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Abstract

Background

Selection of candidates for lung cancer screening based on individual risk has been pro-

posed as an alternative to criteria based on age and cumulative smoking exposure (pack-

years). Nine previously established risk models were assessed for their ability to identify

those most likely to develop or die from lung cancer. All models considered age and various

aspects of smoking exposure (smoking status, smoking duration, cigarettes per day, pack-

years smoked, time since smoking cessation) as risk predictors. In addition, some models

considered factors such as gender, race, ethnicity, education, body mass index, chronic

obstructive pulmonary disease, emphysema, personal history of cancer, personal history of

pneumonia, and family history of lung cancer.

Methods and findings

Retrospective analyses were performed on 53,452 National Lung Screening Trial (NLST)

participants (1,925 lung cancer cases and 884 lung cancer deaths) and 80,672 Prostate,

Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) ever-smoking participants

(1,463 lung cancer cases and 915 lung cancer deaths). Six-year lung cancer incidence and

mortality risk predictions were assessed for (1) calibration (graphically) by comparing the

agreement between the predicted and the observed risks, (2) discrimination (area under the

receiver operating characteristic curve [AUC]) between individuals with and without lung

cancer (death), and (3) clinical usefulness (net benefit in decision curve analysis) by identify-

ing risk thresholds at which applying risk-based eligibility would improve lung cancer screen-

ing efficacy. To further assess performance, risk model sensitivities and specificities in the

PLCO were compared to those based on the NLST eligibility criteria. Calibration was
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satisfactory, but discrimination ranged widely (AUCs from 0.61 to 0.81). The models outper-

formed the NLST eligibility criteria over a substantial range of risk thresholds in decision

curve analysis, with a higher sensitivity for all models and a slightly higher specificity for

some models. The PLCOm2012, Bach, and Two-Stage Clonal Expansion incidence models

had the best overall performance, with AUCs >0.68 in the NLST and >0.77 in the PLCO.

These three models had the highest sensitivity and specificity for predicting 6-y lung cancer

incidence in the PLCO chest radiography arm, with sensitivities >79.8% and specificities

>62.3%. In contrast, the NLST eligibility criteria yielded a sensitivity of 71.4% and a specific-

ity of 62.2%. Limitations of this study include the lack of identification of optimal risk thresh-

olds, as this requires additional information on the long-term benefits (e.g., life-years gained

and mortality reduction) and harms (e.g., overdiagnosis) of risk-based screening strategies

using these models. In addition, information on some predictor variables included in the risk

prediction models was not available.

Conclusions

Selection of individuals for lung cancer screening using individual risk is superior to selection

criteria based on age and pack-years alone. The benefits, harms, and feasibility of imple-

menting lung cancer screening policies based on risk prediction models should be assessed

and compared with those of current recommendations.

Author summary

Why was this study done?

• In the United States, lung cancer screening is currently recommended based on age,

pack-years smoked, and years since smoking cessation, the criteria used to select partici-

pants for the National Lung Screening Trial (NLST).

• A number of recent investigations suggest that using lung cancer risk prediction models

could lead to more effective screening programs compared to the current

recommendations.

• External validation and direct comparisons between risk models are often limited due

to insufficient numbers of events or methodological limitations.

What did the researchers do and find?

• Various performance characteristics of nine risk prediction models for lung cancer inci-

dence or mortality were assessed using data from two randomized controlled trials on

lung cancer screening: the NLST and the Prostate, Lung, Colorectal and Ovarian Cancer

Screening Trial (PLCO).

• The calibration performance of the models was satisfactory, but discrimination ranged

widely between models. However, all models had a higher sensitivity—and some models

had a slightly higher specificity—than the NLST eligibility criteria.
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What do these findings mean?

• Using risk prediction models to select individuals for lung cancer screening is superior

to currently recommended selection criteria.

• The benefits, harms, and feasibility of using risk prediction models to select individuals

for lung cancer screening should be assessed and compared with current

recommendations.

Introduction

The National Lung Screening Trial (NLST) found that screening with low-dose computed

tomography (CT) can reduce lung cancer mortality by 20% [1]. Based on an evidence review,

including the results of the NLST and a comparative microsimulation modeling study, the

United States Preventive Services Task Force (USPSTF) recommended lung cancer screening

for current and former smokers aged 55 through 80 y who smoked at least 30 pack-years and,

if quit, quit less than 15 y ago [2–4]. To our knowledge, only the United States has imple-

mented lung cancer screening policies. Although the province of Ontario, Canada, recom-

mends screening individuals at high risk for lung cancer through an organized program, no

program has yet been established [5]. Cancer Care Ontario (the provincial cancer agency of

Ontario) is currently evaluating the feasibility of implementing such a program [6]. European

countries have not yet made any recommendations on lung cancer screening, as the final

results of the Dutch-Belgian Lung Cancer Screening Trial (Nederlands-Leuvens Longkanker

Screenings Onderzoek [NELSON] trial), potentially pooled with high-quality data from other

trials, are still awaited [7–9].

The screening eligibility criteria used in the current USPSTF recommendations are based

on age and pack-years, a measure of cumulative smoking exposure. Thus, these recommenda-

tions do not take other important risk factors into account, such as family history, nor other

relevant aspects of smoking, such as smoking duration or intensity. Recently, a number of

investigations have suggested that determining screening eligibility using an individual’s risk

based on age, more detailed smoking history, and other risk factors such as ethnicity and fam-

ily history of lung cancer could lead to more effective screening programs compared with the

USPSTF recommendations [10–13]. Indeed, some lung cancer screening guidelines already

encourage assessment of an individual’s risk to determine screening eligibility [14].

While various lung cancer risk prediction models have been developed, external validation

and direct comparisons between models have been limited due to insufficient numbers of

events or methodological limitations [15–21]. Such validations are essential, as risk prediction

models generally have optimistic performance within their development dataset [15–17]. This

study aims to externally validate and directly compare the performance of nine currently avail-

able lung cancer risk prediction models for stratifying lung cancer risk groups and determin-

ing screening eligibility.

Methods

Ethics statement

No identifiable information was used; therefore, no institutional review board (IRB) approval

was needed. Nonetheless, a determination of exempt was given by the University of Michigan

IRB (HUM00054750), and a determination of this not being human subjects research was
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given by the Fred Hutchinson Cancer Research Center (former affiliation of J. J.) IRB (6007–

680).

