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espite the significant attention they have drawn, big-bucket lot-sizing problems remain notoriously difficult

to solve. Previous literature contained results (computational and theoretical) indicating that what makes
these problems difficult are the embedded single-machine, single-level, multiperiod submodels. We therefore
consider the simplest such submodel, a multi-item, two-period capacitated relaxation. We propose a method-
ology that can approximate the convex hulls of all such possible relaxations by generating violated valid
inequalities. To generate such inequalities, we separate two-period projections of fractional linear programming
solutions from the convex hulls of the two-period closure we study. The convex hull representation of the two-
period closure is generated dynamically using column generation. Contrary to regular column generation, our
method is an outer approximation and can therefore be used efficiently in a regular branch-and-bound proce-
dure. We present computational results that illustrate how these two-period models could be effective in solving
complicated problems.
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1. Introduction

Lot-sizing is an important part of the planning pro-
cess in many manufacturing environments. It has
therefore been the subject of extensive study by
researchers and practitioners for decades. Since the
seminal paper of Wagner and Whitin (1958) address-
ing the simplest version of the problem—the uncapac-
itated single-item lot-sizing problem—various types
of lot-sizing problems have been investigated. Only
some special cases of these problems can be solved
in polynomial time (e.g., Zangwill 1969, Florian and
Klein 1971, Federgruen and Tzur 1991), and even the
capacitated version with a single item is N%-hard
(Florian et al. 1980).

Solution approaches for lot-sizing problems have
varied from heuristic methods to exact approaches
based on mathematical programming. A variety of
heuristics can be found in Stadtler (2003), Pochet
and Van Vyve (2004), Federgruen et al. (2007), and
Akartunali and Miller (2009). Mathematical program-
ming approaches have mainly involved adding valid
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inequalities (e.g., Barany et al. 1984; Constantino 1996;
Pochet and Wolsey 1988, 1994) and extended reformu-
lations of the problem (e.g., Krarup and Bilde 1977,
Eppen and Martin 1987, Rardin and Wolsey 1993),
although few studies facilitate other techniques, such
as Lagrangian relaxation (e.g., Billington et al. 1986)
and Dantzig-Wolfe decomposition (e.g., Bitran and
Matsuo 1986, Degraeve and Jans 2007). The interested
reader is also referred to Belvaux and Wolsey (2001)
for modeling and reformulation issues and to Pochet
and Wolsey (2006) for an excellent, thorough review
of lot-sizing problems and solution methods used.

In spite of this extensive research, the mathemati-
cal programming community has focused mainly on
single-item problems, and results for multi-item prob-
lems are rather limited. The research in Pochet and
Wolsey (1991) and Belvaux and Wolsey (2000) extends
some of the single-item problem results to multi-
item problems, and the recent studies of Anily et al.
(2009) and Levi et al. (2008) provide insight into some
versions of capacitated multi-item problems. Most
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recently, some insightful polyhedral results on mul-
tilevel relaxations, such as the valid inequalities of
Zhang et al. (2012) and the compact formulations of
Van Vyve et al. (2014), have shown great potential
for problems with small-bucket capacities, i.e., items
that do not share resources. However, even these ref-
erences do not explicitly address the structural com-
plications caused by the presence of multiple items
competing for limited capacity. Research that explic-
itly analyzes this structure is limited, and, to the
best of our knowledge, includes Miller et al. (2000,
2003), Jans and Degraeve (2004), and Van Vyve and
Wolsey (2006).

Previous computational results in the literature
have indicated high duality gaps for big-bucket lot-
sizing problems; i.e., multiple items share the same
resource, even though some strategies can be par-
tially efficient for generating lower bounds and fea-
sible solutions. Some notable decompositions, such
as the simultaneous period and item decomposi-
tion of Pimentel et al. (2010) and the single-period
decomposition of the shortest path formulation of
Jans and Degraeve (2004), show evidence that con-
sidering period-based decompositions, in addition to
item-based decompositions, can lead to improved
lower bounds. The study by Akartunali and Miller
(2012) has provided important insights about why
big-bucket lot-sizing problems are still very hard to
solve. More specifically, better approximations for the
convex hull of the single-machine, single-level, multi-
period capacitated problems are necessary to get better
results on general lot-sizing problems. In this paper,
we investigate the potentials of the simplest such
model, a relaxation of a two-period model. We pro-
pose a methodology that exactly separates over the
convex hull of this model by dynamically generating
extreme points of the hull. It is important to note that,
to the best of our knowledge, the structure of these
subproblems has not been investigated yet, so our
computational framework can give insights toward
characterizing certain classes of valid inequalities.

The work of Atamtiirk and Munoz (2004) for-
mulated the single-item capacitated lot-sizing prob-
lem as a bottleneck flow network problem, enabling
the authors to define a rich family of facet-defining
inequalities for this problem. The specific two-period
relaxation that we exploit can be seen as a multi-item
extension of the bottleneck flow problem. It can also
be seen as the intersection of two mixed knapsack
constraints (the capacity constraints) linked by the
demand and inventory for each item. For these and
other reasons, the polyhedral structure of this model
is, in general, rich and complicated. However, solving
such small problems to optimality (i.e., solving the
pricing problem in our framework) is computation-
ally tractable, as attested by authors who have used
such submodels in primal heuristics (e.g., Stadtler

2003, Federgruen et al. 2007, Akartunali and Miller
2009). In this paper, although we do not character-
ize new families of inequalities, the methodology we
develop is capable of providing information concern-
ing how effective such results could be.

In the last 15 years, a number of researchers have
investigated the “closures” of general cutting planes
and some particular polyhedra (e.g., Letchford 2001,
Andersen et al. 2005, Dash et al. 2010, Balas and
Margot 2013). Even partially achieving some elemen-
tary closures has helped researchers be able to close
duality gaps efficiently and solve some problems that
were never solved before (Fischetti and Lodi 2005,
Balas and Saxena 2008). The term “closure” can be de-
fined as the smallest possible polyhedron that satisfies
all the valid inequalities of a given type. In our frame-
work, we generate all violated valid inequalities for
each two-period relaxation using the characteristics of
the convex hull of the two-period relaxation in ques-
tion (rather than using predefined families of valid
inequalities). Applying this procedure to all possible
two-period relaxations of a given problem, we approx-
imate the “two-period convex hull closure,” which is
the intersection of the convex hulls of all possible two-
period relaxations. We note that column generation
is used to generate the extreme points of these two-
period relaxation convex hulls, and Farkas’ lemma
provides a proof of validity of these cutting planes.

