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Introduction

Cardiac computed tomography (CCT) is considered an 
accurate imaging technique for the evaluation of coronary 
artery disease (CAD).

CCT may play the role of a non-invasive gatekeeper 
to invasive conventional coronary angiography especially 
in patients with suspected CAD (1-5). In particular, 
CCT is useful in patients at low-intermediate pre-test 
probability of CAD (6). The tool had an impressive 
development in the last decade with improvement of 
the scanner spatial and temporal resolution. Moreover, 
a significant reduction in radiation dose has been 
recently achieved (7-10). Such significant improvements 
determined an expansion of clinical indications even 
to non-coronary applications (11). Large clinical trials 

highlighted the utility and the cost-effectiveness of CCT 
(12-14). However, the assessment of the morphological 
pattern of a coronary stenosis should be combined 
with an evaluation of hemodynamic significance, and 
eventually related myocardial ischemia, and functional 
consequences (15). In this clinical context, CCT may 
integrate additional phases and information in the 
mainstream examination. CCT and cardiac MR (CMR) 
may detect and characterize myocardial infarction (MI) 
with overlapping imaging findings (16).

In this review, we describe the state of the art of CCT 
in the assessment and characterization of MI focusing on 
technical aspects, imaging features, and pros and cons in 
comparison to nuclear medicine and CMR. The review is 
directed to clinical cardiologists and it can be a focus for 
radiologists interested in cardiac imaging.
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Background

MI is a major cause of death and disability worldwide. 
According to American Heart Association, CAD caused 1 of 
every 6 deaths in the United States in 2008 with a remarkable 
incidence of silent MI (17). According to World Health 
Organization, the trend of incidence is not expected to abate 
despite better prevention, diagnosis and treatment (18);  
nonetheless acute MI prevention and treatment efforts have 
resulted in favorable declines in the frequency of STEMI 
and death rates from the major types of acute MI (19).

The heart is a muscle with high energetic demand, which 
is continuously propelling blood throughout the body. In 
case of mismatch between oxygen supply and energetic 
demand, ischemia may follow with a definite sequence 
of cellular, inflammatory and biochemical effects. MI 
includes a wide spectrum of pathological stages depending 
on duration time of ischemia and extension of territories 
involved. The primary cause of acute MI is the sudden 
disruption of a coronary unstable atherosclerotic plaque 
and acute intracoronary thrombosis (20,21). First changes 
in cells contraction are observed in the first minute of 
ischemia, however temporary effects are documented after 
20 minutes, depending on the robustness and extension 
of collateral coronary circle (22). After 4 hours from 
acute event the first gross pathological effects of MI are: 
edema with increased vascular permeability secondary to 
inflammation, necrosis (unprogrammed death of cells), and 
hemorrhage. After 12 hours, the inflammation processes 
with infiltration of neutrophils start and the myocytes 
begin to lose nuclei and striations. Within 3 days, the 
muscle fibers start to disintegrate, the neutrophils die, and 
the macrophages start to remove the debris of dead cells. 
Scarring process is defined by the apposition of collagen 
and ends after two months from the initial event and it is 
characterized by areas of fibrous tissue (fibrosis) that replace 
normal cells.

The left ventricle, which is the main target of MI for the 
primary contribution to heart contraction, can present a 
reduced functionality with decrease of the ejection fraction. 
Nonetheless, for a short time period after the beginning 
of the ischemic process the myocardium is “stunned” in 
a condition of transient left ventricular dysfunction. A 
prolonged ischemic state determines the condition of 
hibernated myocardium, which is partially reversible with 
revascularization. The restoration of blood flow to the 
damaged myocardium may also not have positive effects 
because it may cause an accelerate reperfusion injury due 

to the activation of oxygen free radicals, microvascular 
dysfunction and microvascular obstruction (MO). MO 
or no-reflow phenomenon is caused by edema and 
osmotic overload with alterations of endothelial cells and 
cardiomyocytes.

