Wang. Fuzzy Support Vector Machines. IEEE Transactions on
Neural Networks, 13(2):464–471, 2002.

C.-H. Lin and H. Chen. An Automatic Indexing and Neural Network Approach to
Concept Retrieval and Classification of Multilingual (Chinese-English) Documents.

192 Bibliography

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26
(1):75–88, Feb 1996.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema Matching with Cupid.
In 27th International Conference on Very Large Data Bases (VLDB 2001), pages
49–58. Morgan Kaufmann Publishers Inc., 2001.

Martin Hepp. Extensions for GoodRelations for Specific Industries. http://bit.

ly/1gl6ZM0, 2013.

Martin Hepp. The OPDM project. http://bit.ly/1b4YUHB, 2017a.

Martin Hepp. The Product Types Ontology: High-precision identifiers for product
types based on Wikipedia. http://bit.ly/GEbALr, 2017b.

B. McBride. Jena: A Semantic Web Toolkit. IEEE Internet Computing, 6(6):55–59,
2002.

A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng. Improving Text Classifica-
tion by Shrinkage in a Hierarchy of Classes. In Proceedings of the 15th International
Conference on Machine Learning, pages 359–367. Morgan Kaufmann, 1998.

A. McCallum, K. Nigam, and L. H. Ungar. Efficient Clustering of High-dimensional
Data Sets With Application to Reference Matching. In Proceedings of the Sixth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 169–178. ACM, 2000.

L. McDowell and M. Cafarella. Ontology-Driven, Unsupervised Instance Population.
Web Semantics: Science, Services and Agents on the World Wide Web, 6(3):218–
236, 2008.

G. J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley,
2004.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching. In 18th Interna-
tional Conference on Data Engineering (ICDE 2002), pages 117–128. IEEE, 2002.

X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al. MLlib: Machine Learning in Apache Spark.
Journal of Machine Learning Research, 17(34):1–7, 2016.

Bibliography 193

G. A. Miller. WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41, 1995.

T. Mitchell. Machine Learning. McGraw Hill, 1996.

S. Mulpuru, V. Boutan, C. Johnson, S. Wu, and L. Naparstek. Forrester Research
eCommerce Forecast, 2014 to 2019. https://goo.gl/6b1fh3, 2015.

F. F.-H. Nah. A Study on Tolerable Waiting Time: How Long Are Web Users Willing
to Wait? Behaviour & Information Technology, 23(3):153–163, 2004.

Newegg.com Inc. Online Retailer in Consumer Electronics. http://www.newegg.com,
2017.

W. K. Ng, G. Yan, and E.-P. Lim. Heterogeneous Product Description in Electronic
Commerce. SIGecom Exchanges, 1(1):7–13, 2000.

I. Niles and A. Pease. Towards a Standard Upper Ontology. In International Confer-
ence on Formal Ontology in Information Systems 2001 (FOIS 2001). ACM, 2001.

N. F. Noy and M. A. Musen. The PROMPT Suite: Interactive Tools for Ontology
Merging and Mapping. International Journal of Human-Computer Studies, 59(6):
983–1024, 2003.

N. Oza, J. Castle, and J. Stutz. Classification of Aeronautics System Health and
Safety Documents. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 39(6):670–680, Nov 2009.

G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, and W. Nejdl. A Blocking
Framework for Entity Resolution in Highly Heterogeneous Information Spaces.
IEEE Transactions on Knowledge and Data Engineering, 25(12):2665–2682, 2013.

G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. Schema-Agnostic
vs Schema-Based Configurations for Blocking Methods on Homogeneous Data.
Proceedings of the VLDB Endowment, 9(4):312–323, 2015.

S. Park andW. Kim. Ontology Mapping between Heterogeneous Product Taxonomies
in an Electronic Commerce Environment. International Journal of Electronic Com-
merce, 12(2):69–87, 2007.

C. Patel, K. Supekar, and Y. Lee. OntoGenie: Extracting Ontology Instances from
WWW. In Workshop on Human Language Technology for the Semantic Web and
Web Services, 2003. http://bit.ly/10eUcWH.

194 Bibliography

D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using condi-
tional random fields. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 235–242.
ACM, 2003.

M. F. Porter. An Algorithm for Suffix Stripping. Readings in information retrieval,
pages 313–316, 1997.

P. Pu and L. Chen. Integrating Tradeoff Support In Product Search Tools For E-
commerce Sites. In Proceedings of the 6th ACM conference on Electronic commerce,
pages 269–278. ACM, ACM New York, NY, USA, 2005.

P. Pu and B. Faltings. Decision Tradeoff using Example-Critiquing and Constraint
Programming. Constraints, 9(4):289–310, 2004.

E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Match-
ing. The VLDB Journal, 10(4):334–350, 2001.

L. E. Raileanu and K. Stoffel. Theoretical Comparison between the Gini Index and
Information Gain Criteria. Annals of Mathematics and Artificial Intelligence, 41
(1):77–93, 2004.

M. E. Ruiz and P. Srinivasan. Hierarchical Text Categorization Using Neural Net-
works. Information Retrieval, 5(1):87–118, 2002.

G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search, volume 25.
Springer, 2009a.

G. M. Sacco and Y. Tzitzikas. Dynamic Taxonomies and Faceted Search: Theory,
Practice, and Experience, volume 25. Springer, 2009b.

G. Salton and C. Buckley. Term-weighting Approaches in Automatic Text Retrieval.
Information Processing & Management, 24(5):513–523, 1988.

G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing.
Communications of the ACM, 18(7):613–620, 1975.

G. Salton, E. A. Fox, and H. Wu. Extended Boolean Information Retrieval. Com-
munications of the ACM, 26(11):1022–1036, 1983.

M. Sasaki and K. Kita. Rule-Based Text Categorization Using Hierarchical Cat-
egories. In Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics, volume 3, pages 2827–2830, 1998.

Bibliography 195

G. Schadow and C. J. McDonald. UCUM — The Unified Code for Units of Measure.
http://unitsofmeasure.org, 2010.

N. Shadbolt, W. Hall, and T. Berners-Lee. The Semantic Web Revisited. IEEE
Intelligent Systems, 21(3):96–101, 2006.

C. E. Shannon. A Mathematical Theory of Communication. ACM SIGMOBILE
Mobile Computing and Communications Review, 5(1):3–55, 2001.

F. Shih and S.-S. Chen. Adaptive Document Block Segmentation and Classification.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26
(5):797–802, Oct 1996.

P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Approaches. Journal
on Data Semantics IV, (3730):146–171, 2005.

S. R. Singh, H. A. Murthy, and T. A. Gonsalves. Feature Selection for Text Clas-
sification Based on Gini Coefficient of Inequality. In Proceedings of the Fourth
International Workshop on Feature Selection in Data Mining (FSDM 2010), vol-
ume 10, pages 76–85, 2010.

V. Sinha and D. R. Karger. Magnet: Supporting Navigation in Semistructured Data
Environments. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pages 97–106. ACM, ACM New York, NY, USA, 2005a.

V. Sinha and D. R. Karger. Magnet: Supporting Navigation in Semi-structured Data
Environments. In 24th ACM SIGMOD International Conference on Management
of Data (SIGMOD 2005), pages 97–106. ACM, 2005b.

M. Steinbach, G. Karypis, and V. Kumar. A Comparison of Document Clustering
Techniques. 00 034, University of Minnesota, 2000.

A. Stolz and M. Hepp. Adaptive Faceted Search for Product Comparison on the
Web of Data. In International Conference on Web Engineering, pages 420–429.
Springer, 2015.

A. Sun and E. P. Lim. Hierarchical Text Classification and Evaluation. In Proceedings
of the 2001 IEEE International Conference on Data Mining, pages 521–528. IEEE
Computer Society, 2001.

C. Sun, N. Rampalli, F. Yang, and A. Doan. Chimera: Large-scale classification using
machine learning, rules, and crowdsourcing. Proceedings of the VLDB Endowment,
7(13):1529–1540, 2014.

196 Bibliography

A. Tengli, Y. Yang, and N. L. Ma. Learning table extraction from examples. In
Proceedings of the 20th International Conference on Computational Linguistics,
page 987. Association for Computational Linguistics, 2004.

K. Toutanova, F. Chen, K. Popat, and T. Hofmann. Text Classification in a Hier-
archical Mixture Model for Small Training Sets. In Proceedings of the 10th Inter-
national Conference on Information and Knowledge Management, pages 105–113.
ACM, 2001.