To the best of our knowledge, such a framework
has not been used before to strengthen the formula-
tion of lot-sizing problems. There have been a few
relevant approaches for generating cutting planes
for other problems: in the work of Ralphs et al.
(2003), violated inequalities for capacitated vehicle-
routing problems (VRPs) are generated using sub-
models based on small traveling salesman problem
(TSP) instances, where the extreme points of these
small TSP polyhedrons are generated using column
generation. In Applegate et al. (2003), “local cuts”
are defined as mapping a fractional solution into a
lower dimension and searching for a cut separating
it, and this is applied to TSP instances using the so-
called “tangled tours.” The work of Fukasawa and
Goycoolea (2011) employed a subroutine in which
localized inequalities are mapped to the original space
when generating exact mixed-integer knapsack cuts.
A more general approach applicable to mixed-integer
programming (MIP) problems is first suggested by
Boyd (1994), and the more recent work of Chvatal
et al. (2013) extended the concept of “local cuts”
to general MIP problems through a sophisticated
methodology including tilting the cuts to increase
their effectiveness and addressing some of the issues
inherent in the precision of coefficients.

We continue this line of research by investigating
how efficient a local cuts approach is in the context of
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multi-item capacitated lot-sizing problems. Contrary
to earlier works, we do not try to generate known
inequalities, but rather consider a relaxation of a two-
period substructure whose polyhedral characteriza-
tion is not known yet. Our computational study sheds
light on the strength of cuts generated by two-period
relaxations and paves the way toward their integra-
tion in an automated framework.

In the next section, we present the formulation
for the multi-item, big-bucket lot-sizing problem. In
Section 3, we give a detailed overview of the two-
period convex hull closure methodology, including a
discussion of the strength of cuts generated. In Sec-
tion 4, we discuss how to define two-period relax-
ations in case of a multiperiod problem. Then we
present computational results varying from simple
two-period problems to more general test problems
from the literature. We conclude with a discussion of
possible extensions and generalizations.

2. Problem Formulation

We consider the general multi-item lot-sizing prob-
lem, with the objective of minimizing the total cost
by abiding by big-bucket capacity limitations and
demand satisfaction. The decisions to be made for a
production plan consist of production and inventory
quantities in each period, as well as setup decisions.
Next, we present our notation.

Indices and Sets:

NT: Number of periods
NI: Number of items
NK: Number of machines

Variables:

xi: Production quantity of item i € {1, ...
period te{1,..., NT}

yi: Setup of item i € {1, ..., NI} in period
te{l,...,NT} (=1 if production occurs, =0
otherwise)

s;: Inventory held of item i € {1, ...,
of period te{1,...,NT}

, NI} in

NI} at the end

Parameters:
fi: Fixed cost per setup of item i € {1, ...
period te{1,..., NT}
hi: Holding cost per unit of item i € {1, ..., NI}
from period t € {1, ..., NT} to period t+1
di: Demand for item i € {1, ..., NI} in period
tell,...,NT}
d; ,: Total demand from period ¢ e {1,...,NT} to
~ teft,...,NT}, ie, di , =35 tdl
a;: Processing time per item i € {1, ..., NI} on
machine k€ {1, ..., NK}
ST}: Setup time for item i € {1, ...,
ke{l,...,NK}
CF: Capacity of machine k € {1,

, NI} in

NI} on machine

.., NK} in period ¢

Then the formulation of the problem is as follows:

NT NI  NTN
min 33 fiyi+3 ) s, (1)
t=1i=1 t=1i=1

st. xi+sl  —si=d,
te(l,...,NT),ie{l,...,NI}; (2
NI

> (aixi+ STyl <Cf,

i te{l,...,NT},ke{l,...,NK}; (3)
i<M]yi, te{l,...,NT},ie{l,...,NI}; (4)

yel0, 1NN x, s> 0. (5)

The constraints (2) are production balance equations
for all items. The constraints (3) are the big-bucket
capacity constraints, and constraints (4) guarantee
the setup variable set to 1 whenever production is
positive, where M/ represents maximum numbers of
item i that can be produced in period t. Finally, con-
straints (5) provide the integrality and nonnegativity
requirements. We assume that each item is processed
by one preassigned machine. We also note that this
formulation can be easily extended to problems with
multiple levels using echelon demands and stock vari-
ables (see, e.g., Pochet and Wolsey 2006); however,
for the sake of simplicity, we present this single-level
problem with multiple machines instead.

3. Separation over the Two-Period

Convex Hull
In this section, we first explain our proposed frame-
work conceptually. A detailed description, along with
the theoretical results that prove the validity of the
framework, follows. We elaborate on the use of col-
umn generation and the nonconventional way that it
is used in our framework.

3.1. Overall View of the Framework

First, we define the function ¢: {1,...,NT — 1} x
{1,...,NI} - {2,...,NT}, which, for a given period
te { ,NT -1} and item i€ {1, ..., NI}, indicates a
forward perlod o, t) >t Equlpped with function ¢,
we define di, := Y0 di for each ' e {t, t+1} C
{1,...,NT}. Then we defme X73t, the feasible region
of a two—period relaxation, defined over periods ¢t
and t+1:

X, <My, ie(l,..,NI},telt,t+1};  (6)

xh<diyl+shey, i€ll,. NI} P eft,t+1);  (7)
t+ly:+1+s(ib(i,t)’ ie{l,...,NI}; (8)

x;+x;+15d';+s;(i,t), ie{l,...,NI}; 9)

X, +xt+1 = dtyt
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NI
Y (a'xi+ST'yi)<Cy, telt,t+1}; (10)
i=1

x,5>0,ye{0,1}>M. (11)

For notational brevity, we will drop the depen-
dency on t and ¢ and use the standard notation of
conv(X?") in the remainder of the paper to indicate
the convex hull of the extreme points and extreme
rays of X*t. Likewise, we use s’ to refer to the inven-
tory variable of item i at the end of time period
¢(i, t). We note that this is a valid relaxation of any
two-period subproblem (rather than an exact formu-
lation of it), where production balance Equations (2)
are replaced by (7)—-(9). Since the production balance
constraints are omitted, there is no need to define an
intermediate inventory variable sf. Furthermore, note
that since we are looking at a single-machine problem,
we omitted the subscripts k representing machines.
We also note that each item has an inventory variable
of a period represented by ¢(7, t), which can be dif-
ferent from item to item. The demand parameter is
defined in a similar fashion to the original parameters,
with d! representing the cumulative demand between
periods t and ¢(t, i), inclusive. A discussion on how
to define ¢(i, t) can be found in Section 4.

One can easily observe the similarity between the
constraints of X** and of the original lot-sizing prob-
lem, noting that constraints (7) and (8) are simply the
(£, S) inequalities of Barany et al. (1984), which can be
defined in general form as follows:

DX =D i i+ sy
teS teS

te{l,...,NT},ie{l,...,NI}, Sc{l,...,e. (12)

This formulation is a multi-item extension of the
bottleneck flow formulation studied by Atamtiirk and
Mufioz (2004) when NT = 2. It also extends the single-
period study of Miller et al. (2000, 2003). Next, we
remark the following basic polyhedral property of
conv(X?L),

ProrosITiON 1. Without loss of generality, we make
the following assumptions for X*"t:

1. 0<M, forallie{l,... NI}, t eft, t+1},

2. ST'<C, forallie{l,..., NI}, t e{t, t+1}.
Then conv(X*™) is full-dimensional.

The proof for this proposition is straightforward
and is hence omitted. It is trivial to note that if either
assumption is not satisfied, one can simply remove
the associated setup and production variable from the
problem.

