Divergent priors are improper when defined on unbounded supports. Bartlett's paradox has been taken to imply that using improper priors results in ill-defined Bayes factors, preventing model comparison by posterior probabilities. However many improper priors have attractive properties that econometricians may wish to access and at the same time conduct model comparison. We present a method of computing well defined Bayes factors with divergent priors by setting rules on the rate of diffusion of prior certainty. The method is exact; no approximations are used. As a further result, we demonstrate that exceptions to Bartlett's paradox exist. That is, we show it is possible to construct improper priors that result in well defined Bayes factors. One important improper prior, the Shrinkage prior due to Stein (1956), is one such example. This example highlights pathologies with the resulting Bayes factors in such cases, and a simple solution is presented to this problem. A simple Monte Carlo experiment demonstrates the applicability of the approach developed in this paper.

Additional Metadata
Keywords Bayes factor, Shrinkage prior, improper prior, marginal likelihood, measure
JEL C11, Bayesian Analysis (jel), C15, Simulation Methods; Monte Carlo Methods; Bootstrap Methods (jel), C32, Time-Series Models; Dynamic Quantile Regressions (jel), C52, Model Evaluation and Testing (jel)
Publisher Tinbergen Institute
Persistent URL hdl.handle.net/1765/22334
Strachan, R.W, & van Dijk, H.K. (2011). Divergent Priors and well Behaved Bayes Factors (No. TI 2011-006/4). Discussion paper / Tinbergen Institute. Tinbergen Institute. Retrieved from http://hdl.handle.net/1765/22334