D. Tunkelang. Faceted Search. Synthesis Lectures on Information Concepts, Re-
trieval, and Services, 1(1):1–80, 2009.

Tweakers.net. Tweakers.net Pricewatch. https://tweakers.net/pricewatch/,
2016.

UNSPSC. United Nations Standard Products and Services Code, 2012. http://

bit.ly/13Ef5Ja.

UNSPSC.org. United Nations Standard Products and Services Code, 2014. http:

//www.unspsc.org.

R. van Bezu, S. Borst, R. Rijkse, J. Verhagen, F. Frasincar, and D. Vandic.
Multi-component Similarity Method for Web Product Duplicate Detection. In
30th Symposium On Applied Computing (SAC 2015). ACM, 2015. available at
http://goo.gl/82jHd5.

D. Vandic, F. Frasincar, and F. Hogenboom. Scaling Pair-Wise Similarity-Based Al-
gorithms in Tagging Spaces. In 12th International Conference on Web Engineering
(ICWE 2012), pages 46–60, 2012a.

D. Vandic, J. W. J. van Dam, and F. Frasincar. Faceted Product Search Powered
by the Semantic Web. Decision Support Systems, 53(3):425–437, 2012b.

D. Vandic, J. W. J. van Dam, and F. Frasincar. A Semantic-Based Approach for
Searching and Browsing Tag Spaces. Decision Support Systems, 54(1):644–654,
2012c.

D. Vandic, F. Frasincar, and U. Kaymak. Facet Selection Algorithms for Web Prod-
uct Search. In 22nd ACM International Conference on Information and Knowledge
Management (CIKM 2013), pages 2327–2332. ACM, 2013a.

Bibliography 197

D. Vandic, F. Frasincar, and U. Kaymak. Facet Selection Algorithms for Web
Product Search. In Proceedings of the 22nd ACM International Conference on
Information & Knowledge Management, pages 2327–2332. ACM, ACM New York,
NY, USA, 2013b.

D. Vandic, D. Nibbering, and F. Frasincar. A Case-Based Analysis of the Effect of
Offline Media on Online Conversion Actions. In 22nd International World Wide
Web Conference (WWW 2013), Companion Volume, pages 125–126, 2013c.

D. Vandic, S. Aanen, F. Frasincar, and U. Kaymak. Dynamic Facet Ordering
for Faceted Product Search Engines. IEEE Transactions on Knowledge and Data
Engineering, 2017. to appear.

B. Vijayalakshmi, A. GauthamiLatha, D. Y. Srinivas, and K. Rajesh. Perspectives
of Semantic Web in E-commerce. International Journal of Computer Applications,
25(10):52–56, 2011.

W3C OWL Working Group. OWL 2 Web Ontology Language Structural Specifica-
tion and Functional-Style Syntax (Second Edition). Technical report, W3C, 2012.
http://bit.ly/c4CWDL.

H. Wang, Q. Wei, and G. Chen. From Clicking to Consideration: A Business Intelli-
gence Approach to Estimating Consumers’ Consideration Probabilities. Decision
Support Systems, 56(0):397–405, 2013.

K. Wang, S. Zhou, and S. C. Liew. Building Hierarchical Classifiers Using Class
Proximity. In Proceedings of the 25th International Conference on Very Large
Data Bases, pages 363–374. Morgan Kaufmann, 1999.

T.-Y. Wang and H.-M. Chiang. Fuzzy Support Vector Machine for Multi-class Text
Categorization. Information Processing & Management, 43(4):914–929, 2007.

A. S. Weigend, E. D. Wiener, and J. O. Pedersen. Exploiting Hierarchy in Text
Categorization. Information Retrieval, 1(3):193–216, 1999.

S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. En-
tity Resolution With Iterative Blocking. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, pages 219–232. ACM, 2009.

W. J. Wilbur and K. Sirotkin. The Automatic Identification of Stop Words. Journal
of information science, 18(1):45–55, 1992.

198 Bibliography

Y. Yang. Expert Network: Effective and Efficient Learning from Human Decisions in
Text Categorization and Retrieval. In Proceedings of the 17th Annual International
Conference on Research and Development in Information Retrieval, pages 13–22.
Springer-Verlag New York, Inc., 1994.

Y. Yang. An Evaluation of Statistical Approaches to MEDLINE Indexing. In Pro-
ceedings of the American Medical Informatics Association Annual Fall Symposium,
pages 358–362, 1996.

Y. Yang. An Evaluation of Statistical Approaches to Text Categorization. Informa-
tion retrieval, 1(1-2):69–90, 1999.

Y. Yang and C. G. Chute. An Example-Based Mapping Method for Text Catego-
rization and Retrieval. ACM Transactions on Information Systems, 12(3):252–277,
1994.

Y. Yang and X. Liu. A Re-examination of Text Categorization Methods. In Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 42–49. ACM, 1999.

Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text Cat-
egorization. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 412–420. Morgan Kaufmann Publishers Inc., 1997.

Y. C. Yang. Web User Behavioral Profiling for User Identification. Decision Support
Systems, 49(3):261–271, 2010.

H. Yu, J. Yang, and J. Han. Classifying Large Data Sets Using SVM’s with Hierar-
chical Clusters. In Proceedings of the 9th International Conference on Knowledge
Discovery and Data Mining, pages 306–315. ACM, 2003.

Y. Yu, D. Hillman, B. Setio, and J. Heflin. A Case Study in Integrating Multiple
E-commerce Standards via Semantic Web Technology. In International Semantic
Web Conference 2009 (ISWC 2009), pages 909–924, 2009.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
Computing with Working Sets. In Proceedings of the 2nd USENIX Conference on
Hot topics in Cloud Computing, volume 10, page 17, 2010.

G.-Q. Zhang, G.-Q. Zhang, Q.-F. Yang, S.-Q. Cheng, and T. Zhou. Evolution of the
Internet and its Cores. New Journal of Physics, 10(12):123027, 2008.

Bibliography 199

B. Zheng, W. Zhang, and X. F. B. Feng. A Survey of Faceted Search. Journal of
Web engineering, 12(1&2):041–064, 2013.

Y. Zhu, D. Jeon, W. Kim, J. Hong, M. Lee, Z. Wen, and Y. Cai. The Dynamic Gen-
eration of Refining Categories in Ontology-Based Search. In Semantic Technology,
volume 7774 of Lecture Notes in Computer Science, pages 146–158. 2013.

G. K. Zipf. The Psycho-biology of Language. Houghton, Mifflin, 1935.

Summary in English

Over the last few years, online shopping has become very popular among consumers.
However, this rapid growth of e-commerce has also introduced some issues. Users
can get confused or are overwhelmed by the information they get presented while
searching online for products. In an attempt to lighten this information overload
burden on consumers, there are several product search engines that aggregate prod-
uct descriptions and price information from the Web and allow the user to easily
query this information. However, because it is difficult to understand all the differ-
ent ways online shops represent their production information, most product search
engines expect to receive the data from the participating Web shops in a custom
format. In this thesis, we investigate how to design Web product search engines that
automatically aggregate product information and allow users to perform effective and
efficient queries on this data. We first focus on how to classify products into an ex-
isting taxonomy using only their textual descriptions. For this purpose, we propose
a multi-level hierarchical classification algorithm that makes use of the structure of
the taxonomy to derive the most optimal product description classifications. Next,
we focus on the problem of finding duplicates among product descriptions in order
to keep the managed data set clean. We devise an algorithm that can perform this
tasks on large-scale, in a distributed environment. Because of the opportunities that
Linked Data for e-commerce brings us, and the fact that we would like a system like
the one we envision in this dissertation to be as open as possible, we also investigate
how one can effectively populate ontologies from semi-structured product data using
lexico-syntactic mappings and how to design an approach that automatically maps
one product taxonomy into another using only the category names. Last, we perform
two studies where we (1) investigate how we can reduce the consumer search effort
by ranking the displayed facets on a per-query basis and (2) how we can improve
fuzzy product search by allowing users to specify facet preference rankings.

