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Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization 
bursts in the cerebellar Purkinje cell, showing several high frequency spikelet 
components (±600 Hz). Since its early observations, the CS is known to vary in 
shape. In this study we describe CS waveforms, extracellularly recorded in awake 
primates (Macaca mulatta) performing saccades. Every Purkinje cell analyzed 
showed a range of CS shapes with profoundly different duration and number of 
spikelets. The initial part of the CS was rather constant but the later part differed 
greatly, with a pronounced jitter of the last spikelets causing a large variation in 
total CS duration. Waveforms did not effect the following pause duration in the 
simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes 
or vice versa. The waveforms did not differ between experimental conditions nor 
was there a preferred sequential order of CS shapes throughout the recordings. 
Instead, part of their variability, the timing jitter of the CS’s last spikelets, strongly 
correlated with interval length to the preceding CS: shorter CS intervals resulted 
in later appearance of the last spikelets in the CS burst, and vice versa. A similar 
phenomenon was observed in rat Purkinje cells recorded in vitro upon repeated 
extracellular stimulation of CFs at different frequencies in slice experiments. All 
together these results strongly suggest that the variability in the timing of the last 
spikelet is due to CS frequency dependent changes in Purkinje cell excitability.
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Introduction

The Purkinje cell (PC) is the main point of converging pathways and the sole output 
neuron of the cerebellar cortex. Two strikingly different input pathways provide its 
excitatory input: (i) the massive convergence of granule cell axons onto a single 
PC’s distal dendrites, and (ii) the very strong connection by the climbing fiber (CF), 
originating in the inferior olive and branching over the PC dendrite proximal part. 
The granule cell input modulates simple spike (SS) firing, ranging up to 200 Hz. 
CF input triggers complex spikes (CS) at a remarkably low frequency (1 Hz). CSs 
show a massive calcium influx, during which multiple somatic Na+ spikes are fired. 
Following CSs the PC shows ±20 ms long pauses in the SS train (Bell and Grimm, 
1969; Latham and Paul, 1971; McDevitt et al., 1982). These are attributed to 
both a depolarization related refractory period, resulting from Ca2+activated-K+-
hyperpolarizing currents (Edgerton & Reinhart, 2003), and to CF collateral triggered 
molecular layer interneuron inhibition (Szapiro & Barbour 2007; Mathews et al., 
2012). Interestingly, those pauses may be involved in the transfer of information 
downstream, which through concerted disinhibition of the cerebellar nuclei could 
trigger rebound bursts (Maiz et al., 2012; De Schutter & Steuber, 2009). CSs can 
induce long-term depression at parallel fiber synapses on Purkinje cells, which 
may be involved in cerebellar learning (Ito, 2001, Steuber et al., 2007). Despite 
decades of study and its essential roles in most cerebellar theories, evidence of 
their functional significance remains unclear. It has been suggested to represent 
an error signal in cerebellar learning (Ito, 2001, Kawato et al., 2011), to act as a 
stabilizing factor in motor learning (Catz et al., 2005), and to operate as a timing 
signal for temporal coordination (Llinás, 2009; Lefler et al., 2013). These conflicting 
roles ask for a closer look into the properties of CSs in behaving animals.

Early observations on CS waveforms reported shape variability (Eccles et al., 
1966; Latham et al., 1971), but did not describe this variability systematically. 
It is known that the shape of a CS correlates with the intensity of intracellular 
current injections in vitro (Davie et al., 2008) and that the number of spikelets 
within a CS can be modulated by the number of spikes in a CF burst (Mathy et 
al., 2009). In rat cerebellar slices the pre-synaptic terminal of the climbing fiber-PC 
connection displays paired-pulse depression at physiological CS interval length 
ranges, resulting in a decreased number of spikelets in the second complex spike 
(Hashimoto and Kano, 1998). Furthermore the CF signal is modulated by the 
Inferior Olive (IO) subthreshold oscillation amplitude (Bazzigaluppi et al., 2012) and 
could therefore act as a read out signal on the IO’s state and/or have a differentially 
instructive signal. In fact, a recent study reports that the CS duration and spikelet 
number correlate with the amount of learning in monkey PCs (Yang and Lisberger, 
2014). Furthermore it has been shown that through the closed loop between 
PC, cerebellar nuclei and the IO, SS firing controls IO activity in parts that have 
efferents to the PCs were the SS originated. Control of the recurrent IO afferent 
input by SS activity was shown in both classical eye blink conditioning experiments 
(Rasmussen et al., 2014) and by optogenetic stimulation of the PC (Chaumont et 
al., 2013). This raises three questions: what is the variability of the CS shape in 
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awake behaving animals? Is this variability mainly in spikelet numbers, or does it 
also occur in other features? Finally, is CS variability correlated with other features 
of the spike train that could provide insights into the mechanisms underlying CS 
variability? These questions are addressed in this paper by a systematic analysis of 
CS waveforms, observed in macaques during resting state and while performing a 
saccade fixation task.

Material and Methods

All experimental procedures were performed in agreement with institutional, 
federal and European ethical guidelines and laws for animal experimentation. 

All animal preparations and procedures fully complied with the National 
Institutes of Health Guide for the Care and Use of Laboratory Animals and were 
approved by the local animal care committee (Regierungspräsidium Tübingen, FG 
Tierschutz; Germany). 

During the saccade task the monkeys were motivated to work by receiving a 
liquid reward (juice or water), while the intake of water was monitored according 
to the guidelines of the DPZ (Deutsches Primatenzentrum, Göttingen Germany), as 
well as with the institutional guidelines of the Department of Biomedical Sciences 
of the University of Antwerp. 

Electrophysiological recordings in primates

Extracellular recordings from the oculomotor vermis in the cerebellum of non-
human primates (Macaca mulatta), were performed as described earlier (Prsa et 
al., 2009), in three male animals of different ages, over a time span of more than 
a year for the purpose of other research projects. During the recordings monkeys 
were painlessly head fixed and the eye position was continuously monitored by 
scleral search coils. In four of the recordings analyzed, the monkey was instructed 
to actively make visually guided saccades prompted by a jumping target on a 
CRT monitor at 35-40 cm distance, centered in front of the monkey. In this visually 
guided saccade paradigm a white target dot (diameter 0.2 degrees) was presented 
on the monitor at the beginning of each trial. After a successful fixation period 
within an invisible rectangular window of ± 1 degrees from the center of the dot 
for 500-1000 ms, the dot shifted to one of the 8 possible locations (horizontal, 
vertical and oblique) at a radial eccentricity of 10 degrees prompting a visually 
guided saccade. Each correct trial was rewarded with a unit of liquid (juice or 
water). Six additional recordings were obtained while the monkey was sitting in the 
dark without instruction or reward and executed spontaneous saccades.

Glass-coated tungsten microelectrodes (Alpha–Omega Engineering, Nazareth, 
Israel) with an impedance of 0.8–2 MΩ were employed to record extracellular raw 
voltage signals. The low impedance and fine tip of these electrodes provides low 
noise and excellent single cell discrimination, which was essential for this work. 
Signals sampled at 25 kHz and amplified 3000 times were both band-pass filtered 
between 300 and 3000Hz and low pass filtered (<250 HZ). These filtering settings 
allowed separating spiking activity from local field potentials. Furthermore a 
notch filter was applied to filter out any 50 Hz noise induced by the power-line. 
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PC activity was identified by the simultaneous occurrence of SSs and CSs and 
the above-mentioned characteristic pause in the SS train after a CS. Only traces 
showing clear CS waveforms were used for further analysis, performed off-line by 
custom MATLAB scripts (The Mathworks, Natick, USA).

