The objective of this study was to determine the influence of scapular support on the effects of lumbar support and to prove that a high and straight backrest is inappropriate. In literature the importance of a lumbar support is noted, although data about optimal dimensions is an under-researched topic and in earlier studies on force distribution and muscle activity the backrest had a fixed form. The lumbar support is needed to maintain the lumbar lordosis but no studies deal with the question of the precise dimensions of the backrest at shoulder level. With a specially designed apparatus, forces on shoulder and seat were measured separately, and the force on the pelvis calculated, while varying seat and backrest inclination within the range from 0° to 17°. Seat-to-backrest angle (at the level of lumbar support) was kept constant at 90°. The distance between the tangent to the lumbar support and the parallel tangent to the scapular support was varied from 0, 2, 4, 6 and 8 cm. This distance is called the free shoulder space. Electromyography was measured at the erector spinae at the levels of the L1, T8 and T5 vertebrae. For all seat angles, a free shoulder space of d = 0 cm resulted in the highest back muscle activity. In agreement with the biomechanical model, EMG activity reduced with an increase of seat tilt and increase of free shoulder space. With increasing free shoulder space, a larger part of the total backrest force was carried by the lumbar support. This study shows that a high and straight backrest overrules lumbar support. Offering free shoulder space of at least 6 cm reduces back muscle activity and allows for lumbar support.

, , ,
doi.org/10.1080/0014013031000063837, hdl.handle.net/1765/31829
Ergonomics
Erasmus MC: University Medical Center Rotterdam

Goossens, R., Snijders, C., Roelofs, G. Y., & van Buchem, F. (2003). Free shoulder space requirements in the design of high backrests. Ergonomics, 46(5), 518–530. doi:10.1080/0014013031000063837