Retinoic acid (RA), a derivative of vitamin A, is an important molecule for development and homeostasis of vertebrate organisms. The intracellular retinoic acid binding protein CRABP-I has a high affinity for RA, and is thought to be involved in the mechanism of RA signalling. CRABP-I is well conserved in evolution and shows a specific expression pattern during development, but mice made deficient for the protein by gene targeting appear normal. However, the high degree of homology with CRABP-I from other species indicates that the protein has been subject to strong selective conservation, indicative of an important biological function. In this paper we have compared the conservation in the expression pattern of the mouse, chicken and pufferfish CRABP-I genes to substantiate this argument further. First we cloned and sequenced genes and promoter regions of the CRABP-I genes from chicken and the Japanese pufferfish, Fugu rubripes. Sequence comparison with the mouse gene did not show any large blocks of homology in the promoter regions. Nevertheless, the promoter of the chicken gene directed expression to a subset of the tissues that show expression with the promoter from the mouse gene. The pattern observed with the pufferfish promoter is even more restricted, essentially to rhombomere 4 only, indicating that this region may be functionally the most important for CRABP-I expression in the developing embryo.

, , , , , , ,
doi.org/1008864224100, hdl.handle.net/1765/2552
Transgenic Research
Erasmus MC: University Medical Center Rotterdam

Kleinjan, D., Dekker, S., Guy, J., & Grosveld, F. (1998). Cloning and sequencing of the CRABP-I locus from chicken and pufferfish; analysis of the promoter regions in transgenic mice. Transgenic Research, 7, 85–94. doi:1008864224100