Macroscopically, the left ventricle may present a more 
round and dilated shape defined as ventricular remodeling. 
The ischemic process advances like a wavefront from 
the endocardium to the epicardium and may become  
transmural (23). A transmural MI involves the entire 
thickness of the myocardial wall from endocardium to 
epicardium. The left ventricle may even rupture with 
dramatic consequences such as hemopericardium and 
tamponade. Another later consequence may be the 
thinning of the ventricular wall and the development of an 
aneurysm. In some cases MI territories may be infiltrated 
by adipose cells in a process called lipomatous metaplasia. 
Rest CT perfusion cannot discriminate between lipomatous 
metaplasia and a rest perfusion defect with viable 
myocardium because both appear hypodense in this phase. 
In this case, delayed enhancement (DE) imaging is useful.

CT technical notes

Myocardial perfusion imaging can be assessed with CCT 
either in a single-step approach for qualitative evaluation of 
ischaemic myocardium (24) or in a multi-step approach for 
quantitative analysis of the myocardial blood supply (25).

Early perfusion defects may be displayed during the 
first passage of the contrast medium in patients with acute, 
chronic, and subacute MI. Myocardial territories with 
impaired perfusion have a reduced distribution of contrast 
medium. Then, a specific region of hypoattenuation can 
be depicted even during CCT studies aiming solely at the 
evaluation of coronary arteries with no additional radiation 
dose to patients or changes in the scanning parameters. 
Every CT scanner that is able to perform CCT can be 
employed to assess first-pass defects (Figure 1). Nonetheless, 
dedicated image filters may improve the delineation of MI 
areas, which are affected by the hyperattenuating contrast 
media amount in the left ventricle chamber (26). The 
contrast in the left ventricle chamber determines beam-
hardening artifacts, which may obscure the subtle first-
pass subendocardial defects (27,28). The reconstruction of 
different temporal windows of the cardiac cycle may help to 
determine if the perfusion defect is true (29).

Dual-energy CT technology may provide image 
acquisition using more than a single energy X-ray spectrum 
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(30,31). Dual-energy CT represents a promising technique 
for the integrative analysis of coronary artery morphology 
and myocardial blood supply; furthermore Dual-energy CT 
is in good agreement with invasive coronary angiography 
and SPECT (30). Dual-energy technology enables 
mapping the myocardial iodine distribution, according 
to the absorption of X-ray spectra at different energy 
levels. The colour-maps of iodine distribution are based 
on both energy spectrum datasets and are superimposed 
into gray-scale multiplanar reformats of the left ventricle. 
The approach is not requiring additional scanning time 
or exceeding radiation dose, if compared to conventional 

single-energy CCT. Such techniques are usually described 
as perfusion imaging despite they merely provide a static 
picture of contrast medium distribution in the myocardium. 
Moreover, image acquisition covers several segments of 
the myocardium irrespective of perfusion phase (32,33). In 
the last years, a dynamic time-resolved scanner technology 
may exceed the limitations of a static acquisition of data. 
Such technique provides an effective perfusion imaging 
with colour-coded maps based on dynamic perfusion CCT 
performed during adenosine stress at multiple time points of 
contrast medium distribution through the myocardium (34).  
Time attenuation curves, perfusion parameters and defects 

Figure 1 CCT in a female patient with an extensive anterior myocardial infarction of the left ventricle. The patient was revascularized with 
a left main stenting as depicted in volume rendered (A) and multiplanar (B) images. Intra-stent intimal hyperplasia was displayed (arrowhead, 
C). Multiplanar images (4-chamber, D; long axis, E; short axis, F) show the first-pass perfusion defects (black arrow) on the subendocardial 
wall of the left ventricle. The functional bull’s eyes depict hypokinetic segments (G) and regional myocardial wall thinning (H). The left 
ventricular function is considerably impaired (I).
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may be analyzed. The recent availability of faster CT 
systems allowed the dynamic time-resolved perfusion 
imaging, which enables quantitative measurements of 
tissue blood flow, similarly to cardiac PET with the use of 
rubidium-82 (35).

CT techniques for imaging of myocardial viability are 
based on the pathological background of acute MI, whereas 
the cell damage leads to the loss of cellular membrane 
integrity and a subsequent increase in the distribution 
of contrast medium. In this regard, myocardial viability 
imaging with CCT is based on the same background and 
technique of CMR with DE (16,36-41). Iodinated contrast 
media are thought to accumulate in a way similar to 
gadolinium during CMR. Nevertheless, a plenty of practical 
factors such as ECG gating technique, tube parameters, and 
contrast media protocol may affect DE with CT. 