Complex spikes detection and categorization

We only analyzed recordings with stable SSs and CSs amplitudes to ensure the 
stability of the experimental conditions over time, possibly affected by electrode 
position drifts. Traces showing periods with distinct stable amplitudes were instead 
split into separate segments, for further spike recognition.

From each 300-3000 Hz band-pass filtered extracellular voltage signal, the first 
20 CSs were manually selected in order to sample their shape variety. Subsequent 
CS selection was based on semi-automated detection, using multiple methods 
based on combining both high band-pass and low-pass filtered extracellular 
signals. The main method for CS detection is based on voltage-threshold crossing 
on high band-pass filtered signals, which could only be used if the CS’s first spikelet 
peak amplitude substantially differed from SS amplitudes (Figure 1A). The second 
method was based on the imprint of the CS on the low-pass filtered signal, causing 
an upward voltage deflection (Figure 1A, B). Due to the spontaneous slow waves 
in the local-field potentials, however, the threshold level for this detection method 

Figure 1. Examples of automated CS recognition. 
Grey boxes were drawn around each recognized CS among 
the SSs, in high band-pass filtered (blue trace) and low-
pass filtered signals (red trace) from three raw extracellular 
voltage recordings. In A, the imprints of the CSs on the low 
(red) and band pass filtered (blue) traces are clearly visible 
and either of them is sufficient to detect CSs reliably. In 
B, the imprint of the CS on the low-pass filtered trace 
(red) provides a better means for CS recognition. In C, a 
combined approach was used. Closely following threshold 
recognition in the band-pass filtered signal would give a 
fairly good CS recognition. Parameters were set to prevent 
false-negatives. Across the panels, the horizontal grey lines 
depict sample thresholds for CS detection in the band-pass 
filtered (300-3000 Hz) signals. For the low-pass (<250 
Hz) filtered signal, a sliding window threshold was used 
instead (not shown)
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was determined with a moving average, whose length was manually chosen for 
each recording (12-40 ms). The third method was based on a combination of 
parameters describing common features of the CSs, as observed in the high band-
pass filtered signal: e.g., an amplitude threshold for the first spikelet and a time 
window, combined with an amplitude threshold for the second or third spikelet 
(Figure 1C). For this last method the event was only detected as a potential CS if 
all mentioned criteria were met. This performed well because of the homogeneity 
in the initial parts of the CS waveforms, as it can be seen in the overlays of Figure 
4A and 5A. The parameters of each method used were chosen in such a way that 
all manually selected 20 CSs were easily detected by the method. Subsequently 
a second by second screening of the trace was performed to verify that our 
automated methods did not miss CSs.

Then, the voltage samples corresponding to each of the events detected 
by these methods were stored in a repository of potential CSs. Each one was 
afterwards checked, comparing its shape on the CS characteristics, such as 
amplitude of the signal, number of spikelets and the similarity to the average CS 
waveform. In principle, two closely following SSs might be erroneously interpreted 
as a CS. However, such ‘false’ CSs could easily be discarded because of the longer 
duration of an individual SS compared to a CS spikelet and the lack of a following 
SS pause.

To give an overview of the amount of variability in CS shapes, the validated 
repository of waveforms was further categorized into waveform groups. To this 
end, each CS was aligned at the point of its highest voltage increase, i.e., its 
largest upstroke velocity. The aligned overlay of the CSs shows a high degree of 
uniformity of the initial parts of the CSs (Figure 4A and 5A - black traces). Conversely, 
the late parts show increasing variation, both in amplitude, spikelet count and 
spikelet timing. An immediate striking observation, among the CSs, is the different 
numbers of spikelets. Moreover, we noticed that among CSs with equal number 
of spikelets the timing of spikelets varied. Despite the large waveform variability it 
was obvious that CSs from the same recording occur in distinguishable categories 
with similar shapes.

Different approaches to automatically divide the waveforms into separate 
categories were attempted. We explored the differentiation of CS duration based 
on energy levels in frequency bands (Von Tscharner, 2000), and the differentiation 
based on the Mahalanobis distance (Mahalanobis, 1936). But neither of the methods 
provided a sufficient discrimination level. Categorizing waveforms based on mean 
square differences (MSD) between individual CSs and preselected waveforms did 
help to distinguish the CSs collected, but implied that a pre-categorization would 
have had to be made. Because none of the automated methods was completely 
reliable, the characterization of different categories of CS waveforms was done 
manually, guided by similarity measures (MSD).

To sort the CSs, clear waveforms showing the most distinct spikelets were 
selected to set possible categories a priori. Subsequently, the CSs were plotted one 
by one, superimposing them on previously categorized waveforms. A CS showing 
good similarity to an already categorized waveform group would then be assigned 
to that category, while a CS not fitting to any of the previous categories would 
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be recognized as the first instance of a new category. Differences in the duration 
of CSs, the spikelet timing, and the spikelet amplitudes were taken into account. 
About 30-40 % of all CSs in a recording were not assigned to any category in this 
initial round, and were grouped together.

Once all categories were determined, every CS was checked again. At that 
stage, CSs could be reassigned to a different category, if this improved their MSD, 
and most of the unassigned CSs could still be categorized. If an unassigned CS 
showed large MSD values to all categories, it was appointed to an “uncategorized” 
set, which comprised 2-10 % of all CSs in a recording.

A second sorting of the CSs in each recording was made by grouping CS 
categories together whose CSs have an equal number of spikelets, these were 
named “classes” (Figure 4A). In a few recordings, CSs categories with an equal 
numbers of spikelets, but showing strong systematic divergence of waveforms, 
were grouped in different classes.

To illustrate the consistency of CS waveforms within a category, and to justify 
the assignment to different categories, two approaches were used. An approach 
based on visual inspection; comparing overlays of single CSs within a category 
and comparing overlays of mean waveforms of different categories. In Figures 4A 
and 5A, the 95% confidence interval of the CSs in each category around its mean 
waveform shows the waveform consistency per category, the overlay of the mean 
waveforms of all categories show the variability in shapes observed in a single 
neuron. The second approach is feature based, landmark points of single CSs were 
compared, such as onset times of spikelets (Figure 4B/C and 5B/C). 

Spikelet identification, timing and amplitude

The identification of the spikelets is somewhat challenging, due to the 
heterogeneities of the maximum and minimal voltage levels in their extracellular 
recordings. Moreover, the spikelet voltage range changes slightly over the duration 
of the CS waveform. In fact, towards the end of most CSs the spikelets decline 
in amplitude, though some CSs show an initial decline in amplitude followed by 
an increasing voltage amplitude at the very end of the CS. Extracellular voltage 
deflections are considered spikelets only if they have maximum and minimum 
voltage levels relatively close to their preceding and following voltage deflection 
(i.e. spikelet). For instance, the waveforms of category A from recording 2 (Figure 
4A) have two recognized spikelets. The small bump in between these two is not 
defined as a spikelet, because its maximum voltage is not in line with the spikelets 
around it. Spikelet times were finally determined as the time-points of their lowest 
voltage value (trough). Histograms of the trough time-points were fitted with a 
normal distribution, using MATLAB’s function. The distributions of the spikelet 
times were compared for consistency of difference between waveforms of different 
categories. A measurement of separation between categories was provided by 
signal-to-noise (S/N) ratios (Dayan and Willshaw, 1991; Graham, 2001), computed 
as

where

		  :  Times of the trough in spikelet number m of category A
		
		  :  Times of the trough in spikelet number m of category B

In the nominator we use the mean spikelet times (<…>) for two categories, in the 
denominator we use standard deviations (σ) of spikelet times for two categories.

