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SUMMARY

Dendritic cells (DCs) play a key role in orchestrating
adaptive immune responses. In human blood, three
distinct subsets exist: plasmacytoid DCs (pDCs) and
BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-
like CD16+ monocyte has been reported. Although
RNA-expression profiles have been previously
compared, protein expression data may provide a
different picture. Here, we exploited label-free quanti-
tativemass spectrometry to compare and identify dif-
ferences in primary humanDC subset proteins. More-
over,we integrated theseproteomicdatawithexisting
mRNA data to derive robust cell-specific expression
signatureswithmore than400differentially expressed
proteins between subsets, forming a solid basis for
investigation of subset-specific functions. We illus-
trated this by extracting subset identificationmarkers
and by demonstrating that pDCs lack caspase-1 and
only express low levels of other inflammasome-
relatedproteins. In accordance, pDCswere incapable
of interleukin (IL)-1b secretion in response to ATP.

INTRODUCTION

Dendritic cells (DCs) play a critical role in the initiation of antigen-

specific adaptive immune responses to foreign antigens and the
Cell Report
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maintenance of tolerance to self-antigens (reviewed by Balan

et al., 2014; Reynolds and Haniffa, 2015; Vu Manh et al., 2015).

DCs harbor the unique capacity to process and present antigens

complexed to either major histocompatibility complex (MHC)

class I or MHC class II and thereby can activate naive T cells.

It is because of this ability that DCs have become of interest

as tools or targets for cancer immunotherapy to initiate or boost

tumor immunity.

Several DC subsets can be distinguished that differ in their

ability to sense and respond to pathogens and in the type of im-

mune response they initiate. Two main types of naturally occur-

ring blood DCs have been characterized: plasmacytoid DCs

(pDCs) and myeloid DCs (mDCs) (reviewed by Vu Manh et al.,

2015). pDCs play a key role in antiviral immunity, through their

ability to produce large amounts of type I interferons (IFNs).

mDCs represent the ‘‘traditional’’ antigen-presenting DCs that

can be further subdivided based on the expression of BDCA3

(CD141) and CD1c (BDCA1). Each can be defined through the

expression of different pattern recognition receptors (PRRs;

e.g., Toll-like receptors [TLRs] and C-type lectin receptors

[CLRs]) and the secretion of a distinct set of cytokines upon stim-

ulation (reviewed by Balan et al., 2014; Reynolds and Haniffa,

2015; Vu Manh et al., 2015). Whereas CD1c+ mDCs express

most TLRs, except TLR9, BDCA3+ mDCs express mainly

TLR3. Furthermore, BDCA3+ mDCs express the CLR CLEC9a,

which facilitates the uptake of dying cells and subsequent

cross-presentation of derived antigens to T cells (Ahrens et al.,

2012; Jongbloed et al., 2010; Poulin et al., 2010). Finally,

although not considered a genuine DC, a CD16+ subset of
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monocytes, coined ‘‘non-classical monocytes,’’ can be found in

blood with DC-like properties (Ziegler-Heitbrock et al., 2010). So

far, these DCs subsets have been mostly characterized and iso-

lated based on cell-specific (surface) markers and functionally

compared for abilities such as antigen presentation, cytokine

secretion, and migration (Balan et al., 2014; Reynolds and Ha-

niffa, 2015; Vu Manh et al., 2015). These functional assays, how-

ever, can be biased as they provide information on only a few a

priori determined functional responses to a limited set of activa-

tion stimuli and antigens. Although highly valuable in investi-

gating the abilities of each subset under specific circumstances,

these assays may leave more untraditional unique characteris-

tics of each subset undetected. To overcome this, unbiased an-

alyses of mRNA expression of human and mouse DC subsets

have been performed and proven to be highly informative (Lind-

stedt et al., 2005; Manh et al., 2013; Miller et al., 2012; Robbins

et al., 2008). Comparative transcriptome analysis delivered the

most compelling evidence for the current thought that the human

BDCA3+ mDC is the counterpart of the murine CD8a+ DC,

despite the lack of conservation of identification markers (Rob-

bins et al., 2008). In addition, the Robbins et al. (2008) study

demonstrated that the CD16+ DC-like cell, based on its full tran-

scriptional program, resembles a monocyte more than a DC.

Although these studies have provided valuable insight into the

relation between DC subsets in mice and humans, RNA expres-

sion does not always reflect protein expression. Since not all

RNA is translated, RNA and proteins may have dissimilar half-

lives and kinetics, and protein levels may also be regulated by

post-transcriptional modifications. Furthermore transcriptomics

does not take into account pre-existing protein levels, alterations

in translation efficiency, or protein stability. Therefore, transcrip-

tome expression data may have limited predictive power on

which proteins really define each DC subset and may have left

important phenotypic and functional differences unnoticed. To

confirm and supplement the existing transcriptome analysis,

we have performed a comprehensive mass-spectrometry

(MS)-based quantitative proteome comparison of rare blood

DC subsets. Furthermore, we integrated protein and RNA data

to derive expression signatures that give a more reliable and

comprehensive account of expression differences than can be

achieved from using either technique alone. The expression

signatures represent an easily accessible resource to derive

hypotheses on subset-specific functions. To illustrate this, we

validated five of the identified differentially expressed surface

markers and showed that caspase-1 is completely lacking in

pDCs, which is accompanied by restricted expression of other

inflammasome components and affects the function of these

cells.