Nederlandse Samenvatting
(Summary in Dutch)

Het online kopen van producten is over de afgelopen paar jaar enorm in populariteit
gestegen. Deze sterke toename in e-commerce heeft echter ook een aantal problemen
voor de gebruikers met zich meegebracht. Vanwege het grote aanbod op het internet
zien veel online bezoekers vaak door de bomen het bos niet meer. Naar aanleiding
van deze ontwikkeling zijn er zoekmachines ontstaan die productinformatie van het
web verzamelen en op één plek beschikbaar stellen voor de gebruikers. Deze zoek-
machines vereisen echter dat de webshops hun gegevens aanleveren op een specifieke
wijze. De reden hiervoor is dat niet iedere webshop de productinformatie online op
dezelfde wijze representeert. In dit proefschrift onderzoeken wij hoe zoekmachines
ontwikkeld kunnen worden die automatisch productinformatie verzamelen van het
Web. Allereerst onderzoeken we hoe we producten kunnen classificeren op basis van
hun tekstuele beschrijvingen. Dit heeft geleid tot het ontwikkelen van een meerdere
niveaus hiërarchisch classificatie algoritme, beschreven in hoofdstuk 2. In hoofdstuk
3 ontwikkelen wij een algoritme voor het ontdubbelen van grote hoeveelheden on-
line productbeschrijvingen. In hoofdstuk 4 onderzoeken wij hoe zoekmachines uit
gestructureerde en geannoteerde data op het internet gegevens kunnen verwerken.
Aansluitend hierop bekijken we in hoofdstuk 5 hoe twee verschillende producthiërar-
chieën samengevoegd kunnen worden, gebruikmakend van alleen de categorienamen
in beide hiërarchieën. Hoofdstuk 6 beschrijft een onderzoek waarbij gebruikers een
zoekmachine voor producten gebruiken dat de filters (producteigenschappen) sorteert
op basis van de zoekopdracht, met het doel om gebruikers zo snel mogelijk het prod-
uct te laten vinden waarnaar ze op zoek zijn. Afsluitend, in hoofdstuk 7, onderzoeken
we de effectiviteit van een zoekmachine die, gegeven een zoekopdracht, productfilters
niet strict toepast, maar op zoek is naar de meest geschikte product(en).

About the Author

Damir Vandić was born in Sarajevo, Bosnia and Herzegovina, on 30th of April 1987.
He holds a cum laude B.Sc. degree and a cum laude M.Sc. degree in Economics
and Informatics, obtained at Erasmus University Rotterdam, The Netherlands. His
research interests cover areas such as machine learning, decision support systems,
and Web information systems.

In October 2010, Damir obtained a NWO Mosaic scholarship and started his
Ph.D. research under the auspices of the Erasmus Center for Business Intelligence
(ECBI) at the Erasmus Research Institute of Management (ERIM), the Econometric
Institute at the Erasmus School of Economics (ESE), and the Dutch Research School
for Information and Knowledge Systems (SIKS). During his Ph.D. research, he went
abroad to the United States, where he spent four months at Google as part of a
research internship with the YouTube team in Mountain View, California.

Damir has published 27 peer-reviewed papers in the proceedings of prestigious
international conferences, such as CAiSE, CIKM, DEXA, ESWC, and WWW. Ad-
ditionally, Damir has published 8 articles in renowned journals such as Transactions
on Knowledge and Data Engineering, Decision Support Systems, Expert Systems
with Applications, and Journal of Web Engineering. He has also been active in the
research community as a reviewer for journals such as Decision Support Systems,
Expert Systems with Applications, and Information Systems.

ERIM Ph.D. Series Overview

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT (ERIM)

ERIM PH.D. SERIES RESEARCH IN MANAGEMENT

The ERIM PhD Series contains PhD dissertations in the field of Research in Manage-
ment defended at Erasmus University Rotterdam and supervised by senior researchers
affiliated to the Erasmus Research Institute of Management (ERIM). All disser-
tations in the ERIM PhD Series are available in full text through the ERIM Electronic
Series Portal: http://hdl.handle.net/1765/1. ERIM is the joint research insti-
tute of the Rotterdam School of Management (RSM) and the Erasmus School of
Economics at the Erasmus University Rotterdam (EUR).

DISSERTATIONS LAST FIVE YEARS

Abbink, E., Crew Management in Passenger Rail Transport, Promoter(s):
Prof.dr.L.G. Kroon & Prof.dr. A.P.M. Wagelmans, EPS-2014-325-LIS, http:

//repub.eur.nl/pub/76927

Acar, O., Crowdsourcing for Innovation: Unpacking Motivational, Knowledge and
Relational Mechanisms of Innovative Behavior in Crowdsourcing Platforms, Pro-
moter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2014-321-LIS, http://repub.eur.

nl/pub/76076

Akin Ates, M., Purchasing and Supply Management at the Purchase Category Level:
strategy, structure and performance, Promoter(s): Prof.dr. J.Y.F. Wynstra & Dr.
E.M.van Raaij, EPS-2014-300-LIS, http://repub.eur.nl/pub/50283

Akpinar, E., Consumer Information Sharing, Promoter(s): Prof.dr.ir. A. Smidts,
EPS-2013-297-MKT, http://repub.eur.nl/pub/50140

208 ERIM Ph.D. Series Overview

Alexander, L., People, Politics, and Innovation: A Process Perspective, Promoter(s):
Prof.dr. H.G. Barkema & Prof.dr. D.L. van Knippenberg, EPS-2014-331-S&E, http:

//repub.eur.nl/pub/77209

Alexiou, A., Management of Emerging Technologies and the Learning Organization:
Lessons from the Cloud and Serious Games Technology, Promoter(s): Prof. S.J.
Magala, Prof. M.C. Schippers, & Dr. I. Oshri, EPS-2016-404-ORG, http://repub.

eur.nl/pub/93818

Bannouh, K., Measuring and Forecasting Financial Market Volatility using High-
frequency Data, Promoter(s): Prof.dr. D.J.C. van Dijk, EPS-2013-273-F&A, http:

//repub.eur.nl/pub/38240

Ben-Menahem, S., Strategic Timing and Proactiveness of Organizations, Pro-
moter(s): Prof.dr. H.W. Volberda & Prof.dr.ing. F.A.J. van den Bosch, EPS-2013-
278-S&E, http://repub.eur.nl/pub/39128

Benning, T., A Consumer Perspective on Flexibility in Health Care: Priority Access
Pricing and Customized Care, Promoter(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2011-
241-MKT, http://repub.eur.nl/pub/23670

Benschop, N., Biases in Project Escalation: Names, frames & construal levels, Pro-
moter(s): Prof.dr. K.I.M. Rhode, Prof.dr. H.R. Commandeur, Prof.dr. M.Keil, & Dr.
A.L.P. Nuijten, EPS-2015-375-S&E, hdl.handle.net/1765/79408

Berg, W.v.d., Understanding Salesforce Behavior using Genetic Association Studies,
Promoter(s): Prof.dr. W.J.M.I. Verbeke, EPS-2014-311-MKT, http://repub.eur.

nl/pub/51440

Betancourt, N., Typical Atypicality: Formal and Informal Institutional Conformity,
Deviance, and Dynamics, Promoter(s): Prof.dr. B. Krug, EPS-2012-262-ORG, http:

//repub.eur.nl/pub/32345

Beusichem, H.v., Firms and Financial Markets: Empirical Studies on the Informa-
tional Value of Dividends, Governance and Financial Reporting, Promoter(s): Prof.
A. de Jong & Dr. G. Westerhuis, EPS-2016-378-F&A, http://repub.eur.nl/pub/

93079

Bliek, R.d., Empirical Studies on the Economic Impact of Trust, Promoter(s):
Prof.dr.J. Veenman & Prof.dr. Ph.H.B.F. Franses, EPS-2015-324-ORG, http:

//repub.eur.nl/pub/78159

ERIM Ph.D. Series Overview 209

Blitz, D., Benchmarking Benchmarks, Promoter(s): Prof.dr. A.G.Z. Kemna &
Prof.dr.W.F.C. Verschoor, EPS-2011-225-F&A, http://repub.eur.nl/pub/22624

Boons, M., Working Together Alone in the Online Crowd: The Effects of Social
Motivations and Individual Knowledge Backgrounds on the Participation and Perfor-
mance of Members of Online Crowdsourcing Platforms, Promoter(s): Prof.dr. H.G.
Barkema & Dr. D.A. Stam, EPS-2014-306-S&E, http://repub.eur.nl/pub/50711

Brazys, J., Aggregated Marcoeconomic News and Price Discovery, Promoter(s):
Prof.dr.W.F.C. Verschoor, EPS-2015-351-F&A, http://repub.eur.nl/pub/78243

Burger, M., Structure and Cooptition in Urban Networks, Promoter(s): Prof.dr.
G.A.van der Knaap & Prof.dr. H.R. Commandeur, EPS-2011-243-ORG, http:

//repub.eur.nl/pub/26178

Byington, E., Exploring Coworker Relationships: Antecedents and Dimensions of In-
terpersonal Fit, Coworker Satisfaction, and Relational Models, Promoter(s): Prof.dr.
D.L. van Knippenberg, EPS-2013-292-ORG, http://repub.eur.nl/pub/41508

Camacho, N., Health and Marketing: Essays on Physician and Patient Decision-
Making, Promoter(s): Prof.dr. S. Stremersch, EPS-2011-237-MKT, http://repub.

eur.nl/pub/23604

Cancurtaran, P., Essays on Accelerated Product Development, Promoter(s): Prof.dr.
F.Langerak & Prof.dr.ir. G.H. van Bruggen, EPS-2014-317-MKT, http://repub.

eur.nl/pub/76074

Caron, E., Explanation of Exceptional Values in Multi-dimensional Business
Databases, Promoter(s): Prof.dr.ir. H.A.M. Daniels & Prof.dr. G.W.J. Hendrikse,
EPS-2013-296-LIS, http://repub.eur.nl/pub/50005

Carvalho, L.d., Knowledge Locations in Cities: Emergence and Development Dy-
namics, Promoter(s): Prof.dr. L. Berg, EPS-2013-274-S&E, http://repub.eur.

nl/pub/38449

Consiglio, I., Others: Essays on Interpersonal and Consumer Behavior, Promoter(s):
Prof.dr. S.M.J. van Osselaer, EPS-2016-366-MKT, http://repub.eur.nl/pub/

79820

Cox, R., To Own, To Finance, and To Insure - Residential Real Estate Revealed,
Promoter(s): Prof.dr. D. Brounen, EPS-2013-290-F&A, http://repub.eur.nl/

pub/40964

210 ERIM Ph.D. Series Overview

Cranenburgh, K.v., Money or Ethics: Multinational corporations and religious
organisations operating in an era of corporate responsibility, Promoter(s): Prof.
L.C.P.M. Meijs, Prof. R.J.M. van Tulder, & Dr. D. Arenas, EPS-2016-385-ORG,
http://repub.eur.nl/pub/93104

Darnihamedani, P., Individual Characteristics, Contextual Factors and En-
trepreneurial Behavior, Promoter(s): Prof. A.R. Thurik & S.J.A. Hessels, EPS-
2016-360-S&E, http://repub.eur.nl/pub/93280

Deichmann, D., Idea Management: Perspectives from Leadership, Learning, and
Network Theory, Promoter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2012-255-
ORG, http://repub.eur.nl/pub/31174

Deng, W., Social Capital and Diversification of Cooperatives, Promoter(s): Prof.dr.
G.W.J. Hendrikse, EPS-2015-341-ORG, http://repub.eur.nl/pub/77449

Depecik, B., Revitalizing brands and brand: Essays on Brand and Brand Portfo-
lio Management Strategies, Promoter(s): Prof. G.H. van Bruggen, Dr. Y.M. van
Everdingen, & Dr. M.B. Ataman, EPS-2016406-MKT, http://repub.eur.nl/pub/

93507

Desmet, P., In Money we Trust? Trust Repair and the Psychology of Financial
Compensations, Promoter(s): Prof.dr. D. de Cremer, EPS-2011-232-ORG, http:

//repub.eur.nl/pub/23268

Dollevoet, T., Delay Management and Dispatching in Railways, Promoter(s):
Prof.dr. A.P.M. Wagelmans, EPS-2013-272-LIS, http://repub.eur.nl/pub/38241

Doorn, S.v., Managing Entrepreneurial Orientation, Promoter(s): Prof.dr.
J.J.P.Jansen, Prof.dr.ing. F.A.J. van den Bosch, & Prof.dr. H.W. Volberda, EPS-
2012-258-STR, http://repub.eur.nl/pub/32166

Douwens-Zonneveld, M., Animal Spirits and Extreme Confidence: No Guts, No
Glory, Promoter(s): Prof.dr. W.F.C. Verschoor, EPS-2012-257-F&A, http://

repub.eur.nl/pub/31914

Duca, E., The Impact of Investor Demand on Security Offerings, Promoter(s):
Prof.dr.A. de Jong, EPS-2011-240-F&A, http://repub.eur.nl/pub/26041

Duursema, H., Strategic Leadership: Moving Beyond the Leader-Follower Dyad,
Promoter(s): Prof.dr. R.J.M. van Tulder, EPS-2013-279-ORG, http://repub.eur.

nl/pub/39129

ERIM Ph.D. Series Overview 211

Duyvesteyn, J.E.S.o.S.F.I.M., Empirical Studies on Sovereign Fixed Income Markets,
Promoter(s): Prof.dr. P.Verwijmeren & Prof.dr. M.P.E. Martens, EPS-2015-361-
F&A, hdl.handle.net/1765/79033

Eck, N.v., Methodological Advances in Bibliometric Mapping of Science, Promoter(s):
Prof.dr.ir. R. Dekker, EPS-2011-247-LIS, http://repub.eur.nl/pub/26509

Elemes, A., Studies on Determinants and Consequencesof Financial Reporting Qual-
ity, Promoter(s): Prof.dr. E.Peek, EPS-2015-354-F&A, http://hdl.handle.net/

1765/79037

Ellen, S.t., Measurement, Dynamics, and Implications of Heterogeneous Beliefs in
Financial Markets, Promoter(s): Prof.dr. W.F.C. Verschoor, EPS-2015-343-F&A,
http://repub.eur.nl/pub/78191

Erlemann, C., Gender and Leadership Aspiration: The Impact of the Organizational
Environment, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-2016-376-ORG,
http://repub.eur.nl/pub/79409

Eskenazi, P., The Accountable Animal, Promoter(s): Prof.dr. F.G.H. Hartmann,
EPS-2015-355-F&A, http://repub.eur.nl/pub/78300

Essen, M.v., An Institution-Based View of Ownership, Promoter(s): Prof.dr. J. van
Oosterhout & Prof.dr. G.M.H. Mertens, EPS-2011-226-ORG, http://repub.eur.

nl/pub/22643

Evangelidis, I., Preference Construction under Prominence, Promoter(s): Prof.dr.
S.M.J.van Osselaer, EPS-2015-340-MKT, http://repub.eur.nl/pub/78202

Faber, N., Structuring Warehouse Management, Promoter(s): Prof.dr. MB.M. de
Koster & Prof.dr. Ale Smidts, EPS-2015-336-LIS, http://repub.eur.nl/pub/78603

Fernald, K., The Waves of Biotechnological Innovation in Medicine: Interfirm
Cooperation Effects and a Venture Capital Perspective, Promoter(s): Prof.dr.
E.Claassen, Prof.dr. H.P.G.Pennings, & Prof.dr. H.R. Commandeur, EPS-2015-371-
S&E, http://hdl.handle.net/1765/79120

Fliers, P., Essays on Financing and Performance: The role of firms, banks and
board, Promoter(s): Prof. A. de Jong & Prof P.G.J. Roosenboom, EPS-2016-388-
F&A, http://repub.eur.nl/pub/93019

212 ERIM Ph.D. Series Overview

Fourne, S., Managing Organizational Tensions: A Multi-Level Perspective on Ex-
ploration, Exploitation and Ambidexterity, Promoter(s): Prof.dr. J.J.P. Jansen &
Prof.dr.S.J. Magala, EPS-2014-318-S&E, http://repub.eur.nl/pub/76075

Gaast, J.v.d., Stochastic Models for Order Picking Systems, Promoter(s): Prof.
M.B.M de Koster & Prof. I.J.B.F. Adan, EPS-2016-398-LIS, http://repub.eur.

nl/pub/93222

Gharehgozli, A., Developing New Methods for Efficient Container Stacking Op-
erations, Promoter(s): Prof.dr.ir. M.B.M. de Koster, EPS-2012-269-LIS, http:

//repub.eur.nl/pub/37779

Gils, S.v., Morality in Interactions: On the Display of Moral Behavior by Leaders
and Employees, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-2012-270-ORG,
http://repub.eur.nl/pub/38027

Ginkel-Bieshaar, M.v., The Impact of Abstract versus Concrete Product Com-
munications on Consumer Decision-making Processes, Promoter(s): Prof.dr.ir.
B.G.C.Dellaert, EPS-2012-256-MKT, http://repub.eur.nl/pub/31913

