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ABSTRACT: Amyloid polymorphs have become one of the
focal points of molecular studies of neurodegenerative diseases
like Parkinson’s disease. Due to their distinct biochemical
properties and prion-like characteristics, insights into the
molecular origin and stability of amyloid polymorphs over
time are crucial for understanding the potential role of amyloid
polymorphism in these diseases. Here, we systematically study
the fibrillization of recombinantly produced human α-synuclein
(αSyn) over an extended period of time to unravel the origin
and temporal evolution of polymorphism. We follow
morphological changes in the same fibril sample with atomic
force microscopy over a period of 1 year. We show that wild-
type (wt) αSyn fibrils undergo a slow maturation over time
after reaching the plateau phase of aggregation (as detected in a Thioflavin-T fluorescence assay). This maturation, visualized by
changes in the fibril periodicity over time, is absent in the disease mutant fibrils. The β-sheet content of the plateau phase and
matured fibrils, obtained using Fourier transform infrared spectroscopy, is however similar for the αSyn protein sequences,
suggesting that the morphological changes in wt αSyn fibrils are tertiary or quaternary in origin. Furthermore, results from a
reversibility assay show that the plateau phase fibrils do not disassemble over time. Together, the observed changes in the
periodicity distributions and stability of the fibrillar core over time point toward two distinct mechanisms that determine the
morphology of wt αSyn fibrils: competitive growth between different polymorphs during the fibrillization phase followed by a
process wherein fibrils undergo slow maturation or annealing.
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A number of amyloid forming proteins and peptides,
including the amyloid β peptide (Aβ), α-synuclein

(αSyn), and the human islet amyloid polypeptide (IAPP) are
implicated in diseases like Alzheimer’s disease, Parkinson’s
disease, and type II diabetes, respectively.1−3 Identification of
the key factors affecting the conversion of soluble protein
molecules into amyloid form and understanding their role(s) in
disease is important for designing therapeutics. In vitro, most
amyloid forming proteins and peptides spontaneously assemble
into fibrils in a wide range of solution conditions.4−12 In vitro
experiments are thus an important platform to probe the
fibrillization process under diverse conditions and to identify
mechanisms that may influence the aggregation of the
amyloidogenic proteins in vivo.
Fibrillization of soluble amyloidogenic proteins typically

follows a sigmoidal growth curve. The plateau phase in

Thioflavin-T (ThT) fluorescence assay is often assumed to
indicate the equilibrium in the fibrillization reaction. However,
over the past decade, various studies have suggested that the
plateau phase is not a true equilibrium in a fibrillization reaction
and that slow but significant rearrangement of fibrils takes place
over time.12−16 Morphological analysis of fibrils by AFM and
EM at plateau phase typically shows polymorphic fibrils.6,7,17−20

Detailed NMR studies suggest differences in the backbone
conformation, electrostatic interactions, and salt bridges in
different polymorphs of Aβ and αSyn.17,21−24 Thus, morpho-
logical polymorphism is in all likeliness a consequence of
variations in the molecular structure, which in turn arises from
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multiple conformations accessible to the soluble unfolded
protein monomer.
The multiple conformations, based on the energy landscape

theory for protein folding, could be due to a rough funneled
landscape that allows multiple low-energy conformations (local
energy minima) in the early stages of folding.25−27 The multiple
local energy minima are suggested to act as kinetic traps that
stabilize partially folded or misfolded conformations.28,29 The
accessibility of the local energy minima associated with different
amyloid conformations are proposed to be critically influenced
by the aggregation conditions and the protein se-
quence.6,9−12,30,31 Point mutations in a protein sequence
most likely affect the energy landscape resulting in characteristic
aggregation behavior.32,33 Accordingly, in αSyn aggregations, wt
and disease-related mutation sequences are shown to exhibit
distinct aggregation kinetics and morphologies.33−42

In addition to the proposed differences in the conformation
of the proteins leading to distinct fibril morphologies, the
polymorphs have been suggested to exhibit different levels of
toxicity in cell based studies.21,22 Given the observed toxicity
profile of distinct amyloid polymorphs, a growing number of
studies compare the polymorphic behavior of amyloids to the
strain-like properties of prions.21,22,43 Like prions, these
polymorphs show nucleation (nucleated polymerization behav-
ior), templating (seed aggregations), and cell-to-cell trans-
fer.21,22,43−47 Studies on transmission of multiple system
atrophy pathology in a transgenic mouse model with complete
sets of clinical and biochemical markers provide compelling
evidence for the prion-like behavior of αSyn.48,49 However, not
much data is available for the competitive growth of different
polymorphs in αSyn or other amyloid systems at single fibril
level. Competitive growth between prion strains is a hallmark
for phenotype determination and is thus one of the critical
factors determining the physiological effect in vivo.50−52

Longitudinal in vitro studies assessing the relative ratios of
the polymorphs over time are valuable to understand the
dynamic relation between the experimentally observed
morphologies.