RESULTS

Quantitative Proteomics of Primary Human DC Subsets
For proteome characterization, four DC-(like) subsets (i.e., pDCs,

CD1c+ mDCs, BDCA3+ mDCs, and CD16+ monocytes) were

isolated from apheresis products obtained from healthy volun-

teers by magnetic-bead-based cell separation. The purity of

the isolated cells and presence of cross-contamination were as-

sessed by flow cytometry (Figure S1). For pDCs, CD1c+ mDCs,
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and CD16+ monocytes, high purity (R95%) was obtained for all

subsets without major cross-contamination or presence of B or

T cells in two out of three donors. For a third donor, medium-

high purity was obtained (78%–92%). For BDCA3+ mDC

samples, most cells were BDCA3+CD11c+ (87%–95%). We

observed however, a variable number of CD11c+ cells express-

ing intermediate levels of BDCA3 (BDCA3int) in the isolate

together with cells positive for CD1c+, indicating cross-contam-

ination of this sample with CD11c+CD1c+BDCA3int cells. There-

fore, we consider these samples to be BDCA3+ mDC enriched

rather than pure. Nevertheless, we reasoned that this sample is

still of use to derive BDCA3+ mDC-specific protein expression,

which may be achieved by relating the BDCA3+ mDC-enriched

samples to the (BDCA3+-depleted) CD1c+ mDC samples. All

12 (three donors times four subsets) samples were, first, each

separated using SDS-PAGE, fractionated into 20 fractions, and

subjected to in-gel trypsin digestion (yielding 240 fractions in

total). The fractions were measured in triplicate, using highly

sensitive liquid chromatography-tandem MS (LC-MS/MS) for

maximal protein coverage. After peptide identification and

sequence alignment, proteins were quantified using the label-

free quantification (LFQ) algorithm in MaxQuant (Cox et al.,

2014). The Pearson correlation was very high (r = 0.97 ± 0.02) be-

tween technical replicates and high (r = 0.93 ± 0.02) between bio-

logical replicates (e.g., the same subsets from different donors),

indicating good reproducibility across measurements and do-

nors (Table S1). In total, we identified 42,723 non-redundant

peptide sequences corresponding to 4,196 protein groups

(Table S2; Table S3). Requiring a protein to be expressed in at

least two donors for each subset, we identified 2,351, 2,197,

2,009, and 1,883 proteins in pDCs, BDCA3+ mDCs, CD1c+

mDCs, and CD16+ cells, respectively, and 2,823 proteins overall

(Figures S2A–S2D; Tables S2 and S3). Next, using the CORUM

database of protein complexes, we inspected the identification

of components of protein complexes essential for cell homeo-

stasis (e.g., mitochondrial complexes and proteasomes), to

assess the completeness of the proteome in each cell type

(Luber et al., 2010). We recovered most components, indicating

that our proteome covered the majority of DC proteins (Fig-

ure S2E). Coverage was best in pDCs and BDCA3+ mDCs,

yielding 70%–100% of essential protein complexes, and was

least in CD16+ cells (40%–100%; Figure S2E).

We then evaluated the assignment of key identification

markers for each subset. No markers specific for other major

leukocyte populations (e.g., T, B, or NK cells) were identified,

suggesting a lack of substantial contamination with other leuko-

cytes. In contrast, we readily identified the unique expression of

at least one previously reported subset-specific protein for each

subset, including TLR7, TLR9, CLEC4C, NRP1, and IL3RA for

pDCs; IDO and HLA-DO for BDCA3+ mDCs; and CD16

(FCGR3A) for CD16+ monocytes (Table 1). Importantly, CD1c

was uniquely detected in CD1c+ mDCs but not in BDCA3+

mDCs. For BDCA3+ DCs, we did not immediately identify

more traditional markers such as BDCA3 (CD141, THBD),

CLEC9a, TLR3, NECL2, and XCR1 using the default peptide

identification threshold (false discovery rate [FDR] = 0.01).

Possibly, this was due to a low expression, high hydrophobicity,

or heavy glycosylation of these molecules. Nevertheless, we



Table 1. Subset Identification Markers Uniquely Identified

Peptides

D1 D2 D3

pDCs

TLR9 5 10 11

IL3RA (CD123) 2 3 7

CLEC4C (BDCA2) 0 2 4

TLR7 0 4 7

NRP1 (BDCA4) 1 0 1

CD1c+

CD1C 2 2 2

BDCA3+

IDO1 8 5 10

TLR3 3 0 0

THBDa (BDCA3) 1 0 2

CLEC9Aa 0 1 0

CD16+

FCGR3A (CD16) 3 3 3

Shown here are the numbers of peptides identified and quantified

for each marker protein for each subset. Shown markers were uniquely

identified in the indicated subset.
aPeptides were detected by releasing the FDR threshold of 0.01, and

spectra were manually validated.
found a unique expression of IDO and HLA-DO in BDCA3+

mDCs; they were previously reported to be highly expressed

in especially this subset (Crozat et al., 2010; Hornell et al.,

2006). Upon more close inspection of peptides, however, TLR3

was found in one BDCA3+ mDC sample, and CLEC9A and

BDCA3 (CD141/THBD) were found in two samples. Because

these peptides were detected with low confidence (FDR = 1),

we generated MS/MS spectra and manually verified this result

(data not shown). Together, the expression patterns of estab-

lished marker proteins demonstrate the ability of our approach

to discern the distinct identity of each subset.