Column generation is used to generate the favor-
able extreme points of conv(X*), since the number
of extreme points can grow exponentially. Using these
favorable extreme points, we check whether a given
fractional solution can be written as their convex com-
bination. If not, we can generate a valid inequality

using a theory based on Farkas’ lemma that cuts off
the fractional point. This cut approximates the convex
hull closure of this two-period relaxation.

One important point is that this framework is not
based on predefining a family of valid inequalities,
which is one of its advantages. An inequality will
be generated in all cases when the fractional solu-
tion is not in the convex hull of a two-period relax-
ation. This is also why we expect this framework
to provide an adequate approximation of the bot-
tleneck of the general lot-sizing problems, as this
focuses on the capacitated single-machine problems
with an approach providing exact solutions for the
subproblems. Next, we describe more details of our
methodology, including the key theoretical results,
and elaborate on important details.

3.2. Details of the Cut-Generation Methodology
To describe the methodology, first we let (x,y,5) €
RYM be any point (e.g., it can be a projection
of a solution obtained from the LPR of X*). We
use the infinity-norm distance (<) of this point to
conv(X?F) to define the distance problem as follows:

min z, (13)
st Y N —z, <,
‘ ie{l,...,NI}, Y e{t, t+1} (a7}); (14
X< M)+ 2
:e{l,...,NI}, telt,t+1} (at)); (15)
YW — 2 < Ths
‘ ie{l,...,NI}, ' e{t, t+1} (B7L); (16)
T <MWy + Zoos
z'ke{1,...,N1}, telt, t+1) (BY); (17)

Z/\k(sk)i—zm <3, Vi (y); (18)
k
D=1, (n); (19)
k
A>0, z,>0. (20)

Note that (x, y;, s;) is the vector representing the
kth extreme point of conv(X*™). Variable z, re-
presents the oo-norm distance, which measures the
distance between two points as the biggest absolute
deviation across their coordinates. Variables A are
multipliers used for the convex combination of the
extreme points, where convexity is assured by (19).
Note that in (19) we use an inequality rather than
an equality for a simpler discussion in the remainder
of this section, where the inequality is indeed valid
due to the fact that the origin is an extreme point
of conv(X*"), and hence any point satisfying this



Downloaded from informs.org by [130.115.199.131] on 04 February 2017, at 07:00 . For personal use only, al rights reserved.

770

Akartunal et al.: Two-Period Convex Hull Closures for Lot Sizing
INFORMS Journal on Computing 28(4), pp. 766-780, ©2016 The Author(s)

inequality will also satisfy an equality. Also note that
the formulation above has the associated dual vari-
ables written next to all constraints in the parentheses
to assist explanations in the forthcoming discussion.
We have only one set of inequalities for s variables
because of the following property.

PrOPOSITION 2. conv(X*t) has NI extreme rays, each
of which foran i€ {1, ..., NI} is in the form s’ =1, =0,
x=0,y=0Vj#i

This property ensures that any point in conv(X?™)
is indeed written as a convex combination of its ex-
treme points and a conical combination of its extreme
rays. This distance problem is always feasible, since
we can assign 0 to all A variables and take z, =
max; ,(x}, y}). Moreover, the problem is bounded
since z., > 0. Therefore, we will always have an opti-
mal solution (as well as an optimal dual solution).

If the optimal solution of this problem for a given
(x,¥,5) has an objective function value z% =0, then
we know that (¥, 7/, 5) € conv(X*™), since this point
is simply written as a convex combination of the
extreme points and a conical combination of its
extreme rays. However, if zX > 0, then (x,7,5) ¢
conv(X?'), and this allows us to generate a valid
inequality to cut off the fractional point, as stated in
the next theorem. We next present the dual of the
distance problem for an easier understanding of the
forthcoming results:

NI t+1 ) . ) ) . )
max Y > (% (et +a )+ 7. (BT +B71))

i=1+t=t
NI
F Y Ey 4 1)
i=1

NI t+1

st > Z((xk)i/(oﬁif +ah)+ () (B + :87;))

i=1 t’=fNI N
+2 ()Y +m<0 Vk; (22)
i=1

NI t+1 . ) ) ) NI ‘
Y2 (et —a BT =BT -2y =1 (23)
i=1t=t i=1
at>0,B"=>0,a” <0,
B~ <0, y=<0,n=0. (24)
THEOREM 1. Let z% > 0 for (x,y,5), and (o, a*,
B*t, B*~, v*, n*) be the optimal dual values. Then

NI t+1

S ((@ ) +al)xk + (B + B

i=1t'=t

NI
+ 3y <0 (25)
i=1

is a valid inequality for conv(X*"") that cuts off (X, ¥, 5).

Proor. The validity of (25) follows from the fact
that (22) is valid for every extreme point of conv(X?™)

and that y <0 holds. In contrast, since z¥ > 0, the vio-
lation follows simply from the optimal value of (21)
being strictly positive for (x,y,5). O

As we show in the next section, we only generate
a small subset of the extreme points to ensure that
our approach is computationally efficient. The general
framework of the separation procedure over the con-
vex hull of the two-period model is summarized in
Algorithm 1. It is worth noting that extreme points
are added dynamically, and only while z;, the objec-
tive function of the column generation subproblem,
is negative. The next part elaborates further on the
column generation procedure.

Algorithm 1 (Two-period separation algorithm)
Input: A point (x, i/, 5); a 2-period problem
X?PL e>0
Output: A cutting plane or inclusion certificate
repeat
Solve the distance problem for conv(X*);
if z_ <e¢, then
| break
else
Solve column generation problem;
if z, < 0, then
| break
else
| Add new extreme point
end
end
until z <€ or z;, <0;
if z_ <¢€, then
| (%,7,35) econv(X?™)
else
| Add the violated cut (25)
else.

3.3. Column Generation

All but one of the variables of the distance problem
are associated with an extreme point of conv(X*).
Since the number of extreme points is exponential
to the problem inputs, but only a small subset of
their corresponding variables is basic at an optimal
solution of the distance problem, we use column
generation to generate the favorable extreme points,
as explained below. Recall that there are only as many
extreme rays as the number of items.