In the present study, we systematically investigate and
compare the long-term changes in the fibril morphology of wt
αSyn and the A30P, E46K, and A53T disease mutants at single
fibril level using AFM. The morphology of the helical fibrils was
quantitatively studied by measuring their heights and
periodicities over a period of 6 months, supplemented with
qualitative data at 1 year. Our study provides insight into the
changes in the periodicities of the selected αSyn sequences
during fibrillization and while in storage. At the applied solution
conditions, all the αSyn sequences show polymorphism during
the early phase of fibrillization but convert into a fibrillar
population of similar morphology on reaching the plateau
phase. Moreover, upon long-term storage the periodicities of wt
αSyn fibrils progressively transform into a more relaxed twist,
while those of disease mutants do not change. Thus, in addition
to competitive growth during fibrillization, the wt αSyn fibrils
also undergo a process of maturation or annealing.

■ RESULTS AND DISCUSSION
Polymorph specific features of amyloids associated with
neurodegenerative diseases like Parkinson’s (αSyn) and
Alzheimer’s disease (Aβ) are receiving increasing attention
due to distinct biophysical, biochemical properties, and prion-
like characteristics. Recent studies suggest αSyn to be the first
human prion protein.49 Despite the emerging body of evidence
suggesting αSyn amyloids to be prion-like, little data are
available for the growth of different polymorphs with respect to
each other. To investigate if the αSyn polymorphs, like prions,
grow by competitive growth, we performed aggregation
experiments and followed the relative polymorph populations
in the same sample over a period of 1 year. Also, we compared
the growth of wt αSyn polymorphs with respect to the three
disease associated mutants, A30P, E46K, and A53T, to gain
insight on the effect of single amino acid mutation on
polymorph specificity.

Fibrillization of Wild-type and Disease Mutants. Wild-
type αSyn and the A30P, E46K, and A53T disease mutants
were aggregated from monomers in uniform solution

Figure 1. Upper panels, representative AFM height images of wt αSyn fibrils at different time points. Lower panels, color-coded longitudinal cross
sections of the numbered fibrils in the upper corresponding AFM images. The cross sections depict the periodicities of the selected fibril. Sample
from late lag phase (3 days) shows fibrils with different periodicities. However, fibrils at plateau phase (7 days) have similar periodicities. Fibrils at 3
months exhibit larger periodicities with distinct waviness, while samples of 6 months show nonperiodic fibrils and lateral bundling of fibrils termed as
heterogeneous fibrils. The height scale in the AFM images is linear.
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conditions of 10 mM Tris-HCl, 10 mM NaCl, 0.1 mM EDTA
at pH 7.4 and the fibril formation was followed by a ThT
fluorescence assay. The given solution conditions were chosen
based on our previous study where inclusion of EDTA resulted
in the formation of a homogeneous pool of fibrils at the plateau
phase in the ThT assay for wt and A140C mutant αSyn.53 In a
number of solution conditions the disease mutants of αSyn
have been shown to aggregate faster than the wt.34,35,39 In our
study, A53T fibrillized faster than the other sequences
(Supporting Information Figure S1). The lag time was 1−2
days for A53T, A30P, and E46K, while for wt αSyn it was 2−3
days. Correspondingly, the disease mutants reached the plateau
phase after 4 (A30P and E46K) or 6 days (A53T), while wt
αSyn took around 7 days to reach the plateau.
Fibril Morphology over Time. The aggregations were

performed at 37 °C with shaking and were stored in quiescent
conditions at 4 °C after reaching the plateau phase. The
samples were stored at 4 °C as storage at 37 °C (without
shaking) led to formation of viscous gel-like networks in about
60% of the samples, most likely due to enhanced interfibrillar
interactions.54 Highly viscous samples show clustered fibrils
even on dilution, which cannot be analyzed at single fibril level
by AFM precluding the study of long-term changes. Aliquots of
fibril samples were drawn at different time points for AFM
imaging. For quantitative morphological analyses of height and
periodicity, samples were prepared at 4 time points based on
the ThT fluorescence assay: at the end of the lag phase or early
fibrillar phase (2 and 3 days for mutants and wt αSyn,
respectively) to study the morphology of the early fibrillar
species, at the plateau phase (5 and 7 days for mutants and wt
αSyn, respectively), and after 3 months and 6 months to assess
the morphology changes of the fibrils during storage. In all the
samples, about 100 fibrils were measured at each time point.
Figure 1 shows typical morphology of the wt fibrils observed
over time.
Early Fibril Samples Show Polymorphism. Samples

imaged at 2/3 days by AFM showed long fibrils for wt, A30P,
and A53T, while E46K fibrils were shorter and fewer in
numbers. Further quantitative analyses of the AFM images
revealed a broad distribution of periodicities of the helical fibrils