First, ECG gating may be retrospective or prospective. 
The latter may significantly reduce the radiation dose even 
for DE purposes (9,42). It is reasonable to expect that a 
DE-CCT may be performed with a low radiation dose 
of about 1 mSv (10). Second, the noise inherent to CCT 
may hamper the assessment of areas of MI especially when 
a single-energy technique is exploited. In this setting, 
the use of low kilovoltage has been described to improve 
the detection of areas of DE within the myocardium 
in animal experiments (43,44), while tube current does 
not significantly affect the detection of MI territory, 
image quality or contrast resolution (45). Martini et al. 
also demonstrated that the increase of contrast material 
volume provides a significant improvement in MI image 

quality (46). Nonetheless, the noise may interfere with 
the accurate delineation of segments showing DE, 
especially when obese patients are studied. At least 
120 mL of contrast medium should be administered 
with an optimal delayed scan from 5 to 15 minutes  
(Figure 2) (16,40,47) or directly after conventional 
angiography for reperfusion in the attempt to reduce the 
contrast media use (41). DE-CCT exploits multiplanar 
reconstruction or maximum intensity projections, with usual 
thickness from 5 to 10 mm, strict window width and level (29). 
CCT may evaluate CAD with an initial angiographic scan 
and subsequently assess the viability of myocardium with a 
DE scan. 

CCT is not accurate in the prediction of myocardial 
ischemia if compared with CMR or single-photon emission 
computed tomography (SPECT) (48). Rest CCT can 
assess only static perfusion defects of infarcted areas of 
myocardium, as previously described. In this regard, it is 
widely accepted that the morphological information on a 
stenosis must be combined with the functional assessment of 
the perfusion or wall kinetics during provocative tests (49).  
A stress test may help to determine if a coronary artery 
stenosis is responsible of a reduction of myocardial perfusion. 
The stress may be induced pharmacologically or by exercise. 
It is well known that stress perfusion abnormalities occur 
before wall motion dysfunction (50). Therefore, additional 
scans acquired during pharmacologic stress with adenosine 
or dipyridamole may detect reversible perfusion defects of 
myocardium (31,51-53). Therefore, the stress-CCT may be 
indicated: in symptomatic patients at intermediate risk of 

Figure 2 CCT in a porcine model with induced myocardial infarction. First-pass CCT shows early and subtle perfusion defects (black 
arrow) on the subendocardial lateral wall of the left ventricle corresponding to the perfusion territory of the left circumflex coronary artery  
(A). Corresponding DE-CCT images performed with standard contrast bolus using a low-dose radiation of 350 mAs (B) and standard  
900 mAs (C). DE-CCT shows a good correlation with acute infarct size (white arrow).
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CAD with non-diagnostic or equivocal ECG result or unable 
to exercise; in patients with a known coronary artery stenosis, 
to determine the hemodynamic significance; in patients with 
coronary artery bypass grafts and recurrent thoracic pain (11).  
However, as for other methods of provocative testing, 
stress CCT should be used under safety standards (54,55). 
CCT and SPECT have an important limitation due to high 
radiation exposure. Furthermore the use of contrast media 
should be limited and could be a limitation in patients with 
impaired renal function. In this case clinical examination 
together with functional evaluation with echocardiography 
may represent an alternative solution.

In conclusion, a comprehensive protocol of CCT should 
include: an initial angiographic scan to assess coronary 
arteries and myocardium at rest; a second scan with a 
second bolus of iodine contrast medium, before or after 
the rest scan, at peak of pharmacologic stress (adenosine  
140 μg/min/kg of body weight for 2–5 minutes); a DE 
acquisition, about 5–10 minutes after the contrast injection, 
for viability imaging (Table 1).

Imaging findings

Improved CT scanner technology with high spatial and 
temporal resolution may detect MI even with standard CT 
techniques. Characteristics of chronic MI such as perfusion 
abnormalities, fatty metaplasia with lower attenuation values 
(<0 HU), calcifications, remodeling of the left ventricle, 
focal wall thinning, left ventricular thrombus or aneurysm 
may be easily depicted (Figure 3) (39,56).

