Background Small size at birth and rapid growth in early life are associated with increased risk of cardiovascular disease in later life. Short children born small for gestational age (SGA) are treated with growth hormone (GH), inducing catch-up in length. Leukocyte telomere length (LTL) is a marker of biological age and shorter LTL is associated with increased risk of cardiovascular disease.
Objectives To investigate whether LTL is influenced by birth size, childhood growth and long-term GH treatment.
Methods We analyzed LTL in 545 young adults with differences in birth size and childhood growth patterns. Previously GH-treated young adults born SGA (SGA-GH) were compared to untreated short SGA (SGA-S), SGA with spontaneous catch-up to a normal body size (SGA-CU), and appropriate for gestational age with a normal body size (AGA-NS). LTL was measured using a quantitative PCR assay.
Results We found a positive association between birth length and LTL (p = 0.04), and a trend towards a positive association between birth weight and LTL (p = 0.08), after adjustments for gender, age, gestational age and adult body size. Weight gain during infancy and childhood and fat mass percentage were not associated with LTL. Female gender and gestational age were positively associated with LTL, and smoking negatively. After adjustments for gender, age and gestational age, SGA-GH had a similar LTL as SGA-S (p = 0.11), SGA-CU (p = 0.80), and AGA-NS (p = 0.30).
Conclusions Larger size at birth is positively associated with LTL in young adulthood. Growth patterns during infancy and childhood are not associated with LTL. Previously GH-treated young adults born SGA have similar LTL as untreated short SGA, SGA with spontaneous catch-up and AGA born controls, indicating no adverse effects of GH-induced catch-up in height on LTL.

Additional Metadata
Persistent URL dx.doi.org/10.1371/journal.pone.0171825, hdl.handle.net/1765/97863
Journal PLoS ONE
Citation
Smeets, C.C.J, Codd, V, Denniff, M, Samani, N.J, & Hokken-Koelega, A.C.S. (2017). Effects of size at birth, childhood growth patterns and growth hormone treatment on leukocyte telomere length. PLoS ONE, 12(2). doi:10.1371/journal.pone.0171825