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Integral Models of Cell Nuclear Organization I	

Already Rabl and Boveri were aware of the obvious fact that the organization of genomes has to be 

consistent from the sequence level to the morphology of the whole cell nucleus. Although they might be 
different in detail their common seem is recursive folding and clustering thereof with variation/

modification and dynamics accounting for different nuclear states and function. 	
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Dynamic and Hierarchical Genome Organization	

The different organization levels of genomes bridge several orders of magnitude concerning space and 

time. How all of these organization levels connect to processes like gene regulation, replication, 
embryogeneses, or cancer development is still unclear? 	
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Selective Chromosome Interaction Capture (T2C)	

T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation 
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the 
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.	




Selective Chromosome Interaction Capture (T2C)	

T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation 
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the 
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.	


HS IGF locus	

~2.1 Mbp	




Selective Chromosome Interaction Capture (T2C)	

T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation 
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the 
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.	


HS IGF locus	

~2.1 Mbp	




Selective Chromosome Interaction Capture (T2C)	

T2C is a novel selective high-resolution high-throughput chromosome interaction capture, in which the relation 
between, region size, resolution, interaction frequency range, and sequencing depth can be designed towards the 
goal of the experiment. T2C reaches the limit of the “genomic” uncertainty principle and statistical mechanics.	


HS IGF locus	

~2.1 Mbp	




Stable Consensus Architecture of Genomes	

Due to the high signal-to-noise ratio of T2C reaching 5-6 orders of magnitude interaction maps reveal 

definitely an extremely high degree of similarity between different species, cell types, or functional states, thus 
functional differences are variation of a stable theme persisting through the cell cycle	
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 HRV-HEK293T cohesin cleaved	
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Fine Structure of Loop Aggregates/Rosettes	

Depending on the resolution, the loops within a domain an their arrangement in loop aggregates/rosettes can be 

shown as well as the details of how the loops are organized at their base as well as their aggregated rosette 
core: parallel loop fibres exist at the loop base with ~6kbp and these form the core.	
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Simulation of Single Chromosomes	

The 30 nm chromatin fiber is modeled as a polymer chain with stretching, bending, and excluded volume 

interactions. Monte Carlo and Brownian Dynamic methods lead to thermodynamical equilibrium configurations.	

All models form chromosome territories with big voids and different chromatin morphologies. Experimental 
territory and subcompartment diameters agree best with an MLS model with 80 to 120 kbp loops and linkers.	


RW/GL  model,  loop  size  5  Mbp,  after 
~80.000 MC and 1000 relaxing BD steps. 
Large loops intermingle freely and reach out 
of the chromsome territory, thus forming no 
distinct features like in MLS model.	


MLS model,  loop size  126kbp,  linker  size 
126  kbp,  after  ~50.000  MC  and  1000 
relaxing  BD  steps.  Here  rosettes  form 
subcompartments as separated organization-
al and dynamic entities.	
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Metaphase  starting  configuration  with 
ideogram bands in red/green, linker in grey.	
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Simulation of Whole Nuclei with all 46 Chromosomes	

Starting with some metaphase arrangement of cylindrical chromosomes, interphase nuclei with a 30 nm fiber 

resolution and at thermodynamical equilibrium are created in 4 steps using simulated annealing and Brownian 
Dynamics methods with stretching, bending, excluded volume and a spherical boundary interactions.	


The chromosome territory position depends on their metaphase position and is reasonably stable.	
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Simulated Interaction Maps	

Simulated spatial distance maps as well as simulated interaction maps result in the representation of every 

parameter variation, and also exhibit the fine-structure describing the loop base as well as rosette core. Thus 
from the quasi-fibre to the entire chromosome the architecture can be understood in detail.	
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Variation of a Consensus Architecture Scheme	

The difference between different cell types, functional states or even species is minor despite depending on the 
region. From this, the chromatin fibre conformation, loop position, and their association into loop aggregates/ 

rosettes can be derived, simulated by polymer models and finally visualized.	
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DNA Sequence Organization	

Determination of the concentration fluctuation function C(l) and its local slope the correlation 

coefficient δ(l) are an indication for the i) degree of long-rang scaling behaveour, ii) general multi-
scaling, and iii)  fine-structure features, which all are connected to all levels of genome organization and 

especially also the three-dimensional genome architecture. 	
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Scaling Analysis	

Scaling analysis show again the entire bandwidth of architectural effects in an aggregated manner. Beyond, 
they show the scale bridging of the structures and the evolutionary holistic entanglement between the 3D 

architecture and the DNA sequence organization itself.	
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From Fiber Topology to Nuclear Morphology	

Chromosome territories form in the RW/GL and the MLS model. However, only the MLS model leads 

distinct subcompartments and low chromosome and subcompartment overlap. Best agreement is reached 
for an MLS model with 80 to 120 kbp loops and linkers in nuclei with 8 to 10 µm diameter.	