Gkougkousi, X., Empirical Studies in Financial Accounting, Promoter(s):
Prof.dr.G.M.H. Mertens & Prof.dr. E. Peek, EPS-2012-264-F&A, http://repub.

eur.nl/pub/37170

Glorie, K., Clearing Barter Exchange Markets: Kidney Exchange and Beyond, Pro-
moter(s): Prof.dr. A.P.M. Wagelmans & Prof.dr. J.J. van de Klundert, EPS-2014-
329-LIS, http://repub.eur.nl/pub/77183

Heij, C., Innovating beyond Technology. Studies on how management innovation,
co-creation and business model innovation contribute to firm’s (innovation) perfor-
mance, Promoter(s): Prof.dr.ing. F.A.J. van den Bosch & Prof.dr. H.W. Volberda,
EPS-2012-370-STR, http://repub.eur.nl/pub/78651

Hekimoglu, M., Spare Parts Management of Aging Capital Products, Promoter(s):
Prof.dr.ir. R. Dekker, EPS-2015-368-LIS, http://hdl.handle.net/1765/79092

Heyde Fernandes, D.v.d., The Functions and Dysfunctions of Reminders, Pro-
moter(s): Prof.dr. S.M.J. van Osselaer, EPS-2013-295-MKT, http://repub.eur.

nl/pub/41514

ERIM Ph.D. Series Overview 213

Heyden, M., Essays on Upper Echelons & Strategic Renewal: A Multilevel Con-
tingency Approach, Promoter(s): Prof.dr.ing. F.A.J. van den Bosch & Prof.dr.
H.W.Volberda, EPS-2012-259-STR, http://repub.eur.nl/pub/32167

Hoever, I., Diversity and Creativity, Promoter(s): Prof.dr. D.L. van Knippenberg,
EPS-2012-267-ORG, http://repub.eur.nl/pub/37392

Hogenboom, A., Sentiment Analysis of Text Guided by Semantics and Structure,
Promoter(s): Prof.dr.ir. U.Kaymak & Prof.dr. F.M.G. de Jong, EPS-2015-369-LIS,
http://hdl.handle.net/1765/79034

Hogenboom, F., Automated Detection of Financial Events in News Text, Pro-
moter(s): Prof.dr.ir. U. Kaymak & Prof.dr. F.M.G. de Jong, EPS-2014-326-LIS,
http://repub.eur.nl/pub/77237

Hollen, R., Exploratory Studies into Strategies to Enhance Innovation-Driven In-
ternational Competitiveness in a Port Context: Toward Ambidextrous Ports, Pro-
moter(s): Prof.dr.ing. F.A.J. Van Den Bosch & Prof.dr. H.W.Volberda, EPS-2015-
372-S&E, hdl.handle.net/1765/78881

Hoogendoorn, B., Social Entrepreneurship in the Modern Economy: Warm Glow,
ColdFeet, Promoter(s): Prof.dr. H.P.G. Pennings & Prof.dr. A.R. Thurik, EPS-
2011-246-STR, http://repub.eur.nl/pub/26447

Hoogervorst, N., On The Psychology of Displaying Ethical Leadership: A Behavioral
Ethics Approach, Promoter(s): Prof.dr. D. de Cremer & Dr. M. van Dijke, EPS-
2011-244-ORG, http://repub.eur.nl/pub/26228

Hout, D.v., Measuring Meaningful Differences: Sensory Testing Based Decision Mak-
ing in an Industrial Context; Applications of Signal Detection Theory and Thursto-
nian Modelling, Promoter(s): Prof.dr. P.J.F. Groenen & Prof.dr. G.B. Dijksterhuis,
EPS-2014-304-MKT, http://repub.eur.nl/pub/50387

Houwelingen, G.v., Something To Rely On, Promoter(s): Prof.dr. D. de Cremer &
Prof.dr. M.H. van Dijke, EPS-2014-335-ORG, http://repub.eur.nl/pub/77320

Hurk, E.v.d., Passengers, Information, and Disruptions, Promoter(s): Prof.dr.
L.G.Kroon & Prof.mr.dr. P.H.M. Vervest, EPS-2015-345-LIS, http://repub.eur.

nl/pub/78275

214 ERIM Ph.D. Series Overview

Hytonen, K., Context Effects in Valuation, Judgment and Choice: A Neuroscientific
Approach, Promoter(s): Prof.dr.ir. A. Smidts, EPS-2011-252-MKT, http://repub.

eur.nl/pub/30668

Iseger, P.d., Fourier and Laplace Transform Inversion with Applications in Finance,
Promoter(s): Prof.dr.ir. R. Dekker, EPS-2014-322-LIS, http://repub.eur.nl/pub/

76954

Jaarsveld, W.v., Maintenance Centered Service Parts Inventory Control, Pro-
moter(s): Prof.dr.ir. R. Dekker, EPS-2013-288-LIS, http://repub.eur.nl/pub/

39933

Jalil, M., Customer Information Driven After Sales Service Management: Lessons
from Spare Parts Logistics, Promoter(s): Prof.dr. L.G. Kroon, EPS-2011-222-LIS,
http://repub.eur.nl/pub/22156

Kappe, E., The Effectiveness of Pharmaceutical Marketing, Promoter(s): Prof.dr.
S.Stremersch, EPS-2011-239-MKT, http://repub.eur.nl/pub/23610

Karreman, B., Financial Services and Emerging Markets, Promoter(s): Prof.dr.
G.A.van der Knaap & Prof.dr. H.P.G. Pennings, EPS-2011-223-ORG, http://

repub.eur.nl/pub/22280

Khanagha, S., Dynamic Capabilities for Managing Emerging Technologies, Pro-
moter(s): Prof.dr. H.W. Volberda, EPS-2014-339-S&E, http://repub.eur.nl/

pub/77319

Kil, J., Acquisitions Through a Behavioral and Real Options Lens, Promoter(s):
Prof.dr.H.T.J. Smit, EPS-2013-298-F&A, http://repub.eur.nl/pub/50142

Klooster, E.v.t., Travel to Learn: the Influence of Cultural Distance on Competence
Development in Educational Travel, Promoter(s): Prof.dr. F.M. Go & Prof.dr. P.J.
van Baalen, EPS-2014-312-MKT, http://repub.eur.nl/pub/51462

Koendjbiharie, S., The Information-Based View on Business Network Performance:
Revealing the Performance of Interorganizational Networks, Promoter(s): Prof.dr.ir.
H.W.G.M. van Heck & Prof.mr.dr. P.H.M. Vervest, EPS-2014-315-LIS, http://

repub.eur.nl/pub/51751

Koning, M., The Financial Reporting Environment: The Role of the Media, Regula-
torsand Auditors, Promoter(s): Prof.dr. G.M.H. Mertens & Prof.dr. P.G.J. Roosen-
boom, EPS-2014-330-F&A, http://repub.eur.nl/pub/77154

ERIM Ph.D. Series Overview 215

Konter, D., Crossing Borders with HRM: An Inquiry of the Influence of Contextual
Differences in the Adoption and Effectiveness of HRM, Promoter(s): Prof.dr. J.
Paauweand Dr. L.H. Hoeksema, EPS-2014-305-ORG, http://repub.eur.nl/pub/

50388

Korkmaz, E., Bridging Models and Business: Understanding Heterogeneity in Hid-
denDrivers of Customer Purchase Behavior, Promoter(s): Prof.dr. S.L. van de Velde
& Prof.dr. D. Fok, EPS-2014-316-LIS, http://repub.eur.nl/pub/76008

Kroezen, J., The Renewal of Mature Industries: An Examination of the Revival of
theDutch Beer Brewing Industry, Promoter(s): Prof.dr. P.P.M.A.R. Heugens, EPS-
2014-333-S&E, http://repub.eur.nl/pub/77042

Kysucky, V., Access to Finance in a Cros-Country Context, Promoter(s): Prof.dr.
L. Norden, EPS-2015-350-F&A, http://repub.eur.nl/pub/78225

Lam, K., Reliability and Rankings, Promoter(s): Prof.dr. Ph.H.B.F. Franses, EPS-
2011-230-MKT, http://repub.eur.nl/pub/22977

Lander, M., Profits or Professionalism? On Designing Professional Service Firms,
Promoter(s): Prof.dr. J. van Oosterhout & Prof.dr. P.P.M.A.R. Heugens, EPS-2012-
253-ORG, http://repub.eur.nl/pub/30682