Complex spikes waveform order

To test whether or not the waveform groups occurred randomly throughout the 
recording, we looked at waveforms of neighboring CSs. The counts of neighboring 
pairs of both categories and classes were checked with a bootstrap method. 
Histograms of neighboring pairs coming from 10000 randomized CS waveform 
sequences gave the upper and lower accuracy limits, rejecting a random order 
determined by p<0.05 and p>0.95 significance values.

Inter complex spike interval lengths versus spikelet jitter

Although CSs with equal number of spikelets showed strong uniformity in their 
waveforms, the last one or two spikelets often showed a deviation in their timing. 
The time distributions of the last spikelets of different CS categories (with equal 
number of spikelets) were compared using the S/N tests, showing significant 
differences in timing of spikelets at the end of the CSs. The time delay of spikelets 
per CS category was defined as the mean time between the spikelet of interest 
and its corresponding spikelet in the shortest duration CS category (Figure 6A and 
7A).

Subsequently we tested the correlation between CS groups ordered on CS 
duration and the preceding CS interval. First linear fits were obtained by linear 
regression, using MATLAB’s polyfit function, on the interval lengths versus CS 
duration groups, as seen in Figure 6C and 7C. The significance of the slope was 
then tested with a bootstrap method, by comparing it to the distribution of slopes 
found by shuffling the CS durations over the groups. Shuffling was done 10000 
times and the significance was set at p<0.05.
We further tested the correlation between the average jitter per category and 
preceding CS interval, seen in Figure 6D and 7D. Lastly we analyzed the duration 
of CSs, time between first and last spikelet, versus preceding CS interval (Figure 6E 
and 7E). Data was fitted to a power function. Significance of correlation between 
the fitted line and data was tested using a cross correlation test.

Saccade detection and related CS time window

Saccades were detected offline using custom written MATLAB scripts. Eye velocity 
was filtered using a Gaussian filter and thresholded to find saccade onsets and 
offsets. The threshold was based on the mean velocity of the eyes during the 
recording and a scaling factor times the standard deviation of the velocity. All CSs 
within a window of 100 ms before and 175 ms after saccade-offset (Soetedjo et al., 

S/Nm =
2 < SpklAm > − < SpklBm > 2

σ SpklAm
2 + σ SpklBm

2

SpklAm

SpklBm
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where

		  :  Times of the trough in spikelet number m of category A
		
		  :  Times of the trough in spikelet number m of category B

In the nominator we use the mean spikelet times (<…>) for two categories, in the 
denominator we use standard deviations (σ) of spikelet times for two categories.

Complex spikes waveform order

To test whether or not the waveform groups occurred randomly throughout the 
recording, we looked at waveforms of neighboring CSs. The counts of neighboring 
pairs of both categories and classes were checked with a bootstrap method. 
Histograms of neighboring pairs coming from 10000 randomized CS waveform 
sequences gave the upper and lower accuracy limits, rejecting a random order 
determined by p<0.05 and p>0.95 significance values.

Inter complex spike interval lengths versus spikelet jitter

Although CSs with equal number of spikelets showed strong uniformity in their 
waveforms, the last one or two spikelets often showed a deviation in their timing. 
The time distributions of the last spikelets of different CS categories (with equal 
number of spikelets) were compared using the S/N tests, showing significant 
differences in timing of spikelets at the end of the CSs. The time delay of spikelets 
per CS category was defined as the mean time between the spikelet of interest 
and its corresponding spikelet in the shortest duration CS category (Figure 6A and 
7A).

Subsequently we tested the correlation between CS groups ordered on CS 
duration and the preceding CS interval. First linear fits were obtained by linear 
regression, using MATLAB’s polyfit function, on the interval lengths versus CS 
duration groups, as seen in Figure 6C and 7C. The significance of the slope was 
then tested with a bootstrap method, by comparing it to the distribution of slopes 
found by shuffling the CS durations over the groups. Shuffling was done 10000 
times and the significance was set at p<0.05.
We further tested the correlation between the average jitter per category and 
preceding CS interval, seen in Figure 6D and 7D. Lastly we analyzed the duration 
of CSs, time between first and last spikelet, versus preceding CS interval (Figure 6E 
and 7E). Data was fitted to a power function. Significance of correlation between 
the fitted line and data was tested using a cross correlation test.

Saccade detection and related CS time window

Saccades were detected offline using custom written MATLAB scripts. Eye velocity 
was filtered using a Gaussian filter and thresholded to find saccade onsets and 
offsets. The threshold was based on the mean velocity of the eyes during the 
recording and a scaling factor times the standard deviation of the velocity. All CSs 
within a window of 100 ms before and 175 ms after saccade-offset (Soetedjo et al., 
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2 < SpklAm > − < SpklBm > 2
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2008; Catz et al., 2005) were considered to be potentially saccade related. 

Complex spikes – Simple spikes pause lengths

CSs triggered prominent pauses in the SS trains. We looked whether different CS 
classes in a PC trigger SS pauses of different durations, reported with ± standard 
error of the mean (SEM). These durations were obtained by evaluating the time 
from the onset of the CS to the first following SS, which were detected by threshold 
crossing. We took the CS onset rather than its end, because of its higher signal-
to-noise ratio.

Complex spikes triggered Simple spike frequency change

CSs can trigger plasticity mechanisms in the PC and thus have a potential role in 
modulating the spiking activity of the PC. We obtained SS activity in time windows 
ranging from 150 ms to 500 ms, both before and after each CS. The window before 
the CS is directly preceding the onset of the CSs. The window used for the post CS 
SS activity starts at a time point where 90 % of all CS triggered SS pause lengths 
ended. For multiple time windows per PC we looked at CS waveforms and their 
SS firing rates either before or after the CSs. As the optimal time window in which 
SS firing rates change is unknown we analyzed each time window comparison 
individually.

In vitro electrophysiological recordings in brain slices

We performed in vitro recordings from Purkinje cells on cerebellar slices, in 
total 18 neurons were recorded from acute cerebellar tissue obtained from 12 
animals. Wistar rats (P18-26) of either sex were anaesthetised with 4% isoflurane 
and decapitated, sagittal slices (300 µm) of the cerebellar vermis were prepared 
by standard methods. Briefly, slices were cut in an ice-cold low calcium and high 
magnesium solution, containing (in mM) 125 NaCl, 25 NaHCO3, 25 Glu, 2.5 KCl, 
1.25 NaH2PO4, 1 CaCl2, 4 MgCl2, using a vibratome tissue slicer (VT 1000 S, 
Leica Microsystems, Germany). Slices were incubated at 32˚C in a standard artificial 
cerebrospinal fluid (ACSF), containing (in mM) 125 NaCl, 25 NaHCO3, 25 Glu, 2.5 
KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, for 30-45 min and then somatic whole cell 
patch-clamp recordings were performed at 34±1˚C using 3-6MΩ borosilicate glass 
pipettes, filled with a solution containing (in mM) 130 KMeSO4, 7 KCl, 10 HEPES, 
0.05 EGTA, 2 Na2ATP, 2 MgATP, 0.5 Na2GTP (adjusted to a pH of 7.3). 