Non-contrast CCT for calcium scoring purpose can 
already detect chronic MI showing hypoattenuating 
myocardial regions if compared with nuclear myocardial 
perfusion imaging with a sensitivity of 92% and a specificity 
of 72% on a per-patient basis (56,57).

Similar ly,  contrast-enhanced CCT may detect 
hypoattenuated areas of MI (58) with a typical ischemic 
pattern (Figure 4). The distribution is subendocardial or 
transmural and it is concordant with the ischemic territory 
as opposed to epicardial or mid-wall distribution of 
myocarditis pattern (59). Rest dual energy CT provided 
comprehensive CAD imaging and identified perfusion 

Table 1 Cardiac CT examination phases

Examination type Target Examination time Reading time

Coronary angiography Morphology 5' 5'

Left ventricle assessment Function 5'* 5'

Rest Perfusion 5'** 5'

Stress Perfusion 5'** 5'

Delayed enhancement Viability 5'** 5'

*, not additional time; phase simultaneous to coronary angiography if retrospective gating is employed; **, additional time of phase.

Figure 3 Saccular post-ischemic aneurysm of the left ventricle with layered thrombus depicted by multiplanar (A) and VR images (B,C).
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defects in 90% of cases in comparison to SPECT (60). The 
major drawback is the visualization of small MI (61).

According to iodinated contrast media distribution, 
CCT may assess ischemic areas and viable myocardium in 
a way similar to CMR. The loss of membrane integrity of 
cells determines hyperenhancing areas. However, the DE 
may reduce from acute to chronic phases of MI because 
of the reduction of surrounding edema (62). Acute MI is 
defined by the ischemic area, which may become necrotic 
if the microvasculature is not recovered. In this setting, 
percutaneous coronary angioplasty (PTCA) may not lead to 
a functional recover because of the severe obstruction of the 
microvasculature. This is called no reflow phenomenon and 
it is defined by a central core of hypoattenuation within the 
hyperenhancing region (63). The decrease in infarct size 
over time is a process that can also be observed with CT (64). 
In acute MI the area may be hypoattenuated on first-pass 
and DE-CCT (65), while in chronic MI, reperfused or not, 
the scar determines a hyper-enhanced region.

Comprehensive protocol of CCT should be tailored to 
the patient´s history and to the findings of the first scan (i.e., 
if the first scan is normal it is not necessary to perform the 
stress and the DE; if the patient has an intermediate to high 
pretest it might be preferred to start with the stress and the 
rest might be avoided according to the findings).

Diagnostic performance

Perfusion and viability may be assessed with CCT (66-69).  
In the past decades, areas of suspected MI were mainly 
investigated by nuclear medicine techniques. SPECT 
and PET provided relevant diagnostic information with 
significant therapeutic and prognostic implications (70), 

despite some disadvantages such as attenuation artifacts, 
radiation dose, and limited off-hours availability. CMR may 
provide similar results in terms of diagnostic accuracy and 
long-term prognostic value, with the advantage of the lack 
of ionizing radiation (71,72).

Echocardiography represents a non-invasive diagnostic 
technique, which provides information regarding cardiac 
function and hemodynamics. In the acute settings it plays 
a role in regional wall motion abnormalities evaluation 
and for ruling out other etiologies of acute chest pain or 
dyspnea, including aortic dissection and pericardial effusion. 
Echocardiography can differentiate normal from infarcted 
myocardium, with the analysis of wall thickening and wall 
motion (the pattern of dysfunction may be a reflection 
of the extent of an infarction). Echocardiography plays 
a role also in the evaluation of complications of an acute 
MI like ventricular free wall rupture and pseudoaneurysm 
formation,  ventr icular  septal  rupture and mitral 
regurgitation (73).

In the next years, image fusion and hybrid scanners 
will combine more effectively structural and functional 
information regarding the pathological sequence that goes 
from stenosis to ischemia (74-78).

