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A note on a multi-period profit maximizing model for retail

supply chain management

Wilco van den Heuvela∗, Albert P.M. Wagelmansa†

a Faculty of Economics, Erasmus University Rotterdam, Econometric Institute,

P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

Abstract

In this note we present an efficient exact algorithm to solve the joint pricing and inventory

problem for which Bhattacharjee and Ramesh (2000) proposed two heuristics. Our algorithm

appears to be superior also in terms of computation time. Furthermore, we point out several

mistakes in the paper by Bhattacharjee and Ramesh.

Keywords: Inventory; Pricing; Dynamic programming

1 Introduction

In a recent paper Bhattacharjee and Ramesh (2000) consider a joint pricing and inventory model

for a monopolistic retailer who is dealing in a single product. For a given planning horizon the

retailer wants to maximize his profit considering revenue and all relevant costs. Bhattacharjee and

Ramesh propose two heuristic algorithms to solve this problem. In this note we show that the

problem can be solved to optimality in an efficient way. We do this by applying a method already

proposed by Thomas (1970) for a similar problem. Furthermore, we point out some mistakes in

the paper of Bhattacharjee and Ramesh.

The remainder of this note is organized as follows. In section 2 we describe the joint pricing

and inventory model and we give a mathematical formulation. In section 3 we give the main

results presented by Bhattacharjee and Ramesh (2000) and we point out some mistakes. In

section 4 we present the exact method proposed by Thomas (1970) and we apply this method to

the Bhattacharjee and Ramesh case.
∗Corresponding author. Tel.: +31-10-4081321, Email: wvandenheuvel@few.eur.nl
†Email: wagelmans@few.eur.nl
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2 Problem description

Bhattacharjee and Ramesh (2000) consider the following joint pricing and inventory model. There

is a monopolistic retailer dealing in a single product over a finite time horizon. At the beginning

of each period ordering and pricing decisions are made. This means that in each period a different

price can be set. For each order made by the retailer there is a fixed ordering cost and variable

purchasing cost. Holding cost is incurred for carrying inventory from a period to the next period.

Furthermore, it is assumed in the paper that demand satisfies the following equation

d(p) = βp−α, (1)

where β is a constant, p is the price and α > 1 is the demand elasticity. Finally, it is assumed

that price in each period t satisfies pmin ≤ pt ≤ pmax. We will assume that all demand has to be

satisfied, i.e., loss of demand is not allowed. Before giving the mathematical formulation, we note

that the mathematical programming formulation of this problem presented in Bhattacharjee and

Ramesh (2000) is incorrect. This can be seen by taking qt = 0 for all periods, which is always

optimal in their formulation (see p. 588 formula (2.2)–(2.6)).

Using the following notation,

T = model horizon

K = fixed ordering cost

c = per unit purchase cost

h = holding costs per unit per period

qt = ordered quantity in period t

It = ending inventory in period t,

the problem can be formulated as follows

max
∑T

t=1 d(pt)pt − C(D(p))

s.t. pmin ≤ pt ≤ pmax t = 1, . . . , T
(2)

where
C(D(p)) = min

∑T
t=1 Kδ(qt) + cqt + hIt

s.t. It = It−1 − d(pt) + qt t = 1, . . . , T

qt, It ≥ 0 t = 1, . . . , T

I0 = 0

with

δ(x) =





0 for x = 0

1 for x > 0.

and D(p) is the demand vector, i.e., D(p) = [d(p1), . . . , d(pT )].
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In problem (2) we maximize the total revenue minus total cost over all periods, such that price

is bounded from above and below. If we set pmin = 0 and pmax = ∞, then price is not restricted

in the model. The total cost is represented by C(D(p)), which is a ‘standard’ Wagner-Whitin

problem (see Wagner and Whitin (1958)). We minimize ordering, purchasing and holding cost,

such that demand is satisfied and order quantity and ending inventory are non-negative in each

period. Furthermore, we may assume without loss of generality that starting inventory is zero.

3 Main results presented in Bhattacharjee and Ramesh (2000)

We first discuss two claims by Bhattacharjee and Ramesh that are false.