Current-clamp recordings were obtained using a Multiclamp 700B amplifier 
(Molecular Devices, California, USA), low-pass filtering voltage traces at 10kHz, 
and sampling at 30kHz, with the LCG software (Linaro et al., 2014). Pipette 
capacitance and resistance were carefully compensated during the experiment by 
the amplifiers circuitry. All recordings were performed in the presence of SR95531 
(GABAA receptors blocker, Sigma-Aldrich, Belgium). 

A theta glass pipette, filled with ACSF, was used to deliver bipolar, monophasic 
cathodic electrical extracellular stimuli (0.2ms, 150 - 500mV) to the granule cell 
layer. Care was taken to isolate the CF responses and to employ minimal stimulation 
amplitudes. In some cases, pulses separated by 2-3 ms, were employed, aimed at 
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mimicking inferior olive bursts (as in Mathy et al. 2009). Two different stimulation 
protocols were used. The first consisted of blocks with constant intervals of 0.2, 0.4, 
1.0, 2.0 or 5.0 s. This protocol was used for 11 neurons from 8 different animals. In 
the second protocol, used in 7 neurons from 4 different animals, the intervals were 
randomly drawn from the normal distribution. Complex spike waveforms were 
identified in intracellular voltage recordings, and spikelet detection and further 
analysis performed by custom MATLAB scripts.

The CF stimulation protocols mostly triggered CS with equal spikelet numbers; 
the few CSs with more or less spikelets were discarded for the purpose of a fair 
comparison of CS duration. To test the correlation between CS duration and the 
preceding CF stimulation interval in the in vitro data we analyzed the linear fit, 
using MATLAB ‘s polyfit routine, of the data seen in Figure 8B, C and 9B. The 
significance of the slopes was tested using a bootstrapping method, as for the 
in vivo data. The CS durations and the preceding CF stimulation interval pairs of 
a recording session were shuffled and a linear fit value was found. This was done 
10000 times giving a distribution of linear fits from shuffled trials. Significance 
was reached when the empirical found slope was in the 5 % border values of the 
shuffled linear fit distribution (p<0.05). 

Results

The ten PC recordings from awake behaving primates analyzed had mean 
durations of ~6 min each (see Table I for detailed overview). A total of 2789 CSs 
were detected, occurring at an average frequency of 0.8 ± 0.8 Hz (SEM), the 
corresponding inter complex spike intervals (ICSI) were on average 1254 ± 910 
ms, similar to previously reported CS firing rates (Armstrong and Rawson, 1979). 
Their high variability stands out even though cumulative distributions of ICSIs were 
similar for all PCs (Figure 2), suggesting that all recordings were obtained under 
comparable conditions.

Table I. An overview of 10 cells of which the CSs were categorized spanning over 1 hour of data.
Recordings on average were 351 seconds long. In total 2789 CSs were detected and categorized, the frequency of occurrence 
on average is 0.8 Hz. A noticeable feature is that where the average frequency over all the recordings is very consistent, 0.8 
± 0.08 Hz (SEM) the intervals between CSs in single recordings show very large fluctuations resulting in large SEM values for 
each recording. The number of spikelets gives a general impression of the variation of CS waveforms found. CSs durations are 
based on the time between the onset of the first and end of the last recognized spikelet. The ‘# of categories’ column indicates 
the number of CS categories found in each recording. The last column indicates the experimental condition during which the 
recording was obtained, which is either the monkey being instructed through targets appearing on a screen to make visually 
guided saccades (target sac) or is sitting in the dark without any saccade instructions (dark).

Recording

1
2
3
4
5
6
7
8
9
10

Mean all recordings
SEM
Total

Recording 
length (s)

322
386
651
133
321
268
331
465
225
408
351
138

> 1 h

Mean 
ICSI (ms) 

1231
1220
1390
1101
1353
1260
1108
1259
1322
1299
1254
135

> 1 h

SEM (ms)

± 940
± 900
± 975
± 798
± 994
± 1031
± 905
± 938
± 829
± 791
910
143

# of 
spikelets

2 - 5
2 - 5
2 - 4
4 - 6
3 - 6
6 - 10
6 - 10
2 - 6
4 - 7
4 - 7

3.4 - 6.5

Length 
time (ms)

4 - 9
4 - 10
7 - 9
7 - 10
6 - 11
7 - 10
7 - 10
3 - 10
6 - 9
4 - 8 
5 - 10

# of CSs

263
316
469
121
237
213
300
386
169
315 
279
97

2789

Condition

target sac
target sac
target sac

dark
dark
dark
dark

target sac
dark
dark

# of 
categories

12
10
15
13
17
16
20
16
9
26 
15
5
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Waveform variability 

CS variability has been reported in single cells in vitro (Khaliq & Raman, 2005; Tal 
et al., 2008), here we describe the CS variability in vivo in a systematic manner. For 
each recording, CSs were classified into categories, based on the similarity of their 
waveforms (see Methods). Figure 3 compares single traces from three representative 
CS categories within a single recording to highlight the differences. The initial 
parts of the waveforms over the three CS categories (~2 ms) show high similarity, 
but the overall CS duration and the number of spikelets differed greatly (Figure 
3A). Figure 3B shows the variability within each CS category: the CS duration and 
spikelet number are identical but individual CS traces are noisy and do not overlap 
perfectly. 

The examples shown in Figure 3 are only a subset of a much larger variety of 
categories observed in this neuron. On average, 15 ± 5 different categories were 
observed in each PC recording (Table I). Complete overviews of all categories from 
recordings of two different neurons are shown in Figures 4A and 5A. The different 
categories found in a single Purkinje cell were sorted by increasing duration, and 
for convenience labeled by a letter. The number of CSs in a category varied from 
1 to 30% of all CSs in the recording and each category occurred throughout the 
entire duration of each recording. The differences of CS waveforms between 
recordings from different PCs were, in general, larger than the differences within 
a single recording. As exemplified in Figures 4 and 5 this was mainly due to large 
differences in the total duration of the CS between different PCs.

Figures 4A and 5A show the consistency of waveforms within each category: 
the mean waveform, in red, overlays the category 95% confidence interval. The 
top of the figures shows an overlay of all mean waveforms, demonstrating that 
waveform variability increases towards the end of CSs across categories. From the 
confidence interval plots a similar variability can be seen within categories.

A conspicuous characteristic of the CS categories is their spikelet count, which 
defines a secondary grouping, named “classes”. E.g. in recording 2, the number 
of spikelets per CS ranged from 2 to 5 (Figure 4A). In a few exceptional cases, 
CS categories with equal spikelet numbers were recognized as different classes, 
because of large differences in amplitude and spikelet timing. Classes II and III, 

Figure 2. The cumulative probability 
of inter complex spike interval (ICSI) 
lengths. 
The ICSI distributions of the ten different 
recordings across different monkeys on 
different days show remarkable similarity
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recording 7, exemplify these cases (Figure 5A). Some CS categories have a rather 
unique shape while others show strong common similarities. 