We also obtained quantitative information using the LFQ algo-

rithm in MaxQuant (Cox et al., 2014). First, we used this informa-

tion to compare protein expression in the three main populations

of blood DC-like cells (i.e., pDCs, CD1c+ mDCs, and CD16+

monocytes), excluding the BDCA3+ mDC samples. We calcu-

lated average expression differences between any two subsets

and visualized these in volcano plots (Figure 1A; see Table S4

for complete statistical analysis). It should be noted that here

and in the remainder of the manuscript, only proteins expressed

in at least two donors in one of the cell types being compared are

included. Pairwise comparisons further highlighted subset iden-

tity, showing specific expression of CD11c (ITGAX/ITGB2) in

myeloid cells and overexpression in the pDCs of several proteins

with a reported pDC-specific expression and function (e.g.,

PACSIN1, SLC15A4, IRF7, TCF4, BCL11A, BLNK, and CD2AP)

(Blasius et al., 2010; Cisse et al., 2008; Crozat et al., 2010; Esashi

et al., 2012; Marafioti et al., 2008; Robbins et al., 2008; Röck

et al., 2007; Wu et al., 2013).

Next, we determined the relation between cell types by hierar-

chical clustering (Figure 1B). Based on all proteins, subsets clus-
tered together mostly on cell type rather than on donor. Further-

more, CD16+monocytes and CD1c+mDCs that share amyeloid

origin were closer to each other than to pDCs. Hierarchical clus-

tering of samples based on 1,218 differentially expressed pro-

teins (DEPs) between the three subsets showed a separation

similar to that seen when using all proteins and indicated six

main groups of DEPs that showed higher or lower expression

in one of the three subsets (Figure 1C). Next, we assessed how

our protein data related to mRNA data. We merged our protein

data with a previously published and publicly available microar-

ray dataset of the same subsets (Lindstedt et al., 2005). For one

of the donors that was used for MS analysis, we also acquired

sufficient material to perform RNA sequencing on the same sam-

ple (Table S5). We first assessed the overall correlation between

microarray-derived RNA data and proteome data for each cell

type and found this to be low, similar to our previous observa-

tions (Figure 1D; r = 0.28–0.31) (Buschow et al., 2010). The cor-

relation between RNA-sequencing data and proteome data for

the matched donor was slightly better (0.37–0.45). Cross-corre-

lation of this RNA-sequencing dataset to the protein data of the

two other donors, however, produced a similar correlation,

indicating that the different RNA analysis method was mostly

responsible for the improved correlation (Table S6). To make a

more in-depth comparison of the RNA data to our proteome da-

taset possible, we transformed both microarray-derived RNA

and protein expression data to relative expression levels for

each dataset separately (Z scores, mean to 0, variance to 1).

From the merged dataset, we yielded 742 DEPs for which also

RNA data were available. Again, we used the merged RNA and

protein data for these 742 DEPs as input for hierarchical clus-

tering (Figure 1E; Table S6). The combined protein and RNA

samples grouped the distinct subsets from the two datasets

together, indicating that, despite moderate correlation between

absolute expression levels, there was a good correlation be-

tween RNA and protein expression patterns (Figure 1E). Impor-

tantly, the clustering was determined neither by biological varia-

tion between donors nor by technical variation between omics

technologies.

Generation of Protein-Based Expression Signatures and
Networks
Protein and RNA data were not consistent in all cases, and pro-

teome analysis put forward DEPs for which differences at the

RNA level were only minor or for which no probes had been pre-

sent on the microarray chips. Next, we set out to visualize were

exactly proteome analysis pointed to not previously appreciated

differences between DC subsets and the cases in which RNA

and protein were in agreement. For the six groups of DEPs asso-

ciated with the three subsets (Figure 1C), we generated protein

expression signatures based on four different evidence levels:

(I) subset-specific protein expression/absence, supported by

RNA data; (II) differential protein expression between subsets,

supported by RNA data; (III) subset-specific protein expres-

sion/absence, not supported by RNA data; and (IV) differential

protein expression between subset, not supported by RNA

data (Figure 2; Supplemental Experimental Procedures). Pro-

teins included in signatures based on level I and level II evidence

behaved consistently in RNA and protein datasets. Thus, these
Cell Reports 16, 2953–2966, September 13, 2016 2955
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Figure 1. Comparison of Protein Expression between Three Main Blood DC-like Subsets and Integration with RNA Data

(A) Volcano plots depicting protein expression differences (x axis: log2 fold change) and the significance level (y axis:�log10 t test p value). Colored dots represent

proteins with a fold change of >2 and p < 0.05; proteins in gray did not meet these criteria. Proteins specific to one of the two subsets compared were assigned a

fold change of infinity. See also Table S4.

(B) Unsupervised hierarchical clustering of DC subsets using all proteins (1 � Pearson correlation).

(C) Clustering of subsets based on 1,218 DEPs (based on three-group one-way ANOVA, p < 0.05, or specific expression).