The simulated nuclear morphology reflects the chromosome fiber topology of different models in detail.	
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In vivo Morphology & Chromatin Distribution	

The stable expression of fusions between histones and autofluorescent proteins and the integration into 

nucleosomes allows the minimal invasive investigation of the structure and dynamics of chromatin.	

The clustered morphology in detail favour an MLS like chromatin topology.	




Counting Nucleosomes In Vivo	

Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy (FCS) and 

confocal laser scanning microscopy (CLSM) reveals not only the free unbound histone component but also the 
concentration in absolute numbers of bound histones. Thus, the absolute concentration distribution of histones 

can be determined and reveals again the typical expected distribution of aggregated chromatin loops.	
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Conclusion	

The compacted chromatin quasi-fibre, folds into loop-aggregates connected by a linker !	


Every structural level of nuclear organization including its dynamics is	

connected and represented in all the other levels in a holistic systems genomics manner.	


Ø  	
 The 3D genomes architecture consists of chromatin quasi-fibres (5±1 nuc. / 11 nm, Lp of 80-120 nm), 
forming stable loop aggregates/rosettes (~40-100 kbp loops, ~60 kbp linkers).	


Ø  	
 The  dynamics  of  genomes  follows  the  3D  genome  architecture  in  detail  and  determines  in  an 
inseparable entanglement with the architecture genome function.	


Ø  	
 From the single base pair to the entire cell nucleus, all genomic levels represent all other levels and by 
modification a code is present and used to store genetic information.	


Ø  	
 Genomes have a consensus organization with only small  variation from the basic theme on each 
compaction level of the genome and these small variations determine genome function.	


Ø  	
 Genome organization and function cannot be determined or understood from a single organizational 
level but only in a holistic systems genomics manner integrating all parts of the system. 	


Ø  	
 The genome behaves on the basis of a genomic statistical mechanics with a genomic	

uncertainty principle attached !	
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Abstract 
 
 
The dynamic three-dimensional chromatin architecture of genomes and the obvious co-evolutionary connection 
to its function – the storage and expression of genetic information – is still, after ~170 years, a central question 
of current research. With a systems genomics approach using a novel selective high-throughput chromosomal 
interaction capture (T2C) technique together with quantitative polymer simulations and scaling analysis of 
genomic structures and the DNA sequence, we determined the architecture of genomes with unprecedented 
molecular resolution and dynamic range from single base pair entire chromosomes: for several genetic loci of 
different species, cell type, and functional states we find a chromatin quasi-fibre exists with 5±1 nucleosome per 
11 nm, which folds into 40-100 kbp loops forming aggregates/rosettes which are connected by a  ~50 kbp 
chromatin linker. Polymer simulations using Monte Carlo and Brownian dynamics approaches confirm T2C 
results and allow to predict and explain additional experimental findings. This agrees also with novel dynamics 
information from fluorescence correlation spectroscopy (FCS) analysis of chromatin relaxations in vivo. Beyond, 
we find a fine-structured multi-scaling behaveour of both the architecture and the DNA sequence which shows 
for the first time, that genome architecture and DNA sequence organization are directly linked – again in detail 
on the base pair level. Hence, we determined the three-dimensional organization and dynamics for the first time 
in a consistent system genomics manner from several angles which are all in agreement as well as additionally 
also with the heuristics of the research of the last 170 years. 
Consequently, T2C allows to reach an optimal combination of resolution, interaction frequency range, 
multiplexing, and an unseen signal-to-noise ratio at molecular resolution and hence at the level of the “genomic” 
uncertainty principle and statistical mechanics, this opens the door to architectural sequencing of genomes and 
thus a detailed understanding of the genome with fundamental new insights with perspectives for diagnosis and 
treatment. 
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