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Abstract

An early development in testing for causality (technically, Granger non-causality) in the
conditional variance (or volatility) associated with financial returns, was the portmanteau statistic
for non-causality in variance of Cheng and Ng (1996). A subsequent development was the
Lagrange Multiplier (LM) test of non-causality in the conditional variance by Hafner and Herwartz
(2006), who provided simulations results to show that their LM test was more powerful than the
portmanteau statistic. While the LM test for causality proposed by Hafner and Herwartz (2006) is
an interesting and useful development, it is nonetheless arbitrary. In particular, the specification on
which the LM test is based does not rely on an underlying stochastic process, so that the alternative
hypothesis is also arbitrary, which can affect the power of the test. The purpose of the paper is to
derive a simple test for causality in volatility that provides regularity conditions arising from the
underlying stochastic process, namely a random coefficient autoregressive process, and for which
the (quasi-) maximum likelihood estimates have valid asymptotic properties. The simple test is
intuitively appealing as it is based on an underlying stochastic process, is sympathetic to Granger’s
(1969, 1988) notion of time series predictability, is easy to implement, and has a regularity

condition that is not available in the LM test.
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1. Introduction

Although there have been many practical applications of testing causality (technically, Granger
non-causality) of the conditional mean, especially in economics, there have been fewer
applications of testing for causality in conditional higher moments, especially the variance or

volatility associated with financial returns.

An early development was the portmanteau statistic of non-causality in variance of Cheng and Ng
(1996). A subsequent development was the Lagrange Multiplier (LM) test of non-causality in the
conditional variance (technically, in the conditional volatility) by Hafner and Herwartz (2006),
who provided simulations results to show that their LM test was more powerful than the

portmanteau statistic.

This result is not especially surprising as LM tests are typically more powerful than portmanteau
tests, wherein the null hypothesis is well specified but the alternative is not so as to capture a wide
range of departures from the null. On the other hand, the LM test is intended to have high power

of a null hypothesis when the true value of the parameter is close to that given under the null.

While the LM test for causality proposed by Hafner and Herwartz (2006) is an interesting and
useful development, it is nonetheless arbitrary. In particular, the specification on which the LM
test is based does not rely on an underlying stochastic process, so that the alternative hypothesis is

also arbitrary, which can affect the power of the test.

The purpose of the paper is to derive a simple test for causality in volatility that is sympathetic to
Granger’s (1969, 1988) notion of predictability using a VAR time series model, provides regularity
conditions that arise from the underlying stochastic process, namely a random coefficient
autoregressive process, and for which the (quasi-) maximum likelihood estimates have valid

asymptotic properties.

The simple test is intuitively appealing as it is based on an underlying stochastic process, is
sympathetic to Granger’s notion of time series predictability, is easy to implement, and has a
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regularity condition that is not available in the LM test of Hafner and Herwartz (2006), which is

based on an arbitrary specification.

The plan of the paper is as follows. Section 2 provides a simple test for causality in volatility,
Section 3 compares the new test with the LM test of Hafner and Herwartz (2006), and Section 3

gives some concluding comments.

. A Simple Test for Causality in Volatility

Consider the conditional mean of financial returns for commaodity i, as follows:

Vit = EQielle—1) + ;¢ i=12,..,m 1)

where the returns, y;; = AlogP;;, represent the log-difference in financial commodity prices,
P,, I,_, is the information set for all financial assets at time t-1, E(y;:|I;_,) is the conditional

expectation of returns, and ;, is a conditionally heteroskedastic error term.

In order to derive conditional volatility specifications, it is necessary to specify the stochastic
processes underlying the returns shocks, &;;, which may be written as a random coefficient

autoregressive process, as follows:
it = Qit€it-1 + Pje&je—1+ Niey LF ], (2
where

ie~iid(0, @), a; = 0,

¢;~1id(0,a;), a; = 0,

Nie~1id (0, w;), w; = 0,

Nit = el—t/\/h—it is the standardized residual,

h;. is the conditional volatility obtained by setting ¢;, = 0 in (2), namely:



it = Pit€ir—17F Nt (3)
which gives:
E(5i2t|1t—1) = hy= w; + aieizt—l . (4)