Study population

We used data from two large randomized controlled screening trials: the NLST and the Pros-

tate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) [1,22–24]. All partici-

pants in the CT arm (n = 26,722) and chest radiography (CXR) arm (n = 26,730) of the NLST

and ever-smoking participants in the CXR arm (n = 40,600) and control arm (n = 40,072) of

the PLCO were included in the analysis. Never-smokers in the PLCO were not considered,

as (1) not all lung cancer risk prediction models can be applied to never-smokers and (2)

never-smokers are unlikely to reach levels of risk that allow them to benefit from screening

[13,25].

Data on the predictor variables in each trial were collected through epidemiologic question-

naires administered at study entry and harmonized across both trials. Reported average num-

bers of cigarettes smoked per day above 100 were considered implausible and recoded as 100

cigarettes per day (n = 11). Furthermore, body mass index values less than 14 and over 60 kg/

m2 were considered implausible for enrollment in both trials and recoded as 14 (n = 5) and 60

kg/m2 (n = 18), respectively. Lung cancer diagnoses (1,925 in the NLST and 1,463 in the

PLCO) and lung cancer deaths (884 in the NLST and 915 in the PLCO) that occurred between

study entry and 6 y of follow-up were included in the final dataset and were considered as

binary outcomes.

Lung cancer risk prediction models

Our study includes nine risk prediction models for lung cancer incidence or death that have

been used frequently in the literature. Risk prediction models were not considered for this

investigation, if they (1) were developed for specific ethnicities and are therefore not broadly

applicable [26–28], (2) used information on biomarkers or lung nodules and are therefore not

readily applicable for the prescreening selection of individuals [29–33], (3) were developed for

identifying symptomatic patients [34,35], (4) did not incorporate smoking behavior [36], (5)

did not provide information on parameter estimates (e.g., baseline risk parameters) necessary

to allow replication of the model [11,12], or (6) had poor discriminative ability in their devel-

opment dataset [37].

Nine models remained and were investigated: the Bach model, the Liverpool Lung Project

(LLP) model, the PLCOm2012 model, the Two-Stage Clonal Expansion (TSCE) model for

lung cancer incidence, the Knoke model, two versions of the TSCE model for lung cancer

death [10,38–44], and simplified versions of the PLCOm2012 and LLP models. The character-

istics of these models are shown in Table 1. The TSCE and Knoke models consider only age,

gender, and smoking-related characteristics as risk factors [40–43]. The Bach model considers

asbestos exposure as an additional risk factor, while the LLP and PLCOm2012 models consider

multiple additional risk factors [10,38,39]. The simplified versions of the PLCOm2012 and

LLP models considered only age, gender, and smoking variables. A detailed description of

each model can be found in S1 Appendix.

Data on frequency and intensity of asbestos exposure, used in the LLP and Bach models,

was not available for the PLCO participants and could not be accurately derived for the NLST

participants [38,39]. Therefore, we assumed that none of the participants were exposed to

asbestos, even though this assumption may lead to biased estimates [45]. However, as the

potential number of individuals with asbestos exposure was low (less than 5% of the NLST par-

ticipants reported ever working with asbestos), this bias is expected to be minor [46].

Risk prediction models for selection of lung cancer screening participants
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The LLP model incorporates age at lung cancer diagnosis of a first-degree relative: early age

(60 y or younger) versus late age (older than 60 y) [38]. However, while both the PLCO and

the NLST had information about the occurrence of family history of lung cancer (yes/no), nei-

ther had information on the age of diagnosis for the affected relative(s). Since the median age

of lung cancer diagnosis in the United States is 70 y and the majority of lung cancers occur

after the age of 65 y (68.6%), we assumed that lung cancer in first-degree relatives in the PLCO

and the NLST always occurred after the age of 60 y [47,48].

In addition, the LLP model incorporates a history of pneumonia as a risk factor [38]. While

information on this risk factor was available in the NLST, it was not available in the PLCO.

Therefore, we assumed that none of the PLCO participants had a history of pneumonia for the

complete case analyses. While 22.1% of NLST participants had a history of pneumonia

(Table 2), the association of a history of pneumonia with a lung cancer diagnosis within 6 y

was not clear (p = 0.3378 in the CT arm and p = 0.0035 in the CXR arm). Missing history of

pneumonia for PLCO participants was imputed by using information from the NLST partici-

pants [49].

Table 1. Characteristics of investigated risk models.

Model Predicted

outcome

Model

prediction

time frame

Development dataset(s) Risk factors incorporated in model Reference

Bach model* Lung cancer

incidence

1 y (iterative) Carotene and Retinol Efficacy Trial

(CARET)

Age, gender, smoking duration,

smoking intensity, years since

cessation, asbestos exposure

[39]

Liverpool Lung Project

(LLP) model†
Lung cancer

incidence

5 y Liverpool Lung Project (LLP) case–

control study

Age, gender, smoking duration,

personal history of cancer, family

history of lung cancer, personal history

of pneumonia, asbestos exposure

[44]

PLCOm2012 model† Lung cancer

incidence

6 y Prostate, Lung, Colorectal and Ovarian

Cancer Screening Trial (PLCO)

Age, race, education, BMI, COPD,

personal history of cancer, family

history of lung cancer, smoking status,

smoking duration, smoking intensity,

years since cessation

[10]

Two-Stage Clonal

Expansion (TSCE) lung

cancer incidence model

Lung cancer

incidence

1 y (iterative) Nurses’ Health Study (NHS), Health

Professionals Follow-up Study (HPFS)

Age, gender, smoking status, smoking

duration, smoking intensity, years since

cessation

[43]

Knoke model Lung cancer

death

1 y (iterative) American Cancer Society’s first Cancer

Prevention Study (CPS-I)

Age, smoking status, smoking duration,

smoking intensity, years since

cessation

[40]

Two-Stage Clonal

Expansion (TSCE) CPS

lung cancer death model

Lung cancer

death

1 y (iterative) British Doctors Study, American Cancer

Society’s first Cancer Prevention Study

(CPS-I), American Cancer Society’s

second Cancer Prevention Study

(CPS-II)

Age, gender, smoking status, smoking

duration, smoking intensity, years since

cessation

[41]

Two-Stage Clonal

Expansion (TSCE) NHS/

HPFS lung cancer death

model

Lung cancer

death

1 y (iterative) Nurses’ Health Study (NHS), Health

Professionals Follow-up Study (HPFS)

Age, gender, smoking status, smoking

duration, smoking intensity, years since

cessation

[42]

*Data on asbestos exposure was not available for PLCO participants and could not be accurately derived for NLST participants. Therefore, only age,

gender, and smoking-related characteristics were considered for this model.
†Simplified versions of these models, using only age, gender, and smoking-related characteristics, were considered as well.