When we solve the distance problem with only a
subset of extreme points, we obtain a dual optimal
solution (a**, a*~, B**, B*~, v*, n*). For any A, vari-
able associated with the extreme point (x;, v, s;), the
reduced cost is defined as follows:

NI 41

S ()i (et + @) + ()l (B + BL)

i=1t'=t

NI
+2 (s Y+ (26)
i=1
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Note that for all the extreme points added so far,
(26) is less than or equal to 0. If this condition holds
for all the extreme points not yet included in the prob-
lem, there does not exist any extreme point that will
improve the solution of the previous distance prob-
lem; hence the current solution is optimal. Therefore,
we define the following pricing problem:

NI t+1

max zp =y 3 (¥ (@) + & L) +yL (B +B)))

i=1t=t
NI o
+ Z Sl’)/*l + n*
i=1
st (x,y,s) e X*"

CoROLLARY 1. If the optimal value zj <0, then the
solution of the distance problem is optimal. Otherwise, the
optimal (x,y, s) values should be added as a new column
to the distance problem.

Note that the pricing problem is an MIP, which,
because of its small size, can be solved to optimal-
ity efficiently. However, it may still be helpful to
ensure that the method converges as fast as possi-
ble to the real distance, i.e., that the number of gen-
erated extreme points does not grow unnecessarily
large, especially when the sequence of distance values
converges very slowly. Therefore, it would be benefi-
cial to terminate the column generation prematurely,
especially if a cut can be generated (even weaker than
the original one). The following result, adapted from
Theorem 1, is crucial for this computational aspect.

COROLLARY 2. Let z¥ >0 for (x, i, 5), (&*F, a*~, B*T,
B*~, v*, n*) be the optimal dual values, and z}, > 0. Then,

NI t+1

S (@ + @ l)al 4+ (B + By

i=1t=t

NI
+ > s+t <z (27)
i=1

is a valid inequality for conv(X?"").

Proor. Note that (27) holds for every extreme
point of conv(X*™), since z} is the maximum value
attained by any extreme point. Since n < 0 holds, any
point of conv(X?) written as a convex combination
of extreme points and a conical combination of its
extreme rays will satisfy this inequality. O

We also note that by using the reduced cost infor-
mation, and because Y, A, <1, the distance function
value can be at most reduced by z, in each itera-
tion. We conclude this section with the note that this
“reduced cost cut” is implemented in our computa-
tional tests for better efficiency.

3.4. Alternative Distance Functions

Here we discuss the use of alternative norms instead
of Z. The first and obvious candidate is the Manhat-
tan distance (or &), since it can be linearly modelled;
this is discussed in detail in Akartunali (2007). For-
mulating an Z;-based distance problem is straight-
forward; for the sake of brevity the particular details
are omitted here. However, we consider &,-based dis-
tance problems in our computational tests for the sake
of completeness.

Next, we discuss how to use Euclidean distance,
i.e., 2-norm or ¥,, in our framework. The main moti-
vation for using the Euclidean distance is that it has
a faster convergence rate than the linear approach
of Manhattan distance, when a sequence of points
is expected to converge to a specific point (in our
case, this sequence of points consists of the closest
point of conv(X*™) to (¥, 7, 5) in each iteration of the
algorithm, since the more extreme points are added
with column generation, the more we converge to
the real distance).! In addition, contrary to the Z_-
based distance formulation discussed earlier, the min-
imized Euclidean objective involves the individual
distance variables associated with each element of the
(x,y,5) vector. As a result, the optimal solutions have
often more binding constraints than the & problem,
for which an optimal solution with one binding con-
straint always exists. This implies that the cuts gener-
ated from the Euclidean formulation are likely to be
more dense that those produced by the &£, formula-
tion. On a more practical note, it is also important to
remark that the quadratic programming (QP) solvers
have achieved significant developments similar to lin-
ear programming (LP) and IP solvers, which allow
fast solutions. For the LP relaxation (LPR) solution
(%, ¥, 5), we define the Euclidean distance problem as
follows:

t+1
min 2= Y ([Q)F+ LAARF+A)P) @9
st = Y A)b + (A,
‘ ie{l,..., NI}, eft, t+1} (al); (29)
7= X i+ (A,
k
ie{l,..., NI}, Y eft, t+1} (B.); (30)

§ =3 (s — (A, Vi (¥); (31)
k

YA=1, (m); (32)

k

A=0,4,20, 4, 4, free. (33)

The distance variables A, and Ay are defined as free,
whereas A, variables can be restricted to nonnegative

! Personal communication with S. Robinson.
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because of the Proposition 2, ensuring that any point
in conv(X?™) can indeed be written as a convex com-
bination of its extreme points and a conical combina-
tion of its extreme rays. Dual variables are highlighted
in parentheses next to associated constraints. Note
that this is a QP problem with linear constraints, and
the objective function has quadratic terms with pos-
itive coefficients only (i.e., if we write z, in the form
1xTQx with x indicating the variable vector, then the
matrix Q is positive semidefinite). Therefore, the dual
of the Euclidean distance problem can be stated as
follows (for QP duality, see, e.g.,, Mangasarian 1994,
pp- 123-124):

A, B,y,m

t+1
max 2o ==X (100 P+ XIANF (8, F)

NI t+1
<22(xt’at/+yt/ﬁt’ +ZS Y +TI> (34)

i=1t
NI t+1

st D> ((x)pay + (), BY)

i=1t'=t

+>(s)' Y +1=>0, Vk; (35)

==2(A)p, By=—2(4,);,
—y'==2(A), Vi, t; (36)
v>0,1>0,A,>0,a, B, A,, Ay, free. (37)
Next we establish the following theorem, which al-
lows us to generate inequalities if (¥, 7, 5) ¢ conv(X*).
THEOREM 2. Let z} > 0 for (X, y, 5), with optimal dual
values (o, B*, v*, n*). Then

t+1

2@ by +

i t'=

Bruyi) + Z y's'+9 >0  (38)

is a valid inequality for COI‘[V(XZP L) that cuts off (X, 7, 3).

Proor. The validity of (38) follows from the fact
that (35) is valid for every extreme point of conv(X?'")
and that y > 0 holds. To observe the violation, let the
associated optimal primal values be A*. Then

NI t+1
(Z Y (Fat, + 7,8 t/>+2slv*’ +n )

i=1t'=t
=—2((A%)* +(A")* +(47,)%) <0
holds, where the equality follows from the QP duality,

and the inequality follows from z > 0. Hence, (38)
cuts off (x,y,5). O

As in the ¥ norm case, column generation can
be used to generate only a small subset of extreme
points, where the pricing problem is stated as follows:

NI t+1

min zp =Y > (a*)xl +

i=1t'=t

t%)+27*151+7)

Xo

'y

> X,

Figure 1 Graphical View of Different Norms (Example 1)

st (x,vy,s) e X*".

COROLLARY 3. If the optimal value zj > 0, then the
solution of the distance problem is optimal. Otherwise, the
optimal (x,y,s) values of the pricing problem indicate a
favorable column.