Waveform shape differences among CS categories from recording 2 (Figure 4) 
are analyzed in detail in Figures 4B and 4C while waveform variability in recording 
7 (Figure 5) is shown in Figure 5B and 5C. For a third recording, (recording 1) 
waveforms from class III are shown in Figure 6. Recognized CS classes and their 
characteristics for all 10 recordings are summarized in Table II. For the counts of 
CSs grouped on spikelet number per neuron, there was a trend that CSs with a 
spikelet number closer to the neuron’s average, appear more frequently (Table II).

Timing of the last spikelet is most variable

In Figure 4B we compare the mean waveforms of all categories from recording 2 
with three spikelets. The waveform overlay shows that the first spikelet is identical 
and the shapes of the following spikelets are very similar among the three 
categories. The main difference is the timing of the third and, to a lesser degree, 
the second spikelet. Timing differences are summarized in Figure 4BII: the time 
distributions of the last spikelet are completely separated across the categories, 
time distributions of the second spikelet show partial overlap for categories C 
and D but are separated for category E. High S/N ratios (Figure 4BIII) of the last 
spikelet time distributions between categories demonstrate the increased spread 
towards the CS end.

In Figure 4C, we compare the mean waveform of the categories with 4 spikelets, 
categories F, G and H of recording 2. We observe again that the timing of the last 
spikelet differs between the categories (Figure 4CII). Although the separation in 
this comparison is less defined, the S/N ratios highlight a clear difference (Figure 
4CIII). A more distinct difference between categories F and G is the amplitude of 
the last spikelet (Figure 4CIV): the amplitude of the fourth spikelet is comparable 
between category G and H, but is much smaller for category F.

Waveform variability 

CS variability has been reported in single cells in vitro (Khaliq & Raman, 2005; Tal 
et al., 2008), here we describe the CS variability in vivo in a systematic manner. For 
each recording, CSs were classified into categories, based on the similarity of their 
waveforms (see Methods). Figure 3 compares single traces from three representative 
CS categories within a single recording to highlight the differences. The initial 
parts of the waveforms over the three CS categories (~2 ms) show high similarity, 
but the overall CS duration and the number of spikelets differed greatly (Figure 
3A). Figure 3B shows the variability within each CS category: the CS duration and 
spikelet number are identical but individual CS traces are noisy and do not overlap 
perfectly. 

The examples shown in Figure 3 are only a subset of a much larger variety of 
categories observed in this neuron. On average, 15 ± 5 different categories were 
observed in each PC recording (Table I). Complete overviews of all categories from 
recordings of two different neurons are shown in Figures 4A and 5A. The different 
categories found in a single Purkinje cell were sorted by increasing duration, and 
for convenience labeled by a letter. The number of CSs in a category varied from 
1 to 30% of all CSs in the recording and each category occurred throughout the 
entire duration of each recording. The differences of CS waveforms between 
recordings from different PCs were, in general, larger than the differences within 
a single recording. As exemplified in Figures 4 and 5 this was mainly due to large 
differences in the total duration of the CS between different PCs.

Figures 4A and 5A show the consistency of waveforms within each category: 
the mean waveform, in red, overlays the category 95% confidence interval. The 
top of the figures shows an overlay of all mean waveforms, demonstrating that 
waveform variability increases towards the end of CSs across categories. From the 
confidence interval plots a similar variability can be seen within categories.

A conspicuous characteristic of the CS categories is their spikelet count, which 
defines a secondary grouping, named “classes”. E.g. in recording 2, the number 
of spikelets per CS ranged from 2 to 5 (Figure 4A). In a few exceptional cases, 
CS categories with equal spikelet numbers were recognized as different classes, 
because of large differences in amplitude and spikelet timing. Classes II and III, 

Figure 3. Example of complex spike categories. 
A. Three single CSs from recording 7, each CS belongs to a different category, in both the blue (top) trace and black (bottom) 
trace a simple spike precedes the CSs. Arrows indicate onset of the CS. B. All the CSs belonging to each of the three categories, 
corresponding to the ones in A, are overlaid for this recording. The CSs from the three different categories (out of 10 total for 
this recording) were selected to exemplify clear differences between categories. (Categ. is category)
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Figure 4.  A. From recording 2, the mean waveforms of each CS category are plotted overlaid in the upper trace in black. A 
clear observation is the homogeneity of the first spikelets over all categories and the increasing waveform variability towards 
the end of the spike. Thereunder the mean waveforms of each category are plotted in red, overlying the 95% confidence 
interval of the CSs in each category in grey. CS categories are plotted orderly according to duration of the CS. Each category is 
indicated with a letter on the right and the number of single CSs belonging to it is also given. A second distinction among the 
CSs categories was made based on the number of spikelets present: this classification shows 4 different classes, indicated with 
roman numbers, and shows an increase of spikelet count going from 2 till 5. Twelve CSs out of 316 could not be assigned to 
any category, the twelve individual CS traces are overlaid in the bottom having no category letter. BI. Overlay of three mean 
waveforms of the comparable but distinguishable CS categories, C, D and E all having 3 spikelets. The first spikelet is identical 
in all three mean waveforms, with the strongest difference being in the timing of the third spikelet. BII. The distribution of the 
spikelet timings over all CSs in categories C, D and E. While these distributions perfectly overlap for the first spikelet, they are 
completely separated for the third one. Normal distribution profiles were fitted to the second and third spikelet timings for each 
category. Notice the large difference in counts, due to unequal category sizes. BIII. The signal-to-noise (S/N) ratio’s of the 
spikelet timing between the different categories confirm the spread of the spikelet times towards the end of the CSs. CI. CS 
mean waveforms of the categories F, G and H, class III, differ in timing and amplitudes of last spikelets across categories. CII. 
Full length CS mean waveforms of the three categories being compared, the gray rectangles correspond to the rectangles in CI. 
The upper panels show the blown up parts of the mean CS waveforms used to determine the timing of each spikelet. Below are 
the histograms of the timing of the four spikelets of individual CSs per category. (Continued)
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Additional examples of the consistent variability of CS shapes are presented for 
a second recording, cell 7, in Figure 5. The CSs in this PC last significantly longer 
than those in the previous example and comprise 6 to 10 spikelets. Categories 
R, S and T had consistently smaller amplitude spikelets that made them harder 
to distinguish. As already observed, the initial segment of the CS waveform, here 
comprising the first 3 spikelets, is similarly shaped in all categories, while the 
variety between categories increases toward the CS end. In Figure 5B and 5C, 
two waveform shape comparisons of CSs with equal number of spikelets show the 
variability in timing of the last spikelets among categories. Categories A, B, C and 
G in Figure 5B show significant jitter (among each other) in both the second-to-last 
and last spikelet. Categories N, O and P in Figure 5C show instead variability only 
for the last spikelet.

A complete overview of the variation of CS waveforms per recording, with 
respect to the number of spikelets and the duration of the CSs is shown in Table 
I. Profound differences were found in the spikelet count range among CSs from 
different cells (2-4 versus 6-10). Between categories with the same number of 
spikelets, the timing of the last spikelet was the most significant difference. Over all 
10 cells recorded, this finding was consistent for 9 cells. In 8 out of these 9 cells, the 
timing of the second-to-last spikelet also varied among categories, although to a 
lesser extent. The timing of the earlier spikelets was consistent between categories 
from a single class. Only few CS categories showed amplitude differences (Figure 
4CIV), but these were always accompanied by large S/N ratios for the time shifts.