New concepts and technical solutions of CT scanner 
enable comprehensive imaging of MI from coronary 
stenosis to myocardial tissue damage. A plenty of studies 
demonstrated the high diagnostic accuracy of CCT (Table 2)  
in the diagnostic workup of patients with suspected CAD 
(3-5,8,11,79-83) and low to intermediate risk of CAD 
(6,84). CCT was also validated by several outcome studies 
that investigated risk stratification and prognostic value in 
registry data (85-87). Nonetheless, CCT may also provide 
functional information including regional heart function 

Figure 4 Post-ischemic dilated cardiomyopathy displayed by volume rendered (A) and multiplanar (B) images. An early perfusion defect 
(arrowhead) on the subendocardial wall of the left ventricle is displayed.
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and the assessment of MI, ischemia, and viability (88).
Tanabe et al. demonstrated that Dynamic CT perfusion 

has the potential to detect abnormal perfused myocardium 
and severe infarction assessed by SPECT/CMR using 
comparable cut-off myocardial blood flow (MBF). Authors 
retrospectively evaluated fifty-three patients who underwent 
stress dynamic CTP and either SPECT (n = 25) or CMR 
(n = 28) and found that for detecting the abnormal perfused 
myocardium, sensitivity and specificity were 80% (95% CI, 
71–90) and 86% (95% CI, 76–91) in SPECT (cut-off MBF, 
1.23), and 82% (95% CI, 76–88) and 87% (95% CI, 80–92) 
in CMR (cut-off MBF, 1.25) (69).

Even non-contrast CCT for calcium scoring purpose 
can accurately detect chronic MI showing hypoattenuating 
myocardial regions if compared with nuclear myocardial 
perfusion imaging with a sensitivity of 92% and a specificity 
of 72% on a per-patient basis (57). The presence of a 
myocardial hypo-enhancement region at rest on CCT 
has a sensitivity and specificity of around 90% to identify 
patients with a MI (Figures 5-7) (89,90). Rest dual energy 
CT provided comprehensive CAD imaging and identified 
perfusion defects in 90% of cases compared to SPECT (60).

The accuracy in the detection of ischemia was 
investigated by several studies which compared stress-
rest CCT with SPECT and CMR demonstrating a good 
agreement and similar sensitivity and specificity (30-32,51-

53,91-94). In particular, stress perfusion CCT may refine 
the diagnostic accuracy of CCT alone (52), with increased 
sensitivity from 83% to 91% and specificity from 71% to 
91%. Nevertheless, the current studies are based on small 
populations and are often biased by the high prevalence of 
disease in the recruited patients. On the other side, CCT 
may detect small perfusion defects because it is a technique 
with better image resolution than SPECT. Iodinated 
contrast media are reported to determine a vasodilatory 
effect and to keep specific kinetics, which may cause local 
hyperemia and improve the ability to detect small areas of 
MI (95,96).

PTCA has impressively improved the outcome of 
patients after MI (97). However, the sequelae of MI can 
determine left ventricular remodeling with reduced ejection 
fraction, even after restored coronary flow. Left ventricular 
remodeling is a major determinant of prognosis (98). In this 
regard, the infarct size and the distribution over myocardial 
wall may predict left ventricular remodeling (99,100).

SPECT imaging was considered a standard modality 
to assess the size of myocardial damage after acute MI 
with an evaluation of residual cardiac segments with 
perfusion defects (101,102). SPECT was extensively used 
for this purpose, however the modality may not recognize 
small perfusion defect in subendocardial infarcts (103). 
Gadolinium DE-CMR is the current clinical standard for 

Table 2 Diagnostic accuracy of cardiac CT in comparison to CMR and SPECT in the detection of myocardial infarction

Authors Patients (n) CT technique Other technique Sensitivity (%) Specificity (%)

Nikolaou, 2005 (66) 30 First pass CCT DE-CMR 91 79

Habis, 2009 (41) 26 DE-CCT DE-CMR 90 80

Bauer, 2010 (67) 36 Dual-energy CCT DE-CMR (3 Tesla) 77 97

Ko 2014, (68) 100 Stress perfusion Dual-energy CCT Stress perfusion CMR 89 74

Ruzsics, 2009 (30) 36 Rest Dual-energy CCT Stress-rest SPECT 92 93

Cheng, 2010 (32) 55 Rest Dual-source CCT Stress-rest SPECT Rest: 100 Rest: 78

Stress: 83.3 Stress: 90.3

Tanabe, 2016 (69) 53 Stress dynamic CCT perfusion SPECT (n=25) Abnormal perfused 
myocardium: 80