Note that the framework presented in Algorithm 1
remains valid for 2-norm as well, with the exception
of changing the condition z, <0 to zp > 0 and replac-
ing z,, with z,. Similarly, a parallel result to Corol-
lary 2 is also easy to extend to the case of z,. As we
illustrate in Section 5 in our computational results,
using the Euclidean distance function often seems to
result in better convergence than using the infinity
norm. Moreover, we make a remark on the recent
work of Cadoux (2010), who presented a proof that
using 2-norm can provide “deepest disjunctive cuts”
(rather than using standard linear norms). Although
that work focuses on separating fractional points from
a disjunctive polyhedron, this assertion seems in line
with our computational experience, where the 2-norm
often achieves the fastest converging cuts. However,
we also observed that the 2-norm has the biggest
potential for causing numerical issues.

We present the following example to illustrate a
simple two-dimensional case comparing the use of
different norms to generate cuts.

ExaMpLE 1. Consider the convex hull defined by
the corners (1,0), (1,1), (2.5,1.5), and (4, 0), as seen
in Figure 1. Assume we have the point x = (1, 3) we
want to cut off. Using Manhattan distance, one would
obtain minimal distance z; =2 with A ={0, 0,0, 2}
and the cut —x; + x, < 0, which is only a face of
the polyhedron. Using <, the minimal distance is
z,, = 1.5 with A =1{0,1.5,1.5,0} and we obtain the
cut —0.25x, 40.75x, — 0.5 < 0. Finally, using Euclidean
distance, we obtain the minimal distance z, = v/3.6
with A ={-0.6, 1.8} and the cut 1.2x; — 3.6x, +2.4 >
0, which is the same as the cut obtained by infinity
norm, i.e., a facet of the polyhedron.
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3.5. Strength of Cuts Generated

The distance problems discussed in the previous
sections are defined using standard norms, ie., ¥,
and ¥_. However, a potential disadvantage of the
formulation used is that the inequalities that are gen-
erated are possibly not facets or even high dimen-
sional faces. If possible, it would be beneficial to
define a “distance” problem for which the resulting
primal/dual pair is guaranteed to yield faces of high
dimension. Therefore, we discuss how to define such
a distance problem in this section.

Consider the following “distance” problem (P):

min z (39)
st X = Adx)h,
iek{l,...,NI}, telt,t+1}, (al); (40)
ﬂ, = Z )‘k(yk);’/
ie{l,. NI Felt t+1], (BL); (41)

§>3"Nls) —z, Vi, (¥'); (42)
k

dDh—z<1, (n); (43)

k

A>0,2z>0. (44)

While (P) is similar to the co-norm primal distance
problem, there are differences as well. In particular,
it is not obvious that a feasible solution exists. To
address this issue, we define a priori 2NI extreme
points in the form of x|, =C, — ST, y, =1, s' = (C, —
ST' —d,)*, for each t' € {t,t+1} and i € {1,..., NI},
and 2NI extreme points in the form y, =1, x}, =0,
si=0foreacht' €{t,t+1}andie{1,..., NI}, with all
variables not explicitly listed in these extreme points
to be 0.

LemMA 1. Given the 4NI extreme points previously
defined, (P) is always feasible.

To prove this condition, it is easy to see that for any
given point (¥, 7, §), since x; < M/ holds, the equalities
(40) and (41) will hold with the correct choice of A
variables.

ProrosiTioN 3. When (P) is solved, either z* =0 or
there exists a violated inequality for (X,y,s) in the form

NI t+1 o o N
2 2 ((pey + (W) y) + 2 -(s)' v + 1" <0.
i=1+t=t i=1
The proposition is quite straightforward and can be

proved in a similar fashion to previous inequalities,

in particular when considering the dual of (P), which
we refer to as (D) and present as follows:

NCHL N
max {Z Z(fiﬂi/+]7§/B’y)+25k771+77} (45)
1

i=1t=t i=

773
NI t+1 ) ) ‘ ‘
st 222 ()b ey + ()i Br)
=1t :tNI N
+3(s)' ¥y +n=<0, Vk; (46)
i=1
NI ]
-3y -n=<1, y=0,7n=0. (47)

i=1

Finally, we conclude this section with the main
result regarding the strength of the cuts generated.

THEOREM 3. If z* > 0, then the generated inequality has
a dimension of at least 4N — 1.

Proor. We first note that the dual problem has
5NI + 1 dual variables and its dimension is also
5NI + 1. Therefore, when this LP is optimized, 5NI+1
dual constraints will be satisfied as equality for every
extreme point solution. Since z* > 0, the dual con-
straint — YN, y' — n <1 is satisfied at equality and
therefore, at most NI of ', n variables can be zero
(i.e., at least one of them has to be nonzero). There-
fore, at least 4NI of the dual constraints (46) are sat-
isfied as equation for the optimal solution. Hence, at
least 4NI extreme points of the primal problem, which
are affinely independent, lie on the hyperplane defin-
ing the cut. O

4. Defining Two-Period Relaxations

from a Multiperiod Problem

In this section, we discuss how X?*' can be used
to define two-period relaxations of a generic, multi-
period problem. Considering the lot-sizing problems
we have investigated with multiple periods and
items, the first decision is at which two periods to
run the separation algorithm. For a problem with NT
periods, we can look at all the two-period problems;
i.e.,, we can create NT — 1 two-period problems and
run the separation routine we discussed in the pre-
vious sections, which we apply to the remainder of
the paper.

Next, we recall that X?" assigns one inventory vari-
able to each item, namely s’, which represents the
ending inventory of period ¢(i, t), for a given func-
tion ¢. This leads to the question, “Which period’s
stock is represented by s'?” As one can easily note,
the obvious choice for the horizon parameter would
be ¢(t,i)=t+1, for all i € {1, ..., NI}. The main dis-
advantage of this strategy is that the demand of later
periods is not taken into consideration in the formu-
lation of X?F. For example, consider a case where the
algorithm tries to separate a fractional point in which,
for some item i, no production occurs in periods f +
2,...,1, for some [ >t +2. Then the inventory SZH of
that fractional point will be large, because it needs to
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cover the demand of periods t+2, ..., [, and therefore
a subproblem with ¢(t, i) =t + 1 might not be able to
separate that point, because the production variables
at the corresponding extreme points do not incorpo-
rate the cumulative demand of periods ¢t +2,...,1.
Therefore, given a fractional point, our intention is
to select ¢(t,7) such that the extreme points of the
underlying polytope are dissimilar to the point we try
to separate.

As Miller et al. (2000) noted for their single-period
relaxations, one key observation is that if several peri-
ods have no setups following the period t + 1, their
demands should be incorporated to obtain the small-
est amount of inventory carried from period t + 1
without weakening the (¢,S) inequalities. Another
observation is that if a setup occurs in a period after
t+1, the (¢, S) inequalities will be weakened if that
period is included in the horizon and hence it should
be avoided. Therefore, Miller et al. (2000) propose the
following definition of horizon parameter:

¢(t,i>=max{u|uzt+1, 5 yf/éyi;ﬁ@}, (48)

r=t+1

where O is a random number between 0 and 1; they
argue that this assignment is computationally efficient
in the case of their single-period relaxation. In lieu
of adopting a randomized approach, we have experi-
mented with different levels of ® and identified that
0O =0 generates the deepest cuts. Therefore, we use
(t, i) = max{u | u>t+ 1,501yl < i) in our
computational experiments. This choice ensures that
cumulative demand of later periods with zero pro-
duction is captured in the extreme points of X?-. One
final note is that the values ¢(t,7) are recalculated
every time the separation procedure is called, so X*™*
is updated both when a new pair of periods is con-
sidered and when a new fractional point is at hand.
The overall framework for multiperiod problems can
be seen in Algorithm 2.