Bhattacharjee and Ramesh claim that for a profit-maximizing firm it is always profitable to

meet total demand. This means that shortage cost can be ignored and only the model with no

loss of demand needs to be considered. In the proof of this results the authors use the fact that by

increasing price in case of a shortage, there is an increase in revenue and a saving in shortage cost.

However, later they assume that pmin ≤ pt ≤ pmax. This is in contradiction with the proof where

it is assumed that price can always be increased. In the following 1-period example we show that

it can be optimal to have loss of demand.

Example 1 Consider a 1-period problem with K = 0 and with c− s > pmax, where s > 0 is the

shortage cost per item. The total profit can be found by

max (p− c) min{q, d(p)} − s max{0, d(p)− q}
s.t. q ≥ 0

pmin ≤ p ≤ pmax

(3)

Rewriting (3) we have

max (p− c + s)min{q, d(p)} − sd(p)

s.t. q ≥ 0

pmin ≤ p ≤ pmax.

(4)

Because of the assumption, we have that p − c + s < 0 and because d(p) is decreasing, it follows

immediately from (4) that it is optimal to set q = 0 and p = pmax. So in this example it is optimal

to have loss of demand.

Furthermore, Bhattacharjee and Ramesh claim that the maximum profit function for a single

period in a subplan is concave. In the next section, however, we will prove that the maximum

profit function for a single period has a shape as shown in figure 1, i.e., the function is not concave

on the whole interval, but it is convex for p > p̂.

Bhattacharjee and Ramesh propose two heuristic algorithms (algorithm I and II) to solve the

problem. To justify the application of heuristics, they refer to the exponential nature of the
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profit

p

6

-
p∗ p̂

Figure 1: maximum profit function for a single period of a subplan

problem and the characteristics of the maximum profit function. Indeed there are 2T−1 possible

ordering policies (assuming positive demand in period 1), but this is also the case in the classical

Wagner-Whitin problem (see Wagner and Whitin (1958)) which can be solved in polynomial time.

Moreover, in both heuristics there is a predetermined value r, which defines the maximum length

of a subplan to be considered. For such a subplan all (2r−1) ordering policies are generated, which

means that the heuristics have a running time which is exponential in r. Furthermore, this also

means that the heuristics may perform poorly if the optimal size of a subplan is larger than r. To

determine the performance of their heuristics, Bhattacharjee and Ramesh (2000) used complete

enumeration to calculate optimal values for some 5-period and 10-period problems. The worst case

deviation from optimality of algorithm I was more than 28%. Algorithm II performed somewhat

better with a worst case deviation of more than 18%, which is still quite large.

In the next section we will show that the problem can be solved to optimality in polynomial

time.

4 Exact algorithm

4.1 The algorithm

In this section we propose an exact algorithm that has a running time which is quadratic in the

model horizon T . This method was proposed by Thomas (1970) for a similar problem. Thomas

considers a more general problem, where the demand functions and the cost parameters may vary

over time. The proposed method (in the general case) is explained below. Note that Thomas
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presented the model as a minimization problem, whereas we present it as a maximization model.

Define pjt as the price vector pjt = [pj , . . . , pt] and define πjt(pjt) as the total profit if produc-

tion takes place in period j for periods j, . . . , t (we will call this a subplan), i.e.,

πjt(pjt) =
t∑

k=j

[pk − ck −
k−1∑

i=j

hi]dk(pk)−Kj . (5)

Furthermore, we define πjt as the maximum profit for a subplan consisting of periods j, . . . , t, i.e.,

πjt = max
pjt

πjt(pjt). (6)

Thomas (1970) shows that if a setup takes place in period r and the next setup in period s, then

the optimal price for period t = r, . . . , s− 1 must be set at the value which maximizes

(pt − cr −
t−1∑

j=r

hj)dt(pt).

Dependent on the structure of dt(pt) we can calculate this optimal price in an analytical way or,

if necessary, by enumeration. Substituting the optimal prices in (5) we are able to determine πjt.

Then the following forward recursion enables us to find the optimal profit for the whole model

horizon:

F (t) = max
j=1,...,t

(F (j − 1) + πjt) for t = 1, . . . , T with F (0) = 0. (7)

4.2 Application to the Bhattacharjee and Ramesh case

For the Bhattacharjee and Ramesh case we can find the optimum of (5) in an analytical way.