The stochastic process given in equation (2) incorporates causality, so that the null hypothesis of
non-causality holds when ¢;, = 0, which is equivalent to a; = 0. The stochastic process can be
extended to asymmetric conditional volatility models (see, for example, McAleer (2014)), and to
give higher-order lags and a larger number of alternative commodities, namely up to m-1, but the
symmetric bivariate process considered here is sufficient to focus the key ideas associated with

causality.
The conditional volatility arising from equation (2) is given as:
E(efilli—1) = hy = w; + azef_y + ajgjzt—l - ®)

Adding first-order lags of h;, and h;, leads to a conditional specification that gives a simple test
for causality in volatility that is sympathetic to Granger’s (1969, 1988) notion of predictability,

namely:
hip = w; + aief_y + ajef_y + Bihye—1 + Bihje_1, (6)

in which @; 20, «; 20, g; € (—=1,1), and g; € (—1,1). The model in equation (6) is a

GARCH(1,1) model for commodity i with volatility spillovers from commodity j.

As the stochastic process follows a random coefficient autoregressive process, under normality
(non-normality) of the random errors, the maximum likelihood estimators (quasi- maximum
likelihood estimators) of the parameters will be consistent and asymptotically normal. For further
details, see Ling and McAleer (2003) and McAleer et al. (2008), who provide general proofs of
the asymptotic properties of multivariate conditional volatility models based on satisfying the
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regularity conditions in Jeantheau (1998) for consistency, and in Theorem 4.1.3 in Amemiya

(1985) for asymptotic normality.
Therefore, a test for causality, or of Granger non-causality, is a test of the null hypothesis:
Hyaj =5;=0, (")
against the alternative hypothesis:
Hi:a;j> 0, g; =0. (8)

The test statistics follows an asymptotic y2(2) distribution under the null hypothesis. Note that

the test is one-sided for a; as it cannot be negative, though it can be conducted as a two-tailed

test, as in Hafner and Herwartz (2006).
It is worth noting that the model of conditional volatility in equation (6) holds under both the null

and the alternative hypotheses as it is a valid conditional volatility equation arising from the

random coefficient autoregressive process in equation (2).

3. Comparison with the LM Test

Using the notation of this paper, the LM test of Hafner and Herwartz (2006) is based on the

specification given as:

€it = MNit \/E\/g_]t ) ©)

where g, is effectively a GARCH(1,1) model for commodity j, namely:

gjt = wj + ajgf_q + Bihje_q, (10)



where wj is set arbitrarily to unity, and g, could be replaced by h;, without loss of generality. The
LM test is a test of the null hypothesis in equation (7), which is equivalent to g, = 1, against the

alternative hypothesis:
Hl: aj * ﬁ] * 0, (11)

which is a two-sided test statistic, and is asymptotically distributed as y2(2) under the null
hypothesis.

It is worth noting that, although the test of the null against the alternative based on equation (9) is
statistically valid, it does not have a clear underlying stochastic process as it is a product of a

definition of the standardized shocks of commodity i, ;¢

Eit = Nit hie ,

and, as stated above, the conditional volatility of commodity j, g, which could be replaced by h;;

without loss of generality.

Moreover, the conditional expectation of £, which is the conditional volatility of &;, in equation

(9), is given by:
hit = hit gj
which holds only under the null hypothesis in equation (7), in which g;. = 1, whereas the

specification underlying the simple test given in equation (6) holds under both the null and the

alternative hypotheses.

4. Conclusion



An early development in testing for causality in conditional variance (technically the conditional
volatility) associated with financial returns, was the portmanteau statistic for non-causality in
variance of Cheng and Ng (1996). A subsequent development was the Lagrange Multiplier (LM)
test of non-causality in the conditional variance by Hafner and Herwartz (2006), who provided

simulations results to show that their LM test was more powerful than the portmanteau statistic.

Although the LM test for causality proposed by Hafner and Herwartz (2006) is interesting and a
useful development, it is nonetheless arbitrary. In particular, the specification on which the LM
test is based does not rely on an underlying stochastic process, so that the alternative hypothesis is

also arbitrary, which can affect the power of the test.

The purpose of the paper is to derive a simple test for causality in volatility that is sympathetic to
Granger’s (1969, 1988) notion of predictability using a VAR time series model, provides regularity
conditions that arise from the underlying stochastic process, namely a random coefficient
autoregressive process, and for which the (quasi-) maximum likelihood estimates have valid

asymptotic properties.

The simple test is intuitively appealing as it is based on an underlying stochastic process, is
sympathetic to Granger’s notion of time series predictability, is easy to implement, and has a

regularity condition that is not available in the LM test.
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