Algorithm 2 (Two-period convex hull closure
framework)
Update (¢, S) inequalities;
Solve LPR of the original problem;
— (%, ¥,5);
fort=1tot=NT—1do
Define ¢(t,i) Vie{l,..., NI} and update X**;
Apply two-period separation algorithm
for (%,y,35), X*;
end.

5. Computational Results

In this section, we present our computational expe-
rience regarding the two-period convex hull closure
framework. All alternative distance approaches dis-
cussed earlier are implemented, and FICO® Xpress

Optimization Suite (2015 version) is used as the solver.
We first present the results for two-period problems
and focus on the efficacy of each of the proposed dis-
tance norms, and then follow with the results for some
multi-period problems, including a discussion of com-
putational issues and considerations. We note that a
limited version of preliminary tests were presented in
Fragkos and Akartunali (2014).

5.1. Two-Period Problems

To provide a thorough investigation, we first gener-
ated 20 problems with two periods only and with
two to six items. The detailed data of the instances
of this set, called 2PCLS (2-Period Capacitated Lot-
Sizing) can be found in Akartunali (2007). One of
the advantages of having such small problems is that
we might actually obtain the full description of the
convex hull using software like cdd (Fukuda 2014),
which is currently investigated in a companion paper
(Doostmohammadi et al. 2016). Another important
remark is on the number of items: the more items
share a resource, the more the structure of the opti-
mal solutions tends to resemble that of an uncapac-
itated problem, as noted by many others, including
Manne (1957). This is our motivation not to generate
problems with too many items.

Next we present results of the 2PCLS instances
using three different distance approaches: the L,, L,,
and L, norms. Table 1 summarizes the results for
these instances (I indicates the number of items),
where the LP bound obtained by separating the (£, S)
inequalities (see, e.g., Pochet and Wolsey 2006) is indi-
cated by XLP, and IP shows the optimal integer solu-
tion for different instances. The same 2PL value is
attained for all problem instances by all the three
approaches, indicating that the 2PL bound closed the
gap of all two-period instances that we tested. The
number of cuts needed for each different norm (indi-
cated by #C) is also provided for comparison, as well
as the average number of columns generated per iter-
ation (indicated by #col).

As the number of cuts indicates, the Euclidean
norm is often more efficient than the linear norms,
in the sense that it generates a reduced number of
cuts, especially for bigger instances. The superiority
of the Euclidean norm can also be seen from the
rate of convergence; i.e., Euclidean generates approx-
imately half the number of columns per iteration
compared to the infinity norm, which is the clearly
more efficient linear approach. In addition, it is worth
noticing that although X** is only a relaxation of a
two-period capacitated lot-sizing problem (CLSP), we
are able to completely close the gap for the above
two-period instances. Finally, all approaches gener-
ate more columns on average when the number of
items increases, which happens because the number
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Table 1 Separation of 2PCLS Instances Using All Three Approaches

L [® L2
Instance / XLP IP 2PL #G #col #G #col #GC #col
2pcls01 3 17.033 25 25 11 38.08 8 41.44 19 27.06
2pcls02 3 12.6253 19 19 13 40.29 7 43.88 7 24.38
2pcls03 3 76.5345 104 104 5 51 3 26.25 1 14
2pcls04 2 14.7674 19 19 4 14 2 10 1 25
2pcls05 3 38.39 52 52 8 26.11 6 43.14 4 20.8
2pcls06 3 117375 173 173 5 26.33 6 43.71 5 2017
2pcls07 2 36.5 43 43 2 14 1 15 1 7
2pcls08 2 21.45 26 26 7 14.63 2 17.67 2 8.67
2pcls09 2 129 153 153 2 17 3 19.5 3 8.75
2pcls10 3 17.6539 24 24 1 48 3 27.5 1 14
2pcls1t 3 71.7209 102 102 4 19.2 1 23.5 1 35
2pcls12 3 46.68 69 69 4 12 1 22 2 13.67
2pcls13 4 85.6256 113 113 7 41 7 72.75 9 35.27
2pcls14 4 70.2961 81 81 6 52.71 8 81.89 5 40
2pcls15 4 541848 74 74 6 49.43 3 65 1 255
2pcls16 4 34.0844 39 39 6 61 6 69.29 4 38.2
2pcls17 5 164.858 211 211 39 79.87 19 135.35 14 63.73
2pcls18 5 57.0825 97 97 34 97.97 10 81.18 6 48.14
2pcls19 6  115.131 150 150 23 96.91 6 105 1 45
2pcls20 6 59.2412 89 89 34 133.03 1 137.83 5 64.5

of extreme points increases exponentially with the
number of items.

5.2. Multiperiod Problems

The computational results of the previous section
indicate a significant potential for improving the
lower bounds of CLSPs. In this section, we demon-
strate computationally that the gap closed by the two-
period closure algorithm in multiperiod problems can
be substantial, and competitive or superior to the gap
closed by other state-of-the-art approaches. Similar to
other approaches that investigate the lower bound
improvement by optimizing over a closure (Balas
and Saxena 2008) or, more generally, by employing
a computationally heavy algorithm (Bergner et al.
2015), our framework needs to reach further compu-
tational maturity until it can be time efficient enough
to be embedded in modern solvers. We therefore
focus on obtaining the best lower bounds possible,
possibly at the expense of CPU times, to gain a
thorough understanding of multiperiod, multi-item,
single-level, big-bucket relaxations. For the sake of
completeness, we report average CPU times for each
experiment and detailed computational results in the
online supplement (available as supplemental mate-
rial at http://dx.doi.org/10.1287/ijoc.2016.0712) that
accompanies this paper. Although a comparison with
other lower bounds found in the literature can indi-
cate the theoretical strength of each methodology,
benchmarking CPU times across different implemen-
tations has to be taken with a grain of salt, as it
might lead to incorrect conclusions. Before present-
ing numerical results, we first discuss some important

implementation details and potential numerical issues
pertinent to our approach.

5.2.1. Computational Considerations. The fre-
quent generation of cuts with fractional coefficients
that may not have an exact representation in floating
point arithmetic can cause numerical issues. This is a
pertinent issue to the generation of deep cuts and is
also the reason commercial solvers refrain from gen-
erating many rounds of MIR cuts (Cook et al. 2009).
To circumvent this problem, Chvatal et al. (2013)
use the rational solver they developed in Applegate
et al. (2007). In addition, they provide a floating point
implementation of their method to compare their
results with other studies. In this paper we develop
a floating point implementation, as the development
of an exact rational solver is beyond the scope of our
research. This is also in line with our primary aim of
this paper, i.e., to show the effectiveness of the cuts
generated using the framework.