BMI, body mass index; COPD, chronic obstructive pulmonary disease.

https://doi.org/10.1371/journal.pmed.1002277.t001
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Table 2. Baseline characteristics of National Lung Screening Trial and Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial participants

according to 6-y lung cancer incidence.

Characteristic NLST computed tomography

arm

NLST chest radiography arm PLCO chest radiography arm PLCO control arm

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

Number

(percent) of

participants

25,692

(96.15%)

1,030

(3.85%)

25,835

(96.65%)

895

(3.35%)

39,846

(98.14%)

754

(1.86%)

39,363

(98.23%)

709

(1.77%)

Age (years)

Median (IQR) 60 (57–

65)

63 (59–

68)

<0.001 60 (57–

65)

64 (60–

68)

<0.001 62 (58–

66)

65

(60.25–

69)

<0.001 62 (58–

66)

65 (60–

69)

<0.001

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Gender

Male 15,148

(58.96%)

621

(60.29%)

0.401 15,235

(58.97%)

526

(58.77%)

0.917 23,228

(58.29%)

475

(63.00%)

0.010 22,775

(57.86%)

438

(61.78%)

0.038

Female 10,544

(41.04%)

409

(39.71%)

10,600

(41.03%)

369

(41.23%)

16,618

(41.71%)

279

(37.00%)

16,588

(42.14%)

271

(38.22%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Hispanic

ethnicity

No 25,070

(97.58%)

1,008

(97.86%)

0.041 25,158

(97.38%)

881

(98.44%)

0.004 38,116

(95.66%)

731

(96.95%)

0.314 37,597

(95.51%)

690

(97.32%)

0.093

Yes 469

(1.83%)

10

(0.97%)

451

(1.75%)

5 (0.56%) 872

(2.19%)

12

(1.59%)

873

(2.22%)

9 (1.27%)

Missing 153

(0.60%)

12

(1.17%)

226

(0.87%)

9 (1.01%) 858

(2.15%)

11

(1.46%)

893

(2.27%)

10

(1.41%)

Race or ethnic

group

White 23,019

(89.60%)

933

(90.58%)

0.323 23,143

(89.58%)

806

(90.06%)

0.090 35,180

(88.29%)

644

(85.41%)

<0.001 34,787

(88.37%)

630

(88.86%)

0.007

Black 1,140

(4.44%)

47

(4.56%)

1,123

(4.35%)

51

(5.70%)

2,252

(5.65%)

73

(9.68%)

2,201

(5.59%)

53

(7.48%)

Hispanic 337

(1.31%)

7 (0.68%) 314

(1.22%)

4 (0.45%) 810

(2.03%)

12

(1.59%)

807

(2.05%)

8 (1.13%)

Asian 541

(2.11%)

18

(1.75%)

522

(2.02%)

14

(1.56%)

1232

(3.09%)

16

(2.12%)

1199

(3.05%)

13

(1.83%)

Native Hawaiian

or Pacific Islander

88

(0.34%)

3 (0.29%) 100

(0.39%)

2 (0.22%) 219

(0.55%)

8 (1.06%) 244

(0.62%)

1 (0.14%)

American Indian

or Alaskan Native

86

(0.33%)

6 (0.58%) 95

(0.37%)

3 (0.34%) 130

(0.33%)

1 (0.13%) 105

(0.27%)

4 (0.56%)

Missing 481

(1.87%)

16

(1.55%)

538

(2.08%)

15

(1.68%)

23

(0.06%)

0 (0%) 20

(0.05%)

0 (0%)

Education

(Continued )
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Table 2. (Continued)

Characteristic NLST computed tomography

arm

NLST chest radiography arm PLCO chest radiography arm PLCO control arm

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

Less than high

school graduate

1,552

(6.04%)

89

(8.64%)

<0.001 1,525

(5.90%)

83

(9.27%)

<0.001 3,424

(8.59%)

123

(16.31%)

<0.001 3,418

(8.68%)

96

(13.54%)

<0.001

High school

graduate

5,989

(23.31%)

284

(27.57%)

6,177

(23.91%)

261

(29.16%)

8,775

(22.20%)

199

(26.39%)

8,647

(21.97%)

197

(27.79%)

Post-high-school

training

3,587

(13.96%)

146

(14.17%)

3,562

(13.79%)

139

(15.53%)

5,341

(13.40%)

92

(12.20%

5,393

(13.70%)

98

(13.82%)

Some college 5,957

(23.19%)

232

(22.52%)

5,893

(22.81%)

195

(21.79%)

9,269

(23.26%)

165

(21.88%)

9,159

(23.27%)

161

(22.71%)

College graduate 4,357

(16.96%)

148

(14.37%)

4,342

(16.81%)

99

(11.06%)

6,626

(16.63%)

97

(12.86%)

6,385

(16.22%)

94

(13.26%)

Postgraduate/

professional

3,679

(14.32%)

101

(9.81%)

3,718

(14.39%)

102

(11.40%)

6,352

(15.94%)

77

(10.21%)

6,218

(15.80%

59 (8.32%

0

Missing 571

(2.22%)

30

(2.91%)

618

(2.39%)

16

(1.79%)

59

(0.15%)

1 (0.13%) 143

(0.36%)

4 (0.56%)

BMI (kg/m2)

Median (IQR) 27.32

(24.46–

30.73)

26.38

(23.94–

29.28)

<0.001 27.38

(24.50–

30.63)

26.22

(23.62–

29.25)

<0.001 26.68

(24.19–

30.02)

26.16

(23.48–

28.77)

<0.001 26.68

(24.18–

29.90)

25.88

(23.45–

28.81)

<0.001

Missing 146

(0.57%)

13

(1.26%)

206

(0.80%)

7 (0.78%) 494

(1.24%)

10

(1.33%)

742

(1.89%)

15

(2.12%)

COPD

No 21,283

(82.84%)

765

(74.27%)

<0.001 21,435

(82.97%)

643

(71.84%)

<0.001 36,381

(91.30%)

602

(79.84%)

<0.001 35,899

(91.20%)

567

(79.97%)

<0.001

Yes 4,409

(17.16%)

265

(25.73%)

4,400

(17.03%)

252

(28.16%)

3,465

(8.70%)

152

(20.16%)

3,464

(8.80%)

142

(20.03%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Emphysema

No 23,661

(92.09%)

878

(85.24%)

<0.001 23,734

(91.87%)

766

(85.59%)

<0.001 38,011

(95.39%)