for all samples (Figure 2, Supporting Information Figures S2
and S3 2/3 days, and Table S1). Interestingly in our study,
none of the samples showed protofibrils, which according to
the proposed hierarchical assembly model7 should display fibrils
of half heights and periodicities in comparison to mature fibrils.
For all the samples, the early fibrillar species showed a
distribution of heights and periodicities that were not correlated
(Supporting Information Figure S3 2/3 days). We conclude
that the fibrils with lower heights are not protofibrils but
morphologically distinct mature fibrils. These results clearly
show that in the given solution conditions, none of the αSyn
sequences studied fibrillize by hierarchical assembly.7 Wild-type
αSyn fibrils showed two distinct groups of fibrils with
periodicities around 50 and 100 nm and possibly a third fibril
species with a periodicity of around 150 nm (Figure 2 and
Supporting Information Figure S3). A30P mutant fibrils did not
show any distinct peak in the periodicity distribution but
yielded a rather broad distribution from 50 to 150 nm. E46K
fibrils had one dominant population with periodicity around 80
nm but also displayed a broad distribution up to 300 nm in
periodicity. A53T fibrils at 2 days were grouped in three
categories: (a) periodic fibrils, which showed a distinct
modulation along their lengths with a periodicity of about
350 nm; (b) heterogeneous fibrils, which appeared associated
with one or more fibril fragment(s) along their length resulting
in an irregular appearance and impeding periodicity analysis;
(c) nonperiodic fibrils, which showed no periodicity up to 1 μm
of length. Another notable feature in A53T aggregations was
the presence of wavy fibrils at the end of the lag phase that
showed undulation along the fibril length in contrast to the
usually straight fibrils (Supporting Information Figure S2).
Wild-type and A30P αSyn yielded 100% periodic fibrils, E46K
yielded 94% periodic fibrils, and A53T had 62% periodic fibrils
in the early fibril samples (Figure 2 2/3 days and Supporting
Information Table S2). The mean fibril height in all the
samples varied between 5.7 and 6.7 nm (Figure 3 2/3 days and
Supporting Information Table S3).

Plateau Phase Fibrils Are Homogeneous. On reaching
the plateau phase (5/7 days), which is commonly interpreted as
the end phase in fibril formation, the morphology of all the

Figure 2. Box plot showing periodicities of wt and disease mutants of αSyn over 6 months. All samples were aggregated in 10 mM Tris-HCl, 10 mM
NaCl, 0.1 mM EDTA at pH 7.4. Gray bars represent the mean of the distribution. Pink and orange columns indicate the count of heterogeneous and
nonperiodic fibrils. Number of fibrils analyzed, respectively, for each condition, that is, 2/3 days, 5/7 days, 3 months, and 6 months: wt 98, 105, 99,
and 98; A30P 100, 102, 106, and 102; E46K 100, 100, 109, and 103; A53T: 101, 107, 103 and 101.
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samples except A53T became more homogeneous than at the
early fibrillar stage (Figure 2, Supporting Information Figures
S2 and S3 2/3 and 5/7 days). Although αSyn fibrils are
reported to be polymorphic at the plateau phase,8,17,30,55 one or
more of the polymorphic fibrils could be favored in specific
solution conditions to form a near-homogeneous pool of
fibrils.22,53

Wild-type αSyn at 7 days showed fibrils with average
periodicity of 107 ± 9 nm in contrast to a periodicity of 84 ±
28 nm at 3 days. A30P fibrils showed a narrower distribution of
periodicities with an average value of 105 ± 7 nm (118 ± 23
nm at 2 days). The periodicity distribution of E46K at 88 ± 19
nm was broader than those of wt and A30P αSyn but was
significantly narrower than the periodicity distribution of E46K
at the earlier time point of 2 days (124 ± 80 nm) with a
prominent shift toward fibrils of shorter periodicities. A53T
fibrils however showed two populations with approximate
periodicities of 180 and 350 nm at 5 days (282 ± 87 nm on
average) in comparison to 2 day (347 ± 50 nm) fibrils (Figure
2 and Supporting Information Table S1). The heights of the
fibrils did not show any major changes and averaged between
5.6 and 6.9 nm among the fibrils (wt, A30P, E46K, A53T) from
the plateau phase (Figure 3 and Supporting Information Table
S3).
Our data on the morphology of the fibrils at the late lag

phase and plateau phase of ThT assays show that fibril samples
that are homogeneous at the plateau phase of the aggregation
can show remarkable polymorphism in the lag phase.
Polymorphism most likely arises due to accessibility of multiple
low-energy conformations in the early stages of aggrega-
tion.25−27 In intrinsically disordered proteins, like αSyn, the
energy difference between the thermodynamically stable
conformations (depth of the well) and the kinetic barriers to
conversion to another conformation (height of the barrier) are
proposed to be very low in the absence of a binding partner.56

The conformational dynamics are thus more diverse, and of the
numerous conformations in the solution no single conforma-
tion is energetically favored.20 Moreover, many of the
numerous critical nuclei formed during the early events of
aggregation can form fibrils of distinct morphology and
contribute to the frequently observed polymorphism.17,23,57

However, in a particular solution condition one of the
polymorphs could be kinetically favored either by higher rate

of monomer addition or by pronounced secondary nucleation,
that is, fragmentation or surface catalysis.31,50 As a result, the
selected polymorph incorporates the major fraction of available
monomers. Based on our data, the other polymorphs possibly
disassemble over time, as fibrils with all but one mean
periodicity disappear and monomers reassemble into the
dominant morphology observed in the plateau phase fibrils.
Therefore, fibrils measured from plateau phase samples in wt
and disease mutants, except for A53T, show a narrow fibril
periodicity distribution. Notably all four sequences of αSyn
form fibrils of distinct morphology in the same solution
conditions (although wt and A30P are very similar).36,40,58−60

Given the considerable changes in the distribution of fibril
periodicity during the active fibrillization, we decided to follow
variations, if any, in the same fibril samples when stored for a
long period.