In experiments with two-period instances it was
found that the Euclidean norm L, exhibits impor-
tant numerical issues, e.g., being very sensitive to
some control parameters used, although it converges
faster than the other norms. In contrast, the L; norm
exhibits the slowest convergence but has the most
stable numerical performance. To strike a balance
between computational convergence and numerical
accuracy we utilize the L, norm in the remainder of
the paper; it has both a fast convergence and overall
a stable numerical performance.

5.2.2. Implementation Details. Given a fractional
point, we call Algorithm 2 that generates NT —1
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two-period cuts from subproblems {1,2},{2,3},...,
{NT —1,NT}, and then apply the (¢, S) inequalities.
We iteratively apply Algorithm 2 and (¢, S) inequali-
ties until the resulting fractional point can no longer
be separated, i.e., the two-period projections of the
fractional solution belong to the corresponding two-
period closures, or until a time limit is reached. Note
that even if some two-period closure does not gener-
ate a cut during a particular iteration, it might gen-
erate a cut in a subsequent iteration. This is because
the definition of X*' depends on the setup vari-
ables of the point to be separated, which is updated
after each round of two-period and (¢, S) cuts. We
have noticed however that the cuts coming from two-
period closures that have not generated cuts in pre-
vious iterations tend to be weak. Therefore, when a
two-period subproblem cannot separate a point we
abort the separation subroutine for that particular
subproblem. Initially, we solve the column generation
subproblems to feasibility instead of optimality and
apply cuts in the form (27) instead of (25). When no
more cuts can be generated, we solve the subprob-
lems to optimality. This two-mode strategy offers an
improved convergence when compared to the text-
book column-generation implementation. An advan-
tage of our framework is that we can generate valid
cuts without solving the subproblem to optimality.
Regular column-generation algorithms have to add
all the columns that price out in order to guaran-
tee that the resulting relaxation is valid. This is be-
cause column-generation algorithms work with inner
approximations of the relaxed feasible region, whereas
cutting planes are outer approximations (Bergner et al.
2015). We also add all subproblem columns that are
found to price out in each iteration. Finally, to keep
numerical issues to a minimum, we change the default
scaling settings of Xpress to include row, column, and
Curtis-Reid scaling (Curtis and Reid 1972).

5.2.3. Trigeiro Instances. First we compare the
lower bounds obtained by the two-period closure

with other approaches using six instances taken from
the data set of Trigeiro et al. (1989), which are often
used by researchers in the area as benchmark prob-
lems. Although a comparison based on six instances
offers limited conclusions, the fact that these instances
have been widely used (Miller et al. 2000, Jans and
Degraeve 2004, Van Vyve and Wolsey 2006, de Araujo
et al. 2015) allows us to obtain an indication of how
the strength of the two-period closure lower bound
compares to that of other approaches.

The results of Table 2 show that the two-period clo-
sure can close a considerable amount of gap, espe-
cially when it is combined with cuts generated by the
Xpress solver. In particular, it seems that the obtained
lower bound is stronger when the number of items
is small relative to the number of periods (instances
G30, G62, and Gb53). To interpret this finding, we
note that a result from Manne (1957) implies that the
solution of the LP relaxation of the per-item Dantzig-
Wolfe decomposition of CLSP is a good approxima-
tion of the optimal solution when the number of items
is large compared to the number of capacity con-
straints. Since the lower bound obtained from the
per item decomposition formulation of Manne (1957)
and from the use of (¢, S) inequalities is the same,
the application of (¢, S) inequalities in problems with
a large number of items leads to an LP relaxation
that is a good approximation of the optimal solu-
tion. Therefore, separating the two-period projections
of a fractional point, which is already a good approx-
imation of the optimal solution, does not improve
the lower bound as much as it does in instances
with fewer items, where the improvement is more
profound. We note that the average CPU time for
instances with a small number of items is 333 seconds;
this increases considerably as the number of items
increases, to 2,772 and 10,800 seconds for 12 and 24
items, respectively.

5.2.4. Siiral Instances. Next, we report results on
a subset of instances utilized from Siiral et al. (2009).

Table 2 Trigeiro Instances: 2PL Results Without (2PL) and with Xpress Cuts (X2PL) Compared to Preceding
Inventory (PI) Relaxation of Miller et al. (2000), Dantzig-Wolfe (DW) Decomposition Based on Single-Period
Relaxations of Jans and Degraeve (2004), Approximate Extended Formulation with XPRESS Cuts (XAEF) of
Van Vyve and Wolsey (2006), and Optimal IP Solutions (OPT)

G30 (6-15) G62 (6-30) G53 (12-15) G69 (12-30) G57 (24-15) G72 (24-30)
XLP 37,201 60,946 73,848 130,177 136,366 287,753
Pl 37,319 61,150 73,929 130,292 136,388 287,811
DW 37,382 61,205 73,945 130,338 136,418 287,824
XAEF 37,469 61,294 74,230 130,335 136,417 287,828
2PL 37,329 61,081 74,183 130,251 136,372 287,771
X2PL 37,432 61,232 74,295 130,337 136,374 287,810"
OPT 37,721 61,746 74,634 130,596 136,509 287,929

Notes. The values of (DW) of Jans and Degraeve (2004) for instances G57 (24—15) and G72 (24-30) are obtained through Lagrangean
relaxation. t = Terminated due to time limit. Time limit = 10,800 seconds.
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Table 3 Average Integrality Gap Calculated as ((zys — 2,5)/2.5)%, Using the Best Known Upper

Bound Across All Three Methods

Homogeneous Heterogeneous
NI-NT Instances LR PD X2PL NI-NT Instances LR PD X2PL
12-10 10 42 22 4 12-10 10 29 15 3
12-15 9 29 19 9 12-15 9 22 14 6
12-30 5 24 20 12 12-30 5 20 15 10
24-10 10 20 12 7 2410 10 16 8 4
24-15 10 20 13 8 24-15 10 18 9 7
24-30 5 30 20 17 24-30 5 31 21 17
Average 28 17 8 Average 22 13 7

Notes. LR denotes the Lagrange relaxation approach of Siiral et al. (2009) and PD denotes the period decomposi-
tion bound of de Araujo et al. (2015). A time limit of 10,800 seconds was imposed.