Langhe, B.d., Contingencies: Learning Numerical and Emotional Associations in
an Uncertain World, Promoter(s): Prof.dr.ir. B. Wierenga & Prof.dr. S.M.J. van
Osselaer, EPS-2011-236-MKT, http://repub.eur.nl/pub/23504

Lee, C., Big Data in Management Research: Exploring New Avenues, Promoter(s):
Prof.dr. S.J. Magala & Dr. W.A. Felps, EPS-2016-365-ORG, http://repub.eur.

nl/pub/79818

Legault-Tremblay, P., Corporate Governance During Market Transition: Heteroge-
neous responses to Institution Tensions in China, Promoter(s): Prof.dr. B. Krug,
EPS-2015-362-ORG, http://repub.eur.nl/pub/78649

Lenoir, A.A.Y.T.t.M.A.C.i.a.G.W., Are Your Talking to Me? Addressing Consumers
in a Globalised World, Promoter(s): Prof.dr. S. Puntoni & Prof.dr. S.M.J. van
Osselaer, EPS-2015-363-MKT, http://hdl.handle.net/1765/79036

Leunissen, J., All Apologies: On the Willingness of Perpetrators to Apologize,
Promoter(s): Prof.dr. D. de Cremer & Dr. M. van Dijke, EPS-2014-301-ORG,
http://repub.eur.nl/pub/50318

216 ERIM Ph.D. Series Overview

Li, D., Supply Chain Contracting for After-sales Service and Product Support, Pro-
moter(s): Prof.dr.ir. M.B.M. de Koster, EPS-2015-347-LIS, http://repub.eur.nl/

pub/78526

Li, Z., Irrationality: What, Why and How, Promoter(s): Prof.dr. H. Bleichrodt,
Prof.dr. P.P. Wakker, & Prof.dr. K.I.M. Rohde, EPS-2014-338-MKT, http://repub.

eur.nl/pub/77205

Liang, Q., Governance, CEO Identity, and Quality Provision of Farmer Cooperatives,
Promoter(s): Prof.dr. G.W.J. Hendrikse, EPS-2013-281-ORG, http://repub.eur.

nl/pub/39253

Liket, K., Why ‘Doing Good’ is not Good Enough: Essays on Social Impact Mea-
surement, Promoter(s): Prof.dr. H.R. Commandeur & Dr. K.E.H. Maas, EPS-2014-
307-STR, http://repub.eur.nl/pub/51130

Loos, M.v.d., Molecular Genetics and Hormones: New Frontiers in Entrepreneurship
Research, Promoter(s): Prof.dr. A.R. Thurik, Prof.dr. P.J.F. Groenen, & Prof.dr. A.
Hofman, EPS-2013-287-S&E, http://repub.eur.nl/pub/40081

Lovric, M., Behavioral Finance and Agent-Based Artificial Markets, Promoter(s):
Prof.dr.J. Spronk & Prof.dr.ir. U. Kaymak, EPS-2011-229-F&A, http://repub.

eur.nl/pub/22814

Lu, Y., Data-Driven Decision Making in Auction Markets, Promoter(s):
Prof.dr.ir.H.W.G.M. van Heck & Prof.dr. W. Ketter, EPS-2014-314-LIS, http:

//repub.eur.nl/pub/51543

Ma, Y., The Use of Advanced Transportation Monitoring Data for Official Statistics,
Promoter(s): Prof. L.G. Kroon & Dr. Jan van Dalen, EPS-2016-391-LIS, http:

//repub.eur.nl/pub/80174

Manders, B., Implementation and Impact of ISO 9001, Promoter(s): Prof.dr. K.
Blind, EPS-2014-337-LIS, http://repub.eur.nl/pub/77412

Markwat, T., Extreme Dependence in Asset Markets Around the Globe, Promoter(s):
Prof.dr. D.J.C. van Dijk, EPS-2011-227-F&A, http://repub.eur.nl/pub/22744

Mees, H., Changing Fortunes: How China’s Boom Caused the Financial Crisis,
Promoter(s): Prof.dr. Ph.H.B.F. Franses, EPS-2012-266-MKT, http://repub.eur.

nl/pub/34930

ERIM Ph.D. Series Overview 217

Mell, J., Connecting Minds: On The Role of Metaknowledge in Knowledge Co-
ordination, Promoter(s): Prof.dr.D.L. van Knippenberg, EPS-2015-359-ORG,
http://hdl.handle.net/1765/78951

Meuer, J., Configurations of Inter-firm Relations in Management Innovation: A
Study in China’s Biopharmaceutical Industry, Promoter(s): Prof.dr. B. Krug, EPS-
2011-228-ORG, http://repub.eur.nl/pub/22745

Micheli, M., Business Model Innovation: A Journey across Managers’ Attention and
Inter-Organizational Networks, Promoter(s): Prof.dr. J.J.P. Jansen, EPS-2015-344-
S&E, http://repub.eur.nl/pub/78241

Mihalache, O., Stimulating Firm Innovativeness: Probing the Interrelations between
Managerial and Organizational Determinants, Promoter(s): Prof.dr. J.J.P. Jansen,
Prof.dr.ing. F.A.J. van den Bosch, & Prof.dr. H.W. Volberda, EPS-2012-260-S&E,
http://repub.eur.nl/pub/32343

Milea, V., News Analytics for Financial Decision Support, Promoter(s): Prof.dr.ir.
U.Kaymak, EPS-2013-275-LIS, http://repub.eur.nl/pub/38673

Moniz, A., Textual Analysis of Intangible Information, Promoter(s): Prof. C.B.M.
van Riel, Prof. F.M.G de Jong, & Dr. G.A.J.M. Berens, EPS-2016-393-ORG, http:

//repub.eur.nl/pub/93001

Mulder, J., Network design and robust scheduling in liner shipping, Promoter(s):
Prof. R. Dekker & Dr. W.L. van Jaarsveld, EPS-2016-384-LIS, http://repub.eur.

nl/pub/80258

Naumovska, I., Socially Situated Financial Markets: A Neo-Behavioral Perspective
on Firms, Investors and Practices, Promoter(s): Prof.dr. P.P.M.A.R. Heugens &
Prof.dr. A.de Jong, EPS-2014-319-S&E, http://repub.eur.nl/pub/76084

Neerijnen, P., The Adaptive Organization: the socio-cognitive antecedents of am-
bidexterity and individual exploration, Promoter(s): Prof. J.J.P. Jansen, P.P.M.A.R.
Heugens, & Dr T.J.M. Mom, EPS-2016-358-S&E, http://repub.eur.nl/pub/

93274

Nielsen, L., Rolling Stock Rescheduling in Passenger Railways: Applications in short
term planning and in disruption management, Promoter(s): Prof.dr. L.G. Kroon,
EPS-2011-224-LIS, http://repub.eur.nl/pub/22444

218 ERIM Ph.D. Series Overview

Nuijten, A., Deaf Effect for Risk Warnings: A Causal Examination applied to In-
formation Systems Projects, Promoter(s): Prof.dr. G.J. van der Pijl, Prof.dr. H.R.
Commandeur, & Prof.dr. M. Keil, EPS-2012-263-S&E, http://repub.eur.nl/pub/

34928

Oord, J.v., Essays on Momentum Strategies in Finance, Promoter(s): Prof. H.K.
van Dijk, EPS-2016-380-F&A, http://repub.eur.nl/pub/80036

Osadchiy, S., The Dynamics of Formal Organization: Essays on bureaucracy and
formal rules, Promoter(s): Prof.dr. P.P.M.A.R. Heugens, EPS-2011-231-ORG, http:

//repub.eur.nl/pub/23250

Ozdemir, M., Project-level Governance, Monetary Incentives, and Performance in
Strategic R&D Alliances, Promoter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2011-
235-LIS, http://repub.eur.nl/pub/23550

Peers, Y., Econometric Advances in Diffusion Models, Promoter(s): Prof.dr.
Ph.H.B.F.Franses, EPS-2011-251-MKT, http://repub.eur.nl/pub/30586

Peters, M., Machine Learning Algorithms for Smart Electricity Markets, Pro-
moter(s): Prof.dr. W. Ketter, EPS-2014-332-LIS, http://repub.eur.nl/pub/77413

Porck, J., No Team is an Island: An Integrative View of Strategic Consensus between
Groups, Promoter(s): Prof.dr. P.J.F. Groenen & Prof.dr. D.L. van Knippenberg,
EPS-2013-299-ORG, http://repub.eur.nl/pub/50141

Porras Prado, M., The Long and Short Side of Real Estate, Real Estate Stocks,
and Equity, Promoter(s): Prof.dr. M.J.C.M. Verbeek, EPS-2012-254-F&A, http:

//repub.eur.nl/pub/30848

Poruthiyil, P., Steering Through: How organizations negotiate permanent uncertainty
and unresolvable choices, Promoter(s): Prof.dr. P.P.M.A.R. Heugens & Prof.dr.
S.J.Magala, EPS-2011-245-ORG, http://repub.eur.nl/pub/26392

Pourakbar, M., End-of-Life Inventory Decisions of Service Parts, Promoter(s):
Prof.dr.ir.R. Dekker, EPS-2011-249-LIS, http://repub.eur.nl/pub/30584

Pronker, E., Innovation Paradox in Vaccine Target Selection, Promoter(s):
Prof.dr.H.J.H.M. Claassen & Prof.dr. H.R. Commandeur, EPS-2013-282-S&E,
http://repub.eur.nl/pub/39654

ERIM Ph.D. Series Overview 219

Protzner, S.M.t.g.b.d. & forecasting supply: A behavioral perspective on demand,
Mind the gap between demand and supply, Promoter(s): Prof.dr. S.L. van de Velde
& Dr. L. Rook, EPS-2015-364-LIS, http://repub.eur.nl/pub/79355

Pruijssers, J., An Organizational Perspective on Auditor Conduct, Promoter(s):
Prof.dr. J. van Oosterhout & Prof.dr. P.P.M.A.R. Heugens, EPS-2015-342-S&E,
http://repub.eur.nl/pub/78192

Retel Helmrich, M., Green Lot-Sizing, Promoter(s): Prof.dr. A.P.M. Wagelmans,
EPS-2013-291-LIS, http://repub.eur.nl/pub/41330

Rietdijk, W., The Use of Cognitive Factors for Explaining Entrepreneurship, Pro-
moter(s): Prof.dr. A.R. Thurik & Prof.dr. I.H.A. Franken, EPS-2015-356-S&E,
http://repub.eur.nl/pub/79817

Rietveld, N., Essays on the Intersection of Economics and Biology, Promoter(s):
Prof.dr. A.R. Thurik, Prof.dr. Ph.D. Koellinger, Prof.dr. P.J.F. Groenen, & Prof.dr.
A. Hofman, EPS-2014-320-S&E, http://repub.eur.nl/pub/76907

Rijsenbilt, J., CEO Narcissism: Measurement and Impact, Promoter(s):
Prof.dr.A.G.Z. Kemna & Prof.dr. H.R. Commandeur, EPS-2011-238-STR, http:

//repub.eur.nl/pub/23554

Roza, L., Employee Engagement In Corporate Social Responsibility: A collection of
essays, Promoter(s): L.C.P.M. Meijs, EPS-2016-396-ORG, http://repub.eur.nl/

pub/93254

Rubbaniy, G., Investment Behaviour of Institutional Investors, Promoter(s):
Prof.dr.W.F.C. Verschoor, EPS-2013-284-F&A, http://repub.eur.nl/pub/40068

Rösch, D.M.E. & Liquidity, Market Efficiency and Liquidity, Promoter(s): Prof.dr.
M.A. van Dijk, EPS-2015-353-F&A, http://hdl.handle.net/1765/79121

Santos Nogueira, R.d. Almeida e, Conditional Density Models Integrating Fuzzy and
Probabilistic Representations of Uncertainty, Promoter(s): Prof.dr.ir. U. Kaymak &
Prof.dr. J.M.C. Sousa, EPS-2014-310-LIS, http://repub.eur.nl/pub/51560

Schoonees, P.M.f.M.R.S., Methods for Modelling Response Styles, Promoter(s):
Prof.dr. P.J.F. Groenen, EPS-2015-348-MKT, http://repub.eur.nl/pub/79327

Schouten, M., The Ups and Downs of Hierarchy: the causes and consequences of
hierarchy struggles and positional loss, Promoter(s): Prof. D.L. van Knippenberg &
Dr. L.L. Greer, EPS-2016-386-ORG, http://repub.eur.nl/pub/80059

220 ERIM Ph.D. Series Overview

Shahzad, K., Credit Rating Agencies, Financial Regulations and the Capital Markets,
Promoter(s): Prof.dr. G.M.H. Mertens, EPS-2013-283-F&A, http://repub.eur.

nl/pub/39655

Smit, J., Unlocking Business Model Innovation: A look through the keyhole at the
inner workings of Business Model Innovation, Promoter(s): Prof. H.G. Barkema,
EPS-2016-399-S&E, http://repub.eur.nl/pub/93211

Sousa, M.d., Servant Leadership to the Test: New Perspectives and Insights, Pro-
moter(s): Prof.dr. D.L. van Knippenberg & Dr. D. van Dierendonck, EPS-2014-313-
ORG, http://repub.eur.nl/pub/51537

Spliet, R., Vehicle Routing with Uncertain Demand, Promoter(s): Prof.dr.ir. R.
Dekker, EPS-2013-293-LIS, http://repub.eur.nl/pub/41513

Staadt, J., Leading Public Housing Organisation in a Problematic Situation: A
Critical Soft Systems Methodology Approach, Promoter(s): Prof.dr. S.J. Magala,
EPS-2014-308-ORG, http://repub.eur.nl/pub/50712

Stallen, M., Social Context Effects on Decision-Making: A Neurobiological Approach,
Promoter(s): Prof.dr.ir. A. Smidts, EPS-2013-285-MKT, http://repub.eur.nl/

pub/39931

Tarakci, M., Behavioral Strategy: Strategic Consensus, Power and Networks, Pro-
moter(s): Prof.dr. D.L. van Knippenberg & Prof.dr. P.J.F. Groenen, EPS-2013-280-
ORG, http://repub.eur.nl/pub/39130

Troster, C., Nationality Heterogeneity and Interpersonal Relationships at Work, Pro-
moter(s): Prof.dr. D.L. van Knippenberg, EPS-2011-233-ORG, http://repub.eur.

nl/pub/23298

Tsekouras, D., No Pain No Gain: The Beneficial Role of Consumer Effort in
Decision-Making, Promoter(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2012-268-MKT,
http://repub.eur.nl/pub/37542

Tuijl, E.v., Upgrading across Organisational and Geographical Configurations, Pro-
moter(s): Prof.dr. L. van den Berg, EPS-2015-349-S&E, http://repub.eur.nl/

pub/78224

Tuncdogan, A., Decision Making and Behavioral Strategy: The Role of Regulatory
Focusin Corporate Innovation Processes, Promoter(s): Prof.dr.ing. F.A.J. van den

ERIM Ph.D. Series Overview 221

Bosch, Prof.dr. H.W. Volberda, & Prof.dr. T.J.M. Mom, EPS-2014-334-S&E, http:

//repub.eur.nl/pub/76978

Uijl, S.d., The Emergence of De-facto Standards, Promoter(s): Prof.dr. K. Blind,
EPS-2014-328-LIS, http://repub.eur.nl/pub/77382

Vagias, D., Liquidity, Investors and International Capital Markets, Promoter(s):
Prof.dr.M.A. van Dijk, EPS-2013-294-F&A, http://repub.eur.nl/pub/41511

Valogianni, K., Sustainable Electric Vehicle Management using Coordinated Machine
Learning, Promoter(s): Prof. H.W.G.M. van Heck & Prof. W. Ketter, EPS-2016-
387-LIS, http://repub.eur.nl/pub/93018

Vasconcelos, M. Teixeira de, Agency Costs, Firm Value, and Corporate Investment,
Promoter(s): Prof.dr. P.G.J. Roosenboom, EPS-2012-265-F&A, http://repub.

eur.nl/pub/37265

Veelenturf, L., Disruption Management in Passenger Railways: Models for
Timetable,Rolling Stock and Crew Rescheduling, Promoter(s): Prof.dr. L.G. Kroon,
EPS-2014-327-LIS, http://repub.eur.nl/pub/77155

Venus, M., Demystifying Visionary Leadership: In search of the essence of effective-
vision communication, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-2013-289-
ORG, http://repub.eur.nl/pub/40079

Vermeer, W., Propagation in Networks:The impact of information processing at the
actor level on system-wide propagation dynamics, Promoter(s): Prof.mr.dr. P.H.M.
Vervest, EPS-2015-373-LIS, http://repub.eur.nl/pub/79325

Versluis, I., Prevention of the Portion Size Effect, Promoter(s): Prof. Ph.H.B.F.
Franses & Dr. E.K. Papies, EPS-2016-382-MKT, http://repub.eur.nl/pub/79880