Abnormal perfused 
myocardium: 86

Severe infarction: 95 Severe infarction: 72

CMR (n=28) Abnormal perfused 
myocardium: 82

Abnormal perfused 
myocardium: 87

Severe infarction: 78 Severe infarction: 80

CCT, cardiac CT; CMR, cardiac MR; DE, delayed enhancement; SPECT, single-photon emission computed tomography.
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the assessment of left ventricular infarct size (104). CMR 
may also provide better results in the detection of small 
infarcts in every clinical condition from acute to chronic 
settings in comparison to SPECT (105,106). DE- CMR 
delivers also an excellent prognostic value since it was found 
to be strongly correlated to the probability of recovered 
function after revascularization, short and long-term 
outcome (107,108).

Kim et al. demonstrated that segments with a DE 
of 75% in the myocardial wall don’t benefit from  
revascularization (109). CMR may display several aspects of 
infarction and reperfusion damage: size, interstitial edema, 
hemorrhage, periinfarct penumbra, MO (110).

In recent years, CCT has enabled the detection of MI 
with accurate visualization of infarct size by DE techniques 
in animal model (38,111) and humans (Figures 8,9) (16). 
DE may be applied in CCT imaging for the detection of 
acute and chronic MI with a good accuracy (16,36,112). 
The dimension of DE territories and perfusion defects 
are predictive of long-term dysfunction after acute 
MI (113). Transmural contrast enhancement on CCT 
without additional administration of contrast media 
after conventional angiography is a marker of non-viable 
myocardium (41,114). The pattern of DE may indicate the 
possibility of functional recovery in patients after MI (115). 
Moreover, hypoattenuated areas of no-reflow within hyper-

Figure 5 Patient with a previous myocardial infarction in the territory of the left anterior descending artery. Multiplanar images in short axis 
(A-C) show the early perfusion defects (arrowhead) on the subendocardial wall of the left ventricle in the anterior and anteroseptal segments. 
In the long axis view (D) the corresponding myocardial wall is thinner than normal. The functional bull’s eyes display hypokinetic segments  
(E) and regional myocardial wall thinning (G). The left ventricular function is impaired (F).
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Figure 6 First-pass CCT hypoenhancement (arrowhead) in the basal inferior region (A,B) and corresponding SPECT images showing a 
perfusion defect (C,D).

Figure 7 Significant stenosis (arrowhead) of the left anterior descending artery (A) and corresponding first-pass hypoenhancement (arrow) 
in the anteroseptal segments (B-D), and SPECT images showing a perfusion defect more evident at stress (E).
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Figure 8 Patient with a previous myocardial infarction in the territories supplied by the circumflex artery (A). First-pass CCT cannot 
display any early perfusion defects (B; C), while DE-CCT depicts a subendocardial area of late enhancement (arrow) in the basal inferior 
region (D, E).

Figure 9 Patient with a previous myocardial infarction in the territory of the left anterior descending artery that is occluded (A-D). The 
left ventricle is remodeled and aneurysmatic at the apex (E-G). DE-CCT depicts a thin area of subendocardial late enhancement (arrow) 
in the septum (H,I).
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enhanced region of DE may be representative of residual 
perfusion defects after PTCA (116). DE-CCT may evaluate 
the size of MI immediately after primary PCI without 
additional contrast media and predict clinical outcome in 
patients with MI (117). Nevertheless, CCT studies were 
carried out in small cohorts of patients, although they 
already have shown promising results. 

CCT and CMR employ different contrast media, 
however they may detect and characterize MI with 
overlapping imaging findings (16). Gadolinium derived 
contrast media and iodinated contrast media have similar 
kinetics and distribution in the normal myocardium and in 
the infarcted territories. Nevertheless, MI characterization 
by means of CCT may present some issues related to poor 
contrast resolution when compared to CMR.