(D) Pearson correlation between protein and RNA (microarray) expression levels.

(E) Hierarchical clustering of merged transcriptome and proteome data (DEPs only).

See also Figures S1 and S2 and Tables S1, S2, S3, S4, S5, and S6.
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proteins are, thus, likely mostly regulated at the transcriptional

level. Importantly, for these proteins, proteomics data confirmed

RNA-identified differences between subsets. Many established

markers were present in these two groups: e.g., IL3RA, CLEC4C,

TLR9, CD1c, and FCGR3B (CD16). Supported by two lines of

evidence, other proteins in these groups now represent high-

potential subset identification markers and include CD163 for

CD1c+ mDCs and SIGLEC10 for CD16+ monocytes (Figure 2;

Table S7). In contrast, proteins included in signatures based on

level III and level IV evidence reflect less consistency between

protein and RNA expression patterns or a lack of transcriptional

information/ChIP (chromatin immunoprecipitation) annotation.

Proteins in these evidence groups represent the added value

of the proteome analysis (Figure 2). Finally, proteins that were

put forward as differentially expressed by RNAdata (differentially

expressed genes; DEGs), and that were also present in our pro-

tein dataset but were not confirmed as differentially expressed

by proteomics, are listed in Table S8.

Together, we confirmed differential or unique expression of

253 proteins between the three subsets previously observed

by RNA expression (pDCs, 109 higher/65 lower; CD1c+ mDCs,

17 higher/1 lower; CD16+ monocytes, 34 higher/27 lower) that

could also be derived from the transcriptome data (levels I

and II; Figure 3; Table S7, including lower confidence DEPs).

In addition, 143 proteins were found to be differently/uniquely

expressed between subsets based on proteomics data only

(levels III and IV), which hold yet-unappreciated differences be-

tween DC subsets (pDCs, 75 higher/14 lower; CD1c+ mDCs,

10 higher/8 lower; CD16+ monocytes, 10 higher/26 lower).

To obtain insight into the overall function of signature proteins,

we performed a protein-protein interaction (PPI) analysis and

a functional annotation (FA) analysis (Figure 3; Table S9). PPI

analysis demonstrated good connectivity between proteins

high in pDCs (0.73 connection per protein), proteins low in

pDCs (1 connection per protein), those high in CD1c+ mDCs

(0.85 connection per protein), and those low in CD16+ mono-

cytes (0.64 connection per protein) (Figure 3; Table S9). Much

less connectivity was found between proteins high in CD16+

monocytes (0.25 connection per protein) and those low in

CD1c+ mDCs (no connections were identified).

In the CD1c+mDC high signature, the MCM family and acces-

sory proteins that regulate the cell cycle were found by proteome

analysis only and were highly connected, suggesting a unique

role for this complex in CD1c+ mDCs (Figure 3; Table S9). This

complex was completely absent fromCD16+monocytes. Prote-

ome analysis, but not RNA analysis, also pointed out that CD1c+

mDCsmore highly expressed both the alpha-chain and the beta-

chain of HLA-DQ, which may, thus, be of specific importance in

this DC subset. The largest gene signatures were obtained for

pDCs and mostly mapped to expected pDC functions, including

TLR and IFN signaling (e.g., TLR9, IRF7, IRF8, andSMAD3), but
Figure 2. Cell-Specific Gene Signatures Derived from Proteomics and

(A–F) Protein-based gene signatures for higher or lower expression in the three m

four evidence levels: (I) specific protein expression/absence with RNA suppo

expression without RNA support; and (IV) differential protein expression without R

two donors only but were included because of RNA support (e.g., ‘‘rescued’’). The

and donor. See also Table S7.
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also to endoplasmic reticulum (ER), Golgi, and vesicular trans-

port, indicating high protein biosynthesis in this cell type

(e.g., SEC24A, SEC31A, SEC11C, PDIA5, PDIA4, ERGIC3, and

LMAN1) (Figure 3; Table S9). Intriguingly, IFN and TLR signaling

pathway constituents were highly expressed in pDCs by both

RNA and protein analyses, while proteins involved in protein

biosynthesis and vesicular transport were, in many cases, highly

expressed at the protein level only (Figure 3). The proteins absent

from pDCs (e.g., shared by CD1c+ mDCs and CD16+ mono-

cytes) were also highly connected and related to cell adhesion

and protrusion formation (e.g., ZYX, MSN, PAK1, VASP, and

FSCN1; Table S9), in line with the rounder non-adhesive pheno-

type of pDCs. Furthermore, pDCs hardly expressed or even

lacked TLR2, which detects bacterial lipoproteins, several

proteins connected to bactericidal endo/phagosomes (e.g.,

HMOX1, NCF2, and RAB27a) and CASP1 (caspase-1), a crucial

enzyme in the inflammasome-induced cleavage of interleukin

(IL)-1b in macrophages and DCs (Figure 3; Table S9).