Wild-type Fibrils Mature over Time. The ThT plateau
phase fibrils were stored at 4 °C without shaking, to avoid
formation of gel-like networks. At intervals of 2 weeks, 1
month, and 2 months, a qualitative check of the morphology
was done by AFM imaging. None of the samples showed major
differences in the fibril morphology in comparison to the
plateau phase (data not shown). However, at 3 months, the wt
αSyn fibrils displayed distinct changes in morphology (Figure
1). Only 76% of the fibrils were periodic with a much wider
periodicity distribution and a larger mean periodicity value of
309 ± 60 nm (Supporting Information Tables S1 and S2).
Twenty percent of the fibrils were designated as heterogeneous
and 4% as nonperiodic. Interestingly, most of these wt fibrils
also manifested the wavy feature observed for A53T fibrils at 2
days. Thus, there were striking similarities between wt fibrils of
3 months and A53T fibrils of 2 and 7 days (Figures 1 and 2,
Supporting Information Figures S2 and S3, Tables S1 and S2).
Fibrils prepared from the A30P, E46K, and A53T variants
however did not show any significant change in the mean
periodicity of the fibrils over time (Supporting Information
Table S1). The E46K sample contained 95% periodic fibrils,
while the A53T sample had ∼55% periodic fibrils (Supporting
Information Table S2). The height of wt fibrils was on average
1.5 nm lower at 3 months than at the plateau phase. This is
most likely due to the difference in the ratio of pixels
representing the peak and trough heights in AFM images of
fibrils of different periodicities (for details refer to Supporting
Information Figure S4). The mean fibril height of A30P and
E46K fibrils did not change significantly in comparison to fibrils
of plateau phase. However, the height of A53T fibrils showed a
broader distribution (Figure 3 and Supporting Information
Table S3).
Next, the fibrils were analyzed at 6 months following the

same procedure. The wt fibrils showed a clear quantitative
change in morphology with only 29% of the fibrils displaying a
periodic twist with mean fibril periodicity of 315 ± 83 nm
(Figure 2, Supporting Information Figure S3, Table S1 and S2).
None of the disease mutants appeared to change in
periodicities at 6 months. The heights of the wt and A53T
fibrils exhibited a broad distribution with a small population
showing approximately double heights (Figure 3, Supporting
Information Figure S3 and Table S3). This increased height is
speculated to be due to bundling or juxtapositioning of the
fibrils. A qualitative check at 12 months did not show notable
difference in the αSyn fibrils (Supporting Information Figure
S5).

Figure 3. Mean fibril height of wt αSyn and disease mutant fibrils over
time. The mean fibril height of the fibrils does not change significantly
over a period of 6 months. Error bars denote standard deviation.
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The fibrils at the plateau phase in ThT assays are normally
considered to be in equilibrium with the monomers and the
intermediate aggregating species and are therefore assumed not
to undergo major transitions. However, quantitative measure-
ments on single fibrils by AFM in samples up to 6 months
evidently show that wt αSyn fibrils change while they are stored
at 4 °C. This is in agreement with recent studies showing that
the plateau phase fibrils are in a quasi-equilibrium state.13−16 In
vivo studies on plaques of Aβ in transgenic mice, using
luminescent conjugated oligothiophene probes, have previously
suggested conformational changes in Aβ fibrils with aging.
From in vitro experiments these changes were proposed to arise
due to maturation which is postulated to be an intrinsic
property of Aβ fibrils and not because of any extrinsic
influence.14 It is therefore plausible that wt αSyn fibrils also
undergo a maturation process as seen in the present in vitro
study. The disease mutants, however, do not show such
maturation. In view of the NMR evidence for perturbed
structured regions in the mutants in comparison to wt61 it is
likely that the mutants have distinct preferred conformations,
which lead to thermodynamically more stable fibrils.62