655

(86.87%)

<0.001 37,404

(95.02%)

599

(84.49%)

<0.001

Yes 1,910

(7.43%)

146

(14.17%)

1,915

(7.41%)

122

(13.63%)

1,650

(4.14%)

96

(12.73%)

1,612

(4.10%)

99

(13.96%)

Missing 121

(0.47%)

6 (0.58%) 186

(0.72%)

7 (0.78%) 185

(0.46%)

3 (0.40%) 347

(0.88%)

11

(1.55%)

Personal history

of cancer

No 24,588

(95.70%)

956

(92.82%)

<0.001 24,554

(95.04%)

833

(93.07%)

0.007 38,033

(95.45%)

709

(94.03%)

0.078 37,532

(95.35%)

653

(92.10%)

<0.001

Yes 1,028

(4.00%)

68

(6.60%)

1,154

(4.47%)

58

(6.48%)

1,813

(4.55%)

45

(5.97%)

1,831

(4.65%)

56

(7.90%)

Missing 76

(0.30%)

6 (0.58%) 127

(0.49%)

4 (0.45%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Family history of

lung cancer

No 19,741

(76.84%)

746

(72.43%)

0.004 19,812

(76.69%)

640

(71.51%)

0.001 33,718

(84.62%)

565

(74.93%)

<0.001 33,485

(85.07%)

541

(76.30%)

<0.001

Yes 5,554

(21.62%)

261

(25.34%)

5,570

(21.56%)

236

(26.37%)

4,514

(11.33%)

139

(18.44%)

4,414

(11.21%)

130

(18.34%)

Missing 397

(1.55%)

23

(2.23%)

453

(1.75%)

19

(2.22%)

1614

(4.05%)

50

(6.63%)

1464

(3.72%)

38

(5.36%)

(Continued )

Risk prediction models for selection of lung cancer screening participants

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002277 April 4, 2017 7 / 24

https://doi.org/10.1371/journal.pmed.1002277


Statistical analyses

To assess the performance of the risk prediction models, several metrics were employed: cali-

bration, discrimination, and clinical usefulness (net benefit over a range of risk thresholds)

Table 2. (Continued)

Characteristic NLST computed tomography

arm

NLST chest radiography arm PLCO chest radiography arm PLCO control arm

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

No lung

cancer

Lung

cancer

p-

Value

Personal history

of pneumonia

No 19,905

(77.48%)

781

(75.83%)

0.338 20,023

(77.50%)

657

(73.41%)

0.004 Not measured in

PLCO

— Not measured in

PLCO

—

Yes 5,690

(22.15%)

240

(23.30%)

5,646

(21.85%)

233

(26.03%)

Not measured in

PLCO

— Not measured in

PLCO

—

Missing 97

(0.38%)

9 (0.87%) 166

(0.64%)

5 (0.56%) Not measured in

PLCO

— Not measured in

PLCO

—

Smoking status

Current smoker 12,183

(47.42%)

601

(58.35%)

<0.001 12,274

(47.51%)

558

(62.35%)

<0.001 7,744

(19.43%)

332

(44.04%)

<0.001 7,655

(19.45%)

324

(45.70%)

<0.001

Former smoker 13,509

(52.58%)

429

(41.65%)

13,561

(52.49%)

337

(37.65%)

32,102

(80.57%)

422

(55.97%)

31,708

(80.55%)

385

(54.30%)

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Smoking

duration (years)

Median (IQR) 40 (35–

44)

44 (40–

49)

<0.001 40 (35–

44)

44 (40–

49)

<0.001 28 (16–

39)

42 (35–

48)

<0.001 28 (16–

39)

42 (35–

47)

<0.001

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 766

(1.92%)

10

(1.33%)

877

(2.23%)

17

(2.40%)

Smoking

intensity

(cigarettes per

day)

Median (IQR) 25 (20–

35)

30 (20–

40)

<0.001 25 (20–

30.5)

25 (20–

40)

0.029 20 (10–

30)

30 (20–

40)

<0.001 20 (10–

30)

30 (20–

40)

<0.001

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 78

(0.20%)

4 (0.53%) 112

(0.28%)

2 (0.28%)

Pack-years of

smoking

Median (IQR) 48 (39–

66)

57 (45–

82)

<0.001 48 (39–

66)

55.5 (44–

78)

<0.001 28.5 (14–

48)

51 (38–

74)

<0.001 29 (14–

49)

54 (40–

75)

<0.001

Missing 0 (0%) 0 (0%) 0 (0%) 0 (0%) 827

(2.1%)

13 (1.7%) 957 (2.4% 19 (2.7%)

Years since

cessation

Median (IQR) 7 (3–11) 5 (2–10) <0.001 7 (3–11) 6 (2–11) 0.067 20 (10–

30)

10 (4–19) <0.001 20 (10–

30)

10 (4–

18.25)

<0.001

Missing 219

(0.9%)

5 (0.5%) 216

(0.8%)

8 (0.9%) 561

(1.4%)

5 (0.7%) 679

(1.7%)

5 (0.7%)

Data are given as n (percent) or median (IQR).

BMI, body mass index; COPD, chronic obstructive pulmonary disease; IQR, interquartile range; NLST, National Lung Screening Trial; PLCO, Prostate,

Lung, Colorectal and Ovarian Cancer Screening Trial.

https://doi.org/10.1371/journal.pmed.1002277.t002
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[50]. The performance of the investigated risk prediction models was assessed in each trial arm

separately, for both lung cancer incidence and lung cancer mortality. We assessed both lung

cancer incidence and mortality in both arms of both trials for all investigated risk models, as

these outcomes may be influenced differently by screening. Screening may affect the predictive

performance for lung cancer incidence, due to the advance in time of detection due to screen-

ing (lead time) and the detection of cancers that would never have been detected if screening

had not occurred (overdiagnosis) [51–53]. Furthermore, CT screening reduces lung cancer

mortality compared to CXR screening, which may influence the predictive performance of

models for lung cancer mortality in the CT arm of the NLST [1]. Furthermore, the sensitivity

and specificity of each model in the PLCO cohorts were compared to the sensitivity and speci-

ficity of the NLST/USPSTF smoking eligibility criteria (being a current or former smoker who

smoked at least 30 pack-years and, if quit, quit less than 15 y ago). Model performance was

assessed by varying follow-up duration and outcome (5- and 6-y lung cancer incidence or

mortality) to investigate the effect of follow-up duration on the discrimination performance of

each model [54]. The 5- and 6-y time frames were chosen because the LLP and PLCOm2012

models were calibrated to these respective time frames, and complete follow-up of NLST par-

ticipants was limited to 6 y [10,38]. Since performance was similar for 5- and 6-y outcomes,

only the results of the 6-y outcomes are presented. Performance was evaluated for the risk pre-

diction models as presented in their original publication, without any recalibration or repara-

meterization to the NLST and the PLCO. The only exception is the PLCOm2012 model, which

was originally developed based on data from the control arm of the PLCO [10]. All analyses

were performed in R (version 3.3.0) [55].