BDCA3+ versus CD1c+ mDCs
Next, we investigated the difference between the two myeloid

DC subsets. Despite the presence of CD1c+ mDCs in the

BDCA3+ mDC samples, mDC samples were largely devoid of

other blood cells (Figure S1). Importantly, CD1c+ mDC samples

were devoid of BDCA3+ mDCs. A direct comparison between

the two sets of samples could, therefore, still reveal important

expression differences between mDC subsets (Figure 4; Table

S4). As expected, the number of DEPs between BDCA3+

mDCs and CD1c+ mDCs was much less than between other

subsets, reflecting the presence of CD1c+ cells in both samples

and/or their more common origin. Similar to what we found

before, protein only moderately correlated to RNA expression

(r = 0.31 formicroarray or r = 0.38 for RNA sequencing; Figure 4B;

Table S6). Despite the contamination with CD1c+ mDCs, the

BDCA3+ mDC protein samples clustered with the microarray

RNA samples of BDCA3+ mDCs, indicating that the cross-

contamination did not mask BDCA3+ mDC subset identity (Fig-

ure 4C). Finally, we derived DEPs between BDCA3+ mDCs and

CD1c+mDCs, using integration of protein andRNAdata (Figures

4D and 4E). DEPs included IDO1, FUCA1, CD93, HLA-DOB, and

TAP2 (high in BDCA3 mDCs) and also SIRPA, SIGLEC9, and

CASP1 (high in CD1c+ mDCs). Several more DEGs by microar-

ray showed a similar trend at the protein level but did not meet

our stringent criteria (e.g., IRF8, CAMK2D, and TAP1; Table

S8). Others were not found differentially expressed by prote-

omics or even showed an opposite trend.

Validation of DEPs
To demonstrate the resource value of our integrated proteome

and RNA analysis, we selected five cell-surface receptors for

validation. We chose cell-surface receptors because these
Transcriptomics

ain subsets derived from merged proteome and transcriptome data based on

rt; (II) differential protein expression with RNA support; (III) specific protein

NA support. Proteins marked by asterisks were specifically identified by MS in

heatmap colors represent relative protein expression (LFQ) in each DC subset
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may reflect the ability of each subset to recognize dangerous

agents, and could aid subset identification by flow cytometry.

Using the latter technique, we confirmed differential expression

of all five receptors: SIRPa and Siglec-9 were found on CD16+

monocytes and CD1c+ mDCs only; CD93 was especially high

on BDCA3+ mDCs; Siglec-10 was unique to CD16+ monocytes;

and, finally, CD163 was high on CD1c+ mDCs (Figure 5).

Absence of Caspase-1 in pDCs Reflects Low
Inflammasome Activity
Previous transcriptome analysis already indicated that pDCs

express lower levels of transcripts for proteins involved in anti-

bacterial innate immune responses (Crozat et al., 2009). It was

not clear whether this also translated to protein expression and

functionality. Our proteome data now confirm that pDCs express

lower levels of or lack TLR2, NAIP, HMOX, RAB27A, NCF2, and

CASP1 (Figure 2; Table S7). Caspase-1, a crucial player in

inflammasome function, was abundantly present in CD1c+

mDCs and CD16+ cells but was lacking in pDCs (Figure 6A).

In the BDCA3+ mDC-enriched sample, caspase-1 was present

but at much lower levels than in CD1c+ mDCs. Importantly, pro-

tein quantification was based on 6, 11, or even 13 peptides for

BDCA3+ mDCS, CD1c+ mDCs, or CD16+ monocytes, respec-

tively, while in pDCs, only a single peptide was mapped to cas-

pase-1 that was not adequate for quantification, suggesting the

absence or very low expression of this protein (Table S3). To

further substantiate these MS data, we analyzed protein expres-

sion by western blot (WB). Caspase-1 was readily detected in

CD1c+ mDCs and CD16+ monocytes but was present only at

very low levels in pure BDCA3+ mDCs and not at all detected

in pDCs (Figures 6B and S4). It should be noted that we did

detect low levels of caspase-1 in pDCs isolated by magnetic

beads but that protein expression was completely absent

when cells were sorted to high purity (>99%) by flow cytometry

(Figures 6 and S4). We next wondered whether pDCs would up-

regulate caspase-1 when activated. To test this, we incubated

cells with the TLR7/8 ligand R848. Cell activation by TLR stimu-

lation upregulated caspase-1 in CD1c+ mDCs but did not in

pDCs (Figures 6C and S4). CD16+ monocytes also did not

further increase caspase-1 expression upon TLR stimulation.

Upregulation of caspase-1 in BDCA3+ DCs could not be tested,

becausewe did notmanage to isolate a sufficient number of cells

to test both resting and stimulated conditions by WB.

Next, we were interested in the expression of other

components of the inflammasome pathway. Only very few other

proteins of this pathway were identified by MS: NAIP was also

detected in all subsets except for pDCs, while the inflamma-

some-component NLRC4 was identified in CD16+ monocytes

only (Figure 2; Table S7). Exploration of the publicly available

RNA expression data, however, indicated that low expression

in pDCs was not restricted to caspase-1 but also included

most other inflammasome components, as stated previously

(Crozat et al., 2009). CD16+ monocytes, in contrast, expressed
Figure 3. Signature PPI Networks Highlight Functional Differences bet

(A–E) Signatures were used as input for STRING PPI analysis (confidence level, 0.