Fibril Samples Do Not Degrade on Storage. Wild-type
αSyn fibrils thus exhibit a maturation reflected in changes in
periodicity over time, while the fibrils of the disease mutants do
not. To ascertain that this morphological change is not due to
degradation of αSyn molecules in the fibrils while in storage, we
performed two experiments. First, a dot blot was done on fibrils
with antibody against αSyn 15−123 residues. The antibody was
reacted with wt, A30P, E46K, A53T, Δ1−59 (N-terminal
truncation), and Δ109−140 (C-terminal truncation) αSyn in
monomeric and fibrillar (plateau and matured, 1 year old) form.
The truncation mutants were used as controls to test the
immunoreactivity of the antibody in protein sequences that lack
the N or C terminus; hence only plateau phase fibrils of the
truncation mutants were tested. The antibody reacted well with
the monomers of all the sequences showing that even in
sequences with N or C terminal truncations sufficient binding
epitope is available. In fibrillar form, however, plateau and
matured fibrils of wt, A30P, E46K, and A53T sequences
showed a strong signal while fibrils prepared from N and C
terminal truncation mutants did not show any reactivity,
suggesting that the presence of intact N and C termini is
essential for the antibody to bind to fibrils (Supporting
Information Figure S6). In fibrillar form, the full length fibrils
are suggested to have a different structure and morphology than
the truncation mutant fibrils, in which the fibril core containing
the NAC region of the protein most likely is less accessible for
the antibody, resulting in loss of epitope.16,17,22,24,61,63,64

Therefore, identical reactivity of anti-αSyn antibody to plateau
phase and matured fibrils of wt and disease mutants indicated
that the protein molecules in the fibrils had intact epitopes.
Second, we performed MALDI-TOF mass spectrometry on

trypsin digested plateau phase and matured fibrils to investigate
at residue level if the C-terminus is intact in the fibrils. Trypsin
digestion of intact αSyn is expected to yield a number of
peptide fragments (Supporting Information Table S4). While
an intact N-terminus is difficult to probe with trypsin digestion
due to multiple digestion sites within the first 60 residues, an
intact C-terminus should generate peptides corresponding to
the last 38, 43, and 44 residues (Supporting Information Table
S5). In both plateau phase and matured samples, distinct peaks
corresponding to an average molecular mass of 4831.02 and
4959.19 Da for M + H+ were observed (Supporting

Information Figure S7). These masses correspond to the 98−
140 and 97−140 residues of the C-terminal peptides,
respectively (Supporting Information Tables S6 and S7). In
addition to hydrogen ion adducts, sodium ion adducts of the
peptides were also observed despite changing the buffer to
(NH4)2CO3. Intriguingly, the matured samples, with the
exception of E46K fibrils, showed higher intensity of the
sodium ion adducts in comparison to the hydrogen ion adducts.
It is likely that the negatively charged fibrils of αSyn bind
positive ions over time, which is reflected in the higher intensity
of the sodium ion adducts in matured samples. Additionally,
none of the peptides of interest showed m/z peaks
corresponding to oxidation products of methionines at
positions 116 and 127. In a control experiment, we performed
the same experiment of trypsin digestion and mass spectrom-
etry on αSyn fibrils prepared from the Δ109−140 mutant. As
expected in the absence of C-terminus no peaks corresponding
to the average molecular mass of 4831.02 and 4959.19 Da were
observed thus proving that the above-mentioned peaks arise
from the designated residues (Supporting Information Figure
S8). Therefore, based on the dot blot and mass spectrometry
data, we conclude that the protein monomers in the fibrils do
not degrade or undergo oxidation while in storage at 4 °C for at
least up to a year.

Plateau and Matured Fibrils Have Similar β-Sheet
Content. To understand further the nature of the morpho-
logical differences in wt αSyn in terms of secondary structure,
we performed attenuated total reflectance-Fourier transform
infrared spectroscopy (ATR-FTIR) experiments on fibrils of wt
and disease mutants at plateau phase and 1 year. Deconvolution
of the ATR-FTIR spectra followed by a curve-fitting of the
amide I peaks showed β-sheet content of about 65−70% for all
tested fibrils with a major peak located between 1627 and 1630
cm−1 (Table 1 and Supporting Information Figure S9). The

ATR-FTIR results showed no significant differences in the
spectra of plateau phase and matured wt αSyn fibrils or the
disease mutants, indicating similar β-sheet content even in
fibrils with distinct morphology. The origin of the observed
morphological changes in the fibrils is therefore likely due to
tertiary or quaternary structural rearrangements in the fibrils
with time.
Two distinct molecular mechanisms could account for the

observed morphological changes in wt αSyn. In a competitive
growth model, as reported for prion strains, the soluble
monomers could adopt different conformations that result in
fibrils of different morphologies. These conformations likely
compete for the monomer fraction during the aggregation
process, and the kinetically favored conformation (faster
monomer addition or more breakage) outcompetes the rest
at plateau phase. However, once in storage at 4 °C, a different
fibril conformation is kinetically and thermodynamically
favorable, which accumulates over time. For this mechanism,

Table 1. Summary of the β-Sheet Content (%) of Plateau
Phase and 1 Year Old (Matured) Fibrils as Analyzed by
ATR-FTIR

wt (max,
cm−1)

A30P (max,
cm−1)

E46K (max,
cm−1)