CMR remains the non-invasive reference method for 
evaluating the extent of post-ischemic and non-viable 
myocardium. Patients with contraindication to CMR 
(non-compatible pacemakers, defibrillators, or other 
metal devices) may more easily undergo dedicated CCT 
studies. CCT is a fast and 24/7 service usually available 
in emergency context (118), or in clinical daily routine, 
including the evaluation of coronary arteries and left 
ventricular function (119).

Outlook

In the last decade, CCT gained rapid advance and 
unquestionable success in the non-invasive assessment 
of coronary arteries. CCT was recently applied to the 
detection of MI, perfusion, and viability. First, several 
studies were performed in the animal settings with excellent 
results. Then, human studies were performed on small 
patients population to assess the reproducibility of the 
approach. The first promising results are expected to 
be confirmed on more numerous patients cohort or on 

a multicenter basis for routine clinical application. The 
following step could be to place these results in a prognostic 
context in comparison with CMR which, in current-day 
practice, is considered the most accurate tool for infarct 
characterization in clinical setting. The health technology 
assessment should be also completed with cost-effectiveness 
and economic sustainability study (120,121). A one stop-
shop examination with a profile of first-line imaging could 
be a solution to cut economic and biological costs in the 
work-up of patients with suspected or known CAD. Beyond 
the need to obtain more robust data, another requirement 
for future studies is the correct selection of patient 
population. A comprehensive protocol of morphological and 
functional CCT could be used in patients at intermediate-
high probability of CAD in order to reduce procedural time 
and biological costs. Such protocol needs some additional 
time, which is exceeding the simple evaluation of coronary 
arteries of CCT angiographic studies (Table 1). The 
additional time should take into account both the patient 
scan (at least 15 minutes to perform a comprehensive 
protocol) and the reading time of an experienced radiologist 
(at least 20 minutes to elaborate a complete report) (122). 
The reporting time could be in part decreased in the future 
by the use of automated or semi-automated computer 
applications. If compared to SPECT and CMR, CCT has 
several advantages: short examination time, wide availability 
and patient’s acceptance (Table 3). In particular, Dual-
energy computed tomography might be promising for the 
integrative analysis of the coronary artery morphology 
and the myocardial blood supply; DECT resulted in good 
agreement with invasive coronary angiography and SPECT. 
Ruzsics et al. demonstrated that DECT had 92% sensitivity 
and 93% specificity, with 93% accuracy for detecting any 
type of myocardial perfusion defect seen on SPECT (30).

Another relevant issue is that a comprehensive protocol 
of morphological and functional CCT should be performed 

Table 3 Pros and cons of imaging method in myocardial infarction characterization. 

Technique Coronary arteries Function Infarcted area Perfusion stress Viability Biological cost Outcome studies

Echo − ++ + ++ ++ − ++

CCT +++ + + ++ ++ ++ +

CMR + +++ +++ +++ +++ − +++

SPECT − ++ ++ ++ ++ ++ +++

CCT, cardiac CT; CMR, cardiac MR; SPECT, single-photon emission computed tomography. −, limited/absent; +, moderate; ++, high; +++, 
very high.
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with an additional radiation dose administration. The dose 
administered with CCT should be at least comparable 
with that of SPECT in perfusion imaging (34) and viability 
assessment (123), lower than 10 mSv (9). On the other side, 
CMR with stress and DE imaging may achieve excellent 
results in absence of potentially dangerous ionizing 
radiation, despite coronary arteries still cannot be properly 
assessed (124).

Another potential matter of interest is the timing of 
examination according to the phase of MI, because the 
pattern may differ between acute, subacute, chronic or 
healing phase. In addition, some patients with MI may also 
present with non-obstructive CAD (125-128) and therefore 
a comprehensive morphological and functional assessment 
of the heart should be pursued. Given that, CCT may be 
employed also in emergency setting, the tool could be an 
attractive diagnostic option also in this context (129).

Conclusions

CCT achieved promising results in the detection and 
characterization of MI, keeping into account that 
morphological, functional, and perfusional information 
can be not-invasively obtained. CCT may study the entire 
atherosclerotic process, including coronary plaque and 
stenosis, myocardial perfusion and viability. On the other 
side, some efforts should be spent in order to confirm 
the results in larger populations and to reduce the use of 
ionizing radiation as low as possible.
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