indicated in blue were included based on protein and RNA data, and red proteins

Table S7). Important biological functions of sections of each network are indicat
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high levels of inflammasome constituents, CD1c+ mDCs ex-

pressed more moderate levels, and BDCA3+ mDCs expressed

low levels (Figure 6D). Together, these data strongly suggest

an overall low presence of inflammasome-related proteins in

pDCs. Consequently, pDCs may not be equipped to recognize

inflammasome-activating stimuli or to synthesize and secrete

IL-1b in response. All components of the pathway downstream

of ATP recognition were low in pDCs compared to the other sub-

sets (P2XR7, PANX, NLRP3, CARD8, PYCARD, and CASP1; Fig-

ure 6D), indicating that pDCsmay not be equipped to respond to

this danger-associated molecule. ATP can trigger the cleavage

and secretion of IL-1b, provided that necrosis factor kB (NF-

kB) signaling is present at the same time to induce pro-IL-1b

expression. As a proof of principle, we tested the ability of

subsets to secrete IL-1b in response to ATP, preceded by 4-hr

or overnight R848 stimulation to trigger NF-kB signaling via

TLR7/8. Upregulation of activation marker CD83 and/or produc-

tion of tumor necrosis factor a (TNF-a) was observed in all DC

subsets, demonstrating functional NF-kB signaling (Figures

6E–6G). IL-1b secretion was restricted to especially CD1c+

mDCs and CD16+ mDCs. Thus, these data confirm that

pDCs, indeed, lack IL-1b secretion in response to ATP. Of

note, IL-18, which also requires caspase-1 for secretion, was

readily secreted by ATP/R848-stimulated CD1c+ mDCs but

not by pDCs (Figure S4). BDCA3+ mDCs were clearly activated

by R848, as judged by the increased expression of CD83, yet

hardly produced any cytokines (including IL-1b) under these

circumstances (Figures 6E–6G).

These experiments together demonstrate that the inflamma-

some/caspase-1 pathway is present and functional in CD1c+

mDCs and CD16+ monocytes but not in pDCs. Concordantly,

pDCs do not secrete IL1b in response to ATP.

DISCUSSION

This study describes an elaborate proteome analysis of human-

blood-derived DC subsets and provides DC subset-specific pro-

tein signatures. This dataset holds unique information on the dif-

ferences between DC subsets and reveals which differences,

previously identified using mRNA, are really present at the pro-

tein level. Previously, Luber and colleagues analyzed the prote-

ome of murine DC subsets (Luber et al., 2010), but large-scale

proteomics of human DCs was thus far restricted to in-vitro-

generated monocyte-derived DCs (moDCs) and CD1c+ mDCs

(Buschow et al., 2010; Schlatzer et al., 2012). The latter study re-

ported 725 proteins expressed in resting and TLR-stimulated

CD1c+ mDCs together, of which the majority (75%) was also

identified, in the present analysis, in resting CD1c+ mDCs, along

with a further 1,500 other proteins. The present dataset thus rep-

resents, to the best of our knowledge, the most complete quan-

titative proteome analysis of human DC subsets and provides a

unique side-by-side comparison of these cells from the same

donors.
ween Subsets

4) to visualize possible connections between proteins. (See Table S9.) Proteins

were pointed out by protein data only (see also Experimental Procedures and

ed (based on FA analysis). See also Table S9.
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Figure 4. Pairwise Comparison of BDCA3+ mDCs and CD1c+ mDCs

(A) Volcano plot depicting protein expression differences (x axis: log2 fold change) and the significance level (y axis: �log10 t test p value) as in Figure 1.

(B) Pearson correlation between protein and RNA (microarray) expression levels.

(C) Hierarchical clustering of merged Z-score transcriptome and proteome data of DEPs.

(D and E) Heatmaps of the relative protein expression (LFQ) of proteins identified to be specifically (levels I and III) or differentially (level II or IV; by t test) expressed

in either mDC subset, based on protein and RNA evidence (levels I and II) or protein evidence only (levels III and IV).

See also Figures S1 and S2 and Tables S1, S2, S3, S4, S5, and S6.
We report on nearly 400 differentially expressed proteins be-

tween the three main blood DC-like subsets. In addition, despite

the presence of CD1c+ mDCs in the BDCA3+ mDC sample, we

identify over 60 proteins differentially expressed between mDC
subsets, of which we subsequently validated four by flow cytom-

etry. The protein-based signatures we derived provide insight

into possible functional differences between subsets. Although

we cannot discuss in detail all the functional implications of the
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Figure 5. Confirmation of Differentially Expressed Surface Markers

(A) Representative histogram of the expression of indicated surface markers by specific antibodies (lines) or isotype controls (gray area) on the four subsets.

(B) Bar diagrams summarizing the fluorescence level measured by flow cytometry (FC) in four independent healthy donors (isotype control antibody signal

subtracted; mean ±SEM). All markers were found differentially expressed by one-way ANOVA (p < 0.05) and between pairs of subsets with indicated significance

by post hoc Tukey’s multiple comparison test. *p < 0.05; **p < 0.01; *** < 0.001.