A53T (max,
cm−1)

plateau
phase

68 (1627) 66 (1629) 66 (1628) 68 (1629)

matured
fibrils

69 (1630) 66 (1629) 64 (1628) 70 (1630)
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it is imperative that fibril assembly be a reversible process and
the fibrils formed at plateau phase fall apart and are recycled
into fibrils of a different morphology at 4 °C. In a maturation
process, the fibrils formed at plateau phase do not fall apart in
storage but undergo a slow transition at a single fibril level and
mature over time leading to a thermodynamically more stable
conformation.
The first mechanism is evident during the early fibrillization

since at early fibrillar phase, fibrils of different morphologies are
apparent and one of these morphologies becomes the major
population at the plateau phase. However, it is difficult to
establish the basis for the long-term transitions occurring at 4
°C in wt αSyn. Assuming there is competitive growth at 4 °C,
there are two possible scenarios. In the first instance, we assume
that the critical monomer concentration (CMC) required for
the formation of aggregating nucleus of 4 °C conformation is
higher than the residual monomer concentration (RMC) at
plateau phase (at 37 °C). In this scenario, the existing fibrils
should cold denature appreciably to provide sufficient
monomers to form new fibrils.22,65

In the second scenario, we assume the CMC at 4 °C to be
much lower than the RMC at plateau phase. In this case, the
amount of monomers in the supernatant at plateau phase is
enough for nucleation and fibril growth from the slow
dissociation of plateau phase fibrils at 4 °C. If the second
scenario holds, an aggregation at 4 °C with 100 μM wt αSyn
should form fibrils with morphologies characteristic of stored
fibrils.
Plateau Phase Fibrils Do Not Disassemble on Storage.

Some recent reports on αSyn have shown that fibrils prepared
at 37 °C can disassemble into monomers within hours when
kept at lower temperatures.22,65 This reversible nature of the
fibrils was however shown to be dependent on the solution
conditions used for fibrillization.22 We tested for this possibility
systematically. Aggregation reactions (wt and mutants) at
plateau phase were centrifuged, and the RMC was determined;
then new buffer was added to the fibril pellet to restore the
original volume, and the fibrils were incubated for a week at 37
°C without shaking to prevent fibril breakage. This procedure
of centrifugation and RMC determination was done over 3
weeks collecting three time points. Negligible amounts of
monomers were recovered in the second and subsequent RMC
analyses. Next, the same procedure was repeated, but the fibrils
were stored at 4 °C; this too did not show significant monomer
recovery in the supernatant fractions. In addition, ThT analyses
from the same samples showed consistent presence of ThT
positive β-sheet structures (Figure 4 and Supporting
Information Table S8). Thus, the fibrils do not dissociate at
lower temperature of 4 °C, and the overall equilibrium is not
shifted toward disassembly under the conditions used in our
experiments.
Fibrillization at Low Temperature Produces Periodic

Fibrils. To examine if the wt fibril morphology at 4 °C (i.e.,
periodicity of about 300 nm with heterogeneous and
nonperiodic fibrils) is a result of a kinetically preferred
conformation at low temperature, we aggregated wt αSyn at
4 °C. Aliquots were withdrawn at an interval of 2 weeks for
ThT assay and AFM samples. By the end of 1 month, a few
short fibrils could be seen in AFM images but no increase in
ThT fluorescence intensity was detected (data not shown).
After 3 months, long fibrils similar to fibrils produced at 37 °C
with a periodicity of about 100 nm were observed. Thus, even
at low temperature periodic fibrils appear first. The same fibril

sample imaged after 1 year showed heterogeneous and
nonperiodic fibrils (Supporting Information Figure S10). This
suggests that the transitions observed in the fibrillar
morphologies are independent of temperature and most likely
an inherent characteristic of the wt αSyn fibrils. Moreover,
these results show that temperature dependent adaptation of
amyloid fibril morphology is not a part of the maturation
process observed in our study.
Thus, the morphology of the wt fibrils is governed by two

mechanisms. In the aggregation reaction, initially a prion strain-
like competitive growth determines the morphology of the
plateau phase fibrils. Thereafter a slow maturation process takes
over, possibly involving rearrangements in the tertiary or
quaternary structure of the fibrils. To comment on the precise
nature of the rearrangements between the plateau phase fibrils
and the mature fibrils, additional in-depth structural study is
required. Further, it is reasonable to assume that the
morphological transitions seen over months in wt αSyn could
happen at a shorter time scale at 37 °C. We also note that the
results presented here were obtained at low salt conditions, and
it is difficult to predict whether similar behavior can be
expected from αSyn fibrils in vivo, where the solution and
molecular milieu is very different. Nonetheless, the present
study illustrates the importance of mechanisms such as
competitive growth in determining morphological character-
istics of fibrils assembled from different αSyn sequences and
shows that while wt αSyn exhibits the process of maturation,
the disease mutants form morphologically different and more
stable fibrils at the solution conditions used.

