BACKGROUND: Because of the recent grade C draft recommendation by the US Preventive Services Task Force (USPSTF) for prostate cancer screening between the ages of 55 and 69 years, there is a need to determine whether this could be cost-effective in a US population setting. METHODS: This study used a microsimulation model of screening and active surveillance (AS), based on data from the European Randomized Study of Screening for Prostate Cancer and the Surveillance, Epidemiology, and End Results Program, for the natural history of prostate cancer and Johns Hopkins AS cohort data to inform the probabilities of referral to treatment during AS. A cohort of 10 million men, based on US life tables, was simulated. The lifetime costs and effects of screening between the ages of 55 and 69 years with different screening frequencies and AS protocols were projected, and their cost-effectiveness was determined. RESULTS: Quadrennial screening between the ages of 55 and 69 years (55, 59, 63, and 67 years) with AS for men with low-risk cancers (ie, those with a Gleason score of 6 or lower) and yearly biopsies or triennial biopsies resulted in an incremental cost per quality-adjusted life-year (QALY) of $51,918 or $69,380, respectively. Most policies in which screening was followed by immediate treatment were dominated. In most sensitivity analyses, this study found a policy with which the cost per QALY remained below $100,000. CONCLUSIONS: Prostate-specific antigen–based prostate cancer screening in the United States between the ages of 55 and 69 years, as recommended by the USPSTF, may be cost-effective at a $100,000 threshold but only with a quadrennial screening frequency and with AS offered to all low-risk men. Cancer 2018;124:507-13.

active surveillance, microsimulation model, overdiagnosis, prostate cancer,
Department of Public Health

de Carvalho Delgado Marques, T.M, Heijnsdijk, E.A.M, & de Koning, H.J. (2018). Comparative effectiveness of prostate cancer screening between the ages of 55 and 69 years followed by active surveillance. Cancer, 124(3), 507–513. doi:10.1002/cncr.31141