Aspects of calibration performance

Calibration plots were constructed for the observed proportions of outcome events against the

predicted risks for individuals grouped by similar ranges of predicted risk [56]. Perfect predic-

tions should show an ideal 45-degree line that can be described by an intercept of 0 and a slope

of 1 in the calibration plot [57]. The calibration intercept quantifies the extent to which a

model systematically under- or overestimates a person’s risk; an intercept value of 0 represents

perfect calibration in the large. The calibration slope was estimated by logistic regression anal-

ysis, using the log odds of the predictions for the single predictor of the binary outcome [50].

For a (near-)perfect calibration in the large, a calibration slope less than 1 reflects that predic-

tions for individuals with low risk are too low and predictions for individuals with high risk

are too high [50]. The calibration plots, calibration in the large, and calibration slopes for each

model were obtained using the R package rms [58].

Discrimination

Discrimination reflects the capability of a model to distinguish individuals with the event from

those without the event; the risk predicted by the model should be higher for individuals with

the event compared with those without the event [59]. The area under the receiver operating

characteristic curve (AUC) was used to assess discrimination, which ranges between 0.5 and

1.0 for sensible models. The AUCs for each model were obtained using the R package rms

[58].

Clinical usefulness

While discrimination and calibration are important statistical properties of a risk prediction

model, they do not assess its clinical usefulness [50,54,59]. For example, if a false-negative

result causes greater harm than a false-positive result, one would prefer a model with a higher
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sensitivity over a model that has a greater specificity but a slightly lower sensitivity, even

though the latter might have a higher AUC [60].

In the context of selecting individuals for lung cancer screening, a model is clinically useful

if applying that model to determine screening eligibility yields a better ratio of benefits to

harms than not applying it. Decision curve analysis has been proposed to assess the net benefit

of using a risk prediction model [60,61]. Decision curve analysis evaluates the net benefit of a

model over a range of risk thresholds, i.e., the level of risk used to classify predictions as posi-

tive or negative for the predicted outcome. For example, for the PLCOm2012 model, a risk

threshold of 1.51% has been suggested, meaning that individuals with an estimated risk of

1.51% or higher are classified as positive (and thus eligible for screening) and individuals with

an estimated risk lower than 1.51% as negative (and thus ineligible for screening) [13].

The net benefit is defined as:

net benefit ¼
true positive count � ðfalse positive count � weighting factorÞ

number of individuals assessed for screening eligibility

where the weighting factor is defined as:

weighting factor ¼
risk threshold

ð1 � risk thresholdÞ

This weighting factor represents how the relative harms of false-positive (classifying a per-

son as eligible for screening who does not develop, or die from, lung cancer) and false-negative

(classifying a person as ineligible for screening who develops, or dies from, lung cancer) results

are valued at a given risk threshold, i.e., the ratio of harm to benefit, and is estimated by the

threshold odds. For example, a risk threshold of 2.5% yields the following weighting factor:

weighting factor ¼
0:025

ð1 � 0:025Þ
¼

1

39

This weighting factor implies that missing one case of lung cancer that could be detected

through screening is valued as 39 times worse than unnecessarily screening one person, or that

one case should be detected per 40 screened persons. Consequently, the less relative weight

one gives to detecting a lung cancer case, the higher the risk threshold one will favor.

The net benefit can then be interpreted as follows: if the net benefit at a risk threshold of

2.5% is 0.002 greater compared with screening all persons eligible according to the NLST crite-

ria, taking the weighing factor into account, this is equivalent to a net improvement in true-

positive results of 0.002 × 1,000 = 2 per 1,000 persons assessed for screening eligibility, or a net

reduction in false-positive results of 0.002 × 1,000/(0.025/0.975) = 78 per 1,000 persons

assessed for screening eligibility [60]. Thus, if the risk model has a positive net benefit at the

preferred risk threshold, this indicates that applying the model at this risk threshold provides a

better ratio of benefits to harms than current screening guidelines based on pack-years. Deci-

sion curves visualize the net benefit over a range of risk thresholds, allowing one to discern

whether and at which risk thresholds applying the risk model can be clinically useful [61].

Decision curves were used to determine at which range of risk thresholds applying the models

provides a net benefit over using the NLST eligibility criteria for selecting individuals for lung

cancer screening.

Finally, we identified the risk threshold for each model in the PLCO cohorts that selected a

similar number of individuals for screening as the NLST eligibility criteria, on which most

lung cancer screening recommendations are currently based. We then assessed the sensitivity

(the number of individuals with lung cancer incidence or death classified as eligible for
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screening divided by the total number of individuals with lung cancer incidence or death) and

specificity (the number of individuals without lung cancer incidence or death classified as inel-

igible for screening divided by the total number of individuals without lung cancer incidence

or death) for each model compared to the NLST criteria at the chosen risk threshold, as

reported before by Tammemägi et al. [13].

Multiple imputation of missing values

Multiple imputation of missing data for all considered risk factors was performed through the

method of chained equations using the R package MICE [62]. History of pneumonia was not

measured in the PLCO but was measured in the NLST; therefore, data from the NLST were

used to impute history of pneumonia for PLCO participants [49]. Analyses were performed

using 20 imputations, and the results were pooled through applying Rubin’s rules [63]. The

results of the analyses with imputation of missing variables were similar to those obtained

from complete case analyses. The Transparent Reporting of a multivariable prediction model

for Individual Prognosis Or Diagnosis (TRIPOD) guidelines suggest applying multiple impu-

tation when missing data are present, as complete case analyses can lead to inefficient estimates

[64,65]. Therefore, all analyses reported here were performed with multiple imputation of

missing values.

Results

Characteristics of study populations

An overview of the characteristics of the four study cohorts (two trial arms in each trial) is

given in Table 2, stratified by 6-y lung cancer incidence. A similar table stratifying participants

by 6-y lung cancer mortality is provided in S2 Appendix. An overview of the proportion of

individuals with complete information on all risk factors, stratified by trial arm and 6-y out-

come, is given in S3 Appendix. Overall, approximately 93% of the study population had com-

plete information for all considered risk factors.