Substituting demand function (1) and the constant cost parameters in (5) we have that

πjt(pjt) =
t∑

k=j

[pk − c−
k−1∑

i=j

h]βpk
−α −K =

t∑

k=j

[pk − c− (k − j)h]βpk
−α −K. (8)

Calculating the first order conditions we have for i = j, . . . , t

∂πjt(pjt)
∂pi

= 0 ⇐⇒ αβcpi
−α−1 + (i− j)hαβpi

−α−1 − (α− 1)βpi
−α = 0

or

p∗i =
α(c + (i− j)h)

α− 1
> 0. (9)

Note that p∗i does not depend on pk for k 6= i, so that the optimal price for each period can be

determined independently. Furthermore, note that p∗i does not depend on t, which implies that

the optimal price for a single period is independent of the length of a subplan. Finally, it is easy

to verify that

∂πjt(pjt)
∂pi

∣∣∣∣
pi

> 0 for pi < p∗i and
∂πjt(pjt)

∂pi

∣∣∣∣
pi

< 0 for pi > p∗i ,
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which implies that the maximum profit function for a single period in a subplan is unimodal and

that it has a unique optimum at price p∗i .

If we analyze the second order partial derivative we find

∂2πjt(pjt)
∂pi

2
= −α(α + 1)β(c + (i− j)h)pi

−α−2 + α(α− 1)βpi
−α−1,

which is equal to zero for

p̂i =
(α + 1)(c + (i− j)h)

α− 1
> p∗i .

It is not difficult to verify that the second order partial derivative is smaller than zero for pi < p̂i

and larger than zero for pi > p̂i. This means that the maximum profit function for a single period

in a subplan is concave for pi < p̂i and convex for pi > p̂i. This shows that the claim made in

Bhattacharjee and Ramesh (2000) about the concavity of the maximum profit function is incorrect.

Because Bhattacharjee and Ramesh assume a constant demand function and constant cost

parameters, it follows from (5), (6) and (9) that

πjt = π1,t−j+1 for all 1 ≤ j ≤ t ≤ T. (10)

This means that it is only necessary to evaluate π1t for t = 1, . . . , T . If we define

p̃t =
α(c + (t− 1)h)

α− 1
,

then we can use recursion formulas (11) and (12) to calculate π1t for t = 1, . . . , T in linear time:

p̃t+1 = p̃t +
αh

α− 1
(11)

π1,t+1 = π1,t + (p̃t+1 − c− th)βp̃−α
t+1 (12)

with

p̃1 =
αc

α− 1
and π11 = (p̃1 − c)βp̃−α

1 −K.

By applying recursion formula (7) and using (10) we can find the optimal total profit. The optimal

prices can be found by using formula (9).

Because F (t) can be determined in O(t) time for a fixed t, it takes O(T 2) time to evaluate F (T ).

So the method proposed by Thomas (1970) is better than the heuristics proposed by Bhattacharjee

and Ramesh in two ways. First, it is an exact algorithm instead of a heuristic. Second, the method

appears to require a much lower running time. We implemented the algorithm in C++ and it took

less than a second to solve a 1000-period problem instance, whereas Bhattacharjee and Ramesh

only report results for their heuristics for problem instances with a maximum of 15 periods. Note

that Thomas (1970) proved a planning horizon theorem that can be used to further speed up

computations.

We note that the above method does not take into account the restriction pmin ≤ pt ≤ pmax.

However, this restriction does not make the problem harder to solve. Including this restriction,
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the price that maximizes (8) for each period i must be equal to pmin, pmax or p∗i . This means

that we have a constant number of possible optimal prices. So the (theoretical) running time of

the algorithm is not affected by this restriction.

Finally, Bhattacharjee and Ramesh (2000) also consider the case of perishable goods. They

assume that the goods may perish after a fixed number of periods, say m. It is also easy to

extend Thomas’ method with this additional feature. Clearly, it is never optimal to order for

more than m periods, because this will lead to unnecessary purchasing and holding cost. So for

finding F (t) in (7) we do not need to consider the term F (j − 1) + πjt for all j = 1, . . . , t, but

only for j = max{1, t −m + 1}, . . . , t. It is easy to verify that the running time of the algorithm

is reduced to O(mT ) in the case of perishable goods.
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