The authors constructed new instances by modify-
ing the instances of Trigeiro et al. (1989). In particu-
lar, they consider problems without setup costs and
divide the data set into instances with unit inven-
tory cost (called homogeneous), and into instances
with nonunit inventory cost (called heterogeneous).
The integrality gaps reported in their paper are sig-
nificantly larger than those of the original problems
and therefore constitute a good test bed for lower
bounding techniques. The lower bounds of Siiral et al.
(2009) are obtained by solving the Lagrange dual
of the facility location formulation using subgradi-
ent optimization. We compare the strength of the
lower bound obtained by the two-period closure with
their approach, and also the period decomposition
approach of de Araujo et al. (2015). Table 3 summa-
rizes the comparison of these three different meth-
ods by presenting the root integrality gaps. We refer
the interested reader to the online supplement for
detailed results for all instances.

The results presented in Table 3 suggest that the
gap closed by the two-period closure cuts can be
quite considerable in many cases, although superior
lower bounds come at the cost of higher CPU time
(7,900 seconds for X2PL and a few seconds for the
other two methods). In particular, we attain better
average integrality gaps than the LR for any tested
number of items and periods, and a better over-
all average integrality gap than the period decom-
position approach (PD), which generates stronger
bounds than LR. Since integrality gaps are calculated
using the best upper bound found from all algo-
rithms, our approach generates the most competitive
lower bounds for homogeneous and heterogeneous
instances. Although the other two approaches, LR and
PD, in contrast, return improved lower bounds in het-
erogeneous instances, our method still delivers bet-
ter lower bounds thanthese methods. The consistent
performance of X2PL indicates that the lower bound
quality is not affected by the input structure and that

it is more robust than the two other methods consid-
ered.

5.2.5. More Trigeiro Instances. To further inves-
tigate the strength of the two-period closure lower
bound, we performed additional computational
experiments on the X data set of Trigeiro et al. (1989).
This data set consists of 180 instances of 10 products
and 20 periods each, with varying levels of demand
variability, EOQ capacity utilization, time between
orders, and average setup times. More information on
this data set can be found in Trigeiro et al. (1989).
We excluded the instances for which the gap was
simply closed by (¢, S) inequalities. Table 4 presents
the integrality gap obtained by the two-period clo-
sure, compared to the gap obtained by Pimentel et al.
(2010) and de Araujo et al. (2015), the two most recent
approaches that have considered this data set. We
refer the interested reader to the online supplement
for detailed results for all instances.

We see that the difference of the branch-and-price-
based methods of Pimentel et al. (2010) and de Araujo
et al. (2015) and the strength of the cuts generated by
the two-closure procedure is even more profound for
this data set. The average gap is just above 1%, more
than 40% improvement over Pimentel et al. (2010) and
17% improvement over de Araujo et al. (2015). More
importantly, our approach seems to be the most effec-
tive in some instances with large gaps. In particular,
in sets X11419 and X11429, which have the top aver-
age gaps across all methods (with better gaps of PD,
7.07% and 4.99%, respectively), our algorithm deliv-
ers the best gaps of 5.70% and 4.85%, respectively. In
terms of CPU times, PD is the fastest approach, as it
needs an average 42 seconds of CPU time to complete
when using a time limit of 150 seconds; Pimentel and
X2PL are slower, with 2,309 and 1,787 seconds, respec-
tively. We note that a direct comparison of CPU times
is not meaningful, as different software platforms and
technologies were used.
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Table 4 Average Integrality Gaps of the Decomposition Approaches of
Pimentel et al. (2010), de Araujo et al. (2015), and X2PL for the Trigeiro X Data Set

Instance group Pimentel PD X2PL Instance group Pimentel PD X2PL
X11119 1.54 3.13 1.59 X12119 1.73 3.46 1.77
X11128 0.1 0.11 0 X12127 0.02 0.06 0
X11129 2.53 2.87 1.4 X12128 0.29 0.55 0.16
X11217 0.08 0.07 0.02 X12129 1.14 0.92 0.47
X11218 0.41 0.24 0.16 X12217 0.17 0.17 0.06
X11219 2.38 2.47 1.85 X12218 0.63 0.59 0.37
X11227 0.09 0.03 0.03 X12219 2.75 2.51 1.75
X11228 0.33 0.29 0.23 X12227 0.15 0.11 0.04
X11229 3.05 2.07 2.09 X12228 0.46 0.28 0.17
X11417 0.47 0.22 0.21 X12229 3.24 1.92 1.73
X11418 2.25 0.98 0.90 X12417 1.09 0.56 0.52
X11419 10.37 7.07 5.70 X12418 1.82 0.86 0.78
X11427 0.98 0.25 0.28 X12419 5.97 4.25 5.04
X11428 4.78 0.95 1.13 X12427 0.59 0.27 0.37
X11429 9.6 4.99 4.85 X12428 3.91 1.39 1.4
X12117 0.05 0.05 0 X12429 8 3.51 4.04
X12118 0.2 0.18 0 X11118 0.03 0.07 0
Average 2.09 1.45 1.20

Notes. Each X row reports the average gap of five instances, excluding those whose gap closed by the (¢, S)
inequalities. The gap is calculated as (2,5 — 2,5)/Zys, Where the upper bound is calculated by each method invidually.
We note that Pimentel et al. (2010) do not report individual lower or upper bounds but gaps, and therefore we
cannot use a common upper bound to calculate an integrality gap across all methods.

6. Conclusions
We have presented a new methodology that can sig-
nificantly improve traditional lower bounds for the
lot-sizing problems by generating cuts from two-
period subproblem relaxations. An important advan-
tage of the framework is that is does not require
the study of families of valid inequalities or refor-
mulations, and to our knowledge, this is an original
approach in the lot-sizing literature from this per-
spective. A side benefit of our methodology is that
the automatic generation of valid inequalities is an
invaluable tool toward the study of their structure
and of their strength. This is currently investigated
in a companion paper (Doostmohammadi et al. 2016).
From a practical viewpoint, our computational results
show that the lower bound improvement resulting
from two-period subproblem cuts is comparable or
superior to methodologies such as column generation
(de Araujo et al. 2015) and LR (Stiral et al. 2009).
Different distance approaches have proven useful
to generate cuts and improve lower bounds signif-
icantly, particularly for small problems of the test
set 2PCLS. From the aspect of computational effi-
ciency, the Euclidean approach achieves significant
convergence rates compared to linear norms studied,
although it might easily cause numerical issues. As
the use of floating arithmetic might be limiting for cut
generation processes, an interesting future direction
of research is the improvement of the computational
stability of our approach. Moreover, it would also be
interesting to experiment with various computational

strategies, e.g., have a pool of extreme points that
could be used in subsequent iterations.

Although the application context of our methodol-
ogy is capacitated lot sizing, the same principle can be
applied readily to any other MIP problems. A matter
of ongoing research is the development of an algo-
rithm that automatically selects substructures of MIP
formulations that are expected to generate deep cuts.
An interesting relevant study is the work of Chvatal
et al. (2013), which investigates generating local cuts
for general MIP problems. Although the impact of
these cuts was not always obvious, the paper dis-
cusses a number of effective computational strate-
gies that could provide significant improvements.
This provides a motivation for future research inves-
tigating extending our framework to general MIP
problems.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /ijoc.2016.0712.
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