Differences in levels of absolute risk

The risk prediction models included in this study were developed in different populations

(Table 1) and incorporate risk factors, specifically smoking behavior, in different ways (S1

Appendix). In addition, some models predict lung cancer incidence, while others predict lung

cancer mortality. Therefore, the estimated absolute risk for the same individual varies between

models [66]. Fig 1 shows the estimated 6-y risk of lung cancer incidence or mortality (depend-

ing on the target outcome of the model) across the models for five individuals with different

risk factor profiles. This difference in estimated absolute risk between models suggests that

specific risk thresholds might be needed for each model.

Aspects of calibration performance

Overall, all models showed satisfactory calibration performance (S4 Appendix). The models

showed the best calibration performance when they were applied to their target outcome, i.e.,

lung cancer incidence rather than lung cancer mortality for lung cancer incidence models. The

calibration was better for all models in the PLCO datasets than in the NLST datasets.

Discrimination

The discriminative performance of the models (Figs 2–5) was better in the PLCO datasets

(AUCs ranging from 0.74 to 0.81) than in the NLST datasets (AUCs ranging from 0.61 to
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0.73). The discriminative performance of most models was better for lung cancer mortality

than for lung cancer incidence (i.e., the AUCs of most models were higher for lung cancer

mortality than for lung cancer incidence) in all datasets, except for the PLCO control arm. The

PLCOm2012 model (and its simplified version), the Bach model, and the TSCE incidence

model showed the best discriminative performance across all datasets regardless of the type of

predicted outcome. The discriminative performance of the models was similar for 5- and 6-y

time frames, as shown in S5 Appendix.

Clinical usefulness

Decision curve analysis for each risk prediction model provided a range of risk thresholds that

yield a positive net benefit compared with the NLST eligibility criteria. Table 3 shows the

Fig 1. Examples of projected absolute risk for individuals with different risk factor profiles by model. Person 1: 70-y-old, high-school-

graduated white male, current smoker, who smoked 30 cigarettes per day for 55 y, has a BMI of 28 kg/m2, has COPD, no asbestos exposure, no

personal history of cancer, no personal history of pneumonia, but has a family history of lung cancer (relative was diagnosed at age > 60 y).

Person 2: 63-y-old, college-graduated black woman, former smoker who quit 10 y ago, who smoked 15 cigarettes per day for 40 y, has a BMI of

25 kg/m2, does not have COPD, no asbestos exposure, no personal history of cancer, has a personal history of pneumonia, and no family history

of lung cancer. Person 3: 65-y-old Asian male with some college education, former smoker who quit 14 y ago, who smoked 10 cigarettes per day

for 30 y, has a BMI of 24 kg/m2, does not have COPD, has asbestos exposure, no personal history of cancer, no personal history of pneumonia,

and no family history of lung cancer. Person 4: 58-y-old, post-graduate-educated Hispanic woman, current smoker, who smoked 5 cigarettes per

day for 38 y, has a BMI of 22 kg/m2, does not have COPD, no asbestos exposure, has a personal history of cancer, no personal history of

pneumonia, and no family history of lung cancer. Person 5: 50-y-old, college-educated white woman, current smoker, who smoked 5 cigarettes

per day for 30 y, has a BMI of 22 kg/m2, does not have COPD, no asbestos exposure, no personal history of cancer, no personal history of

pneumonia, and no family history of lung cancer. BMI, body mass index; COPD, chronic obstructive pulmonary disease; CPS, Cancer Prevention

Study; HPFS, Health Professionals Follow-up Study; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study; TSCE, Two-Stage Clonal

Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g001
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lower and upper bounds for these ranges of risk thresholds for 6-y lung cancer incidence

across all datasets. Overall, the lower and upper thresholds varied by model, but the ranges

were roughly consistent across models, going from approximately 0.1% to 16.7%. This suggests

that applying the models is useful for determining screening eligibility if missing one case of

lung cancer that could be detected through screening is perceived as being between 999 and 5

times worse than unnecessarily screening one person. More detailed results for the decision

curve analyses for both lung cancer incidence and mortality are shown in S6 Appendix.

Comparison to National Lung Screening Trial eligibility criteria

Applying the NLST eligibility criteria yielded a sensitivity of 71.4% (95% confidence interval:

68.0%–74.6%) and a specificity of 62.2% (95% confidence interval: 61.7%–62.7%) for 6-y lung

cancer incidence in the PLCO CXR arm (Fig 6; Table 4). The sensitivity and specificity of each

of the risk prediction models were higher than those of the NLST eligibility criteria. The

PLCOm2012 model, in particular, followed by the Bach model and the TSCE incidence model

had the highest sensitivities (all three models >79.8%) and specificities (all three models

>62.3%) among all evaluated models. Fig 6 also shows the risk thresholds for each model that

select a similar number of individuals for screening as the NLST eligibility criteria. Similar

Fig 2. Area under the receiver operating characteristic curve of the investigated risk models (with 95% confidence interval) in the National Lung

Screening Trial computed tomography arm by predicted outcome. AUC, area under the receiver operating characteristic curve; CPS, Cancer

Prevention Study; HPFS, Health Professionals Follow-up Study; LC, lung cancer; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study; TSCE, Two-

Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g002
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results were found for the PLCO control arm and for using 6-y lung cancer death as the out-

come measure (S7 Appendix).

Discussion

This study assessed the performance of nine lung cancer risk prediction models in two large

randomized controlled trials: the NLST and the PLCO. The models had satisfactory calibra-

tion, had modest to good discrimination, and provided a substantial range of risk thresholds

with a positive net benefit compared with the NLST eligibility criteria. Given appropriate

model-specific risk thresholds, all risk prediction models had a better sensitivity and specificity

than the NLST eligibility criteria. This implies that lung cancer risk prediction models, when

coupled with model-specific risk thresholds, outperform currently recommended lung cancer

screening eligibility criteria (Tables 3 and 4; Fig 6).