■ CONCLUSIONS
Together our results show that during the early stages of
fibrillization several distinct morphologies for all the αSyn
sequences exist, providing empirical evidence that the same
sequence of the protein can attain a number of conformations

Figure 4. Plot showing irreversible nature of wt and mutant αSyn
fibrils prepared in 10 mM Tris-HCl, 10 mM NaCl, 0.1 mM EDTA at
pH 7.4. Residual monomer concentration determination shows that
after removal of monomers from a plateau phase reaction (ThT assay)
at week zero, the monomer fraction in the supernatant is not
replenished in fibrils stored at 37 or 4 °C. In the inset, a parallel ThT
assay every alternate week showed the presence of β-sheet positive
fibrils in reactions over the same period. Error bars denote standard
deviation among triplicates.
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that form fibrils of different morphologies. This ability to
sample various amyloid conformations appears to be an
intrinsic property of the polypeptide sequence and bears a
resemblance to the strain-like behavior of prions. In comple-
ment to the recent reports on prion-like hypotheses for
amyloids, based on cell-to-cell transmission of pathogene-
sis44,46,48,66 our study highlights the property of competitive
growth between polymorphs of the misfolded αSyn. Further
observation of evolution of wt fibril morphology over time in
contrast to the stability of the mutant fibrils’ morphology
underscores fundamental differences in the way protein
molecules with one amino acid difference assemble into fibrils
in the same solution conditions. Since the fibrils do not
significantly disassemble or degrade when stored, it is likely that
the wt fibrils undergo a process of maturation. In this
maturation process, the individual fibrils possibly go through
some rearrangement leading to formation of thermodynami-
cally favorable state(s), which manifests as heterogeneous and
nonperiodic fibrils over time.

■ METHODS
Expression and Purification of αSyn. Wild-type and A30P,

E46K, A53T, Δ1−59, and Δ109−140 mutants of αSyn were used in
the present study. All the proteins were expressed and purified as
described elsewhere.53

Fibrillization Assay and Thioflavin-T Fluorescence. Mono-
meric stocks of wt and disease mutant αSyn protein (250 μL), stored
at −80 °C, were thawed. Aggregation reactions for all the proteins
were set up at 100 μM αSyn in 10 mM Tris-HCl, 10 mM NaCl, 0.1
mM EDTA at pH 7.4. All reactions were prepared in triplicate with
volumes of 400 μL each in 2 mL Lo-Bind round-bottom Eppendorf
centrifuge tubes and were incubated at 37 °C with 500 rpm orbital
shaking in an Eppendorf Thermo-mixer comfort. Progress of
fibrillization was followed by a Thioflavin-T (ThT) fluorescence
assay as described elsewhere.53 Fibrils fibrillized at 4 °C were grown
with same procedure with the Thermo-mixer placed in a cold room
maintained at 4 °C.
Atomic Force Microscopy: Fibril Morphology Analysis. AFM

samples were prepared by adsorbing 10 μL of 10 times diluted
aggregation samples on freshly cleaved mica (Muscovite mica, V-1
quality, EMS) for 4 min, followed by 2 gentle washes with 100 μL of
fresh Milli-Q water and drying in a gentle stream of nitrogen gas. AFM
images were acquired on a Bioscope Catalyst (Bruker, Santa Barbara,
CA, USA) in soft tapping mode in air using a silicon probe, NSC36 tip
B with force constant of 1.75 N/m (NanoAndMore GmbH, Wetzlar,
Germany). All images were captured with a resolution of 512 samples/
line with a scan rate of 0.5 Hz. For each solution condition about 100
nonoverlapping fibrils were qualitatively analyzed by Scanning Probe
Image Processor-6.02 (Image Metrology A/S, Hørsholm, Denmark)
software; for quantitative analysis of height and periodicity, a custom
written Matlab script using DIPimage toolbox (version 2.3, TU Delft,
Delft, The Netherlands) was used. The script is based on quantitative
analysis of AFM images as described elsewhere.40 To ensure
reproducibility in the observed results, for all samples at a given
time point, three independent aggregations were done in triplicate
with a time delay of 1 to 3 months and about 30 images were acquired
from one of the triplicates from each aggregation.
Dot Blot Analysis. A dot blot analysis was done to probe

degradation of αSyn fibrils stored for 1 year. Aggregation reactions
(100 μL) were centrifuged at 21 000g for 30 min in an IEC Micromax
microcentrifuge (Thermo Fisher Scientific Holding B.V., Breda, The
Netherlands). Eighty microliters of the supernatant was discarded, and
the pellet was resuspended in the rest of the 20 μL buffer. Immobilon-
P PVDF membrane (Millipore) was wetted in 100% methanol for 15 s
and rinsed in Mill-Q water. Five microliters of each of the samples was
spotted on the wet membrane, and the membrane was soaked in 100%
methanol for 10 s. The blot was air-dried for 2 h followed by rewetting

(100% methanol) of the membrane for 5 s. The membrane was fixed
in 0.4% PFA (para-formaldehyde solution) in PBS at pH 7.4 for 15
min at room temperature. Next, it was rinsed 3 times in PBS, pH 7.4.
The blot was blocked in 5% nonfat dry milk in TBS-T [Tris-buffered
saline−Tween (50 mM Tris-HCl, 150 mM NaCl at pH 7.5 and 0.2%
v/v Tween 20)] for 30 min and rinsed in TBS-T 3 times. Mouse IgG1
anti-αSyn 15-123 (610786, BD Biosciences) was diluted 1:2000 in 1%
nonfat dry milk in TBS-T and incubated overnight at 4 °C. The blot
was washed 3 times in TBS-T for 5 min each and incubated with anti-
mouse HRP conjugated secondary antibody (G21234, Invitrogen),
diluted 1:8000 in TBS-T, for 45 min at room temperature. The blot
was washed 3 times in TBS, and the immunoreactive bands were
detected using enhanced chemiluminescence (Super-Signal West,
Pico-Thermo Scientific) followed by imaging on a Fluor Chem M
imager (ProteinSimple, Westburg, Leusden, The Netherlands).

