Background: Various technologies have been developed to improve hand hygiene (HH) compliance in inpatient settings; however, little is known about the feasibility of machine learning technology for this purpose in outpatient clinics.
Aim: To assess the effectiveness, user experiences, and costs of implementing a real-time HH notification machine learning system in outpatient clinics.
Methods: In our mixed methods study, a multi-disciplinary team co-created an infrared guided sensor system to automatically notify clinicians to perform HH just before first patient contact. Notification technology effects were measured by comparing HH compliance at baseline (without notifications) with real-time auditory notifications that continued till HH was performed (intervention I) or notifications lasting 15 s (intervention II). User experiences were collected during daily briefings and semi-structured interviews. Costs of implementation of the system were calculated and compared to the current observational auditing programme.
Findings: Average baseline HH performance before first patient contact was 53.8%. With real-time auditory notifications that continued till HH was performed, overall HH performance increased to 100% (P < 0.001). With auditory notifications of a maximum duration of 15 s, HH performance was 80.4% (P < 0.001). Users emphasized the relevance of real-time notification and contributed to technical feasibility improvements that were implemented in the prototype. Annual running costs for the machine learning system were estimated to be 46% lower than the observational auditing programme.
Conclusion: Machine learning technology that enables real-time HH notification provides a promising cost-effective approach to both improving and monitoring HH, and deserves further development in outpatient settings.

Additional Metadata
Keywords Compliance, Hand hygiene, Real-time notification, Technology
Persistent URL dx.doi.org/10.1016/j.jhin.2018.04.004, hdl.handle.net/1765/106428
Journal Journal of Hospital Infection
Citation
Geilleit, R., Hen, Z.Q., Chong, C.Y., Loh, A.P., Pang, N.L., Peterson, G.M., … de Korne, D.F. (2018). Feasibility of a real-time hand hygiene notification machine learning system in outpatient clinics. Journal of Hospital Infection. doi:10.1016/j.jhin.2018.04.004