The risk prediction models considered in this study were developed in various cohorts for

different outcome measures (lung cancer incidence versus mortality), with fundamental differ-

ences in model structures. Consequently, the absolute risk estimates differed between models,

which led to differences in calibration performance between the models, specifically in the

NLST cohorts. In addition, there were clear differences in discriminative ability between the

Fig 3. Area under the receiver operating characteristic curve of the investigated risk models (with 95% confidence interval) in the National

Lung Screening Trial chest radiography arm by predicted outcome. AUC, area under the receiver operating characteristic curve; CPS, Cancer

Prevention Study; HPFS, Health Professionals Follow-up Study; LC, lung cancer; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study; TSCE, Two-

Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g003
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models. The discriminative ability of all models was better in the PLCO cohorts than in the

NLST cohorts, which may be caused by the higher heterogeneity in risk factor profiles among

individuals in the PLCO compared with the NLST [67,68]. The NLST required individuals to

have smoked at least 30 pack-years and included only current and former smokers (who quit

less than 15 y ago), whereas the PLCO did not have any criteria for enrollment with regards to

smoking history. In line with these criteria, the average NLST participant had a higher lung

cancer risk than the average PLCO participant. The results of our investigation suggest that the

discriminative ability of the evaluated models may be lower in groups at elevated risk, which

may be due to the lower heterogeneity in risk among participants in these groups [67,68].

However, randomized clinical trials suggest that the results of CT screening may provide an

opportunity to improve risk stratification in these groups. In the NLST, participants with a

negative prevalence screen had a substantially lower risk of developing lung cancer than partic-

ipants with a positive prevalence screen [69]. Similarly, in the NELSON trial, the 2-y probabil-

ity of developing lung cancer after a CT screen varied substantially by pulmonary nodule size

and the volume doubling time of these pulmonary nodules [8]. Therefore, incorporating the

results of CT screening could improve the risk stratification in groups of individuals at elevated

risk. Finally, while there was little difference in specificity between the models at risk

Fig 4. Area under the receiver operating characteristic curve of the investigated risk models (with 95% confidence interval) in the Prostate,

Lung, Colorectal and Ovarian Cancer Screening Trial chest radiography arm by predicted outcome. AUC, area under the receiver operating

characteristic curve; CPS, Cancer Prevention Study; HPFS, Health Professionals Follow-up Study; LC, lung cancer; LLP, Liverpool Lung Project; NHS,

Nurses’ Health Study; TSCE, Two-Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g004
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thresholds similar to the NLST eligibility criteria, there was a clear difference in sensitivity. In

particular, the PLCOm2012 model, followed by the Bach model and the TSCE incidence

model, had the best performance across all aspects investigated in this study.

Previous studies have also compared the performance of different lung cancer risk predic-

tion models [20,21]. D’Amelio et al. examined the discriminatory performance of three risk

prediction models for lung cancer incidence in a case–control study and found modest differ-

ences between the models [20]. However, this study considered a limited number of partici-

pants (1,066 cases and 677 controls) and did not consider other aspects of model performance

such as calibration or clinical usefulness. Li et al. examined four risk prediction models for

lung cancer incidence in German participants of the European Prospective Investigation into

Cancer and Nutrition cohort [21]. They found that while the differences between most of the

evaluated models were modest, generally only the Bach and the PLCOm2012 models had simi-

lar or better sensitivity and specificity compared to the eligibility criteria used in the NLST and

other eligibility criteria that were used in various European lung cancer screening trials (which

applied less restrictive smoking eligibility criteria than the NLST). This cohort consisted of

20,700 individuals, but fewer than 100 lung cancer cases occurred, which limits statistical

power for external validation [18,19].

Fig 5. Area under the receiver operating characteristic curve of the investigated risk models (with 95% confidence interval) in the Prostate,

Lung, Colorectal and Ovarian Cancer Screening Trial control arm by predicted outcome. AUC, area under the receiver operating characteristic

curve; CPS, Cancer Prevention Study; HPFS, Health Professionals Follow-up Study; LC, lung cancer; LLP, Liverpool Lung Project; NHS, Nurses’ Health

Study; TSCE, Two-Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g005
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In contrast to these previous studies, we performed a comprehensive validation, including

aspects of calibration, discriminative ability, and clinical usefulness, for many models, in a

large sample (n = 134,124) with 3,388 lung cancer cases and 1,799 lung cancer deaths. In addi-

tion, while our study supports earlier findings that risk prediction models outperform the

NLST eligibility criteria, it also suggests that the PLCOm2012 model followed by the Bach and

TSCE incidence models perform better than other models in all investigated aspects.

Our study has some limitations. While our results provide indications regarding at which

risk thresholds the investigated risk models can be clinically useful, the optimal thresholds to

apply remain uncertain. Determining optimal thresholds requires information on the long-

term benefits (such as life-years gained and mortality reduction) and harms (such as overdiag-

nosis) of applying these thresholds [60]. Natural history modeling may provide further infor-

mation on the trade-off between the long-term benefits and harms for screening programs

with different risk thresholds, similarly to how our previous study informed the USPSTF on its

recommendations for lung cancer screening [2].

Another limitation is that information on some of the predictor variables included in the

evaluated risk prediction models was not available in the NLST and the PLCO, e.g., asbestos

exposure was missing in both cohorts. However, only a few variables were unavailable. Fur-

thermore, some of the evaluated models that used only age, gender, and smoking behavior,

such as the TSCE models and the Knoke model, performed similarly to the other models that

used additional information on risk factors, suggesting that age, gender, and smoking behavior

are the most important risk factors for lung cancer. Thus, the improved performance of these

models over the NLST eligibility criteria may primarily be due to the inclusion of detailed

Table 3. Lower and upper risk thresholds for which the risk prediction models have a positive net benefit compared with the National Lung

Screening Trial criteria for 6-y lung cancer incidence.

Model NLST computed tomography-

arm

NLST chest radiography arm PLCO chest radiography arm PLCO control arm

Lower risk

threshold

(WF*)

Upper risk

threshold

(WF*)

Lower risk

threshold

(WF*)

Upper risk

threshold

(WF*)

Lower risk

threshold

(WF*)

Upper risk

threshold

(WF*)

Lower risk

threshold

(WF*)

Upper risk

threshold

(WF*)

Bach model 0.5% (199.0) 12.7% (6.9) 0.9% (110.1) 13.5% (6.4) 0.3% (332.3) 10.4% (8.6) 0.2% (499.0) 8.9% (10.2)

LLP model 1.8% (54.6) 8.0% (11.5) 1.2% (82.3) 7.3% (12.7) 0.4% (249.0) 6.5% (14.4) 0.4% (249.0) 5.8% (16.2)

Simplified LLP

model

1.9% (51.6) 8.5% (10.8) 1.9% (51.6) 8.5% (10.8) 0.4% (249.0) 8.5% (10.8) 0.3% (332.3) 5.3% (17.9)

PLCOm2012 model 0.9% (110.1) 16.1% (5.2) 0.1% (999.0) 10.5% (8.5) 0.2% (499.0) 9.0% (10.1) 0.1% (999.0) 11.0% (8.1)