No sequence of occurrence of different complex spike shapes

The occurrence of CS waveforms, both classes and categories, do not show any 
consistent sequence throughout the recording. Using bootstrap methods, we 
tested the significance of pairs of categories following each other in the same 
recordings. No single recording showed a preference in the category order. The 
same method also excluded a pair wise order preference for CS classes.

We compared the range of CS shapes observed during the two different 
experimental conditions. Four recordings were obtained when monkeys were 
making visually guided saccades for rewards and six recordings were obtained 
when the monkey was sitting in the dark without any instructions. Both conditions 
showed comparable ranges of CS shapes with respect to the number of spikelets 
and the length of the CS, see table I. Also there were no differences between 
the conditions in the number of CS classes (table II, p>0.67 two sided KS test) or 
number of categories (table I. p>0.44). Next we investigated whether CS related 
to saccades (occurring in a time window from 100 ms before to 175ms after the 
saccade offset) had different shapes compared to CSs outside these time windows. 
In all the 10 recordings the distributions of CS classes, saccade related versus 
saccade unrelated, appeared random. 

Figure 4. Continued - Normal distributions fitting the time population per category for each spikelet are superimposed. These 
show a clear spread of timing for the fourth spikelet, again confirmed by the S/N ratio’s shown in CIII. CIV. Maximal amplitudes 
of the 1st and 4th spikelet of every single CS for each category. While these distributions again overlap for the first spikelet, 
category F shows clear amplitude differences of its last spikelet compared to G and H. D. The signal-to-noise ratios of the spikelet 
time populations of category F, G and H. (Categ. = category)
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Figure 5. Second example of mean category waveforms and their variability. 
A. An overview of identified waveform categories from cell 7, same conventions as in Figure 4A. The waveforms of all categories 
show a uniform initial phase as shown by the upper waveform overlay in black where after the number of spikelets, their timing 
and their amplitudes differ. The CSs in this cell show 7 classes, ranging from 6 clear spikelets, class I, till 10 spikelets in class 
VII, which are harder to distinguish although not impossible. Categories Q, R, S and T have low amplitude late spikelets and 
therefore have less characteristic features. In this recording 36 CSs out of 300 could not be categorized, grouped together at 
the bottom having no category letter. BI. Timing of last spikelet(s) shows jitter between CS categories. A similar convention as 
in Figures 4C I-III is used: The full-length mean waveforms compared are shown in the B/C-I block. Spikelets further analyzed are 
shown in the grey rectangles in the B/C-II blocks corresponding with the ones in the mean waveform panels. The time histograms 
in each comparison show the time distributions of the analyzed spikelets. The signal-to-noise ratios between the spikelet time 
populations are shown in the B/C-III blocks. (Continued)
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Complex spike shapes relate to the duration of the preceding interval

We investigated possible relations between the presence of specific CS waveform 
categories and other features of the PC spike train: SS pauses, SS rate and CS rate.
A well-known feature of the CS is that it induces a pause in the SS train (Bell and 
Grimm, 1969; Latham and Paul, 1971; McDevitt et al., 1982). Moreover dendritic 
Ca2+ spikes during the CS were found to regulate the afterhyperpolarization 
amplitudes and therefore modulate post CS SS-pause lengths (Davie et al., 2008). 
The pause duration distributions over the ten PC recordings showed differences. 
The average of all the mean pause durations from the 10 recordings was 26.1 ± 
6.6 ms (SEM). But neither the waveform ranges over the different PCs seemed to 
correlate to that cell’s mean pause duration nor did the CS categories or classes in 
single neurons correlate to the pause duration. 

Next we investigated possible correlations between the SS rate, preceding 
or following a CS and its category. Because of the highly fluctuating interspike 
intervals we looked at different time ranges (i.e., 150-500 ms), before and after the 
CS. The CS waveforms did not depend on the preceding SS rate and they did not 
induce repeatable changes in SS rate, neither in the relative nor in the absolute 
rate change. 

Finally we investigated the relation between CS categories in a single class and 
the ICSI, both before and after the CS. The scatter plot in Figure 6C shows the 
distribution of ICSIs before CSs of 6 categories belonging to the same class. The 
CS waveforms differ only in the jitter of their last spikelets, as can be seen in panels 
6A and 6B. The ICSI lengths per category show a large spread (Figure 6C), but 
the median ICSI length before the CSs of different categories shows a consistent 
correlation with the last spikelet timing (Figure 6D). The spread between the first 
and last spikelet grows as the ICSI before the CS gets shorter. In total, we looked at 
the 28 biggest classes of all ten recordings, from which 19 consistently showed an 
inverse correlation between the timing of the last spikelet and the preceding ICSI, 
without exceptions (Figure 6C). This relation was statistically significant at p < 0.05 
in 15 of the 19 data sets, in the other cases the data sets were too small to reach 
significance. In six classes we saw a similar correlation but with a single outlier, an 
example is given in Figure 7, and in three classes the correlation was not found. 
CS shapes did not correlate to the directly following ICSI length. These results 
confirm that CSs within a class are comparable and differ mostly in the jitter of the 
last spikelet(s), which is determined by the preceding ICSI. To exclude that our 
observations were a consequence of the manual categorization of CS waveforms 
we repeated this analysis by looking at the dependence of the duration of the CS, 
measured as the distance between first and last spikelets, on preceding ICSI and 
confirmed the findings (Figure 6E, 7E).

The consistent ICSI-jitter correlation was found in CS classes having 2 to 
9 spikelets and covered the full range of the recordings. The three classes not 

Figure 5. Continued - The S/N ratios in both comparisons demonstrate the spread of spikelet timing towards the end of the 
CSs. B. Comparison of categories with 6 spikelets. The timings of both the second-to-last (categories A and B versus C and G) 
and last spikelet (all categories) do not overlap. C. Comparison of categories with 9 spikelets. For these categories only the last 
spikelet is well separated. (Categ. is category)
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consistent with the finding were also randomly distributed over the observed 
spikelet number range.

Complex spike shape changes in vitro confirm in vivo findings

We hypothesized that the effect of the ICSI length on timing of the last CS spikelet 
could arise from ICSI dependent changes in Purkinje cell excitability. If this were 
true, similar findings would occur for CSs evoked by CF stimulation in an in vitro 
slice preparation, without influence of the Inferior Olive. We therefore carried 
out patch-clamp recordings of PCs in rat cerebellar slices, and evoked CSs by 
extracellular electrical stimulation of the CF (see Methods). This allowed us to 
artificially modify the ICSI in a consistent manner, by changing the frequency of CF 
stimulation. We could sometimes evoke long CSs waveforms with many spikelets, 
however since these were non-reproducible over long timescales, we restricted 
the analysis to short CS waveforms (<15ms).

In Figure 8 data is shown for CSs evoked with repeated stimulation at five 
different preceding ISI durations, i.e., 0.2, 0.4, 1.0, 2.0 and 5.0 s. These CSs had 
three spikelets and both the second and third increased their delay with decreasing 
ICSI, but the effect was much more pronounced for the last spikelet (Figure 8A). 
As shown in Figure 8B, the ICSI predicted the timing of the last spikelet (here 
measured as total CS duration) in a similar manner as observed in the in vivo 
recordings. Shorter preceding CF stimuli intervals also resulted in an increased 
variability of the timing of the last spikelet. 