MALDI-TOF Mass Spectrometry. Samples for MALDI-TOF
experiments were prepared by digesting plateau phase and matured
fibrils of wt, A30P, E46K, A53T, and Δ109−140 fibrils with trypsin.
Fibril samples, 140 μg, were centrifuged at 21 000g for 30 min. The
supernatant was removed, and the pellet was resuspended in 10 mM
(NH4)2CO3, pH 7.4, to a final volume of 100 μL. The samples were
centrifuged again at 21 000g for 30 min. After removal of the
supernatant, the pellet was resuspended in 50 μL of 10 mM
(NH4)2CO3, pH 7.4. Next, the samples were digested with 400 ng
of sequencing grade modified trypsin (Promega) at 37 °C for 15 h.
The reaction was stopped by chilling on ice. One microliter of sample
was deposited on a clean standard sample plate (M880675CD1) in
triplicate with 1 μL of universal matrix (TFA/acetonitrile (50:50 v/v)).
The samples were allowed to air-dry. Mass spectra were acquired on a
Waters MALDI SYNAPT high definition mass spectrometer equipped
with a 355 nm third harmonic YAG laser in positive ion mode. The
TOF linearity of the instrument was calibrated with PEG standard
while bovine insulin was used as reference for the m/z calibration. To
ensure reproducibility, mass spectra were measured 3 times using a
different fibril sample for each measurement.

ATR-FTIR Experiment. Attenuated total reflectance Fourier
transform infrared spectroscopy (ATR-FTIR) was done to investigate
the structural features of plateau phase and 1 year old (matured) αSyn
fibrils. Samples were prepared by centrifugation of 100 μL of
aggregation reactions at 21 000g for 30 min in an IEC Micromax
microcentrifuge (Thermo Fisher Scientific Holding B.V., Breda, The
Netherlands). The supernatant was discarded, and the pellet was
resuspended in 20 μL of buffer (10 mM HEPES at pH 7.4). The ATR-
FTIR spectra were acquired on a Bruker Equinox 55 spectropho-
tometer (Bruker Optics, Ettlingen, Germany) equipped with a Golden
Gate reflectance accessory (Specac, Slough, United Kingdom). The
internal reflection element was a diamond crystal (2 mm × 2 mm)
with an aperture angle of 45° that yielded a single internal reflection.
The crystal was cleaned with absolute ethanol, and 2−4 μL of sample
was applied to the diamond crystal. The sample was dried with a gentle
flow of nitrogen gas. Excess salt was removed by placing 10 μL of
Milli-Q water on top of the sample and removing excess water with a
micropipette. The sample was dried again with a gentle flow of
nitrogen gas. One hundred twenty-eight coadded spectra were
collected for each sample with a resolution of 2 cm−1. For data
analysis, baseline correction was done by a straight line passing
through ordinates 1753, 1712, 1593, 1482, and 1425 cm−1, followed by
water vapor subtraction. Then Fourier self-deconvolution was applied
using a Lorentzian and Gaussian line shape for deconvolution and
apodization, respectively. The identified peaks were curve fitted on
nondeconvoluted spectra. Area under each deconvoluted peak was
quantified to estimate the secondary structure of the sample.67

RMC and Reversibility Analysis. Determination of the fraction of
monomers left in the aggregation reaction was done by centrifugation
of 100 μL aliquots of aggregation reactions at 21 000g for 1 h in an
IEC Micromax microcentrifuge (Thermo Fisher Scientific Holding
B.V., Breda, The Netherlands). Eighty microliters of supernatant was
aspirated and analyzed for residual monomer concentration.
Absorbance at 280 and 330 nm was measured from 2 μL samples
on a NanoDrop ND-1000 spectrophotometer (Isogen Life Science
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B.V., The Netherlands). The absorption values at 280 nm were
corrected for scattering contributions before calculating the residual
monomer concentration.68 For reversibility analysis, 100 μL of the
plateau phase reaction was centrifuged at 21 000g for 1 h, 80 μL of the
supernatant was removed, and RMC was determined as mentioned
above. The fibril pellet was resuspended in 80 μL of fresh buffer (total
volume 100 μL) of 10 mM Tris-HCl, 10 mM NaCl, and 0.1 mM
EDTA at pH 7.4 and stored at 37 °C for 1 week. The procedure was
repeated 3 times each while storing the samples at 37 and 4 °C. At
every alternate week 5 μL of the fibril sample was analyzed by ThT
fluorescence assay for detection of β-sheet positive fibrils.
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