Simplified

PLCOm2012 model

0.7% (141.9) 13.6% (6.4) 0.7% (141.9) 12.0% (7.3) 0.3% (332.3) 9.3% (9.8) 0.2% (499.0) 8.5% (10.8)

TSCE lung cancer

incidence model

2.0% (49.0) 12.1% (7.3) 1.1% (89.9) 8.0% (11.5) 0.3% (332.3) 7.9% (11.7) 0.2% (499.0) 6.9% (13.5)

Knoke model 3.5% (27.6) 13.3% (6.5) 2.8% (34.7) 8.8% (10.4) 3.0% (32.3) 7.7% (12.0) 2.9% (33.5) 7.2% (12.9)

TSCE CPS lung

cancer death model

3.4% (28.4) 7.1% (13.1) 2.8% (34.7) 6.2% (15.1) 2.8% (34.7) 6.2% (15.1) 2.8% (34.7) 6.0% (15.7)

TSCE NHS/HPFS

lung cancer death

model

2.7% (36.0) 16.7% (5.0) 2.0% (49.0) 9.9% (9.1) 0.2% (499.0) 7.8% (11.8) 2.3% (42.5) 6.6% (14.2)

*Weighting factor corresponding to the risk threshold, i.e., the ratio of how much worse missing one case of lung cancer that could be detected through

screening is valued compared to unnecessarily screening one person.

CPS, Cancer Prevention Study; HPFS, Health Professionals Follow-up Study; LC, lung cancer; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study;

NLST, National Lung Screening Trial; PLCO, Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; TSCE, Two-Stage Clonal Expansion; WF,

weighting factor.

https://doi.org/10.1371/journal.pmed.1002277.t003
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smoking behavior in these models. The NLST eligibility criteria use a dichotomized criterion

for accumulated pack-years, e.g., an exposure of at least 30 pack-years, which leads to a loss of

information for continuous variables [70]. Furthermore, pack-years are estimated by smoking

duration and intensity (cigarettes per day), and previous studies indicate that both

Fig 6. Sensitivity, specificity, and risk thresholds for the investigated risk prediction models and the National Lung Screening Trial

criteria for 6-y lung cancer incidence in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial chest radiography arm.

CPS, Cancer Prevention Study; HPFS, Health Professionals Follow-up Study; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study; NLST,

National Lung Screening Trial; TSCE, Two-Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.g006

Table 4. Sensitivities and specificities corresponding to the suggested risk thresholds for the investigated risk prediction models and the National

Lung Screening Trial criteria for 6-y lung cancer incidence in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial chest radiography

arm.

Measure NLST

criteria

Bach

model

LLP

model

Simplified

LLP model

PLCOm2012

model

Simplified

PLCOm2012

model

TSCE

incidence

model

Knoke

model

TSCE CPS

lung cancer

death

model

TSCE NHS/

HPFS lung

cancer death

model

Sensitivity 71.4%

(68.0%–

74.6%)

80.0%

(76.9%–

82.8%)

73.9%

(70.6%–

77.0%)

74.0%

(70.7%–

77.1%)

83.0%

(80.2%–

85.6%)

80.0% (76.9%–

82.8%)

79.8%

(76.8%–

82.6%)

78.1%

(75.0%–

81.0%)

72.7%

(69.3%–

75.8%)

78.5%

(75.4%–

81.4%)

Specificity 62.2%

(61.7%–

62.7%)

62.4%

(61.9%–

62.8%)

62.2%

(61.8%–

62.7%)

62.6%

(62.1%–

63.1%)

62.5%

(61.9%–

62.8%)

62.4% (61.9%–

62.8%)

62.3%

(61.9%–

62.8%)

62.2%

(61.7%–

62.7%)

62.2%

(61.7%–

62.7%)

62.3%

(61.8%–

62.8%)

Data given as percent (95% confidence interval).

CPS, Cancer Prevention Study; HPFS, Health Professionals Follow-up Study; LLP, Liverpool Lung Project; NHS, Nurses’ Health Study; NLST, National

Lung Screening Trial; TSCE, Two-Stage Clonal Expansion.

https://doi.org/10.1371/journal.pmed.1002277.t004
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components contribute independently to an individual’s risk for developing lung cancer; an

aggregation of both may not fully capture the effects of smoking on lung cancer risk

[10,43,71].

We chose to evaluate the models for varying follow-up lengths (5- and 6-y time frames) to

investigate the effect of follow-up duration on the discrimination performance of each model

[54]. Although the discriminative performance of the models was similar for 5- and 6-y time

frames (S5 Appendix), this may not be the case for more disparate time frames.

A number of pertinent questions remain with regards to the implementation of lung cancer

screening [9]. Current guidelines like the USPSTF recommendations suggest that individuals

should be asked, at a minimum, about their age and smoking history [3]. A number of the

models evaluated in our study use information on additional risk factors, such as personal his-

tory of cancer, which could be a potential barrier for implementing lung cancer screening

based on risk prediction models. However, the LLP and PLCOm2012 models were successfully

used to recruit individuals for the UK Lung Cancer Screening Trial (UKLS) and the Pan-Cana-

dian Early Detection of Lung Cancer Study (PanCan), respectively, through short question-

naires [33,72]. This suggests that acquiring information on the risk factors required for these

models does not pose a major barrier for implementation. Furthermore, for some risk models,

such as the Bach and PLCOm2012 models, online calculators are available, which provide

opportunities for fast risk estimation in clinical practice [73–76]. For example, the

PLCOm2012 model has been embedded in a lung cancer screening decision aid that has been

widely adopted and that can be used to satisfy the Centers for Medicare & Medicaid Services

reimbursement requirement for shared decision making [75–77].

In conclusion, our study suggests that lung cancer screening selection criteria can be

improved through the explicit application of risk prediction models rather than using criteria

based on age and pack-years as a summary measure of smoking exposure. These models might

also be helpful for improving the shared decision-making process for lung cancer screening

recommended by the USPSTF and required in the US by the Centers for Medicare & Medicaid

Services [3,75,78]. However, recommendations for the implementation of risk-based lung can-

cer screening require a thorough evaluation of the benefits and harms of risk-based screening,

as well as an assessment of the feasibility of implementing strategies based on risk models.

Therefore, future studies need to evaluate the long-term benefits and harms of applying risk

prediction models at different risk thresholds, while considering the potential challenges for

implementation, and compare these with the expected benefits and harms of current

guidelines.
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