(C) Bar diagrams of mean LFQ values, as obtained by MS analysis (three donors; mean ± SEM).
expression differences we have identified, several warrant

further discussion. First, we demonstrate the abundant expres-

sion of the MCM family of proteins in CD1c+mDCs, but not in
2962 Cell Reports 16, 2953–2966, September 13, 2016
CD16+ monocytes or in pDCs. This protein family is essential

for cell division. Thus, our data support previous findings that,

in contrast to pDCs, a fraction of the blood mDC population
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Figure 6. Absence of Caspase and Inflammasome Activity in pDCs
(A) Diagrams of LFQ values for caspase-1, as obtained by MS analysis (three donors; mean).

(B and C) Western blot analysis of DC subsets isolated by flow sorting from two independent donors lysed (B) directly after isolation or (C) after overnight

stimulation with R848. Shown are the signals for caspase-1 and actin probed sequentially on one membrane.

(D) Heatmap of log2 intensity values by microarray of probes mapping to inflammasome components (three donors).

(E) Flow cytometry evaluation of surface expression of CD83 on immature or R848/ATP-stimulated (4 hr, 45 min) subsets. Results of a representative donor are

shown.

(F and G) Secretion of indicated cytokines by pDCs and CD1cmDC after stimulation for 4 hr (F) or overnight (G) with R848, followed by 45min with ATP, by ELISA.

Mean values ± SEM from at least four donors. Significance was evaluated by a two-tailed Mann-Whitney test. *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-

significant. See also Figures S3 and S4.
may still be able to expand, possibly reflecting an incomplete dif-

ferentiation state (Segura et al., 2012). Our data suggest that, like

pDCs, CD16+ cells may completely lack the potential to expand.

The remaining capacity of mDCs to divide is interesting from a

clinical perspective, as it implies that mDCs after isolation may

have the potential to be further expanded. This concept may

be of interest for the development of immunotherapies for cancer

or chronic inflammatory diseases, where obtaining sufficient cell

numbers is still a major hurdle.

Second, HLA (human leukocyte antigen) molecule expression

demonstrated some marked differences between subsets, sug-

gesting subset-specific antigen presentation. CD1c+ mDCs not

only highly express antigen-presenting CD1c but also more

highly expressed HLA-DQ, as compared to pDCs and CD16+

monocytes (but not HLA-DR). In agreement with a previous
report, BDCA3+ cells uniquely expressed HLA-DO (Hornell

et al., 2006). For these HLA types, either a clear (HLA-DO) or a

unique (HLA-DQ versus HLA-DR) biological function remains to

be defined. Thus, the consequence of this subset-specific

expression remains elusive.

Third, many ER- andGolgi-located proteins were expressed at

higher levels, specifically in pDCs. Previously, it has been shown

that, in mice, pDCs and, to a lesser extent, CD8a+ DCs (the

supposed murine equivalent of BDCA3+ DCs), display a consti-

tutive activation of the unfolded protein response (UPR), as was

indicated by the alternative splicing of XBP1 (Iwakoshi et al.,

2007). The increase in UPR was required for ER expansion to

facilitate rapid IFN-a biosynthesis and is reminiscent of plasma

cell differentiation (Iwakoshi et al., 2007). The high levels of ER

and glycoprotein biosynthesis and transport proteins that we
Cell Reports 16, 2953–2966, September 13, 2016 2963



describe in pDCs support the paradigm that immature pDCs are

already prepared for rapid IFN-a synthesis. Proteins related to

intracellular protein transport machinery are also overtly ex-

pressed in immature pDCs, and these may provide important

clues to unravel the largely unknown IFN-a secretory route.

From the identified DEPs, we confirmed five cell-surface re-

ceptors by flow cytometry: SIRPa and Siglec-9, which bind to

CD47 and sialic acids, respectively, were found to be highly ex-

pressed on both CD16+ monocytes and CD1c+ mDCs. These

receptors share a capacity to limit DC function and inflammation

and are exploited by bacteria and malignant cells to evade im-

mune responses (Läubli et al., 2014; Ohta et al., 2010; Barclay

and Van den Berg, 2014). Lack of these receptors may render

cells insensitive to this evasion. CD1c+ mDCs uniquely ex-

pressed CD163, a scavenger receptor and PRR for bacteria

(Kristiansen et al., 2001; Fabriek et al., 2009). Siglec-10, which

we found selectively expressed on CD16+monocytes, is a puta-

tive adhesion receptor and PRR that has been reported to be ex-

pressed on CD16+ but not CD16� monocytes, as well as on

moDCs (Ancuta et al., 2009; Kivi et al., 2009; Li et al., 2001; Ste-

phenson et al., 2014). Finally, BDCA3+ mDCs highly expressed

CD93, which was reported to mediate phagocytosis and clear-

ance of apoptotic cells and, as such, may act as an accessory

to CLEC9A (Nepomuceno and Tenner, 1998; Norsworthy et al.,

2004).

Our proteome data provided strong evidence for a lack of cas-

pase-1 in pDCs. We validated this by WB and show data to sug-

gest that pDCs have a diminished presence of inflammasome

pathway constituents. Concordantly, pDCs did not respond to

inflammasome activator ATP, while CD1c+ mDCs and CD16+

monocytes did. Our data contradict those of several previous

studies reporting on IL1-b secretion by pDCs (Hurst et al.,

2009; Yu et al., 2010). These studies show pDCs to secrete pico-

grams of IL1b per milliliter of culture supernatant in response to

TLR stimulation alone (without inflammasome activation). How-

ever, this level of IL1b is extremely low compared to production

by CD16+ monocytes, which, we found, can secrete over a 100-

fold more (nanograms of) IL1b per milliliter upon TLR and inflam-

masome stimulation. Furthermore, it is conceivable that traces

(e.g., ±1%) of high IL1b-producing cells may be present in these

pDC preparations isolated by magnetic beads, and such cells

can contribute to the low amount of IL1b found to be secreted.