Vishwanathan, P., Governing for Stakeholders: How Organizations May Create or
Destroy Value for their Stakeholders, Promoter(s): Prof. J. van Oosterhout & Prof.
L.C.P. M. Meijs, EPS-2016-377-ORG, http://repub.eur.nl/pub/93016

Visser, V., Leader Affect and Leadership Effectiveness: How leader affective displays
influence follower outcomes, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-
2013-286-ORG, http://repub.eur.nl/pub/40076

Vlam, A., Customer First? The Relationship between Advisors and Consumers of
Financial Products, Promoter(s): Prof.dr. Ph.H.B.F. Franses, EPS-2011-250-MKT,
http://repub.eur.nl/pub/30585

222 ERIM Ph.D. Series Overview

Vries, J.d., Behavioral Operations in Logistics, Promoter(s): Prof.dr. M.B.M de
Koster & Prof.dr. D.A. Stam, EPS-2015-374-LIS, http://repub.eur.nl/pub/79705

Vuren, M. Roza-van, The Relationship between Offshoring Strategies and FirmPer-
formance: Impact of innovation, absorptive capacity and firm size, Promoter(s):
Prof.dr. H.W. Volberda & Prof.dr.ing. F.A.J. van den Bosch, EPS-2011-214-STR,
http://repub.eur.nl/pub/22155

Wagenaar, J., Practice Oriented Algorithmic Disruption Management in Passenger
Railways, Promoter(s): Prof. L.G. Kroon & Prof. A.P.M. Wagelmans, EPS-2016-
390-LIS, http://repub.eur.nl/pub/93177

Waltman, L., Computational and Game-Theoretic Approaches for Modeling Bounded
Rationality, Promoter(s): Prof.dr.ir. R. Dekker & Prof.dr.ir. U. Kaymak, EPS-2011-
248-LIS, http://repub.eur.nl/pub/26564

Wang, P., Innovations, status, and networks, Promoter(s): Prof. J.J.P. Jansen &
Dr. V.J.A. van de Vrande, EPS-2016-381-S&E, http://repub.eur.nl/pub/93176

Wang, T., Essays in Banking and Corporate Finance, Promoter(s): Prof.dr. L.
Nordenand Prof.dr. P.G.J. Roosenboom, EPS-2015-352-F&A, http://repub.eur.

nl/pub/78301

Wang, Y., Information Content of Mutual Fund Portfolio Disclosure, Promoter(s):
Prof.dr. M.J.C.M. Verbeek, EPS-2011-242-F&A, http://repub.eur.nl/pub/26066

Wang, Y., Corporate Reputation Management: Reaching Out to Financial Stake-
holders, Promoter(s): Prof.dr. C.B.M. van Riel, EPS-2013-271-ORG, http:

//repub.eur.nl/pub/38675

Weenen, T., On the Origin and Development of the Medical Nutrition Industry,
Promoter(s): Prof.dr. H.R. Commandeur & Prof.dr. H.J.H.M. Claassen, EPS-2014-
309-S&E, http://repub.eur.nl/pub/51134

Wolfswinkel, M., Corporate Governance, Firm Risk and Shareholder Value, Pro-
moter(s): Prof.dr. A. de Jong, EPS-2013-277-F&A, http://repub.eur.nl/pub/

39127

Yang, S., Information Aggregation Efficiency of Prediction Markets, Promoter(s):
Prof.dr.ir. H.W.G.M. van Heck, EPS-2014-323-LIS, http://repub.eur.nl/pub/

77184

ERIM Ph.D. Series Overview 223

Yuferova, D., Price Discovery, Liquidity Provision, and Low-Latency Trading,
Promoter(s): Prof. M.A. van Dijk & Dr. D.G.J. Bongaerts, EPS-2016-379-F&A,
http://repub.eur.nl/pub/93017

Zaerpour, N., Efficient Management of Compact Storage Systems, Promoter(s):
Prof.dr.ir. M.B.M. de Koster, EPS-2013-276-LIS, http://repub.eur.nl/pub/38766

Zhang, D., Essays in Executive Compensation, Promoter(s): Prof.dr. I. Dittmann,
EPS-2012-261-F&A, http://repub.eur.nl/pub/32344

Zwan, P.v.d., The Entrepreneurial Process: An International Analysis of Entry and
Exit, Promoter(s): Prof.dr. A.R. Thurik & Prof.dr. P.J.F. Groenen, EPS-2011-234-
ORG, http://repub.eur.nl/pub/23422

Propositions

1. For a more accurate evaluation, studies on blocking methods for entity
resolution should also evaluate the proposed approaches using non-perfect
matching functions. (Chapter 3)

2. Using lexical matching and pattern matching simultaneously improves the
instantiation of ontologies from semi-structured data. (Chapter 4)

3. The performance of taxonomy mapping approaches is improved when the
similarity of the nodes in a candidate taxonomy path is taken into account
as part of the final similarity. (Chapter 5)

4. Ordering facets in a product search user interface lowers the user effort for
drilling-down to the desired product. (Chapter 6)

5. Fuzzy product search improves the ability of users to find products for a
query for which there is not an exact match. (Chapter 7)

6. In computational studies, careful replication of existing research is just as
important as proposing new algorithms.

7. The value and contribution of a proposed approach is not only reflected
by statistical significance.

8. Scientific competitions and standardized evaluations should be encouraged
more in all fields of Computer Science.

9. For a Ph.D. candidate, being proficient in software development is both a
curse and a blessing for the efficiency of the Ph.D. trajectory.

10. Internships at a large IT company such as Google teach important skills
that cannot be taught at a university. Therefore, all Ph.D. candidates
in Computer Science should be encouraged to do an internship at such a
company.

11. The ingredients for a successful and happy Ph.D. candidate is the right
balance between doing research, visiting conferences, and publishing in
scientific journals.

DAMIR VANDIĆ

Erasmus University Rotterdam (EUR)
Erasmus Research Institute of Management
Mandeville (T) Building

Burgemeester Oudlaan 50

3062 PA Rotterdam, The Netherlands

P.O. Box 1738

3000 DR Rotterdam, The Netherlands

T +31 10 408 1182

E info@erim.eur.nl

W www.erim.eur.nl

Over the last few years, we have experienced an increase in online shopping. Consequently, there is a
need for e� cient and e� ective product search engines. The rapid growth of e-commerce, however, has
also introduced some challenges. Studies show that users can get overwhelmed by the information and
o� erings presented online while searching for products.

In an attempt to lighten this information overload burden on consumers, there are several product
search engines that aggregate product descriptions and price information from the Web and allow the
user to easily query this information. Most of these search engines expect to receive the data from the
participating Web shops in a specifi c format, which means Web shops need to transform their data more
than once, as each product search engine requires a di� erent format. Because currently most product
information aggregation services rely on Web shops to send them their data, there is a big opportunity for
solutions that aim to tackle this problem using a more automated approach.

This dissertation addresses key aspects of implementing such a system, including hierarchical product
classifi cation, entity resolution, ontology population and schema mapping, and lastly, the optimization
of faceted user interfaces. The fi ndings of this work show us how one can design Web product search
engines that automatically aggregate product information while allowing users to perform e� ective and
e� cient queries.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onderzoekschool) in
the fi eld of management of the Erasmus University Rotterdam. The founding participants of ERIM are the
Rotterdam School of Management (RSM), and the Erasmus School of Economics (ESE). ERIM was founded
in 1999 and is o� cially accredited by the Royal Netherlands Academy of Arts and Sciences (KNAW). The
research undertaken by ERIM is focused on the management of the fi rm in its environment, its intra- and
interfi rm relations, and its business processes in their interdependent connections.

The objective of ERIM is to carry out fi rst rate research in management, and to o� er an advanced doctoral
programme in Research in Management. Within ERIM, over three hundred senior researchers and PhD
candidates are active in the di� erent research programmes. From a variety of academic backgrounds and
expertises, the ERIM community is united in striving for excellence and working at the forefront of creating
new business knowledge.

ERIM PhD Series
Research in Management

405

Intelligent Information Systems
for Web Product SearchD

A
M

IR
 V

A
N

D
IC

 - In
te

llig
e

n
t In

fo
rm

a
tio

n
 S

y
ste

m
s fo

r W
e

b
 P

ro
d

u
ct S

e
a

rch
´

27262_dissertatie_cover_Damir_Vandic.indd Alle pagina's 10-01-17 09:59

