INTRODUCTION: DNA methylation is part of the epigenetic regulatory mechanism present in all normal cells. It is tissue-specific and stably maintained throughout development, but often abnormally changed in cancer. Non-small-cell lung carcinoma (NSCLC) is the most deadly type of cancer, involving different tumor subtypes. This heterogeneity is a challenge for correct diagnosis and patient treatment. The stability and specificity make of DNA methylation a very suitable marker for epigenetic phenotyping of tumors. METHODS: To identify candidate markers for use in NSCLC diagnosis, we used genomewide DNA methylation maps that we had previously generated by MethylCap and next-generation sequencing and listed the most significant differentially methylated regions (DMRs). The 25 DMRs with highest significance in their methylation scores were selected. The methylation status of these DMRs was investigated in 61 tumors and matching control lung tissues by methylation-specific polymerase chain reaction. RESULTS: We found 12 novel DMRs that showed significant differences between tumor and control lung tissues. We also identified three novel DMRs for each of the two most common NSCLC subtypes, adenocarcinomas and squamous cell carcinomas. We propose a panel of five DMRs, composed of novel and known markers that exhibit high specificity and sensitivity to distinguish tumors from control lung tissues. CONCLUSION: Novel markers will aid the development of a highly specific epigenetic panel for accurate identification and subtyping of NSCLC tumors. Copyright

, , , ,
doi.org/10.1097/JTO.0b013e3182863ed2, hdl.handle.net/1765/68178
Journal of Thoracic Oncology
Department of Pulmonology

Carvalho, R. H., Hou, J., Haberle, V., Aerts, J., Grosveld, F., Lenhard, B., & Philipsen, S. (2013). Genomewide DNA methylation analysis identifies novel methylated genes in non-small-cell lung carcinomas. Journal of Thoracic Oncology, 8(5), 562–573. doi:10.1097/JTO.0b013e3182863ed2