Interestingly, our proteome data also indicated that, although

expression of caspase-1 was readily detected in the BDCA3+-

enriched samples by proteomics, it was lower than in CD1+

mDCs and CD16+ DCs, a result we also verified using highly

pure cells. Indeed, BDCA3+ mDCs responded less to inflamma-

some activation in the presence of TLR7/8 ligand. This stimulus

matured BDCA3+ mDCs but did not induce cytokine secretion.

However, low IL1-b production by BDCA3+ mDCs relative to

CD1c+ mDCs, in response to the potent BDCA3+ mDC-acti-

vating stimulus poly(I:C), has also been reported (Jongbloed

et al., 2010).

Several recent publications have demonstrated that the pDC

hallmarks type I IFN and IRF7 may directly inhibit IL-1b and in-

flammasome activity (Guarda et al., 2011; Salem et al., 2011).

In pDCs, TLR7 activation by hepatitis C virus induced type I

IFN secretion but induced neither IL-1b nor IL-18. In contrast,
2964 Cell Reports 16, 2953–2966, September 13, 2016
TLR7 activation in monocytes induced IL-1b and IL-18, rather

than type I IFN (Chattergoon et al., 2014; Dreux et al., 2012).

Thus, the differentiation program involving IRF7 that allows

pDCs to secrete large amounts of Type I IFN may downregulate

inflammasome pathway constituents, including caspase-1.

Although this causal relation still awaits further experimental

confirmation, this could switch the pDC response to TLR stimu-

lation/NF-kB activation away from IL-1b and toward type I IFNs.

A switch between type I IFNs and IL-1b could serve to prevent

excessive damaging inflammation during antiviral responses.

Taken together, the proteome dataset that we describe pro-

vides a rich resource to solidly establish the phenotypic and

functional capacities of human DC subsets and to decipher

the contribution of each subset to the initiation of immune

responses.

EXPERIMENTAL PROCEDURES

Cells

DCs were isolated from apheresis products obtained from healthy volunteers

after written informed consent was obtained and according to institutional

guidelines and overseen by the local institutional review board (Commissie

mensgebonden onderzoek [CMO]). Peripheral blood mononuclear cells

(PBMCs) were purified via Ficoll density gradient centrifugation (Lucron Bio-

products), followed by magnetic-bead (Miltenyi Biotec) or flow-cytometric

isolation, and were directly lysed for MS or WB analysis or were used in

in vitro experiments (see the following text and Supplemental Experimental

Procedures for details).

LC-MS/MS

In brief: Tryptic peptides were analyzed using LC (Easy-nLC; Thermo Fisher

Scientific) coupled to a 7-T linear ion trap Fourier-transform ion cyclotron reso-

nance mass spectrometer model (LTQ FT Ultra, Thermo Fisher Scientific). See

Supplemental Experimental Procedures for details.

MS Data Processing

Proteinswere identified and quantified from rawmass spectrometric files using

MaxQuant software, version 1.3.0.5 (Cox andMann, 2008). A database search

was performed in the Andromeda search engine (Cox et al., 2011) against the

Human Uniprot database (86,749 entries, June 2012). The protein abundance

was determined by MaxLFQ, as described by Cox et al. (2014). The MS prote-

omics data have been deposited to the ProteomeXchange Consortium via

the PRIDE partner repository with the identifier PRIDE: PXD004678 (Vizcaı́no

et al., 2016). (http://proteomecentral.proteomexchange.org). See Supple-

mental Experimental Procedures for details.

Statistical Analysis of Protein and RNA Data

See the Supplemental Experimental Procedures for details. Statistical analysis

was performed in the R programming environment. Data were visualized

using GENE-E software (http://www.broadinstitute.org/cancer/software/

GENE-E) and BioLayout Express3D (version 3.3) (Theocharidis et al., 2009).

For PPI analysis, we used the STRING PPI web tool (version 10; http://

string-db.org/), and FA analysis was done using the DAVID web tool (https://

david.ncifcrf.gov/).

Western Blotting and ELISA

These were performed according to standard procedures. See Supplemental

Experimental Procedures for details and antibodies used.

In Vitro DC Activation

Isolated DC-like subsets were resuspended in X-VIVO 15 (Cambrex) contain-

ing 2% pooled human serum (Sanquin). pDCs were supplemented with

10 ng/ml recombinant human IL-3 (rhIL-3; Cellgenix). Both cell types were

http://proteomecentral.proteomexchange.org
http://www.broadinstitute.org/cancer/software/GENE-E
http://www.broadinstitute.org/cancer/software/GENE-E
http://string-db.org/
http://string-db.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/


stimulated for 4 hr or overnight with 4 mg/ml R848, followed by 45-min stimu-

lation with 5 mM ATP (Sigma). Culture supernatant was taken for ELISA.
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The accession number for the MS proteomics data reported in this paper is

PRIDE: PXD004678.
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