Background and Purpose: The spatial QRS-T angle (SA), a predictor of sudden cardiac death, is a vectorcardiographic variable. Gold standard vertorcardiograms (VCGs) are recorded by using the Frank electrode positions. However, with the commonly available 12-lead ECG, VCGs must be synthesized by matrix multiplication (inverse Dower matrix/Kors matrix). Alternatively, Rautaharju proposed a method to calculate SA directly from the 12-lead ECG. Neither spatial angles computed by using the inverse Dower matrix (SA-D) nor by using the Kors matrix (SA-K) or by using Rautaharju's method (SA-R) have been validated with regard to the spatial angles as directly measured in the Frank VCG (SA-F). Our present study aimed to perform this essential validation. Methods: We analyzed SAs in 1220 simultaneously recorded 12-lead ECGs and VCGs, in all data, in SA-F-based tertiles, and after stratification according to pathology or sex. Results: Linear regression of SA-K, SA-D, and SA-R on SA-F yielded offsets of 0.01°, 20.3°, and 28.3° and slopes of 0.96, 0.86, and 0.79, respectively. The bias of SA-K with respect to SA-F (mean ± SD, -3.2° ± 13.9°) was significantly (P < .001) smaller than the bias of both SA-D and SA-R with respect to SA-F (8.0° ± 18.6° and 9.8° ± 24.6°, respectively); tertile analysis showed a much more homogeneous behavior of the bias in SA-K than of both the bias in SA-D and in SA-R. In pathologic ECGs, there was no significant bias in SA-K; bias in men and women did not differ. Conclusion: SA-K resembled SA-F best. In general, when there is no specific reason either to synthesize VCGs with the inverse Dower matrix or to calculate the spatial QRS-T angle with Rautaharju's method, it seems prudent to use the Kors matrix.

Additional Metadata
Persistent URL,
Journal Journal of Electrocardiology
Schreurs, C.A, Algra, A.M, Man, S.C, Cannegieter, S.C, van der Wall, E.E, Schalij, M.J, … Swenne, C.A. (2010). The spatial QRS-T angle in the Frank vectorcardiogram: accuracy of estimates derived from the 12-lead electrocardiogram. Journal of Electrocardiology, 43(4), 294–301. doi:10.1016/j.jelectrocard.2010.03.009