To test significance we used only complex spike intervals data below 2.5 seconds 
so that we could better compare with the in vivo experiments. Comparing the trends 
found between the CS durations and the fixed CF stimulation interval before the 
spike we found a significant increase of CS duration with shorter intervals in 13 out 
15 experiments. In two slice experiments a neuron was used multiple times so that 
the 15 experiments were obtained from 11 different cells. The two nonsignificant 
results were found in the two multiple used neurons. 

A potential caveat of experiments using a fixed inter-CS interval is the presence 
of a built up of the adaptation of CS duration during the continued stimulation 
protocol, especially for the shorter intervals of 0.2 and 0.4 s. This is reflected in 
Figure 8 seen in the larger variance after higher stimulation frequencies. Because 
the ICSI duration in vivo shows large fluctuations such a stimulation protocol may 
not reflect the in vivo situation. We therefore repeated the slice experiments with a 
second stimulation protocol where the CF stimulus intervals were randomly drawn 
from a normal distribution and then afterwards ordered for analysis. An example 
of the results is shown in Figure 9. For the experiments with random interval 
stimulation significant correlation between CS duration and preceding ICSI at p < 
0.05 was found in 6 out of 7 experiments (7 cells), both for the intervals below 2.5 
seconds as for the full range of intervals (0.2 – 7 seconds) tested (Figure 9B). Based 
on the results shown in Figures 8 and 9 we conclude that the correlation between 
CS duration and CF stimulus interval observed in vivo is also found in vitro.
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Discussion
Summary of the findings

This study shows the extent of CS waveform variability in extracellular PC 
recordings from awake behaving non-human primates. CSs from a single PC 
differed in amplitude, timing and number of spikelets. Strong homogeneity was 
found in the initial CS shapes (Figures 4 and 5). A profound difference between 
CSs from different PCs was the spikelet number range. The lowest CS spikelet 
number observed in neuron 1 was 2 while it was 6 in neuron 7, spanning 4 and 
7 ms respectively. The maximum spikelet count in these neurons was 5 and 10 
respectively, spanning 9 and 10 ms (Table I). An important difference between 
CSs categories in single neurons was the relative timing of their last spikelets 
(Figures 4B/C and 5B/C). Waveforms did not correlate to different experimental 
conditions during the recording. Furthermore waveforms did not show an order 
preference during the recording. Nor was there a correlation of waveforms with SS 
pause duration or with the preceding and following SS rates. The jitter of the last 
spikelet(s) correlated strongly with the preceding ICSI length and a similar effect 
was observed in in vitro slice studies.

Limitations of the study

Extracellular recordings can reveal details of intracellular spiking activity (Henze 
et al., 2000). However extracellular recording method limits the faithfulness and 
the details of the detected waveforms and many traces, containing both SSs and 
CSs, could not be used for categorization. Because of the explorative approach 
of waveform categorization, we relied on manual methods and this may lead to 
incorrectly categorized CSs. However, both the global analysis of waveform shape 
(Figures 4A and 5A) and detailed analyses of spikelet properties, combined with 
significant statistical tests, argue against any systematic errors.
The use of MSD guided categorization of waveforms supported the visual 
classification and grouped small subsets of CSs having the strongest resemblance 
to pre-categorized CSs (see Methods). Fully automated methods failed because of 
global waveform differences from cell to cell and insufficient shape-detail levels. 
There are no automated CS categorization methods described in literature at 
present.

Recording

1
2
3
4
5
6
7
8
9
10

Cl I 
# CSs

40
50
29
46
34
14
35
12
10
10

Cl II 
# CSs

95
106
54
2
30
29
3

136
27
66

Cl III 
# CSs

121
130
79
4
25
80
41
88
116
213

Cl IV 
# CSs

3
18
212
5
57
42
102
90
12
13

Cl V 
# CSs

94
35
63
4
48
51

13

Cl VI 
# CSs

2
4
7
21
4

Cl VII 
# CSs

10

14

# spklt

2
2
2
4
3
6
6
2
4
4

# spklt

3
3
3
5
4
7
7
3
5
5

# spklt

4
4
3
5
5
8
7
3
6
6

# spklt

5
5
3
5
5
9
8
4
7
7

# spklt

4
5
4
9
9
5

7

# spklt

6
5
10
10
6

# spklt

6

10

Table II. The classes (Cl) of CSs, based on number of spikelets (spklt) for all recordings. 
For each class the number of CSs and the number of spikelets is shown. Notice that CS classes with an intermediate number of 
spikelets tend to be larger than the classes with lower or higher spikelet numbers.
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Mechanisms underlying CS spikelet number

The most prominent difference between CSs is their spikelet number, found in in 
vitro recordings to relate to the number of spikes in the CF stimulation that mimics 
bursts of CF action potentials (Mathy et al., 2009). In the same study the CF burst 
size was found to correlate with the sub-threshold oscillation phase in the inferior 
olive. Other authors have proposed instead that the amplitude of sub-threshold 
oscillations sets the number of spikes in the CF burst (Bazzigaluppi et al, 2012) and 
that this amplitude may be controlled by the coupling of inferior olive cells (De 

Figure 6. ICSI duration before CS sets timing of last spikelet in CSs. 
A. Waveforms from class III in recording 1 for which delay of last spikelet and total duration has been measured. B. Superimposed 
mean waveforms of each category. C. ICSI times preceding all class III CSs (recording 1) are plotted separated on category. The 
spread of the ICSI times is large for the different categories; of each the mean (stippled line) and median (broken line) time 
is given. A linear fit of the data, grey line, shows a significant declining slope on bootstrap testing (p<0.05). D. Median ICSI 
lengths are plotted against the average delay of the last spikelet per category. The delay is obtained by taking the average 
time difference between the last spikelet of each category and the last spikelet of the shortest CS (category F), as shown in 
panel A. The figure shows the shorter the median time length of the ICSI before the CS, the longer the mean delay of the last 
spikelet. E. Scatterplot of the time between first and last spikelet versus ICSI times before CSs in a log-log plot. Grey line is 
a power-function fit (power = -0.026) to the data with R2 = 0.49. Correlation between data and power-function is significant 
(p<0.001). Colors used indicate categories. (ICSI = inter complex spike interval, Categ. = category)
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Gruijl et al., 2012). Based on the absence of any preferred order of CS classes in 
this study, we predict that there is also no preferred order in CF burst sizes in the 
inferior olive. This implies that CF burst sizes vary rapidly in vivo.

In between different PCs we observed profound differences in spikelet number. 
A possible explanation are the different physiological properties found over CFs. 
CFs innervating PCs in zebrin-II positive zones release more glutamate per action 
potential then their counterparts in zebrine negative zones leading to longer 
duration CS with a greater number of spikelets in zebrine positive PCs (Paukert 
et al., 2010). The oculomotor vermis (VI and VII lobules) in Macaca Mulatta shows 
clear alternating parasagittal zebrin-II expression stripes (Sillitoe et al., 2004) and it 
is most likely that the PCs recorded came from both types of zones.

