Palpography assesses the local mechanical properties of tissue using the deformation caused by the intraluminal pressure. The technique was validated in vitro using diseased human coronary and femoral arteries. Especially between fibrous and fatty tissue, a highly significant difference in strain (p = 0.0012) was found. Additionally, the predictive value to identify the vulnerable plaque was investigated. A high-strain region at the lumen vessel wall boundary has 88% sensitivity and 89% specificity for identifying these plaques. In vivo, the technique is validated in an atherosclerotic Yucatan minipig animal model. This study also revealed higher strain values in fatty than in fibrous plaques (p < 0.001). The presence of a high-strain region at the lumen-plaque interface has a high predictive value to identify macrophages. Patient studies revealed high strain values (1% to 2%) in noncalcified plaques. Calcified material showed low strain values (0% to 0.2%). With the development of three-dimensional palpography, identification of weak spots over the full length of a coronary artery becomes available. Patients with myocardial infarction or unstable angina have more high-strain spots in their coronary arteries than patients with stable angina. In conclusion, intravascular palpography is a unique tool to assess lesion composition and vulnerability. Three-dimensional palpography provides a technique that may develop into a clinically available tool for decision making to treat hemodynamically nonsignificant lesions by identifying vulnerable plaques. The clinical utility of this technique is yet to be determined, and more investigation is needed.

doi.org/10.1016/j.jacc.2006.01.035, hdl.handle.net/1765/56675
Journal of the American College of Cardiology
Department of Cardiology

Schaar, J., van der Steen, T., Mastik, F., Baldewsing, R., & Serruys, P. (2006). Intravascular Palpography for Vulnerable Plaque Assessment. Journal of the American College of Cardiology (Vol. 47). doi:10.1016/j.jacc.2006.01.035