Figure 7. ICSI duration before CS sets timing of last spikelet in CSs. 
Similar conventions are used as in figure 6. This is an example which does not perfectly show the ICSI time versus spikelet jitter 
phenomena as stated in figure 6 because category I has a longer ICSI than category H. However category I shows an odd shape 
of its fore last spikelet as shown in panel B and might belong to a different class of CSs. D. Leaving category I out we do find 
a consistent relation between ICSI and last spikelet delay. E. Power function fit had power of -0.06, R2 = 0.3, p <0.001 for the 
correlation between fitted function and data.
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Mechanisms underlying CS spikelet jitter

A significant part of the CS waveform variation in single cells in vivo was related 
to spikelet jitter, mainly observed in the last spikelet, sometimes in the two last 
spikelets. This jitter neither depended on the number of spikelets in the CS nor on 
the CS duration. For example, Figure 5 shows comparable spikelet jitter between 
CS classes having either 6 or 9 spikelets, with delays from the CS onset of 5.5 ms 
and 8.5 ms. 

The main finding of this study is that this jitter of the last spikelet consistently 
depended on the interval with the preceding CS, with shorter ICSIs resulting in a 
longer delay of the last spikelet (Figures 6-7). One can hypothesize two different 
mechanisms causing such an effect of ICSI-length on spikelet timing. Because the 
Inferior Olive sets the ICSI, the last spikelet timing could reflect the timing of the 
last spike in a CF burst signal, which would then be delayed for short ICSIs (Mathy 
et al., 2009). Alternatively, the Olive generated ICSI could affect the excitability 
of the PC, most likely through the slow decay of dendritic calcium transients and 
accompanying differences in activation of calcium-activated K+ channels (Schmidt 
et al., 2003; Anwar et al., 2012; Anwar et al., 2013). The central role of PC excitability 
in setting the timing of the last spikelets was confirmed by the slice experiments 
(Figures 8-9). This strongly suggests that the jitter of the last spikelet, observed in 
most CSs, is due to a form of refractoriness intrinsic to the PC that underlies its 
delay, excluding a CF signal effect.

An additional mechanism could be the plasticity of the CF-PC synapses, since 
tetanization of the CF induces long-term depression of the CS (Hansel & Linden, 
2000). The reduced excitatory postsynaptic potentials (EPSPs) can cause changes 
in the CS slow wave components in the dendrites, the depolarization plateau 
following the first big peak (Weber et al., 2003).

Figure 8. CF stimulation interval sets delay of the last spikelet. 
A. Patch clamp recordings of CF stimulation triggered CSs in cerebellar slices with CF stimulus intervals of 0.2, 0.4, 1.0, 2.0 
or 5.0 s. B. Total duration CS, time between first and last spikelet peak, sorted on preceding CF trigger interval length. Error 
bars indicate standard deviation. A linear fit of the data, grey line, was found to have a significant declining slope (p<0.05) 
in bootstrap testing. C. Two other recordings showing a decline in total CS duration with longer preceding CF interval times, 
similar convention as in 8B. Both examples also show a significant declining slope of the linear fits of the data. Notice that total 
CS duration doesn’t decrease anymore for an interval length increasing from 2 to 5 seconds, the latter interval length is not 
observed in the in vivo recordings.
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No other effects of CS shape

While we extensively investigated the relation of other parameters to CS shape 
and CS rate, no significant relationships could be found. 

A study by Maruta et al., (2007) showed that longer preceding ICSIs correlated 
with a higher number of EPSP components in the CF triggered compound. Our 
lack of finding a correlation between CS class and preceding ICSI duration is in line 
with the weak correlation found between CF EPSPs and CS spikelet number in slice 
experiments (Davie et al., 2008 ; Mathy et al., 2009). Furthermore our results do 
not reproduce the observed paired-pulse depression of the pre-synaptic terminal 
of the CF-PC connection, which has been reported to results in a decreased 
number of spikelets of the second CS for ICSIs below 1000 ms (Hashimoto and 
Kano, 1998). Such differences may be due to differences in animal species or, more 
likely, extracellular versus intracellular recording methods. However our findings 
also disagree with extracellular recordings in mice by Servais et al., (2004) which 
showed that the amplitude of the secondary spikelets was inversely correlated 
with the previous SS frequency. No influence on CS waveforms was found in our 
recordings, neither on the spikelet jitter nor on the number of spikelets. We did not 
try to correlate CS waveforms with learning (Yang and Lisberger, 2014) because of 
the small number of learning trials in the analyzed data.

Figure 9. Random CF stimulation intervals resembling in vivo distributions.
A. Voltage traces of CF stimulation triggered CSs in cerebellar slices with CF stimulus intervals drawn from a normal distribution. 
Examples from 1s binned intervals. B. Total duration CS, time between first and last spikelet peak, sorted on preceding CF trigger 
interval length (as in figure 8). Shown is the linear fit of all data points (black line) with a significant declining slope in bootstrap 
testing (p<0.05), see inset, vertical red bar is the slope of data and the bootstrap slope distribution is shown in black bars.
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Effects of CS waveform differences

The functional downstream relevance of different spikelet numbers in the CSs 
is probably limited, due to the poor propagation of somatic spikelets to the 
deep cerebellar nuclei (DCN). On average only 2 spikelets per CS get relayed 
to their downstream targets, likely indistinguishable from 2 closely following SSs 
(Monsivais et al., 2005; Khaliq and Raman, 2005). Moreover PC spikes induce very 
small inhibitory postsynaptic potentials in DCNs, suggesting negligible effect from 
extra spikelets (Bengtsson et al., 2011).

Waveform differences could however affect plasticity of PF-PC synapses. Single 
spikelet CF bursts were reported to induce long-term potentiation instead of 
depression (Mathy et al., 2009). Moreover in a study by Rasmussen et al., (2013) 
single spikelet CF bursts resulted in extinction of a learned pause response, while 
multiple spikelets restored the response.

CSs induce pauses in the following SS trains (Bell and Grimm, 1969; Latham 
and Paul, 1971; McDevitt et al., 1982), and its duration regulates the rebound 
effect in DCN (Aizenman & Linden, 1999). The variability in pause duration across 
10 PCs was 26.1 ± 6.2 ms (SEM), falling in the 10-30 ms range reported by Shin 
and de Schutter (2006). Davie et al. (2008) showed the pause length to depend on 
the calcium spikes number in the PC dendrites. In our monkey data however, the 
SS pause lengths did not change for different CS waveforms, neither for different 
durations nor for different spikelet numbers. 

Different waveforms also did not reset PC activity state differentially, based on 
the lack of reproducible SS rates following CS groups. This supports the finding 
that the presumed PC bistability triggering capacity of the CS (Loewenstein et al., 
2005) is an artificial phenomena induced by anesthetics (Schonewille et al., 2006).

Conclusion

CS waveform variability is a shared feature over many species. It has been described 
at different levels of detail in cats (Campbell & Hesslow, 1986) and mice (Servais et 
al., 2004). This study shows the surprisingly great extent of that variability in non-
human primates. The ICSI length preceding the CS was found to strongly influence 
the CS waveform by changing the jitter of the CS last spikelets. The consistent 
effects of CF stimulus intervals on CS duration in slice experiments confirm that 
this spikelet jitter delay depends on PC intrinsic mechanisms.
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